Adaptive Optimization Methods for Machine Learning and Signal Processing

Part IV/IV: Adaptivity in min-max optimization

Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)
Setup: min-max optimization

\[
\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \Phi(x, y)
\]

- \(\Phi(\cdot, y) \) is convex for all \(y \)
- \(\Phi(x, \cdot) \) is concave for all \(x \)
- \(\mathcal{X}, \mathcal{Y} \) are closed, convex sets
- Solution set is nonempty: \(\exists x^*, y^* : \)

\[
\Phi(x^*, y^*) = \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \Phi(x, y)
\]
Setup: min-max optimization

- $\Phi(\cdot, y)$ is convex for all y
- $\Phi(x, \cdot)$ is concave for all x
- \mathcal{X}, \mathcal{Y} are closed, convex sets
- Solution set is nonempty: $\exists x^*, y^*$:
 \[
 \Phi(x^*, y^*) = \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \Phi(x, y)
 \]

- The solution is the saddle point
Classic methods

<table>
<thead>
<tr>
<th>Adaptivity to</th>
<th>Lipschitz constant</th>
<th>Noise</th>
<th>Strong convexity</th>
<th>Sparsity of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Bach and Levy, 2019]</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>[Chambolle et al., 2018]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[Alacaoglu et al., 2020]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Gradient Descent-ascent

\[
\min_{x \in X} \max_{y \in Y} \Phi(x, y)
\]

Algorithm Simultaneous GDA (Forward-Backward) [Sibony, 1970]

\[
\begin{align*}
&\text{for } t = 0 \text{ to } T - 1 \text{ do} \\
&\quad x_{t+1} = P_X(x_t - \eta \nabla_x \Phi(x_t, y_t)) \\
&\quad y_{t+1} = P_Y(y_t + \eta \nabla_y \Phi(x_t, y_t)) \\
&\text{end for}
\end{align*}
\]

Algorithm Alternating GDA (Arrow-Hurwicz) [Arrow et al., 1958]

\[
\begin{align*}
&\text{for } t = 0 \text{ to } T - 1 \text{ do} \\
&\quad x_{t+1} = P_X(x_t - \eta \nabla_x \Phi(x_t, y_t)) \\
&\quad y_{t+1} = P_Y(y_t + \eta \nabla_y \Phi(x_{t+1}, y_t)) \\
&\text{end for}
\end{align*}
\]

Theorem. [Gidel et al., 2018] With any \(\eta > 0 \), iterates of simGDA diverge:

\[
x^2_{t+1} + y^2_{t+1} = (1 + \eta^2)(x^2_t + y^2_t)
\]

Theorem. [Gidel et al., 2018] With any \(\eta > 0 \), iterates of altGDA do not converge:

\[
x^2_{t+1} + y^2_{t+1} = \Theta(x^2_0 + y^2_0)
\]
Gradient Descent-ascent

\[
\min_{x \in X} \max_{y \in Y} \Phi(x, y)
\]

Algorithm Simultaneous GDA (Forward-Backward) [Sibony, 1970]

\[
\begin{align*}
\text{for } & t = 0 \text{ to } T - 1 \text{ do} \\
& x_{t+1} = P_X(x_t - \eta \nabla_x \Phi(x_t, y_t)) \\
& y_{t+1} = P_Y(y_t + \eta \nabla_y \Phi(x_t, y_t)) \\
\text{end for}
\end{align*}
\]

- Behavior of GDA on the toy problem:

\[
\min_{x \in \mathbb{R}} \max_{y \in \mathbb{R}} xy
\]

Theorem. [Gidel et al., 2018] With any \(\eta > 0 \), iterates of simGDA diverge:

\[
x_{t+1}^2 + y_{t+1}^2 = (1 + \eta^2)(x_t^2 + y_t^2)
\]

Algorithm Alternating GDA (Arrow-Hurwicz) [Arrow et al., 1958]

\[
\begin{align*}
\text{for } & t = 0 \text{ to } T - 1 \text{ do} \\
& x_{t+1} = P_X(x_t - \eta \nabla_x \Phi(x_t, y_t)) \\
& y_{t+1} = P_Y(y_t + \eta \nabla_y \Phi(x_t+1, y_t)) \\
\text{end for}
\end{align*}
\]

Theorem. [Gidel et al., 2018] With any \(\eta > 0 \), iterates of altGDA do not converge:

\[
x_{t+1}^2 + y_{t+1}^2 = \Theta(x_0^2 + y_0^2)
\]
Toy problem: in practice

\[
\min_{x \in \mathbb{R}} \max_{y \in \mathbb{R}} \ xy
\]

- Simultaneous GDA
- Alternating GDA
Extragradient

\[
\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \Phi(x, y)
\]

○ Notation for convenience: \(z = (x, y), \) \(\mathcal{Z} = \mathcal{X} \times \mathcal{Y}, \) \(F(z) = (\nabla_x \Phi(x, y), -\nabla_y \Phi(x, y)) \).

Algorithm Simultaneous GDA (Forward-backward)

\begin{verbatim}
for t = 0 to T - 1 do
 z_{t+1} = P_{\mathcal{Z}}(z_t - \eta F(z_t))
end for
\end{verbatim}

○ Note the equivalence to

\[
x_{t+1} = P_{\mathcal{X}}(x_t - \eta \nabla_x \Phi(x_t, y_t)) \\
y_{t+1} = P_{\mathcal{Y}}(y_t + \eta \nabla_y \Phi(x_t, y_t))
\]
Extragradient

\[
\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \Phi(x, y)
\]

- Notation for convenience: \(z = (x, y), \ Z = \mathcal{X} \times \mathcal{Y}, \ F(z) = (\nabla_x \Phi(x, y), -\nabla_y \Phi(x, y)) \).

Algorithm Simultaneous GDA (Forward-backward)

```plaintext
for \( t = 0 \) to \( T - 1 \) do
  \( z_{t+1} = P_Z(z_t - \eta F(z_t)) \)
end for
```

- Note the equivalence to

\[
\begin{align*}
x_{t+1} &= P_{\mathcal{X}}(x_t - \eta \nabla_x \Phi(x_t, y_t)) \\
y_{t+1} &= P_{\mathcal{Y}}(y_t + \eta \nabla_y \Phi(x_t, y_t))
\end{align*}
\]

Algorithm Extragradient [Korpelevich, 1976]

```plaintext
for \( t = 0 \) to \( T - 1 \) do
  \( z_{t+1/2} = P_Z(z_t - \eta F(z_t)) \)
  \( z_{t+1} = P_Z(z_t - \eta F(z_{t+1/2})) \)
end for
```

Diagram:
- extra-gradient step
- gradient step
Toy problem: in practice

\[
\min_{x \in \mathbb{R}} \max_{y \in \mathbb{R}} x y
\]
Convergence of Extragradient

\[\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \Phi(x, y) \]

○ Notation for convenience: \(z = (x, y), \ Z = \mathcal{X} \times \mathcal{Y}, \ F(z) = (\nabla_x \Phi(x, y), -\nabla_y \Phi(x, y)) \).

Algorithm (Stochastic) Extragradient\(^1\)

\[
\text{for } t = 0 \text{ to } T - 1 \text{ do}
\]
\[
z_{t+1/2} = P_Z(z_t - \eta_t \tilde{F}(z_t))
\]
\[
z_{t+1} = P_Z(z_t - \eta_t \tilde{F}(z_{t+1/2}))
\]
\[\text{end for}\]

Assumptions.

○ \(\Phi(x, y) \) is convex-concave

○ A solution \(z^* \) exists

○ Lipschitzness: \(\|F(u) - F(v)\| \leq L\|u - v\| \)

○ Unbiasedness: \(\mathbb{E}[\tilde{F}(z)] = F(z) \)

○ Variance bound: \(\mathbb{E}\|\tilde{F}(z) - F(z)\|^2 \leq R^2 \)

\(^1\)Same ideas also apply when we use Bregman distances in the update rule. This version is known as Mirror-Prox.

\(^2\)Merit function for the rate is primal-dual gap: \(\text{err}(\bar{z}) = \max_{x, y} \Phi(\bar{x}, y) - \Phi(x, \bar{y}) \).
Convergence of Extragradient

\[
\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \Phi(x, y)
\]

- Notation for convenience: \(z = (x, y), \ Z = \mathcal{X} \times \mathcal{Y}, \ F(z) = (\nabla_x \Phi(x, y), -\nabla_y \Phi(x, y)) \).

Algorithm (Stochastic) Extragradient\(^1\)

\[
\begin{align*}
&\text{for } t = 0 \text{ to } T - 1 \text{ do} \\
&\quad z_{t+1/2} = P_Z(z_t - \eta_t \tilde{F}(z_t)) \\
&\quad z_{t+1} = P_Z(z_t - \eta_t \tilde{F}(z_{t+1/2})) \\
&\end{align*}
\]

end for

\(\text{EG w/ } \tilde{F} = F, \eta_t = \eta < 1/L \):

- Convergence: \(z_{t+1} \rightarrow z^* \)
- Rate\(^2\): \(\text{err} \left(\frac{1}{T} \sum_{t=1}^{T} z_{t+1/2} \right) \leq O \left(\frac{1}{T} \right) \)

Assumptions.

- \(\Phi(x, y) \) is convex-concave
- A solution \(z^* \) exists
- Lipschitzness: \(\| F(u) - F(v) \| \leq L \| u - v \| \)
- Unbiasedness: \(\mathbb{E}[\tilde{F}(z)] = F(z) \)
- Variance bound: \(\mathbb{E} \| \tilde{F}(z) - F(z) \|^2 \leq R^2 \)

\(^1 \)Same ideas also apply when we use Bregman distances in the update rule. This version is known as Mirror-Prox.

\(^2 \)Merit function for the rate is primal-dual gap: \(\text{err}(\bar{z}) = \max_{x,y} \Phi(\bar{x}, y) - \Phi(x, \bar{y}) \).
Convergence of Extragradient

\[
\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \Phi(x, y)
\]

- Notation for convenience: \(z = (x, y) \), \(\mathcal{Z} = \mathcal{X} \times \mathcal{Y} \), \(F(z) = (\nabla_x \Phi(x, y), -\nabla_y \Phi(x, y)) \).

Algorithm (Stochastic) Extragradient

\[
\begin{align*}
& \text{for } t = 0 \text{ to } T - 1 \text{ do} \\
& \quad z_{t+1/2} = P_{Z}(z_t - \eta_t \tilde{F}(z_t)) \\
& \quad z_{t+1} = P_{Z}(z_t - \eta_t \tilde{F}(z_{t+1/2})) \\
& \text{end for}
\end{align*}
\]

Theorem (Deterministic). [Korpelevich, 1976, Nemirovski, 2004]

EG w/ \(\tilde{F} = F \), \(\eta_t = \eta < 1/L \):

- Convergence: \(z_{t+1} \to z^* \)
- Rate\(^2\): \(\text{err} \left(\frac{1}{T} \sum_{t=1}^{T} z_{t+1/2} \right) \leq O \left(\frac{1}{T} \right) \)

Theorem (Stochastic). [Juditsky et al., 2011]

EG w/ noisy oracles \(\mathbb{E}[\tilde{F}(z)] = F(z) \), \(\eta_t = \frac{\eta_0}{\sqrt{t}} \):

- Rate: \(\mathbb{E} \text{ err} \left(\frac{1}{T} \sum_{t=1}^{T} z_{t+1/2} \right) \leq O \left(\frac{1}{\sqrt{T}} \right) \)

Assumptions.

- \(\Phi(x, y) \) is convex-concave
- A solution \(z^* \) exists
- Lipschitzness: \(\|F(u) - F(v)\| \leq L\|u - v\| \)
- Unbiasedness: \(\mathbb{E}[\tilde{F}(z)] = F(z) \)
- Variance bound: \(\mathbb{E}\|\tilde{F}(z) - F(z)\|^2 \leq R^2 \)

\(^1\)Same ideas also apply when we use Bregman distances in the update rule. This version is known as Mirror-Prox.

\(^2\)Merit function for the rate is primal-dual gap: \(\text{err}(\bar{z}) = \max_{x, y} \Phi(\bar{x}, y) - \Phi(x, \bar{y}) \).
Takeaway

Algorithm (Stochastic) Extragradient

\[\text{for } t = 0 \text{ to } T - 1 \text{ do} \]
\[z_{t+1/2} = P_Z(z_t - \eta_t \tilde{F}(z_t)) \]
\[z_{t+1} = P_Z(z_t - \eta_t \tilde{F}(z_{t+1/2})) \]
\[\text{end for} \]

→ Different step sizes for deterministic & stochastic: \(1/L\) vs \(\eta_0/\sqrt{t}\)

→ Need to know \(L\) to set step size
<table>
<thead>
<tr>
<th>Adativity to</th>
<th>Lipschitz constant</th>
<th>noise</th>
<th>strong convexity</th>
<th>sparsity of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Bach and Levy, 2019]</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>[Chambolle et al., 2018]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[Alacaoglu et al., 2020]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Adaptivity to smoothness and noise

○ \(F(z) = (\nabla_x \Phi(x, y), -\nabla_y \Phi(x, y)) = \mathbb{E}[\tilde{F}(z)] \)

Algorithm (Stochastic) Adaptive extragradient

\[
\text{for } t = 0 \text{ to } T - 1 \text{ do}
\begin{align*}
 z_{t+1/2} &= P_Z(z_t - \eta_t \tilde{F}(z_t)) \\
 z_{t+1} &= P_Z(z_t - \eta_t \tilde{F}(z_{t+1/2}))
\end{align*}
\text{end for}
\]

○ Run EG w/ adaptive step size

[Bach and Levy, 2019]

\[(\max_{x,y} \|x - y\| \leq D, G_0 > 0) , \]

\[
\eta_t = \frac{D}{\sqrt{G_0^2 + \sum_{i=0}^{t-1} Z_i^2}} , \quad (1)
\]

where, \(Z_i^2 = \frac{\|z_{i+1} - z_{i+1/2}\|^2 + \|z_{i+1/2} - z_i\|^2}{5\eta_i^2} \).
Adaptivity to smoothness and noise

\(F(z) = (\nabla_x \Phi(x,y), -\nabla_y \Phi(x,y)) = \mathbb{E}[\tilde{F}(z)] \)

Algorithm (Stochastic) Adaptive extragradient

```
for t = 0 to T - 1 do
    z_{t+1/2} = P_Z(z_t - \eta_t \tilde{F}(z_t))
    z_{t+1} = P_Z(z_t - \eta_t \tilde{F}(z_{t+1/2}))
end for
```

- Run EG w/ adaptive step size
 [Bach and Levy, 2019]

\(\max_{x,y} \|x - y\| \leq D, G_0 > 0 \),

\[
\eta_t = \frac{D}{\sqrt{G_0^2 + \sum_{i=0}^{t-1} Z_i^2}},
\]

where, \(Z_i^2 = \frac{\|z_{i+1} - z_{i+1/2}\|^2 + \|z_{i+1/2} - z_i\|^2}{5\eta_i^2} \).

Intuition. Recall AdaGrad step size for \(\min_x f(x) \):

\[
\eta_t = \frac{D}{\sqrt{\sum_{i=1}^{t} \|\nabla f(x_i)\|^2}}.
\]

- \(Z_i^2 \sim \|\tilde{F}(z)\|^2 \), since when \(Z = \mathbb{R}^{d+n} \),

\[
\|z_{i+1/2} - z_i\| = \|\eta_i \tilde{F}(z_i)\|.
\]
Adaptivity to smoothness and noise

- $F(z) = (\nabla_x \Phi(x,y), -\nabla_y \Phi(x,y)) = \mathbb{E}[\tilde{F}(z)]$

Algorithm (Stochastic) Adaptive extragradient

```plaintext
for $t = 0$ to $T - 1$ do
    $z_{t+1/2} = P_Z(z_t - \eta_t \tilde{F}(z_t))$
    $z_{t+1} = P_Z(z_t - \eta_t \tilde{F}(z_{t+1/2}))$
end for
```

- Run EG w/ adaptive step size
 [Bach and Levy, 2019]
 $(\max_{x,y} \|x - y\| \leq D, G_0 > 0)$,

 $$\eta_t = \frac{D}{\sqrt{G_0^2 + \sum_{i=0}^{t-1} Z_i^2}}$$
 \[(1) \]

 where, $Z_i^2 = \frac{\|z_{i+1} - z_{i+1/2}\|^2 + \|z_{i+1/2} - z_i\|^2}{5\eta_i^2}$.

Theorem (Deterministic). [Bach and Levy, 2019]

EG w/ perfect oracle $\tilde{F} = F$ & η_t in (1):
- Rate: $\text{err} \left(\frac{1}{T} \sum_{t=1}^T z_{t+1/2} \right) \leq O \left(\frac{1}{T} \right)$

Theorem (Stochastic). [Bach and Levy, 2019]

EG w/ noisy oracles $\mathbb{E}[\tilde{F}(z)] = F(z)$ & η_t in (1):
- Rate: $\mathbb{E} \text{err} \left(\frac{1}{T} \sum_{t=1}^T z_{t+1/2} \right) \leq O \left(\frac{1}{\sqrt{T}} \right)$
Takeaway

Algorithm (Stochastic) Adaptive extragradient
[Bach and Levy, 2019]

for $t = 0$ to $T - 1$ do

$z_{t+1/2} = P_Z(z_t - \eta_t \tilde{F}(z_t))$

$z_{t+1} = P_Z(z_t - \eta_t \tilde{F}(z_{t+1/2}))$

end for

→ Same step size for deterministic & stochastic
→ No need to know L
→ Optimal rate interpolation between for deterministic & stochastic

EG+AdaGrad step size

$$\eta_t = \frac{D}{\sqrt{G_0^2 + \sum_{i=0}^{t-1} Z_i^2}},$$

where,

$$Z_i^2 = \frac{\|z_{i+1} - z_{i+1/2}\|^2 + \|z_{i+1/2} - z_i\|^2}{5\eta_i^2}.$$
ExtraAdam

Algorithm ExtraAdam [Gidel et al., 2018]

\[
\begin{align*}
\text{for } t = 0 \text{ to } T - 1 \text{ do} \\
g_t &= \tilde{F}(z_t) \\
m_{t-1/2} &= \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
v_{t-1/2} &= \beta_2 v_{t-1} + (1 - \beta_2) g_t^2 \\
z_{t+1/2} &= z_t - \frac{\eta}{\sqrt{v_{t-1/2}}} m_{t-1} \\
g_{t+1/2} &= \tilde{F}(z_{t+1/2}) \\
m_t &= \beta_1 m_{t-1/2} + (1 - \beta_1) g_{t+1/2} \\
v_t &= \beta_2 v_{t-1/2} + (1 - \beta_2) g_{t+1/2}^2 \\
z_{t+1} &= z_t - \frac{\eta}{\sqrt{v_t}} m_t
\end{align*}
\]

Extragradient step

Main update step

\[\rightarrow \text{Extragradient + Adam} \]
\[\rightarrow \text{Limited theoretical understanding} \]
\[\rightarrow \text{Compelling practical performance for training GANs} \]

\[^1 \text{Bias correction steps are omitted from ExtraAdam for simplicity.} \]
Real LSUN Dataset: Extra-Adam, $4 \times 10^4, 8 \times 10^4, 10^5$ iterations [Hsieh et al., 2019]
Classic methods

<table>
<thead>
<tr>
<th>Adaptivity to</th>
<th>Lipschitz constant</th>
<th>noise</th>
<th>strong convexity</th>
<th>sparsity of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Bach and Levy, 2019]</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>[Chambolle et al., 2018]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[Alacaoglu et al., 2020]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Bilinear setting

\[
\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^n} \langle Ax, y \rangle + f(x) - h(y)
\]

- \(f, h \) are closed, convex functions
- Solution set is nonempty
- Linearly constrained problems, TV regularization, empirical risk minimization...

Algorithm Alternating GDA (Arrow-Hurwicz)

\[
\text{for } t = 0 \text{ to } T - 1 \text{ do} \\
\quad x_{t+1} = \text{prox}_{\tau f}(x_t - \tau A^\top y_t) \\
\quad y_{t+1} = \text{prox}_{\sigma h}(y_t + \sigma A x_{t+1}) \\
\text{end for}
\]

- \(\text{prox}_{\tau g}(u) = \arg \min_x g(x) + \frac{1}{2\tau} \|x - u\|^2 \)
Bilinear setting

\[
\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^n} \langle Ax, y \rangle + f(x) - h(y)
\]

- \(f, h\) are closed, convex functions
- Solution set is nonempty
- Linearly constrained problems, TV regularization, empirical risk minimization...

Algorithm Alternating GDA (Arrow-Hurwicz)

\[
\begin{align*}
\text{for } t = 0 \text{ to } T - 1 \text{ do} \\
\quad x_{t+1} &= \text{prox}_{\tau f}(x_t - \tau A^\top y_t) \\
\quad y_{t+1} &= \text{prox}_{\sigma h}(y_t + \sigma A x_{t+1}) \\
\text{end for}
\end{align*}
\]

- \(\text{prox}_{\tau g}(u) = \arg \min_x g(x) + \frac{1}{2\tau} \|x - u\|^2\)

Algorithm Primal-dual hybrid gradient (PDHG) [Chambolle and Pock, 2011]

\[
\begin{align*}
\text{for } t = 0 \text{ to } T - 1 \text{ do} \\
\quad x_{t+1} &= \text{prox}_{\tau f}(x_t - \tau A^\top (y_t + y_t - y_{t-1})) \\
\quad y_{t+1} &= \text{prox}_{\sigma h}(y_t + \sigma A x_{t+1}) \\
\text{end for}
\end{align*}
\]

- PDHG w/ step sizes \(\tau \sigma \|A\|^2 < 1\) converges to \((x^*, y^*)\) [Chambolle and Pock, 2011].
- Rate: \(\text{err} \left(\frac{1}{T} \sum_{t=1}^T z_t \right) \leq O \left(\frac{1}{T} \right)\)
Separable bilinear setting

\[
\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^n} f(x) + \sum_{i=1}^{n} \langle A_i x, y_i \rangle - h_i(y_i)
\]

- Linearly constrained problems, TV regularization, empirical risk minimization...

Algorithm Stochastic Primal-dual hybrid gradient (SPDHG) [Chambolle et al., 2018]

\[
\begin{align*}
\text{for } t = 0 \text{ to } T - 1 \text{ do} \\
\quad x_{t+1} &= \text{prox}_{\tau f}(x_t - \tau A^\top \bar{y}_t) \\
\quad \text{Pick } i_t &\in [n] \text{ randomly} \\
\quad y_{t+1,i_t} &= \text{prox}_{\sigma_{i_t} h_{i_t}}(y_{t,i_t} + \sigma A_{i_t} x_{t+1}) \\
\quad y_{t+1,i} &= y_{t,i}, \text{ for } i \neq i_t \\
\quad \bar{y}_{t+1} &= y_{t+1} + n(y_{t+1} - y_t)
\end{align*}
\]
Separable bilinear setting

$$\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^n} f(x) + \sum_{i=1}^{n} \langle A_i x, y_i \rangle - h_i(y_i)$$

○ Linearly constrained problems, TV regularization, empirical risk minimization...

Algorithm Stochastic Primal-dual hybrid gradient (SPDHG) [Chambolle et al., 2018]

for $t = 0$ to $T - 1$ do
 $x_{t+1} = \text{prox}_{\tau f}(x_t - \tau A^T \bar{y}_t)$
 Pick $i_t \in [n]$ randomly
 $y_{t+1,i_t} = \text{prox}_{\sigma_i h_{i_t}}(y_{t,i_t} + \sigma A_{i_t} x_{t+1})$
 $y_{t+1,i} = y_t,i$, for $i \neq i_t$
 $\bar{y}_{t+1} = y_{t+1} + n(y_{t+1} - y_t)$
end for

Theorem. [Alacaoglu et al., 2019] PDHG w/ step sizes $n \tau \sigma_i \|A_i\|^2 < 1$:

○ Convergence: $(x_t, y_t) \to (x^*, y^*)$

○ Rate:
 $$\mathbb{E} \text{err} \left(\frac{1}{T} \sum_{t=1}^{T} x_t, \frac{1}{T} \sum_{t=1}^{T} y_t \right) \leq \mathcal{O} \left(\frac{1}{T} \right)$$
Separable bilinear setting

\[
\begin{align*}
\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^n} f(x) + \sum_{i=1}^n \langle A_i x, y_i \rangle - h_i(y_i)
\end{align*}
\]

- Linearly constrained problems, TV regularization, empirical risk minimization...

Algorithm Stochastic Primal-dual hybrid gradient (SPDHG) [Chambolle et al., 2018]

```
for t = 0 to T - 1 do
    x_{t+1} = \text{prox}_{\tau f}(x_t - \tau A^\top \bar{y}_t)
    \text{Pick } i_t \in [n] \text{ randomly}
    y_{t+1,i_t} = \text{prox}_{\sigma_{i_t} h_{i_t}}(y_{t,i_t} + \sigma A_{i_t} x_{t+1})
    y_{t+1,i} = y_{t,i}, \text{ for } i \neq i_t
    \bar{y}_{t+1} = y_{t+1} + n(y_{t+1} - y_t)
end for
```

Theorem. [Alacaoglu et al., 2019] PDHG w/ step sizes \(n\tau\sigma_i \| A_i \|^2 < 1 \):
- Convergence: \((x_t, y_t) \to (x^*, y^*)\)
- Rate:
 \[
 \mathbb{E} \text{ err} \left(\frac{1}{T} \sum_{t=1}^T x_t, \frac{1}{T} \sum_{t=1}^T y_t \right) \leq \mathcal{O} \left(\frac{1}{T} \right)
 \]

Theorem. [Chambolle et al., 2018] If \(f \) and \(h \) are \((\mu_f, \mu_i)\) strongly convex and \(\tau, \sigma_i \) are chosen depending on \((\mu_f, \mu_i)\):

\[
(x_t, y_t) \text{ converge linearly to } (x^*, y^*).
\]
Takeaway

\[
\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^n} f(x) + \sum_{i=1}^{n} \langle A_i x, y_i \rangle - h_i(y_i)
\]

Algorithm Stochastic Primal-dual hybrid gradient (SPDHG)

\[
\text{for } t = 0 \text{ to } T - 1 \text{ do}
\]
\[
x_{t+1} = \text{prox}_{\tau f}(x_t - \tau A^\top \bar{y}_t)
\]
\[
\text{Pick } i_t \in [n] \text{ randomly}
\]
\[
y_{t+1,i_t} = \text{prox}_{\sigma_{i_t} h_{i_t}}(y_{t,i_t} + \sigma A_{i_t} x_{t+1})
\]
\[
y_{t+1,i} = y_{t,i}, \text{ for } i \neq i_t
\]
\[
\bar{y}_{t+1} = y_{t+1} + n(y_{t+1} - y_t)
\]
\[
\text{end for}
\]

→ Different step sizes for sublinear & linear rate
→ Need knowledge of \(\mu_f, \mu_i\) to set step sizes for linear rate
Convergence of SPDHG under metric subregularity

\[
\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^n} f(x) + \sum_{i=1}^{n} \langle A_i x, y_i \rangle - h_i(y_i)
\]

Algorithm Stochastic Primal-dual hybrid gradient (SPDHG)

```
for t = 0 to T - 1 do
    x_{t+1} = \text{prox}_{\tau f}(x_t - \tau A^T \bar{y}_t)
    \text{Pick } i_t \in [n] \text{ randomly}
    y_{t+1,i_t} = \text{prox}_{\sigma_{i_t} h_{i_t}}(y_{t,i_t} + \sigma A_{i_t} x_{t+1})
    y_{t+1,i} = y_{t,i}, \text{ for } i \neq i_t
    \bar{y}_{t+1} = y_{t+1} + n(y_{t+1} - y_t)
end for
```

- **Metric subregularity:** Generalization of strong convexity.
- Satisfied when \(f, h \) are strongly convex, or when \(f, h \) are piecewise linear-quadratic (PLQ): indicator of polyhedral sets, polyhedral norms, hinge loss, Huber loss etc.

Theorem. [Alacaoglu et al., 2019] Assume metric subregularity and pick \(\tau, \sigma \) as \(n \tau \sigma_i \| A_i \|^2 < 1 \), then

\((x_t, y_t)\) converge linearly to \((x^*, y^*)\).
Performance

\[
\min_{x \in \mathbb{R}^d} \|x\|_1 : \quad Ax = b
\]

- Synthetic setup: \(A\) has normal distribution with \(\Sigma_{i,j} = 0.5|i-j|\)
- \(n, d = 500, 1000\)
Takeaway

Algorithm Stochastic Primal-dual hybrid gradient (SPDHG) [Chambolle et al., 2018]

\[
\text{for } t = 0 \text{ to } T - 1 \text{ do}
\]
\[
x_{t+1} = \text{prox}_{\tau f}(x_t - \tau A^\top \bar{y}_t)
\]
Pick \(i_t \in [n]\) randomly
\[
y_{t+1,i_t} = \text{prox}_{\sigma_{i_t} h_{i_t}}(y_{t,i_t} + \sigma A_{i_t} x_{t+1})
\]
\[
y_{t+1,i} = y_{t,i}, \text{ for } i \neq i_t
\]
\[
\bar{y}_{t+1} = y_{t+1} + n(y_{t+1} - y_t)
\]
\text{end for}

\rightarrow \text{Randomization speeds up PDHG} \\
\rightarrow \text{Same step sizes with and without strong convexity} \\
\rightarrow \text{No need to know } \mu_f, \mu_i \text{ to obtain linear convergence}

\circ \text{ Our main reference for theoretical results: [Alacaoglu et al., 2019]}
Classic methods

<table>
<thead>
<tr>
<th>Adaptivity to</th>
<th>Lipschitz constant</th>
<th>noise</th>
<th>strong convexity</th>
<th>sparsity of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Bach and Levy, 2019]</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>[Chambolle et al., 2018]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[Alacaoglu et al., 2020]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Per iteration cost of SPDHG

\[
\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^n} f(x) + \sum_{i=1}^{n} \langle A_i x, y_i \rangle - h_i(y_i)
\]

Algorithm Stochastic Primal-dual hybrid gradient (SPDHG)

\begin{verbatim}
for t = 0 to T - 1 do
 x_{t+1} = \text{prox}_{\tau f}(x_t - \tau A^\top \bar{y}_t)
 Pick \ i_t \in [n] \ randomly
 y_{t+1,i_t} = \text{prox}_{\sigma_{i_t} h_{i_t}}(y_{t,i_t} + \sigma A_{i_t} x_{t+1})
 y_{t+1,i} = y_{t,i}, \ for \ i \neq i_t
 \bar{y}_{t+1} = y_{t+1} + n(y_{t+1} - y_t)
end for
\end{verbatim}
Per iteration cost of SPDHG

\[
\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^n} f(x) + \sum_{i=1}^{n} \langle A_i x, y_i \rangle - h_i(y_i)
\]

<table>
<thead>
<tr>
<th>Algorithm (SPDHG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastic Primal-dual hybrid gradient</td>
</tr>
</tbody>
</table>

\[\text{for } t = 0 \text{ to } T - 1 \text{ do}\]
- \[x_{t+1} = \text{prox}_{\tau f}(x_t - \tau A^\top \bar{y}_t)\]
- Pick \(i_t \in [n]\) randomly
- \[y_{t+1,i_t} = \text{prox}_{\sigma_i h_{i_t}}(y_{t,i_t} + \sigma A_{i_t} x_{t+1})\]
- \[y_{t+1,i} = y_{t,i}, \text{ for } i \neq i_t\]
- \[\bar{y}_{t+1} = y_{t+1} + n(y_{t+1} - y_t)\]
\[\text{end for}\]

Analysis of per iteration cost:

- Recall \(A = \begin{bmatrix} A_1 \\
 \vdots \\
 A_n \end{bmatrix}, \text{ with } A_i^\top \in \mathbb{R}^d\).
- Compute \(x_{t+1} \rightarrow \text{cost } d\).
- \([Ax_{k+1}]_{i_t} = \langle A_{i_t}^\top, x_{k+1} \rangle \rightarrow \text{cost } \text{nnz}(A_{i_t})\).
- We maintain \(A^\top y_t\) and compute:
 \[A^\top \bar{y}_{t+1} = A^\top y_t + (n + 1)A_{i_t}^\top (y_{t+1} - y_{t,i_t})\]
 \[\rightarrow \text{cost } \text{nnz}(A_{i_t}).\]
Algorithm PURE-CD [Alacaoglu et al., 2020]

for $t = 0$ to $T - 1$ do

$\bar{x}_{t+1} = \text{prox}_{\tau f}(x_t - \tau A^\top y_t)$

$\bar{y}_{t+1} = \text{prox}_{\sigma h}(y_t + \sigma A \bar{x}_{t+1})$

Pick $i_t \in [n]$ randomly

$y_{t+1, i_t} = \bar{y}_{t+1, i_t}$

$y_{t+1, j} = y_{t, j}$, $\forall j \neq i_t$

$x_{t+1, j} = \bar{x}_{t+1, j} - \tau_j \theta_j [A^\top(y_{t+1} - y_t)]_j$, $\forall j \in J(i_t)$

$x_{t+1, j} = x_{t, j}$, $\forall j \notin J(i_t)$

end for

Parameters:

- $I(j) = \{i \in [n] : A_{i, j} \neq 0\}$
- $J(i) = \{j \in [d] : A_{i, j} \neq 0\}$
- $(\tau_i)_{i=1}^d$ and $(\sigma_i)_{i=1}^n$ are chosen using nonzero entries of A due to $I(j)$ and $J(i)$.

\[
\text{step size w. dense } A \quad \text{iter. cost} \quad \frac{n\tau \sigma_i \|A_i\|^2}{\|A_i\|_2^2} < 1 \quad \text{nnz}(A_i)
\]

... compared to SPDHG that had

\[
\text{step size w. dense } A \quad \text{iter. cost} \quad \frac{n\tau \sigma_i \|A_i\|^2}{\|A_i\|_2^2} < 1 \quad d
\]

\rightarrow Significant improvement when d is big & A is sparse

\rightarrow Similar theoretical rates as SPDHG
PURE-CD

- Lasso with different levels of sparsity of data.

Figure: Lasso: Left: rcv1, \(n = 20,242, m = 47,236 \), density = 0.16\%, \(\lambda = 10 \); Middle: w8a, \(n = 49,749, m = 300 \), density = 3.9\%, \(\lambda = 10^{-1} \); Right: covtype, \(n = 581,012, m = 54 \), density = 22.1\%, \(\lambda = 10 \).
Takeaway

Algorithm PURE-CD [Alacaoglu et al., 2020]

\[
\begin{align*}
&\text{for } t = 0 \text{ to } T - 1 \text{ do} \\
&\quad \bar{x}_{t+1} = \text{prox}_{\tau f}(x_t - \tau A^T y_t) \\
&\quad \bar{y}_{t+1} = \text{prox}_{\sigma h}(y_t + \sigma A \bar{x}_{t+1}) \\
&\quad \text{Pick } i_t \in [n] \text{ randomly} \\
&\quad y_{t+1,i_t} = \bar{y}_{t+1,i_t} \\
&\quad y_{t+1,j} = y_{t,j}, \forall j \neq i_t \\
&\quad x_{t+1,j} = \bar{x}_{t+1,j} - \tau_j \theta_j [A^T (y_{t+1} - y_t)]_j, \forall j \in J(i_t) \\
&\quad x_{t+1,j} = x_{t,j}, \forall j \notin J(i_t) \\
&\end{align*}
\]

→ Randomization speeds up PDHG
→ No need to know μ_f, μ_i to obtain linear convergence
→ Per-iteration cost and step sizes adapt to sparsity.
Summary

\[
\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \Phi(x, y)
\]

<table>
<thead>
<tr>
<th>Adaptivity to</th>
<th>Lipschitz constant</th>
<th>noise</th>
<th>strong convexity</th>
<th>sparsity of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Bach and Levy, 2019]</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>[Chambolle et al., 2018]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>[Alacaoglu et al., 2020]</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
References I

On the convergence of stochastic primal-dual hybrid gradient.

Random extrapolation for primal-dual coordinate descent.
In International conference on machine learning, pages 191–201. PMLR.

Studies in linear and non-linear programming, volume 2.
Stanford University Press.

A universal algorithm for variational inequalities adaptive to smoothness and noise.

Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications.

