
Adaptive Optimization Methods for Machine Learning and Signal Processing

Volkan Cevher Ali Kavis Kfir Y. Levy Ahmet Alacaoglu
volkan.cevher@epfl.ch ali.kavis@epfl.ch kfirylevy@technion.ac.il ahmet.alacaoglu@epfl.ch

Part III/IV: Adaptive first-order methods

Technion-Israel Institute of Technology

First Order Methods

Goal:
min
x∈X

f(x)

Update rule:
xt+1 = xt − ηtgt ; where E[gt|xt] = ∇f(xt)

Output:
x̄T = x̄T (x1, g1, . . . , xt, gt)

Performance Measure:
After T iterations,

errT = f(x̄T)− f(x∗)

Ensure low errT in expectation or with high probability

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 2/ 31

First Order Methods

Goal:
min
x∈X

f(x)

Update rule:
xt+1 = xt − ηtgt ; where E[gt|xt] = ∇f(xt)

Output:
x̄T = x̄T (x1, g1, . . . , xt, gt)

Performance Measure:
After T iterations,

errT = f(x̄T)− f(x∗)

Ensure low errT in expectation or with high probability
Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 2/ 31

First Order Methods

Goal:
min
x∈X

f(x)

Update rule:
xt+1 = xt − ηtgt ; where E[gt|xt] = ∇f(xt) ; t = 1 . . . T

Output:
x̄T = x̄T (x1, g1, . . . , xt, gt)

Performance Measure in Non-convex case:
After T iterations,

errT = ‖∇f(x̄T)‖2

Ensure low errT in expectation or with high probability
Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 3/ 31

Geometric & Statistical Properties

I G: scale of (stochastic) gradients, G := maxt ‖gt‖

I L: smoothness-Lipschitz continuity of gradients, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

I σ2: variance of gradient noise, E[‖gt −∇f(xt)‖2|xt] ≤ σ2

Noiseless (a.k.a determinstic) case: σ = 0

I D: distance of initial point to optimum, ‖x1 − x∗‖

Prior knowledge:
◦ Problem parameters, G,L, σ2, D should be known in advance to obtain the optimal rates
◦ These parameters are also required in order to efficiently parallelize the learning process

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 4/ 31

Geometric & Statistical Properties

I G: scale of (stochastic) gradients, G := maxt ‖gt‖

I L: smoothness-Lipschitz continuity of gradients, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

I σ2: variance of gradient noise, E[‖gt −∇f(xt)‖2|xt] ≤ σ2

Noiseless (a.k.a determinstic) case: σ = 0

I D: distance of initial point to optimum, ‖x1 − x∗‖

Prior knowledge:
◦ Problem parameters, G,L, σ2, D should be known in advance to obtain the optimal rates
◦ These parameters are also required in order to efficiently parallelize the learning process

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 4/ 31

Geometric & Statistical Properties ⇒ Convergence

Convex objective function

gradient oracle Smoothness GD/SGD

deterministic/stochastic non-smooth O
(
GD√
T

)
deterministic smooth O

(
LD2

T

)
stochastic smooth O

(
LD2

T + σD√
T

)

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 5/ 31

Geometric & Statistical Properties ⇒ Convergence

Convex objective function

gradient oracle Smoothness GD/SGD Accelerated GD/SGD

deterministic/stochastic non-smooth O
(
GD√
T

)
O
(
GD√
T

)
deterministic smooth O

(
LD2

T

)
O
(
LD2

T 2

)
stochastic smooth O

(
LD2

T + σD√
T

)
O
(
LD2

T 2 + σD√
T

)
Prior knowledge:
◦ Problem parameters, G,L, σ2, D should be known in advance to obtain the optimal rates
◦ These parameters are also required in order to efficiently parallelize the learning process

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 6/ 31

Geometric & Statistical Properties ⇒ Convergence

Convex objective function

gradient oracle Smoothness GD/SGD Accelerated GD/SGD

deterministic/stochastic non-smooth O
(
GD√
T

)
O
(
GD√
T

)
deterministic smooth O

(
LD2

T

)
O
(
LD2

T 2

)
stochastic smooth O

(
LD2

T + σD√
T

)
O
(
LD2

T 2 + σD√
T

)

Today:
Adaptive methods that obtain optimal rates without any prior knowledge

⇒ efficient and practical parallelization

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 7/ 31

Benefits of Adaptivity

I Does not require prior knowledge

I Saves expensive hyperparameter tuning

I Adapts to local structure

I Enables efficient & practical Parallelization

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 8/ 31

Large Batch Training & Parallelization
Minibatch SGD Update rule:

xt+1 = xt − ηtgt ; where gt is a gradient estimate based on m samples

1

workstation 1

Master node

(parameter server)

Data shreds

workstation 2 workstation m

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 9/ 31

Large Batch Training & Parallelization
Minibatch SGD Update rule:

xt+1 = xt − ηtgt ; where gt is a gradient estimate based on m samples

1

workstation 1

Master node

(parameter server)

Data shreds

workstation 2 workstation m

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 9/ 31

Large Batch Training & Parallelization
Minibatch SGD Update rule:

xt+1 = xt − ηtgt ; where gt is a gradient estimate based on m samples

2

workstation 1

Master node

(parameter server)

Data shreds

workstation 2 workstation m

Parallel SGD using Large Batch

I Use large batch size b &
Distribute computation of
gradient estimate across machines

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 10/ 31

Large Batch Training & Parallelization
Minibatch SGD Update rule:

xt+1 = xt − ηtgt ; where gt is a gradient estimate based on m samples

3

workstation 1

Master node

(parameter server)

Data shreds

workstation 2 workstation m

Parallel SGD using Large Batch

I Use large batch size m &
Distribute computation of
gradient estimate across machines

I Master node collects estimates,
updates & communicates weights

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 11/ 31

When Do we Benefit From Parallelization?(when do m machines are better than a single one?)

Using m machines in parallel:
I Variance decreases: σm = σ1/

√
m

I At every iteration T we use minibatchsize ∝ m gradients ⇒ #Samples = mT

Plugging this back to the rates we have seen before:
I Non-accelerated stochastic methods, m machines,

err(m)(T) ≤
L

T
+

σ1√
mT

⇒ m ≤ (#Samples)1/2 (Effective Parallelization)

I Accelerated stochastic methods, m machines,

err(m)(T) ≤
L

T 2 +
σ1√
mT

⇒ m ≤ (#Samples)3/4 (Effective Parallelization)

Issue
I Achieving optimal rates (& parallelization) requires tuning according to m,L, σ,D ⇒ Impractical!
I Next: Adaptive Accelerated methods to the rescue

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 12/ 31

When Do we Benefit From Parallelization?(when do m machines are better than a single one?)

Using m machines in parallel:
I Variance decreases: σm = σ1/

√
m

I At every iteration T we use minibatchsize ∝ m gradients ⇒ #Samples = mT

Plugging this back to the rates we have seen before:
I Non-accelerated stochastic methods, m machines,

err(m)(T) ≤
L

T
+

σ1√
mT

⇒ m ≤ (#Samples)1/2 (Effective Parallelization)

I Accelerated stochastic methods, m machines,

err(m)(T) ≤
L

T 2 +
σ1√
mT

⇒ m ≤ (#Samples)3/4 (Effective Parallelization)

Issue
I Achieving optimal rates (& parallelization) requires tuning according to m,L, σ,D ⇒ Impractical!
I Next: Adaptive Accelerated methods to the rescue

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 12/ 31

When Do we Benefit From Parallelization?(when do m machines are better than a single one?)

Using m machines in parallel:
I Variance decreases: σm = σ1/

√
m

I At every iteration T we use minibatchsize ∝ m gradients ⇒ #Samples = mT

Plugging this back to the rates we have seen before:
I Non-accelerated stochastic methods, m machines,

err(m)(T) ≤
L

T
+

σ1√
mT

⇒ m ≤ (#Samples)1/2 (Effective Parallelization)

I Accelerated stochastic methods, m machines,

err(m)(T) ≤
L

T 2 +
σ1√
mT

⇒ m ≤ (#Samples)3/4 (Effective Parallelization)

Issue
I Achieving optimal rates (& parallelization) requires tuning according to m,L, σ,D ⇒ Impractical!
I Next: Adaptive Accelerated methods to the rescue

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 12/ 31

When Do we Benefit From Parallelization?(when do m machines are better than a single one?)

Using m machines in parallel:
I Variance decreases: σm = σ1/

√
m

I At every iteration T we use minibatchsize ∝ m gradients ⇒ #Samples = mT

Plugging this back to the rates we have seen before:
I Non-accelerated stochastic methods, m machines,

err(m)(T) ≤
L

T
+

σ1√
mT

⇒ m ≤ (#Samples)1/2 (Effective Parallelization)

I Accelerated stochastic methods, m machines,

err(m)(T) ≤
L

T 2 +
σ1√
mT

⇒ m ≤ (#Samples)3/4 (Effective Parallelization)

Issue
I Achieving optimal rates (& parallelization) requires tuning according to m,L, σ,D ⇒ Impractical!
I Next: Adaptive Accelerated methods to the rescue

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 12/ 31

A classical approach: Line-search

◦ High level Idea: at every step tune the learning rate until a “good" condition holds (e.g.
sufficient decrease)

I Long history: Backtracking, Armijo, steepest descent...
I Nesterov has designed an accelerated and adaptive line search method1
I has extensions to primal-dual optimization2

Issues
I Line search methods are inappropriate for stochastic case!
I must set accuracy a priori

1Y. Nesterov, “Universal Gradient Methods for Convex Optimization Problems,” Mathematical Programming, 2015.
2A. Yurtsever, Q. Tran-Dinh, and V. Cevher, “A Universal Primal-Dual Convex Optimization Framework,” NeurIPS, 2015.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 13/ 31

Another Approach: Polyak Stepsize

Update rule:
xt+1 = xt − ηt∇f(xt) ; t = 1 . . . T

Polyak stepsize:
ηt = f(xt)− f(x∗)

‖gt‖2

◦ Adaptivity: GD with Polyak stepsize is adaptive1,2. Nevertheless...

I it is inappropriate for stochastic case!
I requires prior knowledge of f(x∗)
I does not obtain accelerated rates

1B. T. Polyak, “Introduction to optimization," Optimization Software, Inc., New York, 1987.
2E. Hazan, S. Kakade, “Revisiting the Polyak step size,” arXiv, 2019.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 14/ 31

The curious case of AdaGrad1

Algorithm: General SGD
1: Input: Iterations T ; x1
2: for t = 1, ..., T do
3: Obtain a gradient estimate gt
4: xt+1 = xt − ηtgt
5: end for
6: Output: x̄T = 1

T

∑T

t=1 xt

AdaGrad (scalar) 1

ηt = D/

√√√√ t∑
τ=1

‖gτ‖2

AdaGrad’s Adaptivity

I Non-smooth stochastic case:

errT ≤ GD/
√
T

I Smooth stochastic case:

errT ≤ LD2/T + σD/
√
T

AdaGrad does not accelerate! ⇒ Not ideal for
parallelization

1J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” JMLR, 2011.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 15/ 31

The curious case of AdaGrad1

Algorithm: General SGD
1: Input: Iterations T ; x1
2: for t = 1, ..., T do
3: Obtain a gradient estimate gt
4: xt+1 = xt − ηtgt
5: end for
6: Output: x̄T = 1

T

∑T

t=1 xt

AdaGrad (scalar) 1

ηt = D/

√√√√ t∑
τ=1

‖gτ‖2

AdaGrad’s Adaptivity

I Non-smooth stochastic case:

errT ≤ GD/
√
T

I Smooth stochastic case:

errT ≤ LD2/T + σD/
√
T

AdaGrad does not accelerate! ⇒ Not ideal for
parallelization

1J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” JMLR, 2011.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 15/ 31

Towards an Accelerated Adaptive Method

◦ AdaGrad adapts to smoothness and noise but does not accelerate

AdaGrad: errT ≤ LD2/T + σD/
√
T

Optimal Accelerated rate: errT ≤ LD2/T 2 + σD/
√
T

Q: Can we design a method that is both adaptive and accelerates?

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 16/ 31

AdaGrad with Importance Weights

Update rule:
xt+1 = xt − ηtαtgt (Weighted Gradients)

Output:

x̄T ∝
T∑
t=1

αtxt (Weighted Average)

Weighted Learning rate:

ηt = D/

√√√√ t∑
τ=1

α2
τ‖gτ‖2

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 17/ 31

AcceleGrad1 Exploiting the linear coupling idea2

Algorithm: AcceleGrad for unconstrained optimization

1: Input: Iterations T ; y0, z0 ∈ Rp
2: for t = 0, . . . , T − 1 do
3: Obtain a gradient estimate gt at xt
4: αt ≈ t+ 1

5: ηt = D/

√
G2 +

∑t

τ=0 α
2
τ ‖gτ‖

2

6: xt+1 = 1
αt
zt + (1− 1

αt
)yt,

7: zt+1 = zt − αtηtgt
8: yt+1 = xt+1 − ηtgt

9: end for
10: Output: ȳT ∝

∑T

t=1 αt−1yt

Comments
1. AcceleGrad does not require L, σ, but requires
G,D

2. Cannot handle constraints!
3. Optimal Accelerated guarantees up to log T

factors!
⇒ practical and effective parallelization

1K.Y. Levy, A. Yurtsever, and V. Cevher, “Online adaptive methods, universality and acceleration," NeurIPS 2018.
2L. Orecchia and Z. Allen-Zhu, “Linear coupling: An ultimate unification of gradient and mirror descent,” arXiv:1407.1537, 2014.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 18/ 31

AcceleGrad1 Exploiting the linear coupling idea2

Algorithm: AcceleGrad for unconstrained optimization

1: Input: Iterations T ; y0, z0 ∈ Rp
2: for t = 0, . . . , T − 1 do
3: Obtain a gradient estimate gt at xt
4: αt ≈ t+ 1

5: ηt = D/

√
G2 +

∑t

τ=0 α
2
τ ‖gτ‖

2

6: xt+1 = 1
αt
zt + (1− 1

αt
)yt,

7: zt+1 = zt − αtηtgt

8: yt+1 = xt+1 − ηtgt

9: end for
10: Output: ȳT ∝

∑T

t=1 αt−1yt

Comments
1. AcceleGrad does not require L, σ, but requires
G,D

2. Cannot handle constraints!
3. Optimal Accelerated guarantees up to log T

factors!
⇒ practical and effective parallelization

1K.Y. Levy, A. Yurtsever, and V. Cevher, “Online adaptive methods, universality and acceleration," NeurIPS 2018.
2L. Orecchia and Z. Allen-Zhu, “Linear coupling: An ultimate unification of gradient and mirror descent,” arXiv:1407.1537, 2014.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 18/ 31

AcceleGrad1 Exploiting the linear coupling idea2

Algorithm: AcceleGrad for unconstrained optimization

1: Input: Iterations T ; y0, z0 ∈ Rp
2: for t = 0, . . . , T − 1 do
3: Obtain a gradient estimate gt at xt
4: αt ≈ t+ 1

5: ηt = D/

√
G2 +

∑t

τ=0 α
2
τ ‖gτ‖

2

6: xt+1 = 1
αt
zt + (1− 1

αt
)yt,

7: zt+1 = zt − αtηtgt
8: yt+1 = xt+1 − ηtgt
9: end for
10: Output: ȳT ∝

∑T

t=1 αt−1yt

Comments
1. AcceleGrad does not require L, σ, but requires
G,D

2. Cannot handle constraints!
3. Optimal Accelerated guarantees up to log T

factors!
⇒ practical and effective parallelization

1K.Y. Levy, A. Yurtsever, and V. Cevher, “Online adaptive methods, universality and acceleration," NeurIPS 2018.
2L. Orecchia and Z. Allen-Zhu, “Linear coupling: An ultimate unification of gradient and mirror descent,” arXiv:1407.1537, 2014.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 18/ 31

AcceleGrad1 Exploiting the linear coupling idea2

Algorithm: AcceleGrad for unconstrained optimization

1: Input: Iterations T ; y0, z0 ∈ Rp
2: for t = 0, . . . , T − 1 do
3: Obtain a gradient estimate gt at xt
4: αt ≈ t+ 1

5: ηt = D/

√
G2 +

∑t

τ=0 α
2
τ ‖gτ‖

2

6: xt+1 = 1
αt
zt + (1− 1

αt
)yt,

7: zt+1 = zt − αtηtgt
8: yt+1 = xt+1 − ηtgt
9: end for
10: Output: ȳT ∝

∑T

t=1 αt−1yt

Comments
1. AcceleGrad does not require L, σ, but requires
G,D

2. Cannot handle constraints!
3. Optimal Accelerated guarantees up to log T

factors!
⇒ practical and effective parallelization

1K.Y. Levy, A. Yurtsever, and V. Cevher, “Online adaptive methods, universality and acceleration," NeurIPS 2018.
2L. Orecchia and Z. Allen-Zhu, “Linear coupling: An ultimate unification of gradient and mirror descent,” arXiv:1407.1537, 2014.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 18/ 31

Logistic regression
◦ Data: RCV1

◦ Oracle: stochastic updates, different mini-bathcsize

Figure 5: Comparison of AdaGrad and AcceleGrad for logistic regression task using
different minibatch sizes. We display the averaged iterates, ȳT (top), as well as the non-
averaged iterates, yt (bottom). Both methods use the same parameter D = 104.

Figure 6: Comparison of AdaGrad and AcceleGrad for training SVM using different
minibatch sizes. We display the averaged iterates, ȳT (top), as well as the non-averaged
iterates, yt (bottom). Both methods use the same parameter D = 104.

45

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 19/ 31

Towards an Accelerated Adaptive Method

Next, new techniques for achieving adaptive acceleration for constrained problems,
I Adaptive Learning rate X
I Importance weighting X
I Mirror Prox updates ⇐
I Querying gradients at averages

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 20/ 31

Nemirovski’s Mirror Prox

Mirror Prox update:
xt+1 = xt − ηtht

“Good" hints:

when ht ≈ ∇f(xt+1) ⇒ better performance

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 21/ 31

Nemirovski’s Mirror Prox1

Mirror Prox method
1. Standard GD update: xt+ 1

2
= xt − ηt∇f(xt)

2. Taking a hint: ht = ∇f(xt+ 1
2
)

3. Optimistic update: xt+1 = xt − ηtht

Intuition:

when f is smooth ht ≈ ∇f(xt+1) ⇒ better performance
when f is non-smooth ht might not help, but is does not hurt to use it

1A. Nemirovski, “Prox-method with rate of convergence O(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle
point problems.”, SIAM Journal on Optimization, 2004.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 22/ 31

Nemirovski’s Mirror Prox1

Mirror Prox method
1. Standard GD update: xt+ 1

2
= xt − ηt∇f(xt)

2. Taking a hint: ht = ∇f(xt+ 1
2
)

3. Optimistic update: xt+1 = xt − ηtht

Intuition:

when f is smooth ht ≈ ∇f(xt+1) ⇒ better performance
when f is non-smooth ht might not help, but is does not hurt to use it

1A. Nemirovski, “Prox-method with rate of convergence O(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle
point problems.”, SIAM Journal on Optimization, 2004.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 22/ 31

Nemirovski’s Mirror Prox1

◦ Mirror Prox also works in stochastic case

Mirror Prox method
1. Standard GD update: xt+ 1

2
= xt − ηtgt

2. Taking a hint: ht
3. Optimistic update: xt+1 = xt − ηtht

where,
E[gt|xt] = ∇f(xt) & E[ht|xt] = ∇f(xt+ 1

2
)

1A. Nemirovski, “Prox-method with rate of convergence O(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle
point problems. ,” SIAM Journal on Optimization, 2004.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 23/ 31

Towards an Accelerated Adaptive Method

◦ Combining the techniques below ⇒ adaptive acceleration

I Adaptive Learning rate X
I Importance weighting X
I Optimistic updates X
I Querying gradients at averages X

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 24/ 31

Towards an Accelerated Adaptive Method

Algorithm: AdaGrad

1: Input: Iterations T ; x1 ∈ X ⊂ Rd
2: for t = 1, ..., T do
3: Obtain a gradient estimate gt at xt
4: Set:

ηt = D/

√√√√ t∑
τ=1

‖gτ‖2

5: Update:
xt+1 = xt − ηtgt

6: end for
7: Output: x̄T ∝

∑T

t=1 xt

I Adaptive Learning rate X
I Importance weighting

I Optimistic updates
I Querying gradients at averages

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 25/ 31

Towards an Accelerated Adaptive Method

Algorithm: Weighted AdaGrad

1: Input: Iterations T ; x1 ∈ X ⊂ Rd
2: for t = 1, ..., T do
3: Set weight αt = t
4: Obtain a gradient estimate gt at xt
5: Set:

ηt = D/

√√√√ t∑
τ=1

α2
τ‖gτ‖2

6: Update:
xt+1 = xt − ηtαtgt

7: end for
8: Output: x̄T ∝

∑T

t=1 αtxt

I Adaptive Learning rate X
I Importance weighting X

I Optimistic updates

I Querying gradients at averages

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 26/ 31

Towards an Accelerated Adaptive Method

Algorithm: Mirror Prox Weighted AdaGrad

1: Input: Iterations T ; x1 ∈ X ⊂ Rd
2: for t = 1, ..., T do
3: Set weight αt = t
4: Obtain a gradient estimate gt at xt
5: Set:

ηt = D/

√√√√1 +
t−1∑
τ=1

α2
τ‖gτ − hτ‖2

6: Update:

xt+ 1
2

= xt − ηtαtgt
Compute ht an unbiased gradient estimate at xt+ 1

2
xt+1 = xt − ηtαtht

7: end for
8: Output: x̄T ∝

∑T

t=1 αtxt

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 27/ 31

UnixGrad - Universal eXtra Gradient method

Algorithm: UnixGrad1 = Anytime Optimistic Weighted AdaGrad

1: Input: Iterations T ; x1 ∈ X ⊂ Rd, weights αt = t
2: for t = 1, ..., T do
3: Obtain a gradient estimate gt at x̄t ∝ αtxt +

∑t−1
τ=1 ατxτ+ 1

2
4: Set:

ηt = D/

√√√√1 +
t−1∑
τ=1

α2
τ‖gτ − hτ‖2

5: Update:

xt+ 1
2

= xt − ηtαtgt

Compute ht an unbiased gradient estimate at x̄t+ 1
2
∝ αtxt+ 1

2
+
t−1∑
τ=1

ατxτ+ 1
2

xt+1 = xt − ηtαtht

6: end for
7: Output: x̄T+ 1

2
∝

∑T

t=1 αtxt+ 1
2

1A. Kavis, K.Y. Levy, F. Bach, and V. Cevher, “Unixgrad: A universal, adaptive algorithm with optimal guarantees for constrained optimization.” NIPS, 2019.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 28/ 31

UnixGrad - an Adaptive Accelerated Optimal Method

◦ UnixGrad ensures optimal guarantees,

1. O
(
GD/

√
T
)
- non-smooth deterministic/stochastic

2. O
(
LD2/T 2) - smooth deterministic case

3. O
(
LD2/T 2 + σD/

√
T
)
- smooth stochastic case

◦ Comments:
I UnixGrad adapts to G,L, σ2, but requires a bound on D
I UnixGrad can be applied to constrained problems
I No guarantees for non-convex problems!

1A. Kavis, K.Y. Levy, F. Bach, and V. Cevher, “Unixgrad: A universal, adaptive algorithm with optimal guarantees for constrained optimization.” NIPS, 2019.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 29/ 31

Neural network training: ADAM vs. AcceleGrad

0 10 20 30 40 50
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Train Loss vs Epochs
accelegrad
adam

Figure: Resnet classifier optimization (train loss)

0 10 20 30 40 50
epochs

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Test Loss vs Epochs
accelegrad
adam

Figure: Resnet classifier optimization (test loss)

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 30/ 31

Conclusions
◦ Adaptive accelerated methods ⇒ practical and efficient acceleration. Still...lots of interesting questions.

Adaptive methods for non-convex problems,
I AdaGrad adapts to smoothness and noise in non-convex problems1.
Can we design an accelerated adaptive method?

I Can we design adaptive methods that provide stronger guarantees rather than stationarity?
I Is there a prevalent non-convex structure that we can adaptively exploit? (other than smootness and noise)

Strong-convexity is a property that often arises in regularized problems, Simple algorithms automatically adapt
to strong convexity under broad assumptions
I GD achieves linear rate with η = 1/L, & SGD achieves O (1/T)-rate with ηt = O (1/t)
I PDHG achieves linear rate under metric subregularity234

◦ Adaptive methods are promising but are not yet truly universal...
I AdaGrad/Accelegrad/UniXgrad does not adapt to strong convexity
I Adam-type does not adapt to strong convexity
I MetaGrad comes close but is not universal yet5

◦ Still seeking one algorithm to rule them all!
1X. Li, F. Orabona, “On the convergence of stochastic gradient descent with adaptive stepsizes,” AISTATS, 2019.
2P. Latafat, N.M. Freris, and P. Patrinos, “A new randomized block-coordinate primal-dual proximal algorithm for distributed optimization,” IEEE TAC, 2019.
3A. Alacaoglu, O. Fercoq, and V. Cevher, “Random extrapolation for primal-dual coordinate descent," ICML, 2020.
4J. Liang, J. Fadili, and G. Peyré, “Convergence rates with inexact non-expansive operators.” MathProg, 2016.
5T. van Erven, and W.M. Koolen, “Metagrad: Multiple learning rates in online learning.” NeurIPS 2016.

Adaptive Optimization Methods | Kfir Y. Levy, kfirylevy@technion.ac.il Slide 31/ 31

