Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 11: Primal-dual optimization I

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2020)

License Information for Mathematics of Data Slides

▶ This work is released under a <u>Creative Commons License</u> with the following terms:

Attribution

The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes — unless they get the licensor's permission.

► Share Alike

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ▶ Full Text of the License

Outline

- Today
 - 1. Min-max optimization (continued)
- Next week
 - 1. Algorithms for solving min-max optimization

A minimax optimization template

Minimax formulation

Consider the following problem that captures adversarial training, GANs, and robust reinforcement learning:

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}), \tag{1}$$

where Φ is differentiable and nonconvex in \mathbf{x} and nonconcave in \mathbf{y} .

- o Key questions:
 - 1. Where do the algorithms converge?
 - 2. When do the algorithm converge?

A minimax optimization template

Minimax formulation

Consider the following problem that captures adversarial training, GANs, and robust reinforcement learning:

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}), \tag{1}$$

where Φ is differentiable and nonconvex in \mathbf{x} and nonconcave in \mathbf{y} .

- o Key questions:
 - 1. Where do the algorithms converge?
 - 2. When do the algorithm converge?

Recall: A buffet of negative results [5]

"Even when the objective is a Lipschitz and smooth differentiable function, deciding whether a min-max point exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, an approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such point is PPAD-complete. The same is true of computing an approximate fixed point of the (Projected) Gradient Descent/Ascent update dynamics."

The difficulty of the nonconvex-nonconcave setting

Minimax formulation

Consider the following problem that captures adversarial training, GANs, and robust reinforcement learning:

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}), \tag{2}$$

where Φ is differentiable and nonconvex in ${\bf x}$ and nonconcave in ${\bf y}$.

From minimax to minimization

Assume $\Phi(\mathbf{x}, \mathbf{y}) = f(\mathbf{x})$ for all \mathbf{y} . The minimax optimization problem then seeks to find \mathbf{x}^{\star} such that

$$f(\mathbf{x}^{\star}) \leq f(\mathbf{x}), \forall \mathbf{x} \in \mathbb{R}^p,$$

where \mathbf{x}^{\star} is a global minimum of the nonconvex function f.

- Finding \mathbf{x}^* is NP-Hard even when f is smooth!
- (see the complexity supplementary material)
- Finding solutions to a nonconvex-nonconvex min-max problem is harder in general.

Question 1 with a twist: Where do want the algorithms to converge?

Definition (Saddle points & Local Nash equilibria)

The point $(\mathbf{x}^*, \mathbf{y}^*)$ is called a saddle-point or a local Nash equilibrium (LNE) if it holds that

$$\Phi\left(\mathbf{x}^{\star},\mathbf{y}\right) \leq \Phi\left(\mathbf{x}^{\star},\mathbf{y}^{\star}\right) \leq \Phi\left(\mathbf{x},\mathbf{y}^{\star}\right) \tag{Saddle Point / LNE)}$$

for all $\mathbf x$ and $\mathbf y$ within some neighborhood of $\mathbf x^\star$ and $\mathbf y^\star$, i.e., $\|\mathbf x - \mathbf x^\star\| \le \delta$ and $\|\mathbf y - \mathbf y^\star\| \le \delta$ for some $\delta > 0$.

Necessary conditions

Through a Taylor expansion around x^* and y^* one can show that a LNE implies,

$$\nabla_{\mathbf{x}} \Phi(\mathbf{x}, \mathbf{y}), -\nabla_{\mathbf{y}} \Phi(\mathbf{x}, \mathbf{y}) = 0$$
$$\nabla_{\mathbf{x}\mathbf{x}} \Phi(\mathbf{x}, \mathbf{y}), -\nabla_{\mathbf{y}\mathbf{y}} \Phi(\mathbf{x}, \mathbf{y}) \succeq 0$$

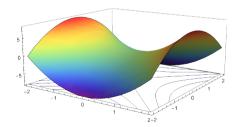


Figure: $\Phi(x,y) = x^2 - y^2$

Question 2 with a twist: When do generalized Robbins-Monro schemes converge?

- $\circ \text{ Given } \min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}), \text{ define } V(\mathbf{z}) = [-\nabla_{\mathbf{x}} \Phi(\mathbf{x}, \mathbf{y}), \nabla_{\mathbf{y}} \Phi(\mathbf{x}, \mathbf{y})] \text{ with } \mathbf{z} = [\mathbf{x}, \mathbf{y}]^{\top}.$
- o Given $V(\mathbf{z})$, define stochastic estimates of $V(\mathbf{z},\zeta) = V(\mathbf{z}) + U(\mathbf{z},\zeta)$, where
 - $lackbox{}{} U(\mathbf{z},\zeta)$ is a bias term
 - We often have unbiasedness: $EU(\mathbf{z},\zeta)=0$
 - The bias term can have bounded moments
 - ▶ We often have bounded variance: $P(\|U(\mathbf{z},\zeta)\| \ge t) \le 2\exp{-\frac{t^2}{2\sigma^2}}$ for $\sigma > 0$.
- \circ An abstract template for generalized Robbins-Monro schemes, dubbed as A:

$$\mathbf{z}^{k+1} = \mathbf{z}^k + \alpha_k V(\mathbf{z}^k, \zeta^k)$$

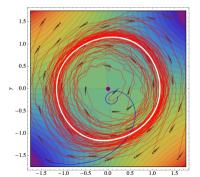
The dessert section in the buffet of negative results: [12]

- 1. Bounded trajectories of $\mathcal A$ always converge to an internally chain-transitive (ICT) set.
- 2. Trajectories of A may converge with arbitrarily high probability to spurious attractors that contain no critical point of Φ .

Minimax is more difficult than just optimization [11]

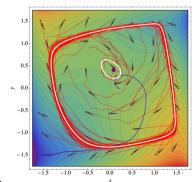
- o Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [4].
 - ► For optimization, {attracting ICT} ≡ {solutions}
 - ▶ For minimax, {attracting ICT} \equiv {solutions} \cup {spurious sets}
- o "Almost" bilinear ≠ bilinear:

$$\Phi(x,y) = xy + \epsilon \phi(x), \phi(x) = \frac{1}{2}x^2 - \frac{1}{4}x^4$$



o The "forsaken" solutions:

$$\Phi(y,x) = y(x-0.5) + \phi(y) - \phi(x), \phi(u) = \frac{1}{4}u^2 - \frac{1}{2}u^4 + \frac{1}{6}u^6$$



A restricted minimax optimization template

A restricted minimax formulation

Consider the following problem

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}), \tag{3}$$

where Φ is convex in \mathbf{x} and concave in \mathbf{y} .

- o Key questions:
 - 1. What problems does this template capture?
 - 2. Where do the algorithms converge?
 - 3. When do the algorithm converge?

General nonsmooth problems

• We will show that the restricted template captures the familiar composite minimization:

$$\min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x}) + g(\mathbf{A}\mathbf{x}).$$

lacktriangledown f, g are convex, nonsmooth functions; and ${f A}$ is a linear operator.

Examples

$$\mathbf{p}(\mathbf{A}\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_1 \text{ or } g(\mathbf{A}\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

$$\quad \mathbf{p}\left(\mathbf{A}\mathbf{x}\right) = \delta_{\left\{\mathbf{b}\right\}}(\mathbf{A}\mathbf{x}) \text{, where } \delta_{\left\{\mathbf{b}\right\}}(\mathbf{A}\mathbf{x}) = \begin{cases} 0, & \text{if } \mathbf{A}\mathbf{x} = \mathbf{b}, \\ +\infty, \text{if } \mathbf{A}\mathbf{x} \neq \mathbf{b}. \end{cases}$$

Observations:

- $\circ \text{ The indicator example covers constrained problems, such as } \min_{\mathbf{x} \in \mathcal{X}} \{f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}\}.$
- o We need a tool, called Fenchel conjugation, to reveal the underlying minimax problem.

Conjugation of functions

 \circ Idea: Represent a convex function in $\max\text{-form}$

Definition

Let $\mathcal Q$ be a Euclidean space and Q^* be its dual space. Given a proper, closed and convex function $f:\mathcal Q\to\mathbb R\cup\{+\infty\}$, the function $f^*:Q^*\to\mathbb R\cup\{+\infty\}$ such that

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathsf{dom}(f)} \left\{ \mathbf{y}^T \mathbf{x} - f(\mathbf{x}) \right\}$$

is called the Fenchel conjugate (or conjugate) of f.

Observations: \circ **y** : slope of the hyperplane

 $\circ -f^*(\mathbf{y})$: intercept of the hyperplane

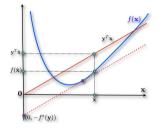


Figure: The conjugate function $f^*(\mathbf{y})$ is the maximum gap between the linear function $\mathbf{x}^T\mathbf{y}$ (red line) and $f(\mathbf{x})$.

Conjugation of functions

Definition

Given a proper, closed and convex function $f:\mathcal{Q}\to\mathbb{R}\cup\{+\infty\}$, the function $f^*:Q^*\to\mathbb{R}\cup\{+\infty\}$ such that

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathsf{dom}(f)} \left\{ \mathbf{y}^T \mathbf{x} - f(\mathbf{x}) \right\}$$

is called the Fenchel conjugate (or conjugate) of f.

Conjugation of functions

Definition

Given a proper, closed and convex function $f:\mathcal{Q}\to\mathbb{R}\cup\{+\infty\}$, the function $f^*:\mathcal{Q}^*\to\mathbb{R}\cup\{+\infty\}$ such that

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in dom(f)} \left\{ \mathbf{y}^T \mathbf{x} - f(\mathbf{x}) \right\}$$

is called the Fenchel conjugate (or conjugate) of f.

Properties

- $\circ f^*$ is a convex and lower semicontinuous function by construction as the supremum of affine functions of y.
- \circ The conjugate of the conjugate of a convex function f is the same function f; i.e., $f^{**} = f$ for $f \in \mathcal{F}(\mathcal{Q})$.
- o The conjugate of the conjugate of a non-convex function f is its lower convex envelope when $\mathcal Q$ is compact:
 - $f^{**}(\mathbf{x}) = \sup\{g(\mathbf{x}) : g \text{ is convex and } g \leq f, \forall \mathbf{x} \in \mathcal{Q} \}.$
- \circ For closed convex f, μ -strong convexity w.r.t. $\|\cdot\|$ is equivalent to $\frac{1}{\mu}$ smoothness of f^* w.r.t. $\|\cdot\|_*$.
 - Recall dual norm: $\|\mathbf{y}\|_* = \sup_{\mathbf{x}} \{ \langle \mathbf{x}, \mathbf{y} \rangle \colon \|\mathbf{x}\| \le 1 \}.$
 - ▶ See for example Theorem 3 in [16].

Examples

ℓ_2 -norm-squared

$$f(\mathbf{x}) = \frac{\lambda}{2} \|\mathbf{x}\|^2 \Rightarrow f^*(\mathbf{y}) = \max_{\mathbf{x}} \langle \mathbf{y}, \mathbf{x} \rangle - \frac{\lambda}{2} \|\mathbf{x}\|^2.$$

 \circ Take the derivative and equate to 0: $0 = \mathbf{y} - \lambda \mathbf{x} \iff \mathbf{x} = \frac{1}{\lambda} \mathbf{y} \iff f^*(\mathbf{y}) = \frac{1}{\lambda} ||\mathbf{y}||^2 - \frac{1}{2\lambda} ||\mathbf{y}||^2 = \frac{1}{2\lambda} ||\mathbf{y}||^2$.

ℓ_1 -norm

$$f(\mathbf{x}) = \lambda \|\mathbf{x}\|_1 \Rightarrow f^*(\mathbf{y}) = \max_{\mathbf{x}} \langle \mathbf{y}, \mathbf{x} \rangle - \lambda \|\mathbf{x}\|_1.$$

- \circ By definition of the ℓ_1 -norm: $f^*(\mathbf{y}) = \max_{\mathbf{x}} \sum_{i=1}^n y_i x_i \lambda |x_i| = \max_{\mathbf{x}} \sum_{i=1}^n y_i \operatorname{sign}(x_i) |x_i| \lambda |x_i|$.
- o By inspection:
 - ▶ If all $|y_i| \le \lambda$, then $\forall i, (y_i \operatorname{sign}(x_i) \lambda)|x_i| \le 0$. Taking $\mathbf{x} = 0$ gives the maximum value: $f^*(\mathbf{y}) = 0$.
 - ▶ If for at least one $i, |y_i| > \lambda, (y_i \operatorname{sign}(x_i) \lambda)|x_i| \to +\infty$ as $|x_i| \to +\infty$.
- $\circ \ f^*(\mathbf{y}) = \delta_{\mathbf{y}: \|\cdot\|_{\infty} \leq \lambda}(\mathbf{y}) = \begin{cases} 0, \ \text{if} \ \|\mathbf{y}\|_{\infty} \leq \lambda \\ +\infty, \ \text{if} \ \|\mathbf{y}\|_{\infty} > \lambda \end{cases}$

Remark:

 \circ See advanced material at the end for non-convex examples, such as $f(\mathbf{x}) = \|\mathbf{x}\|_0$.

General nonsmooth problems

$$\min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x}) + g(\mathbf{A}\mathbf{x})$$

- o By Fenchel-conjugation, we have $g(\mathbf{A}\mathbf{x}) = \max_{\mathbf{y}} \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle g^*(\mathbf{y})$, where g^* is the conjugate of g.
- o Min-max formulation:

$$\min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x}) + g(\mathbf{A}\mathbf{x}) = \min_{\mathbf{x} \in \mathbb{R}^p} \max_{\mathbf{y}} \{ \Phi(\mathbf{x}, \mathbf{y}) := f(\mathbf{x}) + \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle - g^*(\mathbf{y}) \}$$

An example with linear constraints

$$\circ \text{ If } g(\mathbf{A}\mathbf{x}) = \delta_{\{\mathbf{b}\}}(\mathbf{A}\mathbf{x}) = \begin{cases} 0, & \text{if } \mathbf{A}\mathbf{x} = \mathbf{b}, \\ +\infty, & \text{if } \mathbf{A}\mathbf{x} \neq \mathbf{b}, \end{cases}$$

$$\Rightarrow g^*(\mathbf{y}) = \max_{\mathbf{x}} \langle \mathbf{y}, \mathbf{x} \rangle - \delta_{\{\mathbf{b}\}}(\mathbf{x}) = \max_{\mathbf{x}, \mathbf{y} = \mathbf{b}} \langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{y}, \mathbf{b} \rangle.$$

• We reach the minimax formulation (or the so-called "Lagrangian") via conjugation:

$$\min_{\mathbf{x}}\{f(\mathbf{x}): \mathbf{A}\mathbf{x} = \mathbf{b}\} = \min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{A}\mathbf{x}) = \min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x}) + \langle \mathbf{A}\mathbf{x} - \mathbf{b}, \mathbf{y} \rangle.$$

A special case in minimax optimization

Bilinear min-max template

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}) + \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle - h(\mathbf{y}),$$

where $\mathcal{X} \subseteq R^p$ and $\mathcal{Y} \subseteq \mathbb{R}^n$.

- $f \colon \mathcal{X} \to \mathbb{R}$ is convex.
- $h: \mathcal{Y} \to \mathbb{R}$ is convex.

Example: Sparse recovery

An example from sparseland $\mathbf{b} = \mathbf{A}\mathbf{x}^{\dagger} + \mathbf{w}$: constrained formulation

The basis pursuit denoising (BPDN) formulation is given by

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \left\| \mathbf{x} \right\|_{1} : \left\| \mathbf{A} \mathbf{x} - \mathbf{b} \right\|_{2} \le \left\| \mathbf{w} \right\|_{2}, \left\| \mathbf{x} \right\|_{\infty} \le 1 \right\}. \tag{BPDN}$$

A primal problem prototype

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K} \ \mathbf{x} \in \mathcal{X} \right\},$$

The above template captures BPDN formulation with

- $f(\mathbf{x}) = \|\mathbf{x}\|_1.$
- $\mathcal{K} = \{ \|\mathbf{u}\| \in \mathbb{R}^n : \|\mathbf{u}\| \le \|\mathbf{w}\|_2 \}.$

An alternative formulation

A primal problem prototype

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}, \ \mathbf{x} \in \mathcal{X} \right\},\tag{4}$$

- f is a proper, closed and convex function
- $ightharpoonup \mathcal{X}$ and \mathcal{K} are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^n$ are known
- An optimal solution \mathbf{x}^* to (4) satisfies $f(\mathbf{x}^*) = f^*$, $\mathbf{A}\mathbf{x}^* \mathbf{b} \in \mathcal{K}$ and $\mathbf{x}^* \in \mathcal{X}$

A simplified template without loss of generality

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \right\},\tag{5}$$

- ▶ f is a proper, closed and convex function
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^n$ are known
- An optimal solution \mathbf{x}^* to (5) satisfies $f(\mathbf{x}^*) = f^*$, $\mathbf{A}\mathbf{x}^* = \mathbf{b}$

Reformulation between templates

A primal problem template

$$\min_{\mathbf{x} \in \mathbb{R}^p} \bigg\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X} \bigg\}.$$

First step: Let $\mathbf{r}_1 = \mathbf{A}\mathbf{x} - \mathbf{b} \in \mathbb{R}^n$ and $\mathbf{r}_2 = \mathbf{x} \in \mathbb{R}^p$.

$$\min_{\mathbf{x},\mathbf{r}_1,\mathbf{r}_2}\bigg\{f(\mathbf{x}):\mathbf{r}_1\in\mathcal{K},\mathbf{r}_2\in\mathcal{X},\mathbf{A}\mathbf{x}-\mathbf{b}=\mathbf{r}_1,\mathbf{x}=\mathbf{r}_2\bigg\}.$$

$$\text{o Define } \mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \mathbf{r}_1 \\ \mathbf{r}_2 \end{bmatrix} \in \mathbb{R}^{2p+n}, \ \bar{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & -\mathbf{I}_{n\times n} & \mathbf{0}_{n\times p} \\ \mathbf{I}_{p\times p} & \mathbf{0}_{p\times n} & -\mathbf{I}_{p\times p} \end{bmatrix}, \ \bar{\mathbf{b}} = \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix}, \ \bar{f}(\mathbf{z}) = f(\mathbf{x}) + \delta_{\mathcal{K}}(\mathbf{r}_1) + \delta_{\mathcal{X}}(\mathbf{r}_2),$$
 where $\delta_{\mathcal{X}}(\mathbf{x}) = 0$, if $\mathbf{x} \in \mathcal{X}$, and $\delta_{\mathcal{X}}(\mathbf{x}) = +\infty$, \mathbf{o}/\mathbf{w} .

The simplified template

$$\min_{\mathbf{z} \in \mathbb{R}^{2p+n}} \left\{ \bar{f}(\mathbf{z}) : \bar{\mathbf{A}}\mathbf{z} = \bar{\mathbf{b}} \right\}.$$

From constrained formulation back to minimax

A general template

$$\min_{\mathbf{x} \in \mathbb{R}^p} \{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \}.$$

Other examples:

- Standard convex optimization formulations: linear programming, convex quadratic programming, second order cone programming, semidefinite programming and geometric programming.
- Reformulations of existing unconstrained problems via convex splitting: composite convex minimization, consensus optimization. . . .

Formulating as min-max

$$\max_{\mathbf{y} \in \mathbb{R}^n} \langle \mathbf{y}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle = \begin{cases} 0, & \text{if } \mathbf{A}\mathbf{x} = \mathbf{b}, \\ +\infty, & \text{if } \mathbf{A}\mathbf{x} \neq \mathbf{b}. \end{cases}$$

$$\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) \colon \mathbf{A}\mathbf{x} = \mathbf{b} \right\} = \min_{\mathbf{x} \in \mathbb{R}^p} \max_{\mathbf{y} \in \mathbb{R}^n} \left\{ \Phi(\mathbf{x}, \mathbf{y}) := f(\mathbf{x}) + \langle \mathbf{y}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \right\}$$

Dual problem

$$\left| \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) \colon \mathbf{A}\mathbf{x} = \mathbf{b} \right\} = \min_{\mathbf{x} \in \mathbb{R}^p} \max_{\mathbf{y} \in \mathbb{R}^n} \left\{ \Phi(\mathbf{x}, \mathbf{y}) := f(\mathbf{x}) + \langle \mathbf{y}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \right\}$$

oWe define the dual problem

$$\max_{\mathbf{y} \in \mathbb{R}^n} d(\mathbf{y}) := \max_{\mathbf{y} \in \mathbb{R}^n} \{ \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x}) + \langle \mathbf{y}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}.$$

Concavity of dual problem

Even if $f(\mathbf{x})$ is not convex, $d(\mathbf{y})$ is concave:

- For each \mathbf{x} , $d(\mathbf{y})$ is linear; i.e., it is both convex and concave.
- Pointwise minimum of concave functions is still concave.

Remark: o If we can exchange min and max, we obtain a concave maximization problem.

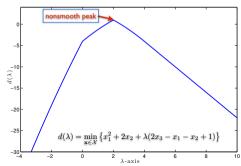
Example: Nonsmoothness of the dual function

o Consider a constrained convex problem:

$$\begin{split} \min_{\mathbf{x} \in \mathbb{R}^3} \quad & \left\{ f(\mathbf{x}) := x_1^2 + 2x_2 \right\}, \\ \text{s.t.} \quad & 2x_3 - x_1 - x_2 = 1, \\ & \mathbf{x} \in \mathcal{X} := [-2, 2] \times [-2, 2] \times [0, 2]. \end{split}$$

o The dual function is concave and nonsmooth as written and then illustrated below.

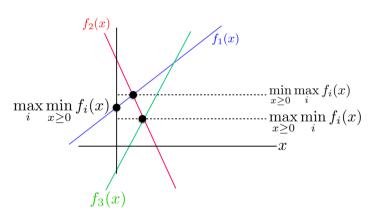
$$d(\lambda) := \min_{\mathbf{x} \in \mathcal{X}} \left\{ x_1^2 + 2x_2 + \lambda(2x_3 - x_1 - x_2 - 1) \right\}$$



Exchanging min and max: A dangerous proposal

Weak duality:

$$\max_{\mathbf{y} \in \mathbb{R}^n} d(\mathbf{y}) =: \boxed{\max_{\mathbf{y} \in \mathbb{R}^n} \min_{\mathbf{x} \in \mathbb{R}^p} \Phi(\mathbf{x}, \mathbf{y}) \leq \min_{\mathbf{x} \in \mathbb{R}^p} \max_{\mathbf{y} \in \mathbb{R}^n} \Phi(\mathbf{x}, \mathbf{y})} = \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) \colon \mathbf{A}\mathbf{x} = \mathbf{b} \right\} = \begin{cases} f^\star, & \text{if } \mathbf{A}\mathbf{x} = \mathbf{b} \\ +\infty, & \text{if } \mathbf{A}\mathbf{x} \neq \mathbf{b} \end{cases}}$$
Dual problem



A proof of weak duality

$$\boxed{f^\star := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \right\} = \min_{\mathbf{x} \in \mathbb{R}^p} \max_{\mathbf{y} \in \mathbb{R}^n} \left\{ \Phi(\mathbf{x}, \mathbf{y}) := f(\mathbf{x}) + \langle \mathbf{y}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \right\}}$$

 \circ Since $\mathbf{A}\mathbf{x}^* = \mathbf{b}$, it holds for any \mathbf{y}

$$\begin{split} \Phi(\mathbf{x}^{\star}, \mathbf{y}) &= f^{\star} = f(\mathbf{x}^{\star}) + \langle \mathbf{y}, \mathbf{A}\mathbf{x}^{\star} - \mathbf{b} \rangle \\ &\geq \min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ f(\mathbf{x}) + \langle \mathbf{y}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \right\} \\ &= \min_{\mathbf{x} \in \mathbb{R}^{p}} \Phi(\mathbf{x}, \mathbf{y}). \end{split}$$

 \circ Take maximum of both sides in y and note that f^* is independent of y:

$$f^\star = \min_{\mathbf{x} \in \mathbb{R}^p} \max_{\mathbf{y} \in \mathbb{R}^n} \Phi(\mathbf{x}, \mathbf{y}) \geq \max_{\mathbf{y} \in \mathbb{R}^n} \min_{\mathbf{x} \in \mathbb{R}^p} \Phi(\mathbf{x}, \mathbf{y}) =: \max_{\mathbf{y} \in \mathbb{R}^n} d(\mathbf{y}) = d^\star.$$

Strong duality and saddle points

Strong duality

$$f^{\star} = f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^{p}} \max_{\mathbf{y} \in \mathbb{R}^{n}} \Phi(\mathbf{x}, \mathbf{y}) = \max_{\mathbf{y} \in \mathbb{R}^{n}} \min_{\mathbf{x} \in \mathbb{R}^{p}} \Phi(\mathbf{x}, \mathbf{y}) =: \max_{\mathbf{y} \in \mathbb{R}^{n}} d(\mathbf{y}) = d^{\star}.$$

Under strong duality and assuming existence of \mathbf{x}^* , $\Phi(\mathbf{x}, \mathbf{y})$ has a saddle point. We have primal and dual optimal values coincide, i.e., $f^* = d^*$.

Strong duality and saddle points

Strong duality

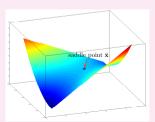
$$f^{\star} = f(\mathbf{x}^{\star}) = \min_{\mathbf{x} \in \mathbb{R}^p} \max_{\mathbf{y} \in \mathbb{R}^n} \Phi(\mathbf{x}, \mathbf{y}) = \max_{\mathbf{y} \in \mathbb{R}^n} \min_{\mathbf{x} \in \mathbb{R}^p} \Phi(\mathbf{x}, \mathbf{y}) =: \max_{\mathbf{y} \in \mathbb{R}^n} d(\mathbf{y}) = d^{\star}.$$

Under strong duality and assuming existence of \mathbf{x}^* , $\Phi(\mathbf{x}, \mathbf{y})$ has a saddle point. We have primal and dual optimal values coincide, i.e., $f^* = d^*$.

Recall saddle point / LNE

A point $(\mathbf{x}^{\star}, \mathbf{y}^{\star}) \in \mathbb{R}^p \times \mathbb{R}^n$ is called a saddle point of Φ if

$$\Phi(\mathbf{x}^{\star}, \mathbf{y}) \leq \Phi(\mathbf{x}^{\star}, \mathbf{y}^{\star}) \leq \Phi(\mathbf{x}, \mathbf{y}^{\star}), \ \forall \mathbf{x} \in \mathbb{R}^{p}, \ \mathbf{y} \in \mathbb{R}^{n}.$$



Toy example: Strong duality

Primal problem

- \circ Consider the following primal minimization problem: $\min_{\mathbf{x}} P(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) := \frac{1}{2} \|\mathbf{x}\|^2 + \|\mathbf{x}\|_1$
- o Using conjugation and strong duality

$$\begin{split} P(\mathbf{x}^{\star}) &= \min_{\mathbf{x}} P(\mathbf{x}) = \min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x}) + \langle \mathbf{x}, \mathbf{y} \rangle - g^{*}(\mathbf{y}), & \text{by conjugation} \\ &= \max_{\mathbf{y}} -g^{*}(\mathbf{y}) + \min_{\mathbf{x}} f(\mathbf{x}) + \langle \mathbf{x}, \mathbf{y} \rangle, & \text{by changing min-max} \\ &= \max_{\mathbf{y}} -g^{*}(\mathbf{y}) - \max_{\mathbf{x}} \langle \mathbf{x}, -\mathbf{y} \rangle - f(\mathbf{x}), & \text{by } \min f = -\max -f \\ &= \max_{\mathbf{y}} -g^{*}(\mathbf{y}) - f^{*}(-\mathbf{y}), & \text{by conjugation.} \end{split}$$

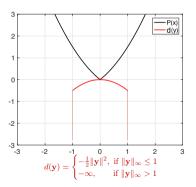
Dual problem

- o Dual problem: $d^* = \max_{\mathbf{y}} d(\mathbf{y}) = -g^*(\mathbf{y}) f^*(-\mathbf{y})$
- $\circ \text{ Recall } f^*(-\mathbf{y}) = \frac{1}{2} \|\mathbf{y}\|^2 \text{ and } g^*(\mathbf{y}) = \delta_{\mathbf{y}: \|\mathbf{y}\|_{\infty} < 1}(\mathbf{y}).$

Toy example: Strong duality

Primal problem:
$$\min_{\mathbf{x}} P(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2 + \|\mathbf{x}\|_1$$

$$\text{Dual problem: } \max_{\mathbf{y}} -\frac{1}{2}\|\mathbf{y}\|^2 - \delta_{\mathbf{y}:\|\mathbf{y}\|_{\infty} \leq 1}(\mathbf{y})$$



Back to convex-concave: Necessary and sufficient condition for strong duality

- o Existence of a saddle point is not automatic even in convex-concave setting!
- o Recall the minimax template:

$$\min_{\mathbf{x} \in \mathbb{R}^p} \max_{\mathbf{y} \in \mathbb{R}^n} \left\{ \Phi(\mathbf{x}, \mathbf{y}) := f(\mathbf{x}) + \langle \mathbf{y}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \right\}$$

Theorem (Necessary and sufficient optimality condition)

Under the Slater's condition: $\operatorname{relint}(\operatorname{dom} f) \cap \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\} \neq \emptyset$, strong duality holds, where the primal and dual problems are given by

$$f^{\star} := \left\{ \begin{array}{ll} \min\limits_{\mathbf{x} \in \mathbb{R}^p} & f(\mathbf{x}) \\ \mathrm{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}, \end{array} \right. \quad \text{and} \quad d^{\star} := \max\limits_{\mathbf{y} \in \mathbb{R}^n} d(\mathbf{y}).$$

Remarks:

- \circ By definition of f^* and d^* , we always have $d^* \leq f^*$ (weak duality).
- \circ If a primal solution exists and the Slater's condition holds, we have $d^\star = f^\star$ (strong duality).

Slater's qualification condition

- \circ Denote relint(dom f) the relative interior of the domain.
- The Slater condition requires

$$|\operatorname{relint}(\operatorname{dom} f) \cap \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\} \neq \emptyset.$$
 (6)

Special cases

- ▶ If $\operatorname{dom} f = \mathbb{R}^p$, then (6) \Leftrightarrow $\exists \bar{\mathbf{x}} : \mathbf{A}\bar{\mathbf{x}} = \mathbf{b}$.
- ▶ If dom $f = \mathbb{R}^p$ and instead of $\mathbf{A}\mathbf{x} = \mathbf{b}$, we have the feasible set $\{\mathbf{x} : h(\mathbf{x}) \leq 0\}$, where h is $\mathbb{R}^p \to R^q$ is convex, then

(6)
$$\Leftrightarrow \exists \bar{\mathbf{x}} : h(\bar{\mathbf{x}}) < 0.$$

Example: Slater's condition

Example

Let us consider solving $\min_{\mathbf{x}\in\mathcal{D}_{\alpha}}f(\mathbf{x})$ and so the feasible set is $\mathcal{D}_{\alpha}:=\mathcal{X}\cap\mathcal{A}_{\alpha}$, where

$$\mathcal{X} := \{ \mathbf{x} \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1 \}, \ \mathcal{A}_{\alpha} := \{ \mathbf{x} \in \mathbb{R}^2 : x_1 + x_2 = \alpha \},$$

where $\alpha \in \mathbb{R}$.

Example: Slater's condition

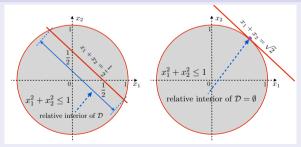
Example

Let us consider solving $\min_{\mathbf{x}\in\mathcal{D}_{\alpha}}f(\mathbf{x})$ and so the feasible set is $\mathcal{D}_{\alpha}:=\mathcal{X}\cap\mathcal{A}_{\alpha}$, where

$$\mathcal{X} := \{ \mathbf{x} \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1 \}, \ \mathcal{A}_{\alpha} := \{ \mathbf{x} \in \mathbb{R}^2 : x_1 + x_2 = \alpha \},$$

where $\alpha \in \mathbb{R}$.

Two cases where Slater's condition holds and does not hold



 $\mathcal{D}_{1/2}$ satisfies Slater's condition – $\mathcal{D}_{\sqrt{2}}$ -does not satisfy Slater's condition

Performance of optimization algorithms

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}, \right\},$$

(Affine-Constrained)

Exact vs. approximate solutions

- ► Computing an exact solution x^{*} to (Affine-Constrained) is impracticable
- Algorithms seek $\mathbf{x}_{\epsilon}^{\star}$ that approximates \mathbf{x}^{\star} up to ϵ in some sense

A performance metric: Time-to-reach ϵ

time-to-reach ϵ = number of iterations to reach ϵ \times per iteration time

A key issue: Number of iterations to reach ϵ

The notion of ϵ -accuracy is elusive in constrained optimization!

Numerical ϵ -accuracy

Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

$$f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star} \le \epsilon$$

$$f^* = \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$$

Constrained case: We need to also measure the infeasibility of the iterates!

$$f^{\star} - f(\mathbf{x}_{\epsilon}^{\star}) \le \epsilon !!!$$

$$f^{\star} = \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \right\}$$

Our definition of ϵ -accurate solutions [20]

Given a numerical tolerance $\epsilon \geq 0$, a point $\mathbf{x}_{\epsilon}^{\star} \in \mathbb{R}^{p}$ is called an ϵ -solution of (7) if

$$\begin{cases} f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star} & \leq \epsilon \text{ (objective residual),} \\ \|\mathbf{A}\mathbf{x}_{\epsilon}^{\star} - \mathbf{b}\| & \leq \epsilon \text{ (feasibility gap),} \end{cases}$$

▶ When \mathbf{x}^{\star} is unique, we can also obtain $\|\mathbf{x}_{\epsilon}^{\star} - \mathbf{x}^{\star}\| \leq \epsilon$ (iterate residual).

(7)

Numerical ϵ -accuracy

Constrained problems

Given a numerical tolerance $\epsilon \geq 0$, a point $\mathbf{x}_{\epsilon}^{\star} \in \mathbb{R}^{p}$ is called an ϵ -solution of (7) if

$$\begin{cases} f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star} & \leq \epsilon \text{ (objective residual),} \\ \|\mathbf{A}\mathbf{x}_{\epsilon}^{\star} - \mathbf{b}\| & \leq \epsilon \text{ (feasibility gap),} \end{cases}$$

• When \mathbf{x}^{\star} is unique, we can also obtain $\|\mathbf{x}_{\epsilon}^{\star} - \mathbf{x}^{\star}\| \leq \epsilon$ (iterate residual).

General minimax problems

Since duality gap is 0 at the solution, we measure the primal-dual gap

$$\operatorname{Gap}(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\bar{\mathbf{x}}, \mathbf{y}) - \min_{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x}, \bar{\mathbf{y}}) \le \epsilon.$$
(8)

Remarks:

- $\circ \epsilon$ can be different for the objective, feasibility gap, or the iterate residual.
- \circ It is easy to show $\operatorname{Gap}(\mathbf{x},\mathbf{y}) \geq 0$ and $\operatorname{Gap}(\bar{\mathbf{x}},\bar{\mathbf{y}}) = 0$ iff $(\bar{\mathbf{x}},\bar{\mathbf{y}})$ is a saddle point.

Primal-dual gap function for nonsmooth minimization

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) + g(\mathbf{A}\mathbf{x}) = \min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} \underbrace{f(\mathbf{x}) + \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle - g^*(\mathbf{y})}_{\Phi(\mathbf{x}, \mathbf{y})} = \max_{\mathbf{y} \in \mathcal{Y}} \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) + \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle - g^*(\mathbf{y})$$

o Primal problem: $\min_{\mathbf{x} \in \mathcal{X}} P(\mathbf{x})$ where

$$P(\mathbf{x}) = \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}).$$

o Dual problem: $\max_{\mathbf{y} \in \mathcal{V}} d(\mathbf{y})$ where

$$d(\mathbf{y}) = \min_{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x}, \mathbf{y}).$$

 \circ The primal-dual gap, i.e., $\operatorname{Gap}(\bar{\mathbf{x}}, \bar{\mathbf{y}})$, is literally (primal value at $\bar{\mathbf{x}}$) – (dual value at $\bar{\mathbf{y}}$):

$$\operatorname{Gap}(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = P(\bar{\mathbf{x}}) - d(\bar{\mathbf{y}}) = \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\bar{\mathbf{x}}, \mathbf{y}) - \min_{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x}, \bar{\mathbf{y}}).$$

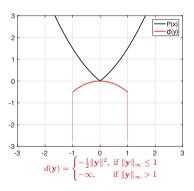
Toy example for nonnegativity of gap

$$P(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2 + \|\mathbf{x}\|_1$$

$$d(\mathbf{y}) = -\frac{1}{2} \|\mathbf{y}\|^2 - \delta_{\mathbf{y}: \|\mathbf{y}\|_{\infty} \le 1}(\mathbf{y})$$

Recall the indicator function

$$\delta_{\mathbf{y}:\|\mathbf{y}\|_{\infty} \le 1}(\mathbf{y}) = \begin{cases} 0, & \text{if } \|\mathbf{y}\|_{\infty} \le 1\\ +\infty, & \text{if } \|\mathbf{y}\|_{\infty} > 1 \end{cases}$$



Primal-dual gap function in the general case

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}) = \max_{\mathbf{y} \in \mathcal{Y}} \min_{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x}, \mathbf{y})$$

o Saddle point $(\mathbf{x}^{\star}, \mathbf{y}^{\star})$ is such that $\forall \mathbf{x} \in \mathbb{R}^{p}$, $\forall \mathbf{y} \in \mathbb{R}^{n}$:

$$\Phi(\mathbf{x}^{\star}, \mathbf{y}) \overset{(*)}{\leq} \Phi(\mathbf{x}^{\star}, \mathbf{y}^{\star}) \overset{(**)}{\leq} \Phi(\mathbf{x}, \mathbf{y}^{\star}).$$

Nonnegativity of Gap:

$$\begin{split} \operatorname{Gap}(\bar{\mathbf{x}},\bar{\mathbf{y}}) &= \max_{\mathbf{y} \in \mathcal{X}} \Phi(\bar{\mathbf{x}},\mathbf{y}) - \min_{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x},\bar{\mathbf{y}}) \\ &\geq \Phi(\bar{\mathbf{x}},\mathbf{y}^*) - \min_{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x},\bar{\mathbf{y}}), \quad \text{by the definition of maximization} \\ &\geq \Phi(\mathbf{x}^*,\mathbf{y}^*) - \min_{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x},\bar{\mathbf{y}}), \quad \text{by the inequality $(**)$} \\ &\geq \Phi(\mathbf{x}^*,\bar{\mathbf{y}}) - \min_{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x},\bar{\mathbf{y}}), \quad \text{by the inequality $(*)$} \\ &\geq 0, \quad \qquad \text{by the definition of minimization.} \end{split}$$

 \circ If $(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = (\mathbf{x}^{\star}, \mathbf{y}^{\star})$, then all the inequalities will be equalities and $\operatorname{Gap}(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = 0$.

Optimality conditions for minimax

Saddle point

We say $(\mathbf{x}^\star, \mathbf{y}^\star)$ is a primal-dual solution corresponding to primal and dual problems

$$f^{\star} := \left\{ \begin{array}{ll} \min \limits_{\mathbf{x} \in \mathbb{R}^p} & f(\mathbf{x}) \\ \mathrm{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}, \end{array} \right. \quad \text{and} \quad d^{\star} := \max \limits_{\mathbf{y} \in \mathbb{R}^n} d(\mathbf{y}) = \max \limits_{\mathbf{y} \in \mathbb{R}^n} \min \limits_{\mathbf{x}} \Phi(\mathbf{x}, \mathbf{y}).$$

if it is a saddle point of $\Phi(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) + \langle \mathbf{y}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle$:

$$\Phi(\mathbf{x}^{\star}, \mathbf{y}) \leq \Phi(\mathbf{x}^{\star}, \mathbf{y}^{\star}) \leq \Phi(\mathbf{x}, \mathbf{y}^{\star}), \ \forall \mathbf{x} \in \mathbb{R}^{p}, \ \mathbf{y} \in \mathbb{R}^{n}.$$

Karush-Khun-Tucker (KKT) conditions

Under our assumptions, an equivalent characterization of $(\mathbf{x}^{\star}, \mathbf{y}^{\star})$ is via the KKT conditions of the problem

$$\min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b},$$

which reads

$$\begin{cases} 0 & \in \partial_{\mathbf{x}} \Phi(\mathbf{x}^{\star}, \mathbf{y}^{\star}) = \mathbf{A}^{T} \mathbf{y}^{\star} + \partial f(\mathbf{x}^{\star}), \\ 0 & = \nabla_{\mathbf{y}} \Phi(\mathbf{x}^{\star}, \lambda^{\star}) = \mathbf{A} \mathbf{x}^{\star} - \mathbf{b}. \end{cases}$$

A naive proposal: Gradient descent-ascent (GDA)

Towards algorithms for minimax optimization

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}).$$

We assume that

- $\Phi(\cdot, \mathbf{v})$ is convex.
- $\Phi(\mathbf{x}, \cdot)$ is concave,
- $ightharpoonup \Phi$ is smooth in the following sense:

$$\left\| \begin{bmatrix} \nabla_{\mathbf{x}} \Phi(\mathbf{x}_1, \mathbf{y}_1) \\ -\nabla_{\mathbf{y}} \Phi(\mathbf{x}_1, \mathbf{y}_1) \end{bmatrix} - \begin{bmatrix} \nabla_{\mathbf{x}} \Phi(\mathbf{x}_2, \mathbf{y}_2) \\ -\nabla_{\mathbf{y}} \Phi(\mathbf{x}_2, \mathbf{y}_2) \end{bmatrix} \right\| \le L \left\| \begin{bmatrix} \mathbf{x}_1 - \mathbf{x}_2 \\ \mathbf{y}_1 - \mathbf{y}_2 \end{bmatrix} \right\|.$$
(9)

o Let us try to use gradient descent for x, gradient ascent for y to obtain a solution

1. Choose
$$\mathbf{x}^0, \mathbf{y}^0$$
 and τ .
2. For $k = 0, 1, \cdots$, perform:
 $\mathbf{x}^{k+1} := \mathbf{x}^k - \tau \nabla_{\mathbf{x}} \Phi(\mathbf{x}^k, \mathbf{y}^k)$.
 $\mathbf{y}^{k+1} := \mathbf{y}^k + \tau \nabla_{\mathbf{y}} \Phi(\mathbf{x}^k, \mathbf{y}^k)$.

GDA on a simple problem

Min-max problem

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}).$$

SimGDA

- 1. Choose $\mathbf{x}^0, \mathbf{y}^0$ and τ .
- 2. For $k=0,1,\cdots$, perform:

$$\mathbf{x}^{k+1} := \mathbf{x}^k - \tau \nabla_{\mathbf{x}} \Phi(\mathbf{x}^k, \mathbf{y}^k).$$

$$\mathbf{y}^{k+1} := \mathbf{y}^k + \tau \nabla_{\mathbf{y}} \Phi(\mathbf{x}^k, \mathbf{y}^k).$$

AltGDA

- **1.** Choose $\mathbf{x}^0, \mathbf{y}^0$ and τ .
- 2. For $k = 0, 1, \cdots$, perform:

$$\mathbf{x}^{k+1} := \mathbf{x}^k - \tau \nabla_{\mathbf{x}} \Phi(\mathbf{x}^k, \mathbf{y}^k).$$

$$\mathbf{y}^{k+1} := \mathbf{y}^k + \tau \nabla_{\mathbf{y}} \Phi(\mathbf{x}^{k+1}, \mathbf{y}^k).$$

Example [9]

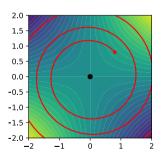
Let $\Phi(x,y)=xy$, $\mathcal{X}=\mathcal{Y}=\mathbb{R}$, then,

- for the iterates of SimGDA: $x_{k+1}^2 + y_{k+1}^2 = (1+\eta^2)(x_k^2 + y_k^2)$,
- for the iterates of AltGDA: $x_{k+1}^2 + y_{k+1}^2 = C(x_0^2 + y_0^2)$.
- o SimGDA diverges and AltGDA does not converge!

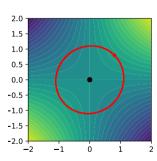
Practical performance

 $\min_{x \in \mathbb{R}} \max_{y \in \mathbb{R}} xy$

o Simultaneous GDA



o Alternating GDA



Between convex-concave and nonconvex-nonconcave

Nonconvex-concave problems

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$$

 $\circ \Phi(\mathbf{x}, \mathbf{y})$ is nonconvex in \mathbf{x} , concave in \mathbf{y} , smooth in \mathbf{x} and \mathbf{y} .

Recall

Define $f(\mathbf{x}) = \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$.

- \circ Gradient descent applied to nonconvex f requires $\mathcal{O}(\epsilon^{-2})$ iterations to give an ϵ -stationary point.
- \circ (Sub)gradient of f can be computed using Danskin's theorem:

$$\nabla_{\mathbf{x}} \Phi(\cdot, y^{\star}(\cdot)) \in \partial f(\cdot), \text{ where } y^{\star}(\cdot) \in \arg \max_{\mathbf{y} \in \mathcal{Y}} \Phi(\cdot, \mathbf{y}),$$

which is tractable since Φ is concave in \mathbf{y} [17].

0 [-1

Remark: • "Conceptually" much easier than nonconvex-nonconcave case.

Epilogue

	Gradient complexity	Optimality measure	Reference
convex-concave	$\mathcal{O}\left(\epsilon^{-1}\right)^{1}$	ϵ optimality w.r.t. duality gap	Nemirovski, 2004; Chambolle & Pock, 2011;
nonconvex-concave	$\tilde{\mathcal{O}}\left(\epsilon^{-2.5}\right)^3$	ϵ -stationarity w.r.t. gradient mapping norm	Tran-Dinh & Cevher, 2014. ² Lin, Jin, & Jordan, 2020. ⁴
nonconvex-nonconcave	HARD /	HARD	Daskalakis, Stratis, & Zampetakis, 2020; Hsieh, Mertikopoulos, & Cevher, 2020. ⁵

 $^{^{1}}$ Rates are not directly comparable as duality gap and gradient mapping norm are not necessarily of the same order!

²Arkadi Nemirovski, "Prox-method with rate of convergence $\mathcal{O}1/t$) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems." SIAM Journal on Optimization 15.1 (2004): 229-251.

Antonin Chambolle, and Thomas Pock, "A first-order primal-dual algorithm for convex problems with applications to imaging." Journal of mathematical imaging and vision 40.1 (2011): 120-145.

Quoc Tran-Dinh, and Volkan Cevher, "Constrained convex minimization via model-based excessive gap." Advances in Neural Information Processing Systems. 2014.

 $^{^3}$ The rate is $ilde{\mathcal{O}}\left(\epsilon^{-2}
ight)$ for strongly concave problems.

⁴Tianyi Lin, Chi Jin, and Michael Jordan, "Near-optimal algorithms for minimax optimization." arXiv preprint arXiv:2002.02417 (2020).

⁵Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis, "The complexity of constrained min-max optimization." arXiv preprint arXiv:2009.09623 (2020).

Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher, "The limits of min-max optimization algorithms: convergence to spurious non-critical sets." arXiv preprint arXiv:2006.09065 (2020).

A new hope

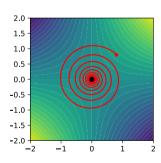
$$\min_{x \in \mathbb{R}} \max_{y \in \mathbb{R}} xy$$

- o Next lecture: Some algorithms that actually converge!
- o Convergence of the sequence:

There exists
$$\mathbf{z}^{\star} = (\mathbf{x}^{\star}, \mathbf{y}^{\star})$$
, such that $\mathbf{z}_k \to \mathbf{z}^{\star}$.

o Convergence rate:

$$\operatorname{Gap}\left(\frac{1}{K}\sum_{k=1}^{K}\mathbf{x}^{k}, \frac{1}{K}\sum_{k=1}^{K}\mathbf{y}^{k}\right) \leq \mathcal{O}\left(\frac{1}{K}\right).$$



Wrap up!

• Recitation on Friday is on Homework #2...

A convex proto-problem for structured sparsity

A combinatorial approach for estimating \mathbf{x}^{\sharp} from $\mathbf{b} = \mathbf{A}\mathbf{x}^{\sharp} + \mathbf{w}$

We may consider the sparsest estimator or its surrogate with a valid sparsity pattern:

$$\hat{\mathbf{x}} \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{s} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2} \le \kappa, \|\mathbf{x}\|_{\infty} \le 1 \right\}$$
 (\$\mathcal{P}_{s}\$)

with some $\kappa \geq 0$. If $\kappa = \|\mathbf{w}\|_2$, then the structured sparse \mathbf{x}^{\natural} is a feasible solution.

Sparsity and structure together [7]

Given some weights $d \in \mathbb{R}^d, e \in \mathbb{R}^p$ and an integer input $c \in \mathbb{Z}^l$, we define

$$\|\mathbf{x}\|_s := \min_{\boldsymbol{\omega}} \{d^T \boldsymbol{\omega} + e^T s : M\begin{bmatrix} \boldsymbol{\omega} \\ s \end{bmatrix} \leq c, \mathbb{1}_{\text{supp}(\mathbf{x})} = s, \boldsymbol{\omega} \in \{0, 1\}^d\}$$

for all feasible x, ∞ otherwise. The parameter ω is useful for latent modeling.

A convex proto-problem for structured sparsity

A combinatorial approach for estimating \mathbf{x}^{\natural} from $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$

We may consider the sparsest estimator or its surrogate with a valid sparsity pattern:

$$\hat{\mathbf{x}} \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_{s} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2} \le \kappa, \|\mathbf{x}\|_{\infty} \le 1 \right\}$$
 (\$\mathcal{P}_{s}\$)

with some $\kappa \geq 0$. If $\kappa = \|\mathbf{w}\|_2$, then the structured sparse \mathbf{x}^{\natural} is a feasible solution.

Sparsity and structure together [7]

Given some weights $d \in \mathbb{R}^d, e \in \mathbb{R}^p$ and an integer input $c \in \mathbb{Z}^l$, we define

$$\|\mathbf{x}\|_s := \min_{\boldsymbol{\omega}} \{d^T \boldsymbol{\omega} + e^T s : M \begin{bmatrix} \boldsymbol{\omega} \\ s \end{bmatrix} \le c, \mathbb{1}_{\text{supp}(\mathbf{x})} = s, \boldsymbol{\omega} \in \{0, 1\}^d\}$$

for all feasible x, ∞ otherwise. The parameter ω is useful for latent modeling.

A convex candidate solution for $\mathbf{b} = \mathbf{A}\mathbf{x}^{\dagger} + \mathbf{w}$

We use the convex estimator based on the tightest convex relaxation of $\|\mathbf{x}\|_s$:

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x} \in \mathrm{dom}(\|\cdot\|_s)} \left\{ \|\mathbf{x}\|_s^{**} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \kappa \right\} \text{ with some } \kappa \ge 0, \ \mathrm{dom}(\|\cdot\|_s) := \{\mathbf{x} : \|\mathbf{x}\|_s < \infty\}.$$

Tractability & tightness of biconjugation

Proposition (Hardness of conjugation)

Let $F(s): 2^{\Re} \to \mathbb{R} \cup \{+\infty\}$ be a set function defined on the support $s = \text{supp}(\mathbf{x})$. Conjugate of F over the unit infinity ball $\|\mathbf{x}\|_{\infty} \le 1$ is given by

$$g^*(\mathbf{y}) = \sup_{\mathbf{s} \in \{0,1\}^p} |\mathbf{y}|^T \mathbf{s} - F(\mathbf{s}).$$

Observations:

ightharpoonup F(s) is general set function

Computation: NP-Hard

 $F(s) = \|\mathbf{x}\|_s$

Computation: Integer Linear Program (ILP) in general. However, if

- ► M is Totally Unimodular TU
- $lackbox{ } (M,c)$ is Total Dual Integral TDI

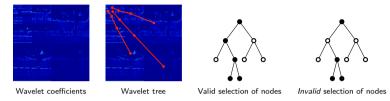
then tight convex relaxations with a linear program (LP, which is "usually" tractable)

Otherwise, relax to LP anyway!

ightharpoonup F(s) is submodular

Computation: Polynomial-time

Tree sparsity [15, 6, 3, 21]



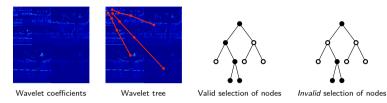
Structure: We seek the sparsest signal with a rooted connected subtree support.

Linear description: A valid support satisfy $s_{\mathsf{parent}} \geq s_{\mathsf{child}}$ over tree \mathcal{T}

$$T\mathbb{1}_{\mathrm{supp}(\mathbf{x})} := Ts \geq 0$$

where T is the directed edge-node incidence matrix, which is TU.

Tree sparsity [15, 6, 3, 21]



Structure: We seek the sparsest signal with a rooted connected subtree support.

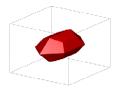
Linear description: A valid support satisfy $s_{\mathsf{parent}} \geq s_{\mathsf{child}}$ over tree \mathcal{T}

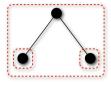
$$T\mathbb{1}_{\mathrm{supp}(\mathbf{x})} := Ts \geq 0$$

where T is the directed edge-node incidence matrix, which is TU.

Biconjugate: $\|\mathbf{x}\|_{s}^{**} = \min_{s \in [0,1]^p} \{ \mathbb{1}^T s : Ts \geq 0, |\mathbf{x}| \leq s \}$ for $\mathbf{x} \in [-1,1]^p$, ∞ otherwise.

Tree sparsity [15, 6, 3, 21]





 $\mathfrak{G}_H = \{\{1,2,3\},\{2\},\{3\}\}$

valid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Linear description: A valid support satisfy $s_{\mathsf{parent}} \geq s_{\mathsf{child}}$ over tree \mathcal{T}

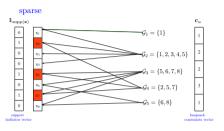
$$T\mathbb{1}_{\mathrm{supp}(\mathbf{x})} := Ts \geq 0$$

where T is the directed edge-node incidence matrix, which is TU.

Biconjugate: $\|\mathbf{x}\|_s^{**} = \min_{s \in [0,1]^p} \{\mathbb{1}^T s : Ts \geq 0, |\mathbf{x}| \leq s\} \stackrel{\star}{=} \sum_{\mathcal{G} \in \mathfrak{G}_H} \|x_{\mathcal{G}}\|_{\infty}$ for $\mathbf{x} \in [-1,1]^p$, ∞ otherwise.

The set $\mathcal{G} \in \mathfrak{G}_H$ are defined as each node and all its descendants.

Group knapsack sparsity [23, 10, 8]



Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over 65

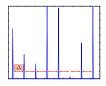
$$\mathfrak{B}^T s \leq c_u$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G} , i.e., $\mathfrak{B}_{ij}=1$ iff i-th coefficient is in \mathcal{G}_{j} .

When \mathfrak{B} is an interval matrix or \mathfrak{G} has a *loopless* group intersection graph, it is TU .

<u>Remark:</u> We can also budget a lowerbound $c_{\ell} \leq \mathfrak{B}^T s \leq c_u$.

Group knapsack sparsity [23, 10, 8]



Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over 65

$$\mathfrak{B}^T s \leq c_u$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G} , i.e., $\mathfrak{B}_{ij}=1$ iff *i*-th coefficient is in \mathcal{G}_i .

When \mathfrak{B} is an interval matrix or \mathfrak{G} has a *loopless* group intersection graph, it is TU .

Remark: We can also budget a lowerbound $c_{\ell} \leq \mathfrak{B}^T s \leq c_u$.

$$\begin{array}{ll} \textbf{Biconjugate:} \ \|\mathbf{x}\|_{s}^{**} = \begin{cases} \|\mathbf{x}\|_{1} & \text{if } \mathbf{x} \in [-1,1]^{p}, \mathfrak{B}^{T}|\mathbf{x}| \leq c_{u}, \\ \infty & \text{otherwise} \end{cases} \end{array}$$

For the neuronal spike example, we have $c_u = 1$.

Group knapsack sparsity [23, 10, 8]

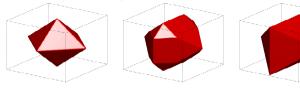


Figure: *

(left)
$$\|\mathbf{x}\|_{s}^{**} \le 1$$
 (middle) $\|\mathbf{x}\|_{s}^{**} \le 1.5$ (right) $\|\mathbf{x}\|_{s}^{**} \le 2$ for $\mathfrak{G} = \{\{1, 2\}, \{2, 3\}\}$

Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over 6

$$\mathfrak{B}^T s \leq c_u$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G} , i.e., $\mathfrak{B}_{ij} = 1$ iff i-th coefficient is in \mathcal{G}_i .

When B is an interval matrix or 6 has a loopless group intersection graph, it is TU.

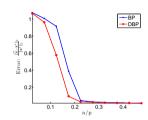
Remark: We can also budget a lowerbound $c_{\ell} \leq \mathfrak{B}^T s \leq c_u$.

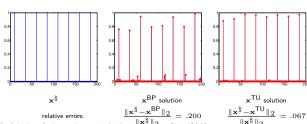
$$\begin{array}{ll} \textbf{Biconjugate:} \ \|\mathbf{x}\|_{s}^{**} = \begin{cases} \|\mathbf{x}\|_{1} & \text{if } \mathbf{x} \in [-1,1]^{p}, \mathfrak{B}^{T}|\mathbf{x}| \leq c_{u}, \\ \infty & \text{otherwise} \end{cases}$$

Group knapsack sparsity example: A stylized spike train

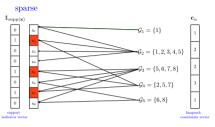
- ► Basis pursuit (BP): $\|\mathbf{x}\|_1$
- ► TU-relax (TU):

$$\|\mathbf{x}\|_{s}^{**} = egin{cases} \|\mathbf{x}\|_{1} & ext{if } \mathbf{x} \in [-1,1]^{p}, \mathfrak{B}^{T}|\mathbf{x}| \leq c_{u}, \ \infty & ext{otherwise} \end{cases}$$





Group knapsack sparsity: A simple variation



Structure: We seek the signal with the minimal overall group allocation.

Objective:
$$\mathbb{1}^T s \to \|\mathbf{x}\|_{\omega} = \begin{cases} \min_{\omega \in \mathbb{Z}_{++}} \omega & \text{if } \mathbf{x} \in [-1,1]^p, \mathfrak{B}^T s \leq \omega \mathbb{1}, \\ \infty & \text{otherwise} \end{cases}$$

Linear description: A valid support obeys budget constraints over 65

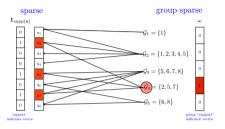
$$\mathfrak{B}^Ts \leq \omega\mathbb{1}$$

where $\mathfrak B$ is the biadjacency matrix of $\mathfrak G$, i.e., $\mathfrak B_{ij}=1$ iff i-th coefficient is in $\mathcal G_j$.

When $\mathfrak B$ is an interval matrix or $\mathfrak G$ has a *loopless* group intersection graph, it is TU .

$$\begin{array}{ll} \textbf{Biconjugate:} \ \|\mathbf{x}\|_s^{**} = \begin{cases} \max_{\mathcal{G} \in \mathbf{6}} \|\mathbf{x}^{\mathcal{G}}\|_1 & \text{if } \mathbf{x} \in [-1,1]^p, \\ \infty & \text{otherwise} \end{cases} \end{array}$$

lions@epfl nark: The regularizer is known as exclusive Lasso [23_{5lide} 4_{9/59}



Structure: We seek the signal covered by a minimal number of groups.

Objective:
$$\mathbb{1}^T s o d^T \omega$$

Linear description: At least one group containing a sparse coefficient is selected

$$\mathfrak{B}\omega\geq s$$

where $\mathfrak B$ is the biadjacency matrix of $\mathfrak G$, i.e., $\mathfrak B_{ij}=1$ iff i-th coefficient is in $\mathcal G_j$. When $\mathfrak B$ is an interval matrix, or $\mathfrak G$ has a *loopless* group intersection graph it is TU.

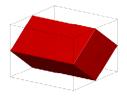


Figure: $\mathfrak{G} = \{\{1,2\},\{2,3\}\}$, unit group weights $\boldsymbol{d} = \mathbb{1}$.

Structure: We seek the signal covered by a minimal number of groups.

Objective: $\mathbb{1}^T s o d^T \omega$

Linear description: At least one group containing a sparse coefficient is selected

$$\mathfrak{B}\omega \geq s$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G} , i.e., $\mathfrak{B}_{ij}=1$ iff i-th coefficient is in \mathcal{G}_j . When \mathfrak{B} is an interval matrix, or \mathfrak{G} has a *loopless* group intersection graph it is TU.

Biconjugate: $\|\mathbf{x}\|_{\omega}^{**} = \min_{\omega \in [0,1]^M} \{d^T\omega : \mathfrak{B}\omega \geq |\mathbf{x}|\}$ for $\mathbf{x} \in [-1,1]^p, \infty$ otherwise

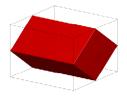


Figure: $\mathfrak{G} = \{\{1,2\},\{2,3\}\}$, unit group weights $\boldsymbol{d} = \mathbb{1}$.

Structure: We seek the signal covered by a minimal number of groups.

Objective: $\mathbb{1}^T s o d^T \omega$

Linear description: At least one group containing a sparse coefficient is selected

$$\mathfrak{B}\omega\geq s$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G} , i.e., $\mathfrak{B}_{ij}=1$ iff i-th coefficient is in \mathcal{G}_j . When \mathfrak{B} is an interval matrix, or \mathfrak{G} has a *loopless* group intersection graph it is TU.

 $\begin{aligned} \textbf{Biconjugate:} \ \|\mathbf{x}\|_{\pmb{\omega}}^{**} &= \min_{\pmb{\omega} \in [0,1]^M} \{ \pmb{d}^T \pmb{\omega} : \mathfrak{B} \pmb{\omega} \geq |\mathbf{x}| \} \text{ for } \mathbf{x} \in [-1,1]^p, \infty \text{ otherwise} \\ &\stackrel{*}{=} \min_{\mathbf{v}_i \in \mathbb{R}^p} \{ \sum_{i=1}^M d_i \|\mathbf{v}_i\|_{\infty} : \mathbf{x} = \sum_{i=1}^M \mathbf{v}_i, \forall \text{supp}(\mathbf{v}_i) \subseteq \mathcal{G}_i \}, \end{aligned}$

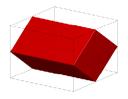


Figure: $\mathfrak{G} = \{\{1,2\},\{2,3\}\}$, unit group weights $\boldsymbol{d} = \mathbb{1}$.

Structure: We seek the signal covered by a minimal number of groups.

Objective: $\mathbb{1}^T s o d^T \omega$

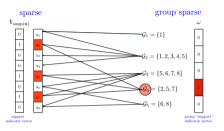
Linear description: At least one group containing a sparse coefficient is selected

$$\mathfrak{B}\omega \geq s$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G} , i.e., $\mathfrak{B}_{ij}=1$ iff i-th coefficient is in \mathcal{G}_j . When \mathfrak{B} is an interval matrix, or \mathfrak{G} has a *loopless* group intersection graph it is TU.

 $\begin{array}{ll} \textbf{Biconjugate:} \ \|\mathbf{x}\|_{\pmb{\omega}}^{**} = \min_{\pmb{\omega} \in [0,1]^M} \{d^T\pmb{\omega} : \Re \pmb{\omega} \geq |\mathbf{x}|\} \ \text{for} \ \mathbf{x} \in [-1,1]^p, \infty \ \text{otherwise} \\ &\stackrel{\star}{=} \min_{\mathbf{v}_i \in \mathbb{R}^p} \{\sum_{i=1}^M d_i \|\mathbf{v}_i\|_{\infty} : \mathbf{x} = \sum_{i=1}^M \mathbf{v}_i, \forall \mathrm{supp}(\mathbf{v}_i) \subseteq \mathcal{G}_i\}, \\ &\text{Ions@epfI} \ \text{nark:} \ \text{Weights} \ d_i \ \text{cand depth of ball properties}, \ \text{within each}, \ \text{groups} \ (\text{not TU}) \ [7]. \end{array}$

Budgeted group cover sparsity



Structure: We seek the sparsest signal covered by G groups.

Objective:
$$d^T\omega o \mathbb{1}^T s$$

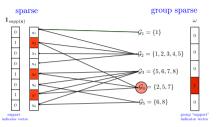
Linear description: At least one of the G selected groups cover each sparse coefficient.

$$\mathfrak{B}\boldsymbol{\omega} \geq \boldsymbol{s}, \mathbb{1}^T \boldsymbol{\omega} \leq G$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G} , i.e., $\mathfrak{B}_{ij}=1$ iff i-th coefficient is in \mathcal{G}_{i} .

When $\begin{bmatrix} \mathfrak{B} \\ \mathbb{1} \end{bmatrix}$ is an interval matrix, it is TU.

Budgeted group cover sparsity



Structure: We seek the sparsest signal covered by G groups.

Objective:
$$d^T\omega o \mathbb{1}^T s$$

Linear description: At least one of the G selected groups cover each sparse coefficient.

$$\mathfrak{B}\boldsymbol{\omega} \geq \boldsymbol{s}, \mathbf{1}^T \boldsymbol{\omega} \leq G$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G} , i.e., $\mathfrak{B}_{ij}=1$ iff i-th coefficient is in \mathcal{G}_j .

When $\begin{bmatrix} \mathfrak{B} \\ \mathbb{1} \end{bmatrix}$ is an interval matrix, it is TU.

 $\begin{array}{ll} \textbf{Biconjugate:} \ \|\mathbf{x}\|_{\pmb{\omega}}^{**} = \min_{\pmb{\omega} \in [0,1]^M} \{\|\mathbf{x}\|_1 : \mathfrak{B} \pmb{\omega} \geq |\mathbf{x}|, \mathbb{1}^T \pmb{\omega} \leq G\} \\ \text{for } \mathbf{x} \in [-1,1]^p, \infty \text{ otherwise.} \end{array}$

Budgeted group cover example: Interval overlapping groups

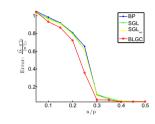
- ▶ Basis pursuit (BP): ||x||₁
- ► Sparse group Lasso (SGL_q):

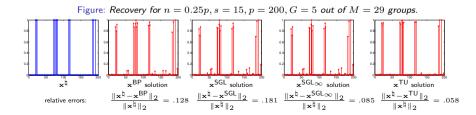
$$(1 - \alpha) \sum_{\mathcal{G} \in \mathfrak{G}} \sqrt{|\mathcal{G}|} \|\mathbf{x}^{\mathcal{G}}\|_{q} + \alpha \|\mathbf{x}^{\mathcal{G}}\|_{1}$$

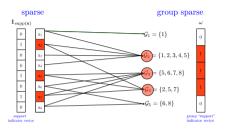
► TU-relax (TU):

$$\|\mathbf{x}\|_{\boldsymbol{\omega}}^{**} = \min_{\boldsymbol{\omega} \in [0,1]^M} \{ \|\mathbf{x}\|_1 : \mathfrak{B}\boldsymbol{\omega} \ge |\mathbf{x}|, \mathbf{1}^T \boldsymbol{\omega} \le G \}$$

for $\mathbf{x} \in [-1, 1]^p, \infty$ otherwise.







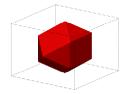
Structure: We seek the signal intersecting with minimal number of groups.

Objective:
$$\mathbb{1}^T s o d^T \omega$$

Linear description: All groups containing a sparse coefficient are selected

$$oldsymbol{H}_k oldsymbol{s} \leq oldsymbol{\omega}, orall k \in \mathfrak{P}$$

$$\text{where} \ \ \boldsymbol{H}_k(i,j) = \begin{cases} 1 & \text{if } j=k, j \in \mathcal{G}_i \\ 0 & \text{otherwise} \end{cases} \text{, which is TU}.$$



 $\mathfrak{G} = \{\{1,2\},\{2,3\}\}$, unit group weights d = 1 (left) intersection (right) cover.

Structure: We seek the signal intersecting with minimal number of groups.

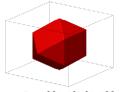
Objective:
$$\mathbb{1}^T s o d^T \omega$$

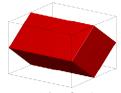
Linear description: All groups containing a sparse coefficient are selected

$$oldsymbol{H}_k s \leq oldsymbol{\omega}, orall k \in \mathfrak{P}$$

$$\text{where} \ \ \boldsymbol{H}_k(i,j) = \begin{cases} 1 & \text{if } j=k, j \in \mathcal{G}_i \\ 0 & \text{otherwise} \end{cases} \text{, which is TU}.$$

 $\begin{array}{l} \textbf{Biconjugate:} \ \|\mathbf{x}\|_{\pmb{\omega}}^{**} = \min_{\pmb{\omega} \in [0,1]^M} \{ \pmb{d}^T \pmb{\omega} : \pmb{H}_k | \mathbf{x} | \leq \pmb{\omega}, \forall k \in \mathfrak{P} \} \\ \text{for } \mathbf{x} \in [-1,1]^p, \infty \text{ otherwise.} \end{array}$





 $\mathfrak{G} = \{\{1,2\},\{2,3\}\}$, unit group weights $d=\mathbb{1}$ (left) intersection (right) cover.

Structure: We seek the signal intersecting with minimal number of groups.

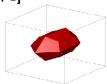
Objective:
$$\mathbb{1}^T s o d^T \omega$$
 (submodular)

Linear description: All groups containing a sparse coefficient are selected

$$oldsymbol{H}_k oldsymbol{s} \leq oldsymbol{\omega}, orall k \in \mathfrak{P}$$

where
$$\ensuremath{m{H}}_k(i,j) = egin{cases} 1 & \mbox{if } j=k, j \in \mathcal{G}_i \\ 0 & \mbox{otherwise} \end{cases}$$
 , which is TU.

Biconjugate: $\|\mathbf{x}\|_{\omega}^{**} = \min_{\omega \in [0,1]^M} \{d^T\omega : H_k|\mathbf{x}| \leq \omega, \forall k \in \mathfrak{P}\} \stackrel{\star}{=} \sum_{\mathcal{G} \in \mathfrak{G}} \|x_{\mathcal{G}}\|_{\infty}$ for $\mathbf{x} \in [-1,1]^p, \infty$ otherwise.



$$\mathfrak{G}=\{\{1,2,3\},\{2\},\{3\}\}\text{, unit group weights } \boldsymbol{d}=\mathbb{1}.$$

Structure: We seek the signal intersecting with minimal number of groups.

Objective:
$$\mathbb{1}^T s o d^T \omega$$
 (submodular)

Linear description: All groups containing a sparse coefficient are selected

$$oldsymbol{H}_k oldsymbol{s} \leq oldsymbol{\omega}, orall k \in \mathfrak{P}$$

$$\text{where} \ \ \boldsymbol{H}_k(i,j) = \begin{cases} 1 & \text{if } j=k, j \in \mathcal{G}_i \\ 0 & \text{otherwise} \end{cases} \text{, which is TU}.$$

Biconjugate:
$$\|\mathbf{x}\|_{\boldsymbol{\omega}}^{**} = \min_{\boldsymbol{\omega} \in [0,1]^M} \{ d^T \boldsymbol{\omega} : \boldsymbol{H}_k | \mathbf{x} | \leq \boldsymbol{\omega}, \forall k \in \mathfrak{P} \} \stackrel{\star}{=} \sum_{\mathcal{G} \in \mathfrak{G}} \|x_{\mathcal{G}}\|_{\infty}$$
 for $\mathbf{x} \in [-1,1]^p, \infty$ otherwise.

Remark: For hierarchical \mathfrak{G}_H , group intersection and tree sparsity models coincide.

Beyond linear costs: Graph dispersiveness

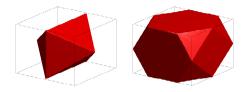


Figure: (left)
$$\|\mathbf{x}\|_s^{**} = 0$$
 (right) $\|\mathbf{x}\|_s^{**} \le 1$ for $\mathcal{E} = \{\{1, 2\}, \{2, 3\}\}$ (chain graph)

Structure: We seek a signal dispersive over a given graph $\mathcal{G}(\mathfrak{P},\mathcal{E})$

Objective:
$$\mathbb{1}^T s \to \sum_{(i,j) \in \mathcal{E}} s_i s_j$$
 (non-linear, supermodular function)

Linearization:

$$\|\mathbf{x}\|_{s} = \min_{\mathbf{z} \in \{0,1\} | \mathcal{E}|} \{ \sum_{(i,j) \in \mathcal{E}} z_{ij} : z_{ij} \ge s_i + s_j - 1 \}$$

When edge-node incidence matrix of $\mathcal{G}(\mathfrak{P},\mathcal{E})$ is TU (e.g., bipartite graphs), it is TU.

Beyond linear costs: Graph dispersiveness

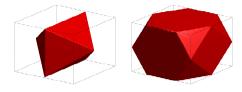


Figure: (left)
$$\|\mathbf{x}\|_{s}^{**} = 0$$
 (right) $\|\mathbf{x}\|_{s}^{**} \le 1$ for $\mathcal{E} = \{\{1, 2\}, \{2, 3\}\}$ (chain graph)

Structure: We seek a signal dispersive over a given graph $\mathcal{G}(\mathfrak{P},\mathcal{E})$

Objective:
$$\mathbb{1}^T s o \sum_{(i,j) \in \mathcal{E}} s_i s_j$$
 (non-linear, supermodular function)

Linearization:

$$\|\mathbf{x}\|_{s} = \min_{\mathbf{z} \in \{0,1\} | \mathcal{E}|} \{ \sum_{(i,j) \in \mathcal{E}} z_{ij} : z_{ij} \ge s_i + s_j - 1 \}$$

When edge-node incidence matrix of $\mathcal{G}(\mathfrak{P},\mathcal{E})$ is TU (e.g., bipartite graphs), it is TU.

Biconjugate:
$$\|\mathbf{x}\|_{s}^{**} = \sum_{(i,j)\in\mathcal{E}} (|x_i| + |x_j| - 1)_+$$
 for $\mathbf{x}\in[-1,1]^p,\infty$ otherwise.

References |

[1] Francis Bach.

Structured sparsity-inducing norms through submodular functions. *Adv. Neur. Inf. Proc. Sys. (NIPS)*, pages 118–126, 2010.

- [2] L. Baldassarre, N. Bhan, V. Cevher, and A. Kyrillidis. Group-sparse model selection: Hardness and relaxations. arXiv preprint arXiv:1303.3207, 2013.
- [3] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde. Model-based compressive sensing. *IEEE Trans. Inf. Theory*, 56(4):1982–2001, April 2010.
- [4] Michel Benaïm and Morris W. Hirsch. Asymptotic pseudotrajectories and chain recurrent flows, with applications. Journal of Dynamics and Differential Equations, 8(1):141–176, 1996.
- [5] Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained min-max optimization. arXiv preprint arXiv:2009.09623, 2020.

References II

[6] Marco F. Duarte, Dharmpal Davenport, Mark A. adn Takhar, Jason N. Laska, Ting Sun, Kevin F. Kelly, and Richard G. Baraniuk.

Single-pixel imaging via compressive sampling. *IEEE Sig. Proc. Mag.*, 25(2):83–91, March 2008.

[7] Marwa El Halabi and Volkan Cevher.

A totally unimodular view of structured sparsity.

preprint, 2014. arXiv:1411.1990v1 [cs.LG].

[8] W Gerstner and W. Kistler. Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press, 2002.

 [9] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien. A variational inequality perspective on generative adversarial networks.
 In International Conference on Learning Representations, 2018.

[10] C. Hegde, M. Duarte, and V. Cevher. Compressive sensing recovery of spike trains using a structured sparsity model. In Sig. Proc. with Adapative Sparse Struct. Rep. (SPARS), 2009.

References III

[11] Ya-Ping Hsieh.

Convergence without convexity: Sampling, optimization, and games. Technical report, EPFL, 2020.

- [12] Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher. The limits of min-max optimization algorithms: convergence to spurious non-critical sets. arXiv preprint arXiv:2006.09065, 2020.
- [13] J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity.
 - J. Mach. Learn. Res., 12:3371-3412, 2011.
- [14] R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, F. Bach, and B. Thirion. Multi-scale mining of fmri data with hierarchical structured sparsity. In Pattern Recognition in NeuroImaging (PRNI), 2011.
- [15] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. J. Mach. Learn. Res., 12:2297-2334, 2011.

References IV

[16] Sham M Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Regularization techniques for learning with matrices. The Journal of Machine Learning Research, 13(1):1865–1890, 2012.

[17] Tianyi Lin, Chi Jin, Michael Jordan, et al. Near-optimal algorithms for minimax optimization. arXiv preprint arXiv:2002.02417, 2020.

[18] G. Obozinski, L. Jacob, and J.P. Vert. Group lasso with overlaps: The latent group lasso approach. arXiv preprint arXiv:1110.0413, 2011.

[19] G. Obozinski, B. Taskar, and M.I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 20(2):231–252, 2010.

[20] Q. Tran-Dinh and V. Cevher.

Constrained convex minimization via model-based excessive gap.

In Proc. the Neural Information Processing Systems Foundation conference (NIPS2014), pages 1–9, Montreal, Canada, December 2014.

References V

- [21] Peng Zhao, Guilherme Rocha, and Bin Yu. Grouped and hierarchical model selection through composite absolute penalties. Department of Statistics, UC Berkeley, Tech. Rep. 703, 2006.
- [22] Peng Zhao and Bin Yu. On model selection consistency of Lasso. J. Mach. Learn. Res., 7:2541-2563, 2006.
- [23] H. Zhou, M.E. Sehl, J.S. Sinsheimer, and K. Lange. Association screening of common and rare genetic variants by penalized regression.