Part III/IV: Adaptive first-order methods

Technion-Israel Institute of Technology
First Order Methods

Goal:

\[
\min_{x \in X} f(x)
\]

Update rule:

\[
x_{t+1} = x_t - \eta_t g_t \;
\text{where}\;
\mathbb{E}[g_t|x_t] = \nabla f(x_t)
\]

Output:

\[
\bar{x}_T = \bar{x}_T(x_1, g_1, \ldots, x_t, g_t)
\]
First Order Methods

Goal:
\[
\min_{x \in \mathcal{X}} f(x)
\]

Update rule:
\[
x_{t+1} = x_t - \eta_t g_t \quad \text{where} \quad \mathbb{E}[g_t | x_t] = \nabla f(x_t)
\]

Output:
\[
\bar{x}_T = \bar{x}_T(x_1, g_1, \ldots, x_t, g_t)
\]

Performance Measure:
After \(T\) iterations,
\[
err_T = f(\bar{x}_T) - f(x^*)
\]

Ensure low \(err_T\) in expectation or with high probability.
First Order Methods

Goal:

\[
\min_{x \in X} f(x)
\]

Update rule:

\[
x_{t+1} = x_t - \eta_t g_t \quad \text{where} \quad \mathbb{E}[g_t | x_t] = \nabla f(x_t) \quad ; t = 1 \ldots T
\]

Output:

\[
\bar{x}_T = \bar{x}_T(x_1, g_1, \ldots, x_t, g_t)
\]

Performance Measure in **Non-convex** case:

After \(T \) iterations,

\[
\text{err}_T = \| \nabla f(\bar{x}_T) \|^2
\]

Ensure low \(\text{err}_T \) in *expectation* or *with high probability*
Geometric & Statistical Properties

- \(G \): scale of (stochastic) gradients, \(G := \max_t \| g_t \| \)

- \(L \): smoothness-Lipschitz continuity of gradients, \(\| \nabla f(x) - \nabla f(y) \| \leq L \| x - y \| \)

- \(\sigma^2 \): variance of gradient noise, \(\mathbb{E}[\| g_t - \nabla f(x_t) \|^2 | x_t] \leq \sigma^2 \)

 Noiseless (a.k.a deterministic) case: \(\sigma = 0 \)

- \(D \): distance of initial point to optimum, \(\| x_1 - x^* \| \)
Geometric & Statistical Properties

- G: scale of (stochastic) gradients, \(G := \max_t \|g_t\| \)

- L: smoothness-Lipschitz continuity of gradients, \(\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\| \)

- σ^2: variance of gradient noise, \(\mathbb{E}[\|g_t - \nabla f(x_t)\|^2|x_t] \leq \sigma^2 \)

 Noiseless (a.k.a determinstic) case: $\sigma = 0$

- D: distance of initial point to optimum, \(\|x_1 - x^*\| \)

Prior knowledge:
- Problem parameters, G, L, σ^2, D should be known in advance to obtain the optimal rates
- These parameters are also required in order to efficiently parallelize the learning process
Convex objective function

<table>
<thead>
<tr>
<th>gradient oracle</th>
<th>Smoothness</th>
<th>GD/SGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>deterministic/stochastic</td>
<td>non-smooth</td>
<td>$O\left(\frac{GD}{\sqrt{T}}\right)$</td>
</tr>
<tr>
<td>deterministic</td>
<td>smooth</td>
<td>$O\left(\frac{LD^2}{T}\right)$</td>
</tr>
<tr>
<td>stochastic</td>
<td>smooth</td>
<td>$O\left(\frac{LD^2}{T} + \frac{\sigma D}{\sqrt{T}}\right)$</td>
</tr>
</tbody>
</table>
Geometric & Statistical Properties \Rightarrow Convergence

Convex objective function

<table>
<thead>
<tr>
<th>gradient oracle</th>
<th>Smoothness</th>
<th>GD/SGD</th>
<th>Accelerated GD/SGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>deterministic/stochastic</td>
<td>non-smooth</td>
<td>$O\left(\frac{GD}{\sqrt{T}}\right)$</td>
<td>$O\left(\frac{GD}{\sqrt{T}}\right)$</td>
</tr>
<tr>
<td>deterministic</td>
<td>smooth</td>
<td>$O\left(\frac{LD^2}{T}\right)$</td>
<td>$O\left(\frac{LD^2}{T^2}\right)$</td>
</tr>
<tr>
<td>stochastic</td>
<td>smooth</td>
<td>$O\left(\frac{LD^2}{T} + \frac{\sigma D}{\sqrt{T}}\right)$</td>
<td>$O\left(\frac{LD^2}{T^2} + \frac{\sigma D}{\sqrt{T}}\right)$</td>
</tr>
</tbody>
</table>

Prior knowledge:
- Problem parameters, G, L, σ^2, D should be known in advance to obtain the optimal rates
- These parameters are also required in order to efficiently parallelize the learning process
Geometric & Statistical Properties \Rightarrow Convergence

Convex objective function

<table>
<thead>
<tr>
<th>gradient oracle</th>
<th>Smoothness</th>
<th>GD/SGD</th>
<th>Accelerated GD/SGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>deterministic/stochastic</td>
<td>non-smooth</td>
<td>$O\left(\frac{GD}{\sqrt{T}}\right)$</td>
<td>$O\left(\frac{GD}{\sqrt{T}}\right)$</td>
</tr>
<tr>
<td>deterministic</td>
<td>smooth</td>
<td>$O\left(\frac{LD^2}{T}\right)$</td>
<td>$O\left(\frac{LD^2}{T^2}\right)$</td>
</tr>
<tr>
<td>stochastic</td>
<td>smooth</td>
<td>$O\left(\frac{LD^2}{T} + \frac{\sigma D}{\sqrt{T}}\right)$</td>
<td>$O\left(\frac{LD^2}{T^2} + \frac{\sigma D}{\sqrt{T}}\right)$</td>
</tr>
</tbody>
</table>

Today:

Adaptive methods that obtain optimal rates without any prior knowledge
\Rightarrow efficient and practical parallelization
Benefits of Adaptivity

- Does not require prior knowledge
- Saves expensive hyperparameter tuning
- Adapts to local structure
- Enables efficient & practical Parallelization
Large Batch Training & Parallelization

Minibatch SGD Update rule:

\[x_{t+1} = x_t - \eta_t g_t \]

where \(g_t \) is a gradient estimate based on \(m \) samples.
Large Batch Training & Parallelization

Minibatch SGD Update rule:

\[x_{t+1} = x_t - \eta_t g_t ; \quad \text{where } g_t \text{ is a gradient estimate based on } m \text{ samples} \]
Large Batch Training & Parallelization

Minibatch SGD Update rule:

\[x_{t+1} = x_t - \eta_t g_t \; ; \quad \text{where } g_t \text{ is a gradient estimate based on } m \text{ samples} \]

Parallel SGD using Large Batch

- Use large batch size \(b \) & Distribute computation of gradient estimate across machines
Large Batch Training & Parallelization

Minibatch SGD Update rule:

\[x_{t+1} = x_t - \eta_t g_t; \]
where \(g_t \) is a gradient estimate based on \(m \) samples

Parallel SGD using Large Batch

- Use large batch size \(m \) & Distribute computation of gradient estimate across machines
- Master node collects estimates, updates & communicates weights
When Do we Benefit From Parallelization? (when do \(m \) machines are better than a single one?)

Using \(m \) machines in parallel:

- Variance decreases: \(\sigma_m = \sigma_1 / \sqrt{m} \)
- At every iteration \(T \) we use minibatchsize \(\propto m \) gradients \(\Rightarrow \) #Samples = \(mT \)
When Do we Benefit From Parallelization? (when do \(m \) machines are better than a single one?)

Using \(m \) machines in parallel:

- Variance decreases: \(\sigma_m = \sigma_1 / \sqrt{m} \)
- At every iteration \(T \) we use minibatchsize \(\propto m \) gradients \(\Rightarrow \) \(\# \)Samples = \(mT \)

Plugging this back to the rates we have seen before:

- Non-accelerated stochastic methods, \(m \) machines,

\[
\text{err}^{(m)}(T) \leq \frac{L}{T} + \frac{\sigma_1}{\sqrt{mT}} \Rightarrow m \leq (\# \text{Samples})^{1/2} \quad \text{(Effective Parallelization)}
\]
When Do we Benefit From Parallelization? (when do \(m \) machines are better than a single one?)

Using \(m \) machines in parallel:

- Variance decreases: \(\sigma_m = \sigma_1 / \sqrt{m} \)
- At every iteration \(T \) we use minibatchsize \(\propto m \) gradients \(\Rightarrow \) #Samples = \(mT \)

Plugging this back to the rates we have seen before:

- Non-accelerated stochastic methods, \(m \) machines,
 \[
 \text{err}^{(m)}(T) \leq \frac{L}{T} + \frac{\sigma_1}{\sqrt{mT}} \Rightarrow m \leq (\text{#Samples})^{1/2} \quad \text{(Effective Parallelization)}
 \]

- Accelerated stochastic methods, \(m \) machines,
 \[
 \text{err}^{(m)}(T) \leq \frac{L}{T^2} + \frac{\sigma_1}{\sqrt{mT}} \Rightarrow m \leq (\text{#Samples})^{3/4} \quad \text{(Effective Parallelization)}
 \]
When Do we Benefit From Parallelization? (when do \(m \) machines are better than a single one?)

Using \(m \) machines in parallel:

- Variance decreases: \(\sigma_m = \sigma_1 / \sqrt{m} \)
- At every iteration \(T \) we use minibatchsize \(\propto m \) gradients \(\Rightarrow \) \(\#\text{Samples} = mT \)

Plugging this back to the rates we have seen before:

- Non-accelerated stochastic methods, \(m \) machines,
 \[
 err^{(m)}(T) \leq T \frac{L}{T} + \frac{\sigma_1}{\sqrt{mT}} \Rightarrow m \leq (\#\text{Samples})^{1/2} \quad \text{(Effective Parallelization)}
 \]

- Accelerated stochastic methods, \(m \) machines,
 \[
 err^{(m)}(T) \leq T \frac{L}{T^2} + \frac{\sigma_1}{\sqrt{mT}} \Rightarrow m \leq (\#\text{Samples})^{3/4} \quad \text{(Effective Parallelization)}
 \]

Issue

- Achieving optimal rates (& parallelization) requires tuning according to \(m, L, \sigma, D \) \(\Rightarrow \) Impractical!
- Next: Adaptive Accelerated methods to the rescue
A classical approach: Line-search

- High level Idea: at every step tune the learning rate until a "good" condition holds (e.g. sufficient decrease)
 - Long history: Backtracking, Armijo, steepest descent...
 - Nesterov has designed an accelerated and adaptive line search method
 - has extensions to primal-dual optimization

Issues
- Line search methods are inappropriate for stochastic case!
- must set accuracy a priori

Another Approach: Polyak Stepsize

Update rule:

\[x_{t+1} = x_t - \eta_t \nabla f(x_t) \; ; \; t = 1 \ldots T \]

Polyak stepsize:

\[\eta_t = \frac{f(x_t) - f(x^*)}{\|g_t\|^2} \]

- Adaptivity: GD with Polyak stepsize is adaptive\(^1,2\). Nevertheless...

 - it is **inappropriate for stochastic** case!
 - requires prior knowledge of \(f(x^*) \)
 - does not obtain accelerated rates

The curious case of AdaGrad

Algorithm: General SGD

1: **Input:** Iterations T; x_1
2: **for** $t = 1, \ldots, T$ **do**
3: Obtain a gradient estimate g_t
4: $x_{t+1} = x_t - \eta_t g_t$
5: **end for**
6: **Output:** $\bar{x}_T = \frac{1}{T} \sum_{t=1}^{T} x_t$

AdaGrad (scalar)

$$\eta_t = \frac{D}{\sqrt{\sum_{\tau=1}^{t} \|g_{\tau}\|^2}}$$

AdaGrad’s Adaptivity

- **Non-smooth stochastic case:**
 $$\text{err}_T \leq GD / \sqrt{T}$$
- **Smooth stochastic case:**
 $$\text{err}_T \leq LD^2 / T + \sigma D / \sqrt{T}$$

The curious case of AdaGrad\(^1\)

Algorithm: General SGD

1. **Input:** Iterations \(T \); \(x_1 \)
2. **for** \(t = 1, \ldots, T \) **do**
3. Obtain a gradient estimate \(g_t \)
4. \(x_{t+1} = x_t - \eta_t g_t \)
5. **end for**
6. **Output:** \(\bar{x}_T = \frac{1}{T} \sum_{t=1}^{T} x_t \)

AdaGrad (scalar) \(^1\)

\[
\eta_t = \frac{D}{\sqrt{\sum_{\tau=1}^{t} \| g_{\tau} \|^2}}
\]

AdaGrad’s Adaptivity

- Non-smooth stochastic case:
 \[
 \text{err}_T \leq \frac{GD}{\sqrt{T}}
 \]
- Smooth stochastic case:
 \[
 \text{err}_T \leq \frac{LD^2}{T} + \frac{\sigma D}{\sqrt{T}}
 \]

AdaGrad does not accelerate! ⇒ Not ideal for parallelization

Towards an Accelerated Adaptive Method

- AdaGrad adapts to smoothness and noise but does not accelerate

\[
\text{AdaGrad: } \quad \text{err}_T \leq \frac{LD^2}{T} + \frac{\sigma D}{\sqrt{T}}
\]

\[
\text{Optimal Accelerated rate: } \quad \text{err}_T \leq \frac{LD^2}{T^2} + \frac{\sigma D}{\sqrt{T}}
\]

Q: Can we design a method that is both adaptive and accelerates?
AdaGrad with Importance Weights

Update rule:

$$x_{t+1} = x_t - \eta_t \alpha_t g_t \quad \text{(Weighted Gradients)}$$

Output:

$$\bar{x}_T \propto \sum_{t=1}^{T} \alpha_t x_t \quad \text{(Weighted Average)}$$

Weighted Learning rate:

$$\eta_t = \frac{D}{\sqrt{\sum_{\tau=1}^{t} \alpha_{\tau}^2 \|g_{\tau}\|^2}}$$
AcceleGrad \(^1\) Exploiting the linear coupling idea \(^2\)

\textbf{Algorithm:} AcceleGrad for unconstrained optimization

1: \textbf{Input:} Iterations \(T\); \(y_0, z_0 \in \mathbb{R}^p\)
2: \textbf{for} \(t = 0, \ldots, T - 1\) \textbf{do}
3: \hspace{1em} Obtain a gradient estimate \(g_t\) at \(x_t\)
4: \hspace{1em} \(\alpha_t \approx t + 1\)
5: \hspace{1em} \(\eta_t = D / \sqrt{G^2 + \sum_{t=0}^{t} \alpha_t^2 \|g_t\|^2}\)
6: \hspace{1em} \(x_{t+1} = \frac{1}{\alpha_t} z_t + (1 - \frac{1}{\alpha_t}) y_t\),

7: \hspace{1em} \(z_{t+1} = z_t - \alpha_t \eta_t g_t\)
8: \hspace{1em} \(y_{t+1} = x_{t+1} - \eta_t g_t\)
9: \textbf{end for}
10: \textbf{Output:} \(\bar{y}_T \propto \sum_{t=1}^{T} \alpha_t - 1 y_t\)

AcceleGrad1 Exploiting the linear coupling idea2

\textbf{Algorithm:} AcceleGrad for unconstrained optimization

1: \textbf{Input:} Iterations \(T; y_0, z_0 \in \mathbb{R}^p \)
2: \textbf{for} \(t = 0, \ldots, T - 1 \) \textbf{do}
3: \hspace{1em} Obtain a gradient estimate \(g_t \) at \(x_t \)
4: \hspace{1em} \(\alpha_t \approx t + 1 \)
5: \hspace{1em} \(\eta_t = D / \sqrt{G^2 + \sum_{t=0}^{t} \alpha_t^2 \|g_t\|^2} \)
6: \hspace{1em} \(x_{t+1} = \frac{1}{\alpha_t} z_t + (1 - \frac{1}{\alpha_t}) y_t, \)
7: \hspace{1em} \(z_{t+1} = z_t - \alpha_t \eta_t g_t \)
8: \textbf{end for}
9: \textbf{Output:} \(\bar{y}_T \propto \sum_{t=1}^{T} \alpha_t - 1 \ y_t \)

AcceleGrad\(^1\) Exploiting the linear coupling idea\(^2\)

Algorithm: AcceleGrad for unconstrained optimization

1. **Input:** Iterations \(T\); \(y_0, z_0 \in \mathbb{R}^p\)
2. **for** \(t = 0, \ldots, T - 1\) **do**
3. Obtain a gradient estimate \(g_t\) at \(x_t\)
4. \(\alpha_t \approx t + 1\)
5. \(\eta_t = \frac{D}{\sqrt{G^2 + \sum_{\tau=0}^{t} \alpha_\tau^2 \|g_\tau\|^2}}\)
6. \(x_{t+1} = \frac{1}{\alpha_t}z_t + \left(1 - \frac{1}{\alpha_t}\right)y_t,\)
7. \(z_{t+1} = z_t - \alpha_t \eta_t g_t\)
8. \(y_{t+1} = x_{t+1} - \eta_t g_t\)
9. **end for**
10. **Output:** \(\bar{y}_T \propto \sum_{t=1}^{T} \alpha_t - 1 y_t\)

AcceleGrad\(^1\) Exploiting the linear coupling idea\(^2\)

Algorithm: AcceleGrad for unconstrained optimization

1. **Input:** Iterations \(T\); \(y_0, z_0 \in \mathbb{R}^p\)
2. **for** \(t = 0, \ldots, T - 1\) **do**
 3. Obtain a gradient estimate \(g_t\) at \(x_t\)
 4. \(\alpha_t \approx t + 1\)
 5. \(\eta_t = D/\sqrt{G^2 + \sum_{\tau=0}^{t} \alpha_\tau^2 \|g_\tau\|^2}\)
 6. \(x_{t+1} = \frac{1}{\alpha_t} z_t + (1 - \frac{1}{\alpha_t}) y_t\)
 7. \(z_{t+1} = z_t - \alpha_t \eta_t g_t\)
 8. \(y_{t+1} = x_{t+1} - \eta_t g_t\)
3. **end for**
4. **Output:** \(\bar{y}_T \propto \sum_{t=1}^{T} \alpha_t - 1 y_t\)

Comments

1. AcceleGrad does not require \(L, \sigma\), but requires \(G, D\)
2. Cannot handle constraints!
3. Optimal Accelerated guarantees up to \(\log T\) factors!
 \(\Rightarrow\) practical and effective parallelization

Logistic regression
- Data: RCV1
- Oracle: stochastic updates, different mini-batch size

Figure 5: Comparison of AdaGrad and AcceleGrad for logistic regression task using different minibatch sizes. We display the averaged iterates, \bar{y}_T (top), as well as the non-averaged iterates, y_t (bottom). Both methods use the same parameter $D = 104$.

Figure 6: Comparison of AdaGrad and AcceleGrad for training SVM using different minibatch sizes. We display the averaged iterates, \bar{y}_T (top), as well as the non-averaged iterates, y_t (bottom). Both methods use the same parameter $D = 104$.
Towards an Accelerated Adaptive Method

Next, new techniques for achieving adaptive acceleration for constrained problems,

- Adaptive Learning rate ✓
- Importance weighting ✓
- Mirror Prox updates ←
- Querying gradients at **averages**
Nemirovski’s Mirror Prox

Mirror Prox update:

\[x_{t+1} = x_t - \eta_t h_t \]

“Good” hints:

when \(h_t \approx \nabla f(x_{t+1}) \) \(\Rightarrow \) better performance
Nemirovski’s Mirror Prox\(^1\)

Mirror Prox method

1. Standard GD update: \(x_{t+\frac{1}{2}} = x_t - \eta_t \nabla f(x_t) \)
2. Taking a hint: \(h_t = \nabla f(x_{t+\frac{1}{2}}) \)
3. Optimistic update: \(x_{t+1} = x_t - \eta_t h_t \)

Intuition: when \(f \) is smooth \(h_t \approx \nabla f(x_{t+1}) \Rightarrow \) better performance when \(f \) is non-smooth \(h_t \) might not help, but is does not hurt to use it

\(^1\) A. Nemirovski, “Prox-method with rate of convergence \(O(1/t) \) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems.”, SIAM Journal on Optimization, 2004.
Nemirovski’s Mirror Prox

Mirror Prox method

1. Standard GD update: \[x_{t+\frac{1}{2}} = x_t - \eta_t \nabla f(x_t) \]
2. Taking a hint: \[h_t = \nabla f(x_{t+\frac{1}{2}}) \]
3. Optimistic update: \[x_{t+1} = x_t - \eta_t h_t \]

Intuition:

when \(f \) is smooth \(h_t \approx \nabla f(x_{t+1}) \) \(\Rightarrow \) better performance
when \(f \) is non-smooth \(h_t \) might not help, but is does not hurt to use it

\(^1\) A. Nemirovski, “Prox-method with rate of convergence \(O(1/t) \) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems.”, SIAM Journal on Optimization, 2004.
Nemirovski’s Mirror Prox¹

- Mirror Prox also works in stochastic case

Mirror Prox method

1. Standard GD update: $x_{t+\frac{1}{2}} = x_t - \eta_t g_t$
2. Taking a hint: h_t
3. Optimistic update: $x_{t+1} = x_t - \eta_t h_t$

where,

$$
\mathbb{E}[g_t|x_t] = \nabla f(x_t) \quad \& \quad \mathbb{E}[h_t|x_t] = \nabla f(x_{t+\frac{1}{2}})
$$

Towards an Accelerated Adaptive Method

- Combining the techniques below ⇒ adaptive acceleration
 - Adaptive Learning rate ✓
 - Importance weighting ✓
 - Optimistic updates ✓
 - Querying gradients at **averages** ✓
Towards an Accelerated Adaptive Method

Algorithm: AdaGrad

1: **Input:** Iterations T; $x_1 \in X \subset \mathbb{R}^d$
2: **for** $t = 1, \ldots, T$ **do**
3: Obtain a gradient estimate g_t at x_t
4: Set:
 $$\eta_t = D / \sqrt{\sum_{\tau=1}^{t} \|g_{\tau}\|^2}$$
5: **Update:**
 $$x_{t+1} = x_t - \eta_t g_t$$
6: **end for**
7: **Output:** $\bar{x}_T \propto \sum_{t=1}^{T} x_t$

- Adaptive Learning rate ✓
- Importance weighting
- Optimistic updates
- Querying gradients at averages
Towards an Accelerated Adaptive Method

Algorithm: **Weighted AdaGrad**

1. **Input:** Iterations T; $x_1 \in \mathcal{X} \subset \mathbb{R}^d$
2. **for** $t = 1, \ldots, T$ **do**
 3. Set weight $\alpha_t = t$
 4. Obtain a gradient estimate g_t at x_t
 5. Set:
 $$\eta_t = D / \sqrt{\sum_{\tau=1}^{t} \alpha_{\tau}^2 \|g_{\tau}\|^2}$$
 6. Update:
 $$x_{t+1} = x_t - \eta_t \alpha_t g_t$$
3. **end for**
4. **Output:** $\bar{x}_T \propto \sum_{t=1}^{T} \alpha_t x_t$

- Adaptive Learning rate ✓
- Importance weighting ✓
- Optimistic updates
- Querying gradients at averages
Towards an Accelerated Adaptive Method

Algorithm: Mirror Prox Weighted AdaGrad

1. **Input:** Iterations T; $x_1 \in \mathcal{X} \subset \mathbb{R}^d$
2. **for** $t = 1, ..., T$ **do**
3. Set weight $\alpha_t = t$
4. Obtain a gradient estimate g_t at x_t
5. Set:
 \[\eta_t = \frac{D}{\sqrt{1 + \sum_{\tau=1}^{t-1} \alpha_\tau^2 \|g_\tau - h_\tau\|^2}} \]
6. **Update:**
 \[x_{t+\frac{1}{2}} = x_t - \eta_t \alpha_t g_t \]
 Compute h_t an unbiased gradient estimate at $x_{t+\frac{1}{2}}$
 \[x_{t+1} = x_t - \eta_t \alpha_t h_t \]
7. **end for**
8. **Output:** $\bar{x}_T \propto \sum_{t=1}^{T} \alpha_t x_t$
UnixGrad - Universal eXtra Gradient method

Algorithm: UnixGrad1 = Anytime Optimistic Weighted AdaGrad

1. **Input:** Iterations T; $x_1 \in \mathcal{X} \subset \mathbb{R}^d$, weights $\alpha_t = t$
2. **for** $t = 1, \ldots, T$ **do**
3. Obtain a gradient estimate g_t at $\bar{x}_t \propto \alpha_t x_t + \sum_{\tau=1}^{t-1} \alpha_\tau x_\tau + \frac{1}{2}$
4. Set:
 \[\eta_t = \frac{D}{\sqrt{1 + \sum_{\tau=1}^{t-1} \alpha_\tau^2 \|g_\tau - h_\tau\|^2}} \]
5. **Update:**
 \[x_{t+\frac{1}{2}} = x_t - \eta_t \alpha_t g_t \]
 Compute h_t an unbiased gradient estimate at $\bar{x}_{t+\frac{1}{2}} \propto \alpha_t x_{t+\frac{1}{2}} + \sum_{\tau=1}^{t-1} \alpha_\tau x_{\tau+\frac{1}{2}}$
 \[x_{t+1} = x_t - \eta_t \alpha_t h_t \]
6. **end for**
7. **Output:** $\bar{x}_{T+\frac{1}{2}} \propto \sum_{t=1}^{T} \alpha_t x_{t+\frac{1}{2}}$

UnixGrad - an Adaptive Accelerated Optimal Method

- UnixGrad ensures optimal guarantees,
 1. $O\left(\frac{GD}{\sqrt{T}}\right)$ - non-smooth deterministic/stochastic
 2. $O\left(\frac{LD^2}{T^2}\right)$ - smooth deterministic case
 3. $O\left(\frac{LD^2}{T^2} + \frac{\sigma D}{\sqrt{T}}\right)$ - smooth stochastic case

- Comments:
 - UnixGrad adapts to G, L, σ^2, but requires a bound on D
 - UnixGrad can be applied to constrained problems
 - No guarantees for non-convex problems!

Neural network training: ADAM vs. AcceleGrad

Figure: Resnet classifier optimization (train loss)

Figure: Resnet classifier optimization (test loss)
Conclusions

- Adaptive accelerated methods ⇒ **practical and efficient acceleration.** Still...lots of interesting questions.

Adaptive methods for non-convex problems,
- AdaGrad adapts to smoothness and noise in non-convex problems\(^1\).
 - Can we design an accelerated adaptive method?
- Can we design adaptive methods that provide stronger guarantees rather than stationarity?
- Is there a prevalent non-convex structure that we can adaptively exploit? (other than smoothness and noise)

Strong-convexity is a property that often arises in regularized problems, Simple algorithms automatically adapt to strong convexity under broad assumptions
- GD achieves linear rate with \(\eta = 1/L\), & SGD achieves \(O(1/T)\)-rate with \(\eta_t = O(1/t)\)
- PDHG achieves linear rate under metric subregularity\(^2\)

- Adaptive methods are promising but are not yet truly universal...
 - AdaGrad/Accelegrad/UniXgrad does not adapt to strong convexity
 - Adam-type does not adapt to strong convexity
 - MetaGrad comes close but is not universal yet\(^5\)

- Still seeking one algorithm to rule them all!
