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Outline

◦ This class
I Introduction to Deep Learning
I The Deep Learning Paradigm
I Challenges in Deep Learning Theory and Applications
I Introduction to Generalization error bounds

I Uniform Convergence and Rademacher Complexity
I Generalization in Deep Learning (Part 1)
◦ Next class
I Generalization in Deep Learning (Part 2)
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Remark about notation

◦ The Deep Learning literature might use a different notation:

Our lectures DL literature
data/sample a x

label b y
bias µ b

weight x,X w,W
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Power of linear classifiers–I
Problem (Recall: Logistic regression)
Given a sample vector ai ∈ Rd and a binary class label bi ∈ {−1,+1} (i = 1, . . . , n), we define the conditional
probability of bi given ai as:

P(bi|ai,x) ∝ 1/(1 + e−bi〈x,ai〉),

where x ∈ Rd is some weight vector.

ax

a y

ax

a y

b = + 1
b = 1

Figure: Linearly separable versus nonlinearly separable dataset
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Power of linear classifiers–II
◦ Lifting dimensions to the rescue
I Convex optimization objective
I Might introduce the curse-of-dimensionality
I Possible to avoid via kernel methods, such as SVMs

ax

a y
b = + 1
b = 1

Figure: Non-linearly separable data (left). Linearly separable in R3 via az =
√

a2
x + a2

y (right).
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An important alternative for non-linearly separable data

1-hidden-layer neural network with m neurons (fully-connected architecture):

◦ Parameters: X1 ∈ Rm×d, X2 ∈ Rc×m (weights), µ1 ∈ Rm, µ2 ∈ Rc (biases)
◦ Activation function: σ : R→ R

hx(a) :=

[
X2

]

activationy
σ



weight
↓[

X1

]

input
↓[
a

]

+

bias
↓[
µ1

]


︸                                                      ︷︷                                                      ︸

hidden layer = learned features

+

bias
↓[
µ2

]
, x := [X1,X2, µ1, µ2]

recursively repeat activation + affine transformation to obtain “deeper” networks.
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Why neural networks?: An approximation theoretic motivation

Theorem (Universal approximation [3])
Let σ(·) be a nonconstant, bounded, and increasing
continuous function. Let Id = [0, 1]d. The space of
continuous functions on Id is denoted by C(Id).

Given ε > 0 and g ∈ C(Id) there exists a 1-hidden-layer
network h with m neurons such that h is an
ε-approximation of g, i.e.,

sup
a∈Id

|g(a)− h(a)| ≤ ε

Caveat
The number of neurons m needed to approximate some
function g can be arbitrarily large! Figure: networks of increasing width
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Why were NNs not popular before 2010?

I too big to optimize!
I did not have enough data
I could not find the optimum via algorithms

1
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Supervised learning: Multi-class classification

Figure: CIFAR10 dataset: 60000 32x32 color images (3
channels) from 10 classes

Figure: Imagenet dataset: 14 million color images (varying
resolution, 3 channels) from 21K classes

Goal
Image-label pairs (a, b) ⊆ Rd × {1, . . . , c} follow an unknown distibution P. Find h : Rd → {1, . . . , c} with
minimum misclassification probability

min
h∈H

P(h(a) , b)
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2010-today: Deep Learning becomes popular again
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Figure: Error rate on the ImageNet challenge, for different network architectures.
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Convolutional architectures in Computer Vision tasks

Figure: “Locality” Structure of a 2D deep convolutional neural network.
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Inductive Bias: Why convolution works so well in Computer Vision tasks?

h◦ true unknown function
H space of all functions
Hpfc fully-connected networks

with p parameters
Hpconv convolutional networks

with p parameters
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2010-today: Size of neural networks grows exponentially!
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Figure: Number of parameters in Language models based on Deep Learning.
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The Landscape of ERM with multilayer networks

Recall: Empirical risk minimization (ERM)
Let hx : Rn → R be network and let {(ai, bi)}ni=1 be a sample with bi ∈ {−1, 1} and ai ∈ Rn. The empirical
risk minimization (ERM) is defined as

min
x

{
Rn(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
(1)

where L(hx(ai), bi) is the loss on the sample (ai, bi) and x are the parameters of the network.

Some frequently used loss functions

I L(hx(a), b) = log(1 + exp(−b · hx(a))) (logistic loss)
I L(hx(a), b) = (b− hx(a))2 (squared error)
I L(hx(a), b) = max(0, 1− b · hx(a)) (hinge loss)
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The Landscape of ERM with multilayer networks

1

Figure: convex (left) vs non-convex (right) optimization landscape

Conventional wisdom in ML until 2010:
Simple models + simple errors
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The Deep Learning Paradigm

(a) Massive datasets (b) Inductive bias from large and complex
architectures

1

(c) ERM using stochastic non-convex first-order
optimization algorithms (SGD)

Figure: Most common components in a Deep Learning Pipeline
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Challenges in DL/ML applications: Robustness (I)

(a) Turtle classified as rifle. Athalye et al. 2018. (b) Stop sign classified as 45 mph sign. Eykholt et al. 2018

Figure: Natural or human-crafted modifications that trick neural networks used in computer vision tasks

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 43



Challenges in DL/ML applications: Robustness (II)

(a) Linear classifier on data distributed on a sphere (b) Concentration of measure phenomenon on high
dimensions

Figure: Understanding the robustness of a classifier in high-dimensional spaces. Shafahi et al. 2019.
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Challenges in DL/ML applications: Robustness (References)
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Challenges in DL/ML applications: Surveillance/Privacy/Manipulation

Figure: Political and societal concerns about some DL/ML applications
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Challenges in DL/ML applications: Surveillance/Privacy/Manipulation (References)
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Challenges in DL/ML applications: Fairness

4ML & AI | Volkan Cevher | https://lions.epfl.ch 
(a) Racist classifier

5ML & AI | Volkan Cevher | https://lions.epfl.ch 
(b) Effect of unbalanced data

Figure: Unfair classifiers due to biased or unbalanced datasets/algorithms
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Challenges in DL/ML applications: Fairness (References)
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Challenges in DL/ML applications: Interpretability
Interpretability

3ML & AI | Volkan Cevher | https://lions.epfl.ch Figure: Performance vs Interpretability trade-offs in DL/ML
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Challenges in DL/ML applications: Interpretability (References)
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Challenges in DL/ML applications: Energy efficiency and costSustainability:
 

        Dennard scaling & Moore’s law vs Growth of data

6ML & AI | Volkan Cevher | https://lions.epfl.ch 

Andy Burg

Tim Dettmers

DART Consulting

Figure: Efficiency and Scalability concerns in DL/ML
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Challenges in DL/ML applications: Energy efficiency and cost (References)
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What theoretical challenges in Deep Learning will we study?

Models
Let X ⊆ X ◦ be parameter domains, where X is known. Define
1. x◦ ∈ arg minx∈X◦ R(x): true minimum risk model
2. x\ ∈ arg minx∈X R(x): assumed minimum risk model
3. x? ∈ arg minx∈X Rn(x): ERM solution
4. xt: numerical approximation of x? at time t

Practical performance in Deep Learning

R(xt)−R(x◦)︸                 ︷︷                 ︸
ε̄(t,n)

≤ Rn(xt)−Rn(x?)︸                     ︷︷                     ︸
optimization error

+2 sup
x∈X
|R(x)−Rn(x)|︸                         ︷︷                         ︸

worst-case generalization error

+ R(x\)−R(x◦)︸                 ︷︷                 ︸
model error

where ε̄(t, n) denotes the total error of the Learning Machine. In Deep Learning applications
1. Optimization error is almost zero, in spite of non-convexity. ⇒ lecture 9
2. We expect large generalization error. It does not happen in practice. ⇒ lecture 7 (this one) and 8
3. Large architectures + inductive bias might lead to small model error.
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Generalization error bounds

The value of |R(x)−Rn(x)| is called the generalization error of the parameter x.

Goal: obtain generalization bounds for multi-layer, fully-connected neural networks

We want to find high-probability upper bounds for the worst case generalization error over a class X :

sup
x∈X
|R(x)−Rn(x)|

Main tool: concentration inequalities!
I Measure of how far is an empirical average from the true mean

Theorem (Hoeffding’s Inequality [6])
Let Y1, . . . , Yn be i.i.d. random variables with Yi taking values in the interval [ai, bi] ⊆ R for all i = 1, . . . , n.
Let Sn := 1

n

∑n

i=1 Yi. It holds that

P (|Sn − E[Sn]| > t) ≤ 2 exp
(
−

2n2t2∑n

i=1(bi − ai)2

)
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Warmup: Generalization bound for a singleton

Lemma
For i = 1, . . . , n let (ai, bi) ∈ Rp × {−1, 1} be independent random variables and hx : Rp → R be a function
parametrized by x ∈ X . Let X = {x0} and L(hx(a), b) = {sign(hx(a)) , b} be the 0-1 loss.
With probability at least 1− δ, we have that

sup
x∈X
|R(x)−Rn(x)| = |R(x0)−Rn(x0)| ≤

√
ln(2/δ)

2n
.

Proof.
Note that E[ 1

n

∑n

i=1 L(hx0 (ai), bi)] = R(x0), the expected risk of the parameter x0. Moreover
L(hx0 (ai), bi) ∈ [0, 1]. We can use Hoeffding’s inequality and obtain

P(|Rn(x0)−R(x0)| > t) = P

(∣∣∣∣∣ 1
n

n∑
i=1

Li(hx0 (ai), bi)−R(x0)

∣∣∣∣∣ > t

)
≤ 2 exp

(
− 2nt2

)
Setting δ := 2 exp

(
−2nt2

)
, we have that t =

√
ln 2/δ

2n , thus obtaining the result.
�
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Generalization bound for finite sets

Lemma
For i = 1, . . . , n let (ai, bi) ∈ Rp × {−1, 1} be independent random variables and hx : Rp → R be a function
parametrized by x ∈ X . Let X be a finite set and L(hx(a), b) = {sign(hx(a)) , b} be the 0-1 loss.
With probability at least 1− δ, we have that

sup
x∈X
|R(x)−Rn(x)| ≤

√
ln |X |+ ln(2/δ)

2n
.

Proof.
Let X = {x1, . . . ,x|X|}. We can use a union bound and the analysis of the singleton case to obtain:

P(∃j : |Rn(xj)−R(xj)| > t) ≤
|X|∑
j=1

P(|Rn(xj)−R(xj)| > t) = 2|X | exp
(
− 2nt2

)

Setting δ := 2|X | exp
(
−2nt2

)
we have that t =

√
ln |X|+ln 2

δ
2n , thus obtaining the result.

�
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Generalization bounds for infinite classes - The Rademacher complexity

However, in most applications in ML/DL we optimize over an infinite parameter space X !

◦ A useful notion of complexity to derive generalization bounds for infinite classes of functions:

Definition (Rademacher Complexity [2])
Let S = {a1, . . . ,an} ⊆ Rp and let {σi : i = 1, . . . , n} be independent Rademacher random variables i.e.,
taking values uniformly in {−1,+1} (coin flip). Let H be a class of functions of the form h : Rp → R. The
Rademacher complexity of H with respect to A is defined as follows:

RA(H) B E sup
h∈H

1
n

n∑
i=1

σih(ai).

◦ RA(H) measures how well can we fit random signs (±1) with the output of an element of H on the set A.
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Visualizing Rademacher complexity

Figure: Rademacher complexity measures correlation with random signs
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Visualizing Rademacher complexity

(a) High Rademacher Complexity (b) Large Generalization error
(memorization)

(c) Low Rademacher Complexity (d) Low Generalization error

Figure: Rademacher complexity and Generalization error

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 43



A fundamental theorem about the Rademacher Complexity

Theorem (See Theorem 3.3 and 5.8 in [6])
Suppose that the loss function has the form L(hx(a), b) = φ(b · hx(a)) for a 1-Lipschitz function φ : R→ R.

Let HX := {hx : x ∈ X} be a class of parametric functions hx : Rp → R. For any δ > 0, with probability at
least 1− δ over the draw of an i.i.d. sample {(ai, bi)}ni=1, letting A = (a1, . . . ,an), the following holds:

sup
x∈X
|Rn(x)−R(x)| ≤ 2EARA(HX ) +

√
ln(2/δ)

2n
,

sup
x∈X
|Rn(x)−R(x)| ≤ 2RA(HX ) + 3

√
ln(4/δ)

2n
.

The assumption is satisfied for common losses

I L(hx(a), b) = log(1 + exp(−b · hx(a)))⇒ φ(z) := log(1 + exp(z)) (logistic loss)
I L(hx(a), b) = max(0, 1− b · hx(a))⇒ φ(z) := max(0, 1− z) (hinge loss)
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Computing the Rademacher complexity for Linear functions

Theorem
Let X := {x ∈ Rp : ‖x‖2 ≤ λ} and let HX be the class of functions of the form hx : Rp → R, hx(a) = 〈x,a〉,
for some x ∈ X}. Let A = {a1, . . . ,an} ⊆ Rp such that maxi=1,...,n ‖ai‖ ≤M . It holds that
RA(HX ) ≤ λM/

√
n.

Proof.

RA(HX ) = E sup
‖x‖2≤λ

1
n

n∑
i=1

σi〈x,a〉

= E sup
‖x‖2≤λ

1
n

〈
x,

n∑
i=1

σia

〉

≤
1
n
λE

∥∥∥∥∥
n∑
i=1

σiai

∥∥∥∥∥
2

(C-S)

⇒RA(HX ) ≤
1
n
λ

(
E

n∑
i=1

‖σiai‖22

)1/2

(Jensen)

≤
1
n
λ

(
n∑
i=1

‖ai‖22

)1/2

≤ λM/
√
n

�
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Rademacher complexity estimates of fully connected Neural Networks

Notation
For a matrix X ∈ Rn,m, ‖X‖ denotes its spectral norm. Let X:,k be the k-th column of X. We define

‖X‖2,1 = ‖(‖X:,1‖2, . . . , ‖X:,m‖2)‖1. (2)

Theorem (Spectral bound [1])
For positive integers p0, p1, . . . , pd = 1, and positive reals λ1, . . . , λd ν1, . . . , νd define the set

X := {(X1, . . . ,Xd) : Xi ∈ Rpi×pi−1 , ‖Xi‖ ≤ λi, ‖XT
i ‖2,1 ≤ νi}.

Let HX be the class of neural networks hx : Rp → R, hx = Xd ◦ σ ◦ . . . ◦ σ ◦X1 where x = (X1, . . . ,Xd) ∈ X .
Suppose that σ is 1-Lipschitz. Let A = {a1, . . . ,an} ⊆ Rp, M := maxi=1,...,n ‖ai‖ and
W := max{pi : i = 0, . . . , d}.

The Rademacher complexity of HX with respect to A is bounded as

RA(HX ) = O

 log(W )M
√
n

d∏
i=1

λi

(
d∑
j=1

ν
2/3
j

λ
2/3
j

)3/2
 (3)
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How well do complexity measures correlate with generalization?

name definition correlation1

Frobenius distance to initialization [7]
∑d

i=1 ‖Xi −X0
i ‖

2
F −0.263

Spectral complexity2 [1]
∏d

i=1 ‖Xi‖
(∑d

i=1
‖Xi‖

3/2
2,1

‖Xi‖3/2

)2/3

−0.537

Parameter Frobenius norm
∑d

i=1 ‖Xi‖2F 0.073
Fisher-Rao [5] (d+1)2

n

∑n

i=1 〈x,∇x`(hx(ai), bi)〉 0.078
Path-norm [8]

∑
(i0,...,id)

∏d

j=1

(
Xij ,ij−1

)2
0.373

Table: Complexity measures compared in the empirical study [4], and their correlation with generalization

Complexity measures are still far from explaining generalization in Deep Learning!

1Kendall’s rank correlation coefficient.
2The definition in [4] differs slightly.
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Wrap up!

◦ Deep learning recitation on Friday!
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