Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 12: Primal-dual optimization I/
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2020)

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- This class:

1. Algorithms for solving min-max optimization

- Next class

1. Additional scalable optimization methods for constrained minimization

A roadmap to algorithms for convex-concave minimax optimization

Recall: A restricted minimax formulation

Let us consider

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}), \tag{1}
\end{equation*}
$$

where $\Phi(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} and concave in \mathbf{y}.

- In the sequel, we consider the following cases

1. $\mathcal{X} \subset \mathbb{R}^{p}$ and $\mathcal{Y} \subset \mathbb{R}^{n}$; and $\Phi(\mathbf{x}, \mathbf{y})$ is smooth, or bilinear, or strongly convex/strongly concave

- Algorithms: Proximal-Point [18], Extra-gradient [8, 13, 12], OGDA [13, 12]

2. $\mathcal{X} \subset \mathbb{R}^{p}$ and $\mathcal{Y} \subset \mathbb{R}^{n}$ with tractable "mirror maps"; and $\Phi(\mathbf{x}, \mathbf{y})$ is smooth and continuously differentiable

- Algorithm: Mirror-Prox [14]

3. $\mathcal{X}=\mathbb{R}^{p}$ and $\mathcal{Y}=\mathbb{R}^{n}$; and $\Phi(\mathbf{x}, \mathbf{y})=h(\mathbf{x})+f(\mathbf{x})+\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-g^{*}(\mathbf{y})$

- Algorithms: Chambolle-Pock [4], Condat-Vu [5, 21], PD3O [23]

Smooth unconstrained minimax optimization

Details of the restricted minimax formulation

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} \max _{\mathbf{y} \in \mathbb{R}^{n}} \Phi(\mathbf{x}, \mathbf{y}) .
$$

We assume that

- $\Phi(\cdot, \mathbf{y})$ is convex for all $\mathbf{y} \in \mathbb{R}^{n}$,
- $\Phi(\mathbf{x}, \cdot)$ is concave for all $\mathbf{x} \in \mathbb{R}^{d}$,
- $\Phi(\mathbf{x}, \mathbf{y})$ is continuously differentiable in \mathbf{x} and \mathbf{y},
- Φ is smooth in the following sense.

$$
\left\|\mathbf{V}\left(\mathbf{z}_{1}\right)-\mathbf{V}\left(\mathbf{z}_{2}\right)\right\|:=\left\|\left[\begin{array}{c}
\nabla_{\mathbf{x}} \Phi\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right) \tag{2}\\
-\nabla_{\mathbf{y}} \Phi\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)
\end{array}\right]-\left[\begin{array}{c}
\nabla_{\mathbf{x}} \Phi\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) \\
-\nabla_{\mathbf{y}} \Phi\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)
\end{array}\right]\right\| \leq L\left\|\left[\begin{array}{l}
\mathbf{x}_{1}-\mathbf{x}_{2} \\
\mathbf{y}_{1}-\mathbf{y}_{2}
\end{array}\right]\right\|, \text { where } \quad \mathbf{z}=\binom{\mathbf{x}}{\mathbf{y}}
$$

Remarks: $\quad \circ$ GDA (i.e., $\mathbf{z}^{k+1}=\mathbf{z}^{k}-\tau \mathbf{V}\left(\mathbf{z}^{k}\right)$) diverges even for the simple bilinear objective (Lecture 11).

- Roughly speaking, minimax is harder than just optimization (Lecture 11).

A running, bilinear example: $\min _{x \in \mathbb{R}} \max _{y \in \mathbb{R}} x y$

- GDA

GDA

1. Choose $\mathbf{x}^{0}, \mathbf{y}^{0}$ and τ.
2. For $k=0,1, \cdots$, perform:

$$
\begin{aligned}
& \mathbf{x}^{k+1}:=\mathbf{x}^{k}-\tau \nabla_{\mathbf{x}} \Phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right) \\
& \mathbf{y}^{k+1}:=\mathbf{y}^{k}+\tau \nabla_{\mathbf{y}} \Phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)
\end{aligned}
$$

- Alternating GDA

AltGDA

1. Choose $\mathbf{x}^{0}, \mathbf{y}^{0}$ and α_{k}.
2. For $k=0,1, \cdots$, perform:

$$
\begin{aligned}
& \mathbf{x}^{k+1}:=\mathbf{x}^{k}-\tau \nabla_{\mathbf{x}} \Phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right) . \\
& \mathbf{y}^{k+1}:=\mathbf{y}^{k}+\tau \nabla_{\mathbf{y}} \Phi\left(\mathbf{x}^{k+1}, \mathbf{y}^{k}\right) .
\end{aligned}
$$

A preview of algorithms to be covered

Figure: Trajectory of different algorithms for a simple bilinear game $\min _{x} \max _{y} x y$.

- Convergent algorithms in the sequel
- Proximal point method (PPM)
- Extra-gradient (EG)
- Optimistic Gradient Descent Ascent (OGDA)

A preview of algorithms to be covered

Figure: Trajectory of different algorithms for a simple bilinear game $\min _{x} \max _{y} x y$.

- Convergent algorithms in the sequel
- Proximal point method (PPM)
- Extra-gradient (EG)
- Optimistic Gradient Descent Ascent (OGDA)

Proximal point method (PPM)

- Consider following smooth unconstrained optimization problem:

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})
$$

Proximal point method for convex minimization.

For a step-size $\tau>0$, PPM can be written as follows

$$
\begin{equation*}
\mathbf{x}^{k+1}=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\frac{1}{2 \tau}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|^{2}\right\}:=\operatorname{prox}_{\tau f}\left(\mathbf{x}^{k}\right) \tag{3}
\end{equation*}
$$

Observations: - The optimality condition of (3) reveals a simpler PPM recursion for smooth f :

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\tau \nabla f\left(\mathbf{x}^{k+1}\right)
$$

- PPM is an implicit, non-practical algorithm since we need the point \mathbf{x}^{k+1} for its update.
- Each step of PPM can be as hard as solving the original problem.
- Convergence properties are well understood due to Rockafellar [18].

PPM and minimax optimization

PPM applied to the minimax template: $\min _{\mathbf{x} \in \mathbb{R}^{d}} \max _{\mathbf{y} \in \mathbb{R}^{n}} \Phi(\mathbf{x}, \mathbf{y})$

Define $\mathbf{z}=[\mathbf{x}, \mathbf{y}]^{\top}$ and $\mathbf{V}(\mathbf{z})=\left[\nabla_{\mathbf{x}} \Phi(\mathbf{x}, \mathbf{y}),-\nabla_{\mathbf{y}} \Phi(\mathbf{x}, \mathbf{y})\right]^{\top}$. PPM iterations with a step-size $\tau>0$ is given by

$$
\mathbf{z}^{k+1}=\mathbf{z}^{k}-\tau \mathbf{V}\left(\mathbf{z}^{k+1}\right) .
$$

Derivation: $\quad \circ$ For $\tau>0,\left(\mathbf{x}^{k+1}, \mathbf{y}^{k+1}\right)$ is the unique solution to the saddle point problem,

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{R}^{d}} \max _{\mathbf{y} \in \mathbb{R}^{n}} \Phi(\mathbf{x}, \mathbf{y})+\frac{1}{2 \tau}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|^{2}-\frac{1}{2 \tau}\left\|\mathbf{y}-\mathbf{y}^{k}\right\|^{2} \tag{4}
\end{equation*}
$$

- Writing the optimality condition of the update in (4)

$$
\begin{equation*}
\mathrm{x}^{k+1}=\mathbf{x}^{k}-\tau \nabla_{\mathbf{x}} \Phi\left(\mathrm{x}^{k+1}, \mathbf{y}^{k+1}\right), \quad \mathbf{y}^{k+1}=\mathbf{y}^{k}+\tau \nabla_{\mathbf{y}} \Phi\left(\mathrm{x}^{k+1}, \mathbf{y}^{k+1}\right) \tag{5}
\end{equation*}
$$

Observation: \circ PPM is an implicit algorithm.

- For the bilinear problem, PPM is implementable!

PPM guarantees for minimax optimization

Theorem (Convergence of PPM [18])

Suppose $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$ be the iterates generated by PPM (i.e., (5)), then for the averaged iterates, it holds that

$$
\left|\Phi\left(\frac{1}{K} \sum_{k=1}^{K} \mathbf{x}^{k}, \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}^{k}\right)-\Phi\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right)\right| \leq \frac{\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|^{2}+\left\|\mathbf{y}^{0}-\mathbf{y}^{\star}\right\|^{2}}{\tau K}
$$

Theorem (Linear convergence [18])

Suppose ($\mathbf{x}^{k}, \mathbf{y}^{k}$) be the iterates generated by (5), $\Phi(\cdot, \cdot)$ is μ_{x}-strongly convex in \mathbf{x} and μ_{y}-strongly concave in \mathbf{y}. Let $\mu=\max \left\{\mu_{x}, \mu_{y}\right\}$. Then, for any $\tau>0,\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$ satisfies the following

$$
r^{k+1} \leq \frac{1}{1+\mu \tau} r^{k}
$$

where $r^{k}=\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}+\left\|\mathbf{y}^{k}-\mathbf{y}^{\star}\right\|^{2}$.
Remark: $\quad \circ$ Still need an implementable and convergent algorithm beyond the stylized bilinear case.

- Note what happens when $\tau \rightarrow \infty$.

Extra-gradient algorithm (EG) [8]

$$
\begin{aligned}
& \text { EG method for saddle point problems } \\
& \text { 1. Choose } \mathbf{x}^{0}, \mathbf{y}^{0} \text { and } \tau \text {. } \\
& \text { 2. For } k=0,1, \cdots \text {, perform: } \\
& \quad \tilde{\mathbf{x}}^{k}:=\mathbf{x}^{k}-\tau \nabla_{\mathbf{x}} \Phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right) \\
& \quad \tilde{\mathbf{y}}^{k}:=\mathbf{y}^{k}+\tau \nabla_{\mathbf{y}} \Phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right) . \\
& \quad \mathbf{x}^{k+1}:=\mathbf{x}^{k}-\tau \nabla_{\mathbf{x}} \Phi\left(\tilde{\mathbf{x}}^{k}, \tilde{\mathbf{y}}^{k}\right) . \\
& \mathbf{y}^{k+1}:=\mathbf{y}^{k}+\tau \nabla_{\mathbf{y}} \Phi\left(\tilde{\mathbf{x}}^{k}, \tilde{\mathbf{y}}^{k}\right) .
\end{aligned}
$$

- Idea: Predict the gradient at the next point

$$
\begin{equation*}
\mathbf{z}^{k+1}=\mathbf{z}^{k}-\tau \mathbf{V}(\underbrace{\mathbf{z}^{k}-\tau \mathbf{V}\left(\mathbf{z}^{k}\right)}_{\text {prediction of } \mathbf{z}^{k+1}}) \tag{EG}
\end{equation*}
$$

Remark: \circ 1-extra-gradient computation per iteration

Extra-gradient algorithm: Convergence

Theorem (General case [12])

Let $0<\tau \leq \frac{1}{L}$. It holds that

- Iterates $\left(\mathrm{x}^{k}, \mathrm{y}^{k}\right)$ remains bounded in a convex compact set.
- Primal-dual gap reduces: Gap $\left(\frac{1}{K} \sum_{k=1}^{K} \mathbf{x}^{k}, \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}^{k}\right) \leq \mathcal{O}\left(\frac{1}{K}\right)$.

Theorem (Linear convergence [13])

Suppose ($\mathbf{x}^{k}, \mathbf{y}^{k}$) be the iterates generated by Extra-gradient algorithm, $\Phi(\cdot, \cdot)$ is $\mu_{x}-$ strongly convex in \mathbf{x} and μ_{y}-strongly concave in \mathbf{y}. Let $\mu=\max \left\{\mu_{x}, \mu_{y}\right\}$. Then, for $\tau=\frac{1}{4 L},\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$ satisfies,

$$
r^{k+1} \leq\left(1-\frac{1}{c \kappa}\right)^{k} r^{0}
$$

where $r^{k}=\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}+\left\|\mathbf{y}^{k}-\mathbf{y}^{\star}\right\|^{2}, \kappa=\frac{L}{\mu}$ is the condition number of the problem, and c is a constant which is independent of the problem parameters.

Optimistic gradient descent algorithm (OGDA) [17]

OGDA for saddle point problems
1. Choose $\mathbf{x}^{0}, \mathbf{y}^{0}, \mathbf{x}^{1}, \mathbf{y}^{1}$ and τ.
2. For $k=1, \cdots$, perform:
$\mathbf{x}^{k+1}:=\mathbf{x}^{k}-2 \tau \nabla_{\mathbf{x}} \Phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)+\tau \nabla_{\mathbf{x}} \Phi\left(\mathbf{x}^{k-1}, \mathbf{y}^{k-1}\right)$.
$\mathbf{y}^{k+1}:=\mathbf{y}^{k}+2 \tau \nabla_{\mathbf{y}} \Phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)-\tau \nabla_{\mathbf{y}} \Phi\left(\mathbf{x}^{k-1}, \mathbf{y}^{k-1}\right)$.

- Main difference from the GDA: Add a "momentum" or "reflection" term to the updates

$$
\begin{equation*}
\mathbf{z}^{k+1}=\mathbf{z}^{k}-\tau[\mathbf{V}\left(\mathbf{z}^{k}\right)+\underbrace{\left(\mathbf{V}\left(\mathbf{z}^{k}\right)-\mathbf{V}\left(\mathbf{z}^{k-1}\right)\right)}_{\text {momentum }}] \tag{OGDA}
\end{equation*}
$$

- Known as Popov's method [16], it is also a special case of the Forward-Reflected-Backward method [11].
- It has ties to the Reflected-Forward-Backward Splitting (RFBS) method [3]:

$$
\begin{equation*}
\mathbf{z}^{k+1}=\mathbf{z}^{k}-\tau \mathbf{V}\left(2 \mathbf{z}^{k}-\mathbf{z}^{k-1}\right) \tag{RFBS}
\end{equation*}
$$

Remark: $\quad \circ$ Advanced material at the end: OGDA is an approximation of PPM for bilinear problems.

OGDA: Convergence

Theorem (General case [12])

Let $0<\tau \leq \frac{1}{2 L}, \mathbf{x}^{1}=\mathbf{x}^{0}, \mathbf{y}^{1}=y^{0}$. It holds that

- Iterates $\left(\mathrm{x}^{k}, \mathbf{y}^{k}\right)$ remains bounded in a convex compact set.
- Primal-dual gap reduces: $\operatorname{Gap}\left(\frac{1}{K} \sum_{k=1}^{K} \mathbf{x}^{k}, \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}^{k}\right) \leq \mathcal{O}\left(\frac{1}{K}\right)$.

Theorem (Linear convergence [13])

Suppose ($\mathbf{x}^{k}, \mathbf{y}^{k}$) be the iterates generated by OGDA, $\Phi(\cdot, \cdot)$ is μ_{x}-strongly convex in \mathbf{x} and μ_{y}-strongly concave in \mathbf{y}. Let $\mu=\max \left\{\mu_{x}, \mu_{y}\right\}$. Then, for $\tau=\frac{1}{4 L},\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$ satisfies,

$$
r^{k+1} \leq\left(1-\frac{1}{c \kappa}\right)^{k} r^{0}
$$

where $r^{k}=\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}+\left\|\mathbf{y}^{k}-\mathbf{y}^{\star}\right\|^{2}, \kappa=\frac{L}{\mu}$ is the condition number of the problem, and c is a constant which is independent of the problem parameters.

A generalization of EG: The Mirror-Prox Algorithm

Definition: Bregman distance

Let $\omega: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ be a distance generating function where ω is 1 -strongly convex w.r.t. some norm $\|\cdot\|$ on the underlying space and is continuously differentiable. The Bregman distance induced by $\omega(\cdot)$ is given by

$$
D_{\omega}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)=\omega(\mathbf{z})+\omega\left(\mathbf{z}^{\prime}\right)-\nabla \omega\left(\mathbf{z}^{\prime}\right)^{\top}\left(\mathbf{z}-\mathbf{z}^{\prime}\right)
$$

$$
\begin{aligned}
& \text { Mirror-Prox algorithm } \\
& \text { 1. Choose } \mathbf{x}^{0}, \mathbf{y}^{0} \text { and } \tau \text {. } \\
& \text { 2. For } k=0,1, \cdots \text {, perform: } \\
& \tilde{\mathbf{z}}^{k}=\arg \min _{\mathbf{z} \in \mathcal{X} \times \mathcal{Y}}\left(D_{\omega}\left(\mathbf{z}, \mathbf{z}^{k}\right)-\left\langle\tau \mathbf{V}\left(\mathbf{z}^{k}\right), \mathbf{z}\right\rangle\right) \text {. } \\
& \mathbf{z}^{k+1}=\arg \min _{\mathbf{z} \in \mathcal{X} \times \mathcal{Y}}\left(D_{\omega}\left(\mathbf{z}, \tilde{\mathbf{z}}^{k}\right)-\left\langle\tau \mathbf{V}\left(\tilde{\mathbf{z}}^{k}\right), \mathbf{z}\right\rangle\right) \text {. }
\end{aligned}
$$

Theorem (Mirror-Prox convergence)

Denote by $\Omega:=\max _{\mathbf{z} \in \mathcal{X} \times \mathcal{Y}} D_{\omega}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)$. The mirror-prox algorithm with $\tau \leq \frac{1}{L}$,

$$
\operatorname{Gap}\left(\frac{1}{K} \sum_{k=1}^{K} \mathbf{x}^{k}, \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}^{k}\right) \leq \mathcal{O}\left(\frac{\Omega}{K}\right) .
$$

Comparison of convergence rates for smooth convex-concave minimax

Method	Assumption on $\Phi(\cdot, \cdot)$	Convergence rate	Reference	Note
PP	convex-concave	$\mathcal{O}\left(\epsilon^{-1}\right)$	$[18]$	
PP	strongly convex- strongly concave	$\mathcal{O}\left(\kappa \log \left(\epsilon^{-1}\right)\right)$	$[18]$	Implicit algorithm
PP	Bilinear	$\mathcal{O}\left(\kappa \log \left(\epsilon^{-1}\right)\right)$	$[18]$	
EG	convex-concave	$\mathcal{O}\left(\epsilon^{-1}\right)$	$[12]$	
EG	strongly convex- strongly concave	$\mathcal{O}\left(\kappa \log \left(\epsilon^{-1}\right)\right)$	$[13,12]$	1 extra-gradient evaluation per iteration
EG	Bilinear	$\mathcal{O}\left(\kappa \log \left(\epsilon^{-1}\right)\right)$	$[13,12]$	
OGDA	convex-concave	$\mathcal{O}\left(\epsilon^{-1}\right)$	no obvious downside	
OGDA	strongly convex- strongly concave	$\mathcal{O}\left(\kappa \log \left(\epsilon^{-1}\right)\right)$	$[13,12]$	
OGDA	Bilinear	$\mathcal{O}\left(\kappa \log \left(\epsilon^{-1}\right)\right)$	$[13,12]$	

Primal-dual methods for composite minimization: minimax reformulation

- Quest: Looking for algorithms such that $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right) \rightarrow\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right)$ (with rates?)

Another restricted minimax template

$$
\min _{\mathbf{x} \in \mathcal{X}} h(\mathbf{x})+f(\mathbf{x})+g(\mathbf{A x})=\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}):=h(\mathbf{x})+f(\mathbf{x})+\langle\mathbf{A x}, \mathbf{y}\rangle-g^{*}(\mathbf{y}) .
$$

We assume that

- $f(\mathbf{x}): \mathcal{X} \rightarrow \mathbb{R}$ is proper, convex and lower-semicontinuous (I.s.c.),
- $h(\mathbf{x}): \mathcal{X} \rightarrow \mathbb{R}$ is proper, convex, I.s.c. and differentiable with a $\frac{1}{\beta}$-Lipschitz continuous gradient,
- $g^{*}(\mathbf{y}): \mathcal{Y} \rightarrow \mathbb{R}$ is proper, convex and I.s.c.
- $\mathcal{X} \subseteq R^{p}$ and $\mathcal{Y} \subseteq \mathbb{R}^{n}$,
- $\mathbf{A}: \mathcal{X} \rightarrow \mathcal{Y}$ is a bounded linear operator,
- Problem has at least one solution $\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right) \in \mathcal{X} \times \mathcal{Y}$

Primal-dual hybrid gradient method (PDHG, aka Chambolle-Pock)

$$
\min _{\mathbf{x} \in \mathcal{X}} h(\mathbf{x})+f(\mathbf{x})+g(\mathbf{A x})=\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}):=h(\mathbf{x})+f(\mathbf{x})+\langle\mathbf{A x}, \mathbf{y}\rangle-g^{*}(\mathbf{y})
$$

```
PDHG [4], \((h(x)=0)\)
1. Choose \(\hat{\mathbf{x}}^{0}, \mathbf{x}^{0}, \mathbf{y}^{0}\) and \(\tau, \sigma>0\).
2. For \(k=0,1, \cdots\), perform:
\[
\begin{aligned}
& \mathbf{y}^{k+1}=\operatorname{prox}_{\sigma g^{*}}\left(\mathbf{y}^{k}+\sigma \mathbf{A} \tilde{\mathbf{x}}^{k}\right) \\
& \mathbf{x}^{k+1}=\operatorname{prox}_{\tau f}\left(\mathbf{x}^{k}-\tau \mathbf{A}^{T} \mathbf{y}^{k+1}\right) \\
& \tilde{\mathbf{x}}^{k+1}=2 \mathbf{x}^{k+1}-\mathbf{x}^{k}
\end{aligned}
\]
```


Theorem ([4])

Let $L=\|A\|$, and choose τ and σ such that we have $\tau \sigma L^{2}<1$. Then, it holds that

- Iterates $\left(\mathrm{x}^{k}, \mathbf{y}^{k}\right)$ remains bounded in a convex compact set.
- Primal-dual gap satisfies $\operatorname{Gap}\left(\frac{1}{K} \sum_{k=1}^{K} \mathbf{x}^{k}, \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}^{k}\right) \leq \mathcal{O}\left(\frac{1}{K}\right)$.
- $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$ converges to saddle point $\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right)$.
- If f and g are smooth, the rate improves to $\mathcal{O}\left(1 / K^{2}\right)$.
- If f and g are also strongly convex, the convergence is linear.

Stochastic PDHG

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})+\sum_{i=1}^{n} g_{i}\left(\mathbf{A}_{i} \mathbf{x}\right)=\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}):=\underbrace{h(\mathbf{x})}_{=0}+f(\mathbf{x})+\sum_{i=1}^{n}\left\langle\mathbf{A}_{i} \mathbf{x}, \mathbf{y}_{i}\right\rangle-\sum_{i=1}^{n} g_{i}^{*}\left(\mathbf{y}_{i}\right) \tag{6}
\end{equation*}
$$

```
Algorithm 1 Stochastic Primal-Dual Hybrid Gradient
    for \(k=1,2, \ldots\) do
        \(\mathbf{x}^{k}=\operatorname{prox}_{\tau f}\left(\mathbf{x}^{k-1}-\tau \sum_{i} \mathbf{A}_{i}^{\top} \overline{\mathbf{y}}_{i}^{k}\right)\)
        Draw \(j_{k} \in\{1, \ldots, n\}\) such that \(\mathbb{P}\left(j_{k}=j\right)=\mathrm{p}_{j}\).
        \(\mathbf{y}_{j_{k}}^{k+1}=\operatorname{prox}_{\sigma_{j_{k}} g_{j_{k}}^{*}}\left(\mathbf{y}_{j_{k}}^{k}+\sigma_{j_{k}} \mathbf{A}_{j_{k}} \mathbf{x}^{k}\right)\)
        \(\mathbf{y}_{j}^{k+1}=\mathbf{y}_{j}^{k}, \forall j \neq j_{k}\)
        \(\overline{\mathbf{y}}_{i}^{k+1}=\mathbf{y}_{i}^{k+1}+\mathbf{P}^{-1}\left(\mathbf{y}_{i}^{k+1}-\mathbf{y}_{i}^{k}\right), \forall i\),
    end for
```

 Input: Pick step sizes \(\sigma_{i}, \tau\) and \(\mathbf{x}^{0} \in \mathcal{X}, \mathbf{y}^{0}=\mathbf{y}^{1}=\overline{\mathbf{y}}^{1} \in \mathcal{Y}\). Given \(\mathbf{P}=\operatorname{diag}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right)\).
 Remarks: $\quad \circ$ Note: $\mathrm{p}_{i}^{-1} \tau \sigma_{i}\left\|A_{i}\right\|^{2}<1$.

- Only one dual vector is updated at each iteration.
- Especially effective when \mathbf{A}_{i} is row-vector.

SPDHG: Convergence [1]

Theorem (Almost sure convergence)

Almost surely, there exists $\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right) \in \mathcal{Z}^{\star}$, such that the iterates of SPDHG satisfy $\mathbf{x}^{k} \rightarrow \mathbf{x}^{\star}$ and $\mathbf{y}^{k} \rightarrow \mathbf{y}^{\star}$.

Theorem (Sublinear convergence)

Define the ergodic sequences $\mathbf{x}_{a v}^{K}=\sum_{k=1}^{K} \mathbf{x}^{k}$ and $\mathbf{y}_{a v}^{K+1}=\sum_{k=1}^{K} \mathbf{y}^{k+1}$, and define the gap function

$$
\operatorname{Gap}\left(\mathbf{x}_{a v}^{K}, \mathbf{y}_{a v}^{K+1}\right)=\sup _{\mathbf{x}, \mathbf{y}} f\left(\mathbf{x}_{a v}^{K}\right)+\left\langle A \mathbf{x}_{a v}^{K}, \mathbf{y}\right\rangle-g^{*}(\mathbf{y})-f(\mathbf{x})-\left\langle A \mathbf{x}, \mathbf{y}_{a v}^{K+1}\right\rangle+g^{*}\left(\mathbf{y}_{a v}^{K+1}\right)
$$

The following result holds for the expected primal-dual gap, which is expectation of a supremum

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Gap}\left(\mathbf{x}_{a v}^{K}, \mathbf{y}_{a v}^{K+1}\right)\right]=\mathcal{O}\left(\frac{1}{K}\right) \tag{7}
\end{equation*}
$$

Primal-dual algorithms for minimax: The zoo!

$$
\min _{\mathbf{x} \in \mathcal{X}} h(\mathbf{x})+f(\mathbf{x})+g(\mathbf{A} \mathbf{x})=\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}):=h(\mathbf{x})+f(\mathbf{x})+\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-g^{*}(\mathbf{y})
$$

3 operator splitting [6], $(\mathrm{A}=\mathbb{I})$

1. Choose $\hat{\mathbf{x}}^{0}, \mathbf{x}^{0}, \mathbf{y}^{0}$ and $\tau>0$.
2. For $k=0,1, \cdots$, perform:

$$
\begin{aligned}
& \mathbf{x}^{k+1}=\operatorname{prox}_{\tau f}\left(\tilde{\mathbf{x}}^{k}\right) . \\
& \mathbf{y}^{k+1}=\frac{1}{\tau}\left(\mathbb{I}+\operatorname{prox}_{\tau^{-1}}\right)\left(2 \mathbf{x}^{k+1}-\tilde{\mathbf{x}}^{k}-\tau \nabla h\left(\mathbf{x}^{k+1}\right)\right) . \\
& \tilde{\mathbf{x}}^{k+1}=\mathbf{x}^{k+1}-\tau \nabla h\left(\mathbf{x}^{k+1}\right)-\tau \mathbf{y}^{k+1} .
\end{aligned}
$$

Primal-dual algorithms for minimax: The zoo!

$$
\min _{\mathbf{x} \in \mathcal{X}} h(\mathbf{x})+f(\mathbf{x})+g(\mathbf{A} \mathbf{x})=\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}):=h(\mathbf{x})+f(\mathbf{x})+\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-g^{*}(\mathbf{y})
$$

$$
3 \text { operator splitting [6], }(\mathrm{A}=\mathbb{I})
$$

$$
\text { 1. Choose } \hat{\mathbf{x}}^{0}, \mathbf{x}^{0}, \mathbf{y}^{0} \text { and } \tau>0 \text {. }
$$

$$
\text { 2. For } k=0,1, \cdots \text {, perform: }
$$

$$
\mathbf{x}^{k+1}=\operatorname{prox}_{\tau f}\left(\tilde{\mathbf{x}}^{k}\right)
$$

$$
\mathbf{y}^{k+1}=\frac{1}{\tau}\left(\mathbb{I}+\operatorname{prox}_{\tau^{-1}}\right)\left(2 \mathbf{x}^{k+1}-\tilde{\mathbf{x}}^{k}-\tau \nabla h\left(\mathbf{x}^{k+1}\right)\right)
$$

$$
\tilde{\mathbf{x}}^{k+1}=\mathbf{x}^{k+1}-\tau \nabla h\left(\mathbf{x}^{k+1}\right)-\tau \mathbf{y}^{k+1} .
$$

- There is a stochastic variant [24].

Primal-dual algorithms for minimax: The zoo!

$$
\begin{gathered}
\min _{\mathbf{x} \in \mathcal{X}} h(\mathbf{x})+f(\mathbf{x})+g(\mathbf{A} \mathbf{x})=\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}):=h(\mathbf{x})+f(\mathbf{x})+\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-g^{*}(\mathbf{y}) \\
\operatorname{Condat-V\mathbf {u}}^{[\mathbf{5}, \mathbf{2 1]}} \\
\hline \text { 1. Choose } \hat{\mathbf{x}}^{0}, \mathbf{x}^{0}, \mathbf{y}^{0} \text { and } \tau, \sigma>0 . \\
\text { 2. For } k=0,1, \cdots, \text { perform: } \\
\mathbf{y}^{k+1}=\operatorname{prox}_{\sigma g^{*}}\left(\mathbf{y}^{k}+\sigma \mathbf{A} \tilde{\mathbf{x}}^{k}\right) . \\
\mathbf{x}^{k+1}=\operatorname{prox}_{\tau f}\left(\mathbf{x}^{k}-\tau \nabla h\left(\mathbf{x}^{k}\right)-\tau \mathbf{A}^{T} \mathbf{y}^{k+1}\right) . \\
\tilde{\mathbf{x}}^{k+1}=2 \mathbf{x}^{k+1}-\mathbf{x}^{k} .
\end{gathered}
$$

Primal-dual algorithms for minimax: The zoo!

$$
\min _{\mathbf{x} \in \mathcal{X}} h(\mathbf{x})+f(\mathbf{x})+g(\mathbf{A x})=\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}):=h(\mathbf{x})+f(\mathbf{x})+\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-g^{*}(\mathbf{y})
$$

$$
\begin{aligned}
& \text { PD3O splitting [23] } \\
& \text { 1. Choose } \hat{\mathbf{x}}^{0}, \mathbf{x}^{0}, \mathbf{y}^{0} \text { and } \tau, \sigma>0 \text {. } \\
& \text { 2. For } k=0,1, \cdots \text {, perform: } \\
& \quad \mathbf{y}^{k+1}=\operatorname{prox}_{\sigma g^{*}}\left(\mathbf{y}^{k}+\sigma \mathbf{A}^{k}\right) \text {. } \\
& \mathbf{x}^{k+1}=\operatorname{prox}_{\tau f}\left(\mathbf{x}^{k}-\tau \nabla h\left(\mathbf{x}^{k}\right)-\tau \mathbf{A}^{T} \mathbf{y}^{k+1}\right) . \\
& \tilde{\mathbf{x}}^{k+1}=2 \mathbf{x}^{k+1}-\mathbf{x}^{k}+\tau \nabla h\left(\mathbf{x}^{k}\right)-\tau \nabla h\left(\mathbf{x}^{k+1}\right) .
\end{aligned}
$$

Between convex-concave and nonconvex-nonconcave

Nonconvex-concave problems

$$
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})
$$

- $\Phi(\mathbf{x}, \mathbf{y})$ is nonconvex in \mathbf{x}, concave in \mathbf{y}, smooth in \mathbf{x} and \mathbf{y}.

Recall

Define $f(\mathbf{x})=\max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$.

- Gradient descent applied to nonconvex f requires $\mathcal{O}\left(\epsilon^{-2}\right)$ iterations to give an ϵ-stationary point.
- (Sub)gradient of f can be computed using Danskin's theorem:

$$
\nabla_{\mathbf{x}} \Phi\left(\cdot, y^{\star}(\cdot)\right) \in \partial f(\cdot), \text { where } y^{\star}(\cdot) \in \underset{\mathbf{y} \in \mathcal{Y}}{\arg \max } \Phi(\cdot, \mathbf{y})
$$

which is tractable since Φ is concave in \mathbf{y} [9].
Remark: ○ "Conceptually" much easier than nonconvex-nonconcave case.

A summary of results for nonconvex-concave setting

\circ A summary of gradient complexities to reach ϵ-first order stationary point in terms of gradient mapping.

Method	Assumption on $\Phi(\cdot, \cdot)$	Convergence rate	Reference
GDA	noconvex-concave	$\tilde{\mathcal{O}}\left(\epsilon^{-6}\right)$	$[9]$
GDA	nonconvex- strongly concave	$\mathcal{O}\left(\epsilon^{-2}\right)$	$[9]$
GDmax	nonconvex-concave	$\tilde{\mathcal{O}}\left(\epsilon^{-6}\right)$	$[7]$
GDmax	nonconvex- strongly concave	$\mathcal{O}\left(\epsilon^{-2}\right)$	$[7]$
HiBSA, AGP	nonconvex-concave	$\tilde{\mathcal{O}}\left(\epsilon^{-4}\right)$	[10], [22]
HiBSA, AGP	nonconvex- strongly concave	$\mathcal{O}\left(\epsilon^{-2}\right)$	[10], [22]

The elephant in the room: Nonsmooth, nonconvex optimization

```
min
```

- Finding a stationary point of nonsmooth nonconvex minimization problems are hard [25]
- A traditional ϵ-stationarity can not be obtained in finite time
- Even the relax notions are hard [19]
- Really puzzling how deep learning approaches with ReLu etc. work...

How about purely primal approaches?

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}
$$

Penalty methods

- Convert constrained problem (difficult) to unconstrained (easy).
- Penalized function with penalty parameter $\mu>0$:

$$
F_{\mu}(\mathbf{x}):=\left\{f(\mathbf{x})+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\} \quad \stackrel{\mu \rightarrow \infty}{\Longleftrightarrow} \min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\} .
$$

- Observations:
- Minimize a weighted combination of $f(\mathbf{x})$ and $\|\mathbf{A x}-\mathbf{b}\|^{2}$ at the same time.
- μ determines the weight of $\|\mathbf{A x}-\mathbf{b}\|^{2}$.
- As $\mu \rightarrow \infty$, we enforce $\mathbf{A x}=\mathbf{b}$.
- Other functions than the quadratic $\frac{1}{2}\|\cdot\|^{2}$ are also possible e.g., exact nonsmooth penalty functions:
- $\mu\|\mathbf{A x}-\mathbf{b}\|_{2}$ or $\mu\|\mathbf{A x}-\mathbf{b}\|_{1}$
- They work with finite μ, but they are difficult to solve [15, Section 17.2], [2]

Quadratic penalty: Intuition

Quadratic penalty: Conceptual algorithm

Quadratic penalty method (QP):

1. Choose $\mathbf{x}_{0} \in \mathbb{R}^{p}$ and $\mu_{0}>0$.
2. For $k=0,1, \cdots$, perform:
2.a. $\mathbf{x}_{k}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\frac{\mu_{k}}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\}$.
2.b. Update $\mu_{k+1}>\mu_{k}$.

Theorem [15, Theorem 17.1]

Assume that f is smooth and $\mu_{k} \rightarrow \infty$. Then, every limit point $\overline{\mathbf{x}}$ of the sequence $\left\{\mathbf{x}_{k}\right\}$ is a solution of the constrained problem

$$
\mathbf{x}^{\star} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\} .
$$

Limitation

- The minimization problems of step 2.a. of the algorithm become ill-conditioned as $\mu_{k} \rightarrow \infty$.
- Common improvements:
- Solve the subproblem inexactly, i.e., up to ϵ accuracy.
- Linearization to simplify subproblems (up next).

Quadratic penalty: Linearization

Generalized quadratic penalty method:

1. Choose $\mathbf{x}_{0} \in \mathbb{R}^{p}, \mu_{0}>0$ and positive semidefinite matrix \mathbf{Q}_{k}.
2. For $k=0,1, \cdots$, perform:
2.a. $\mathbf{x}_{k}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\frac{\mu_{k}}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}+\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{k-1}\right\|_{\mathbf{Q}_{k}}^{2}\right\}$.
2.b. Update $\mu_{k+1}>\mu_{k}$.

Ideas

- Minimize a majorizer of $F_{\mu}(\mathbf{x})$, parametrized by \mathbf{Q}_{k} in step 2.a..
$\circ \mathbf{Q}_{k}=\mathbf{0}$ gives the standard $\mathrm{QP} ; \mathbf{Q}_{k}=\mathbf{I}$ gives strongly convex subproblems.
- $\mathbf{Q}_{k}=\alpha_{k} \mathbf{I}-\mu_{k} \mathbf{A}^{\top} \mathbf{A}$, with $\alpha_{k} \geq \mu_{k}\|\mathbf{A}\|^{2}$ gives

$$
\mathbf{x}_{k}=\operatorname{prox}_{\frac{1}{\alpha_{k}} f}\left(\mathbf{x}_{k-1}-\frac{\mu_{k}}{\alpha_{k}} \mathbf{A}^{\top}\left(\mathbf{A} \mathbf{x}_{k-1}-\mathbf{b}\right)\right) \quad \text { Only one proximal operator! }
$$

and picking $\alpha_{k}=\mu_{k}\|\mathbf{A}\|^{2}$ gives

$$
\mathbf{x}_{k}=\operatorname{prox} \frac{1}{\mu_{k}\|\mathbf{A}\|^{2}} f\left(\mathbf{x}_{k-1}-\frac{1}{\|\mathbf{A}\|^{2}} \mathbf{A}^{\top}\left(\mathbf{A} \mathbf{x}_{k-1}-\mathbf{b}\right)\right) .
$$

Per-iteration time: The key role of the prox-operator

Recall: Prox-operator

$$
\operatorname{prox}_{f}(\mathbf{x}):=\underset{\mathbf{z} \in \mathbb{R}^{p}}{\arg \min \left\{f(\mathbf{z})+\frac{1}{2}\|\mathbf{z}-\mathbf{x}\|^{2}\right\}}
$$

Key properties:

- single valued \& non-expansive since f is a proper convex function.
- distributes when the primal problem has decomposable structure:

$$
f(\mathbf{x}):=\sum_{i=1}^{m} f_{i}\left(\mathbf{x}_{i}\right), \quad \text { and } \quad \mathcal{X}:=\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} .
$$

where $m \geq 1$ is the number of components.

- often efficient \& has closed form expression. For instance, if $f(\mathbf{z})=\|\mathbf{z}\|_{1}$, then the prox-operator performs coordinate-wise soft-thresholding by 1 .

Quadratic penalty: Linearized methods

Linearized QP method (LQP)	Accelerated linearized QP method (ALQP)								
1. Choose $\mathbf{x}_{0} \in \mathbb{R}^{p}, \sigma_{0}=1, \mu_{0}>0$.	1. Choose $\mathbf{x}_{0}, \mathbf{y}_{0} \in \mathbb{R}^{p}, \tau_{0}=1, \mu_{0}>0$.								
2. For $k=0,1, \cdots$:	2. For $k=0,1, \cdots$:								
$\text { 2.a. } \mathbf{x}_{k+1}:=\operatorname{prox} \frac{1}{\mu_{k}\\|\mathbf{A}\\|^{2}} f\left(\mathbf{x}_{k}-\frac{1}{\\|\mathbf{A}\\|^{2}} \mathbf{A}^{\top}\left(\mathbf{A} \mathbf{x}_{k}-\mathbf{b}\right)\right)$	$\text { 2.a. } \mathbf{x}_{k+1}:=\operatorname{prox} \frac{1}{\mu_{k}\\|\mathbf{A}\\|^{2}} f\left(\mathbf{y}_{k}-\frac{1}{\\|\mathbf{A}\\|^{2}} \mathbf{A}^{\top}\left(\mathbf{A} \mathbf{y}_{k}-\mathbf{b}\right)\right)$								
2.b. Update σ_{k+1} s.t. $\frac{\left(1-\sigma_{k+1}\right)^{2}}{\sigma_{k+1}}=\frac{1}{\sigma_{k}}$.	2.b. $\mathbf{y}_{k+1}:=\mathbf{x}_{k+1}+\frac{\tau_{k+1}\left(1-\tau_{k}\right)}{\tau_{k}}\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)$.								
2.c. Update $\mu_{k+1}=\sqrt{\sigma_{k+1}}$.	2.c. Update $\mu_{k+1}=\mu_{k}\left(1+\tau_{k+1}\right)$.								
	2.d. Update $\tau_{k+1} \in(0,1)$ as the unique positive root of $\tau^{3}+\tau^{2}+\tau_{k}^{2} \tau-\tau_{k}^{2}=0$.								

Theorem (Convergence [20])

- LQP:

$$
\begin{aligned}
\left|f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}^{\star}\right)\right| & \leq \mathcal{O}\left(\mu_{0} k^{-1 / 2}+\mu_{0}^{-1} k^{-1 / 2}\right) \\
\left\|\mathbf{A} \mathbf{x}_{k}-\mathbf{b}\right\| & \leq \mathcal{O}\left(\mu_{0}^{-1} k^{-1 / 2}\right)
\end{aligned}
$$

- ALQP:

$$
\begin{aligned}
\left|f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}^{\star}\right)\right| & \leq \mathcal{O}\left(\mu_{0} k^{-} 1+\mu_{0}^{-1} k^{-1}\right) \\
\left\|\mathbf{A} \mathbf{x}_{k}-\mathbf{b}\right\| & \leq \mathcal{O}\left(\mu_{0}^{-1} k^{-1}\right)
\end{aligned}
$$

In practice: poor (worst case) performance

- A nonsmooth problem: SQRT Lasso

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}\|\mathbf{A x}-\mathbf{b}\|_{2}+\lambda\|\mathbf{x}\|_{1}
$$

Wrap up!

- Recitation continues with Homework \#2 on Friday...

*OGDA as an approximation of PPM

Claim: OGDA is an approximation of PPM.

- Consider the bilinear case $\Phi(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, \mathbf{B y}\rangle$, where $\mathbf{B} \in \mathbb{R}^{p \times p}$ is a square full rank matrix. The point $\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right)=(\mathbf{0}, \mathbf{0})$ is a unique saddle point.
- OGDA updates are

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-2 \tau \mathbf{B} \mathbf{y}^{k}+\tau \mathbf{B} \mathbf{y}^{k-1}, \quad \mathbf{y}^{k+1}=\mathbf{y}^{k}+2 \tau \mathbf{B}^{\top} \mathbf{x}^{k}-\tau \mathbf{B}^{\top} \mathbf{x}^{k-1}
$$

- From (5), PP update on the variable \mathbf{x} is

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\tau \mathbf{B} \mathbf{y}^{k+1}=\mathbf{x}^{k}-\tau \mathbf{B}\left(\mathbf{y}^{k}+\tau \mathbf{B}^{\top} \mathbf{x}^{k+1}\right)
$$

where we used $\mathbf{y}^{k+1}=\mathbf{y}^{k}+\tau \mathbf{B}^{\top} \mathbf{x}^{k+1}$. So, PP method update on the variable \mathbf{x} can be rewritten as

$$
\mathbf{x}^{k+1}=\left(\mathbb{I}+\tau^{2} \mathbf{B} \mathbf{B}^{\top}\right)^{-1}\left(\mathbf{x}^{k}-\tau \mathbf{B} \mathbf{y}^{k}\right)
$$

\circ Use the fact that $\left(\mathbb{I}-\tau^{2} \mathbf{B B}^{\top}\right)$ is an approximation $\left(\mathbb{I}+\tau^{2} \mathbf{B B}^{\top}\right)^{-1}$ with an error $o\left(\tau^{2}\right)$.

$$
\begin{equation*}
\left(\mathbb{I}+\tau^{2} \mathbf{B B}^{\top}\right)^{-1}=\left(\mathbb{I}-\tau^{2} \mathbf{B} \mathbf{B}^{\top}+o\left(\tau^{2}\right)\right) \tag{8}
\end{equation*}
$$

*OGDA as an approximation of PPM

- Using (8), rewrite the update on \mathbf{x} for PPM as

$$
\mathbf{x}^{k+1}=\left(\mathbb{I}-\tau^{2} \mathbf{B} \mathbf{B}^{\top}+o\left(\tau^{2}\right)\right)\left(\mathbf{x}^{k}-\tau \mathbf{B} \mathbf{y}^{k}\right)
$$

- Adding and subtracting $\mathbf{B y}{ }^{k}$ to the right hand side, using the PP updates and reorganizing the terms

$$
\begin{aligned}
\mathbf{x}^{k+1} & =\mathbf{x}^{k}-\tau \mathbf{B} \mathbf{y}^{k}-\tau \mathbf{B}\left(\tau \mathbf{B}^{\top} \mathbf{x}^{k}-\tau^{2} \mathbf{B}^{\top} \mathbf{B} \mathbf{y}^{k}\right)+o\left(\tau^{2}\right) \\
& =\mathbf{x}^{k}-2 \tau \mathbf{B} \mathbf{y}^{k}-\tau \mathbf{B}\left(\tau \mathbf{B}^{\top} \mathbf{x}^{k}-\left(\mathbb{I}+\tau^{2} \mathbf{B}^{\top} \mathbf{B}\right) \mathbf{y}^{k}\right)+o\left(\tau^{2}\right) \\
& =\mathbf{x}^{k}-2 \tau \mathbf{B} \mathbf{y}^{k}-\tau \mathbf{B}\left(\tau \mathbf{B}^{\top} \mathbf{x}^{k}-\mathbf{y}^{k-1}-\tau \mathbf{B}^{\top} \mathbf{x}^{k-1}\right)+o\left(\tau^{2}\right) \\
& =\mathbf{x}^{k}-2 \tau \mathbf{B} \mathbf{y}^{k}-\tau \mathbf{B} \mathbf{y}^{k-1}+o\left(\tau^{2}\right)
\end{aligned}
$$

- The last equation is OGDA update for variable \mathbf{x} plus an additional error of $o\left(\tau^{2}\right)$. Similarly for variable \mathbf{y}.

*OGDA as an approximation of PPM

- Using (8), rewrite the update on \mathbf{x} for PPM as

$$
\mathbf{x}^{k+1}=\left(\mathbb{I}-\tau^{2} \mathbf{B} \mathbf{B}^{\top}+o\left(\tau^{2}\right)\right)\left(\mathbf{x}^{k}-\tau \mathbf{B} \mathbf{y}^{k}\right)
$$

- Adding and subtracting $\mathbf{B y}^{k}$ to the right hand side, using the PP updates and reorganizing the terms

$$
\begin{aligned}
\mathbf{x}^{k+1} & =\mathbf{x}^{k}-\tau \mathbf{B} \mathbf{y}^{k}-\tau \mathbf{B}\left(\tau \mathbf{B}^{\top} \mathbf{x}^{k}-\tau^{2} \mathbf{B}^{\top} \mathbf{B} \mathbf{y}^{k}\right)+o\left(\tau^{2}\right) \\
& =\mathbf{x}^{k}-2 \tau \mathbf{B} \mathbf{y}^{k}-\tau \mathbf{B}\left(\tau \mathbf{B}^{\top} \mathbf{x}^{k}-\left(\mathbb{I}+\tau^{2} \mathbf{B}^{\top} \mathbf{B}\right) \mathbf{y}^{k}\right)+o\left(\tau^{2}\right) \\
& =\mathbf{x}^{k}-2 \tau \mathbf{B} \mathbf{y}^{k}-\tau \mathbf{B}\left(\tau \mathbf{B}^{\top} \mathbf{x}^{k}-\mathbf{y}^{k-1}-\tau \mathbf{B}^{\top} \mathbf{x}^{k-1}\right)+o\left(\tau^{2}\right) \\
& =\mathbf{x}^{k}-2 \tau \mathbf{B} \mathbf{y}^{k}-\tau \mathbf{B} \mathbf{y}^{k-1}+o\left(\tau^{2}\right)
\end{aligned}
$$

- The last equation is OGDA update for variable \mathbf{x} plus an additional error of $o\left(\tau^{2}\right)$. Similarly for variable \mathbf{y}.

Proposition

Given a point $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$, let $\left(\hat{\mathbf{x}}^{k+1}, \hat{\mathbf{y}}^{k+1}\right)$ be the point generated by performing a PP update on $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$, and let $\left(\mathbf{x}^{k+1}, \mathbf{y}^{k+1}\right)$ be the point generated by performing an OGDA update on $\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$. For $\eta>0$

$$
\left\|\mathbf{x}^{k+1}-\hat{\mathbf{x}}^{k+1}\right\| \leq o\left(\tau^{2}\right), \quad\left\|\mathbf{y}^{k+1}-\hat{\mathbf{y}}^{k+1}\right\| \leq o\left(\tau^{2}\right)
$$

*Tools for the algorithms: resolvent operator and prox-mapping

- We need to solve problems of type (9) at each iteration.

$$
\begin{equation*}
\mathbf{x}^{+}=\arg \min _{\mathbf{x}}\left\{f(\mathbf{x})+\frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{2 \tau}\right\}:=\operatorname{prox}_{\tau f}(\mathbf{y}) \tag{9}
\end{equation*}
$$

- Writing the optimality condition gives

$$
\begin{equation*}
0 \in \partial f\left(\mathbf{x}^{+}\right)+\frac{1}{\tau}\left(\mathbf{x}^{+}-\mathbf{y}\right) \quad \Rightarrow \quad \mathbf{x}^{+}=\underbrace{(\mathbb{I}+\tau \partial f)^{-1}}_{\text {resolvent operator }}(\mathbf{y}), \tag{10}
\end{equation*}
$$

where ∂f is the subgradient of convex function f and \mathbb{I} is the identity operator.

- We assume resolvent operator defined through (10) is either
- have a closed form solution, or
- can be efficiently solved.

*Tools for the algorithms: Moreau's identity

- Similarly, for the dual parameter update, we need the following proximal operator of g^{*}.

$$
\mathbf{y}^{+}=\operatorname{prox}_{\sigma g^{*}}(\mathbf{x})
$$

- A fundamental equality for the prox operator: Moreau's identity

$$
\mathbf{x}=\operatorname{prox}_{g}(\mathbf{x})+\operatorname{prox}_{g^{*}}(\mathbf{x})
$$

(Moreau's Identity)

- It is easy to compute $\operatorname{prox}_{\sigma g^{*}}(\mathbf{x})$ by using the proximal mapping of function g as

$$
\operatorname{prox}_{\sigma g^{*}}(\mathbf{x})=\mathbf{x}-\sigma \operatorname{prox}_{\sigma^{-1} g}\left(\frac{\mathbf{x}}{\sigma}\right)
$$

*Extended Moreau's identity

$$
\operatorname{prox}_{\sigma g^{*}}(\mathbf{x})=\mathbf{x}-\sigma \operatorname{prox}_{\sigma^{-1} g}\left(\frac{\mathbf{x}}{\sigma}\right)
$$

Proof: Extended Moreau's identity

First prove that Moreau's identity holds: $\mathbf{x}=\operatorname{prox}_{g}(\mathbf{x})+\operatorname{prox}_{g^{*}}(\mathbf{x})$

$$
\begin{array}{rlr}
\mathbf{y}=\operatorname{prox}_{g}(\mathbf{x}) & \Longleftrightarrow \mathbf{x}-\mathbf{y} \in \partial g(\mathbf{y}) & \begin{array}{r}
\text { (Optimality of prox) } \\
\\
\end{array} \Longleftrightarrow \mathbf{y} \in \partial g^{*}(\mathbf{x}-\mathbf{y}) \\
& \Longleftrightarrow \mathbf{x}-\mathbf{y}=\operatorname{prox}_{g^{*}}(\mathbf{x}) & \text { (Conjugate subgradient theorem) } \\
& \Longleftrightarrow \mathbf{x}=\operatorname{prox}_{g}(\mathbf{x})+\operatorname{prox}_{g^{*}}(\mathbf{x}) &
\end{array}
$$

Now applying Moreau's identity to function σg

$$
\begin{aligned}
\mathbf{x} & =\operatorname{prox}_{\sigma g}(\mathbf{x})+\operatorname{prox}_{(\sigma g)^{*}}(\mathbf{x}) \\
& =\operatorname{prox}_{\sigma g}(\mathbf{x})+\sigma \operatorname{prox}_{\sigma^{-1} g^{*}}\left(\frac{\mathbf{x}}{\sigma}\right)
\end{aligned}
$$

$$
\left((\sigma g)^{*}(\mathbf{y})=\sigma g^{*}\left(\frac{\mathbf{x}}{\sigma}\right)\right)
$$

*Primal-dual with random extrapolation and coordinate descent: PURE-CD

Input: $\mathbf{x}_{0} \in \mathbb{R}^{n}, \mathbf{y}_{0} \in \mathbb{R}^{m}$
Parameters: $\theta=\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{m}\right)$ is chosen as $\theta_{j}=\frac{\pi_{j}}{\underline{p}}$, where $\pi_{j}=\sum_{i \in I(j)} p_{i}$, and $\underline{p}=\min _{i} p_{i}$, and $\tau_{i}<\frac{2 p_{i}-\underline{p}}{\beta_{i} p_{i}+\underline{p}^{-1} p_{i} \sum_{j=1}^{\underline{m}} \pi_{j} \sigma_{j} A_{j, i}^{2}}{ }^{1}$.
for $k \in \mathbb{N}$ do
$\overline{\mathbf{y}}_{k+1}=\operatorname{prox}_{\sigma g^{*}}\left(\mathbf{y}_{k}+\sigma \mathbf{A} \mathbf{x}_{k}\right)$
$\overline{\mathbf{x}}_{k+1}=\operatorname{prox}_{\tau f}\left(\mathbf{x}_{k}-\tau \nabla h\left(\mathbf{x}_{k}\right)-\tau \mathbf{A}^{\top} \overline{\mathbf{y}}_{k+1}\right)$
Draw $i_{k+1} \in\{1, \ldots, n\}$ randomly w.p. $\mathbb{P}\left(i_{k+1}=i\right)=p_{i}$
$\mathbf{x}_{k+1}^{i_{k+1}}=\overline{\mathbf{x}}_{k+1}^{i_{k+1}}$
$\mathbf{x}_{k+1}^{j}=\mathbf{x}_{k}^{j}, \forall j \neq i_{k+1}$
$\mathbf{y}_{k+1}^{j}=\overline{\mathbf{y}}_{k+1}^{j}+\sigma_{j} \theta_{j}\left[\mathbf{A}\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)\right]_{j}, \forall j \in J\left(i_{k+1}\right)$
$\mathbf{y}_{k+1}^{j}=\mathbf{y}_{k}^{j}, \forall j \notin J\left(i_{k+1}\right)$
end for

step size w. dense \mathbf{A}	iter. cost		
$n \tau_{i} \sigma\left\\|\mathbf{A}_{i}\right\\|^{2}<1$	$\operatorname{nnz}\left(\mathbf{A}_{i}\right)$		

[^0]
*Experiments

- Datasets with varying sparsity levels, sparse, moderately sparse, and dense.
- Comparison with dense friendly SPDHG (Chambolle et al., 2018), sparse friendly VC-CD (Fercoq\&Bianchi, 2019) with duplication ${ }^{2}$.
- PURE-CD stays efficient in all cases, attaining best of both worlds.

Figure: Lasso: Left: rcv1, $n=20,242, m=47,236$, density $=0.16 \%, \lambda=10$; Middle: w8a, $n=49,749, m=300$, density $=3.9 \%, \lambda=10^{-1}$; Right: covtype, $n=581,012, m=54$, density $=22.1 \%, \lambda=10$.

[^1]
*Experiments

- Strongly convex strongly concave ridge regression problems with varying regularization parameter.
- PURE-CD is competitive with state-of-the-art specialized methods for this problem.

Figure: Ridge. a9a, $n=32,561, m=123$.

References I

[1] Ahmet Alacaoglu, Olivier Fercoq, and Volkan Cevher.
On the convergence of stochastic primal-dual hybrid gradient. arXiv preprint arXiv:1911.00799, 2019.
[2] Dimitri P Bertsekas.
Necessary and sufficient conditions for a penalty method to be exact.
Mathematical programming, 9(1):87-99, 1975.
[3] Volkan Cevher and B?ng Công Vũ.
A reflected forward-backward splitting method for monotone inclusions involving lipschitzian operators. Set-Valued and Variational Analysis, pages 1-12, 2020.
[4] A. Chambolle and T. Pock.
A first-order primal-dual algorithm for convex problems with applications to imaging.
Journal of Mathematical Imaging and Vision, 40(1):120-145, 2011.
[5] L. Condat.
A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms.
J. Optim. Theory Appl., 158:460-479, 2013.

References II

[6] D. Davis and W. Yin.
A three-operator splitting scheme and its optimization applications.
Tech. Report., 2015.
[7] Chi Jin, Praneeth Netrapalli, and Michael I Jordan.
What is local optimality in nonconvex-nonconcave minimax optimization?
arXiv preprint arXiv:1902.00618, 2019.
[8] G. M. Korpelevic.
An extragradient method for finding saddle-points and for other problems.
Èkonom. i Mat. Metody., 12(4):747-756, 1976.
[9] Tianyi Lin, Chi Jin, and Michael I Jordan.
On gradient descent ascent for nonconvex-concave minimax problems.
arXiv preprint arXiv:1906.00331, 2019.
[10] Songtao Lu, Ioannis Tsaknakis, Mingyi Hong, and Yongxin Chen.
Hybrid block successive approximation for one-sided non-convex min-max problems: algorithms and applications.
IEEE Transactions on Signal Processing, 2020.

References III

[11] Yura Malitsky and Matthew K Tam.
A forward-backward splitting method for monotone inclusions without cocoercivity.
SIAM Journal on Optimization, 30(2):1451-1472, 2020.
[12] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil.
Convergence rate of $\mathcal{O}(1 / k)$ for optimistic gradient and extra-gradient methods in smooth convex-concave saddle point problems.
arXiv preprint arXiv:1906.01115, 2019.
[13] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil.
A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach.
In International Conference on Artificial Intelligence and Statistics, pages 1497-1507. PMLR, 2020.
[14] A. Nemirovskii.
Prox-method with rate of convergence $\mathcal{O}(1 / t)$ for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM J. Op, 15(1):229-251, 2004.
[15] J. Nocedal and S.J. Wright.
Numerical Optimization.
Springer Series in Operations Research and Financial Engineering. Springer, 2 edition, 2006.

References IV

[16] Leonid Denisovich Popov.
A modification of the arrow-hurwicz method for search of saddle points.
Mathematical notes of the Academy of Sciences of the USSR, 28(5):845-848, 1980.
[17] Sasha Rakhlin and Karthik Sridharan.
Optimization, learning, and games with predictable sequences.
In Advances in Neural Information Processing Systems, pages 3066-3074, 2013.
[18] R. T. Rockafellar.
Augmented lagrangians and applications of the proximal point algorithm in convex programming. Mathemathics of Operations Research, 1:97-116, 1976.
[19] Ohad Shamir.
Can we find near-approximately-stationary points of nonsmooth nonconvex functions?
arXiv preprint arXiv:2002.11962, 2020.
[20] Quoc Tran-Dinh, Olivier Fercoq, and Volkan Cevher.
A smooth primal-dual optimization framework for nonsmooth composite convex minimization.
SIAM Journal on Optimization, 28(1):96-134, 2018.

References V

[21] Bang Cong Vu.
A splitting algorithm for dual monotone inclusions involving cocoercive operators.
Advances in Computational Mathematics, 38(3):667-681, 2013.
[22] Zi Xu , Huiling Zhang, Yang Xu , and Guanghui Lan.
A unified single-loop alternating gradient projection algorithm for nonconvex-concave and convex-nonconcave minimax problems.
arXiv preprint arXiv:2006.02032, 2020.
[23] Ming Yan.
A new primal-dual algorithm for minimizing the sum of three functions with a linear operator.
Journal of Scientific Computing, 76(3):1698-1717, 2018.
[24] Alp Yurtsever, Bang Công Vu, and Volkan Cevher.
Stochastic three-composite convex minimization.
In Advances in Neural Information Processing Systems, pages 4329-4337, 2016.
[25] Jingzhao Zhang, Hongzhou Lin, Suvrit Sra, and Ali Jadbabaie.
On complexity of finding stationary points of nonsmooth nonconvex functions.
arXiv preprint arXiv:2002.04130, 2020.

[^0]: ${ }^{1} \beta_{i}$ are coordinate-wise Lipschitz constants of ∇f

[^1]: ${ }^{2}$ Fercoq, Bianchi, A coordinate-descent primal-dual algorithm with large step size and possibly nonseparable functions, SIOPT, 2019.

