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One formula to rule all ML & SP problems

f*= min f(z) (argmin — z*)
zT:rxEX

o Growing interest in first-order gradient methods® due to their scalability and generalization performance

L\ an, Guanghui. First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020
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One formula to rule all’ ML & SP problems ...and one algorithm to solve them.

f*= min f(z) (argmin — z*)
T:x€X

o Growing interest in first-order gradient methods® due to their scalability and generalization performance
o In the sequel, the set X is convex:
»Ve,y e X Va€l0,1], azr+(l-a)yecX.

o In the sequel, the function f may be convex:

> flaz+ (1 —a)y) <af(z)+ (1 —a)f(y), Vr,y € X, VYa€[0,1].

L\ an, Guanghui. First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020
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One formula to rule all’ ML & SP problems ...and one algorithm to solve them.

f*= min f(z) (argmin — z*)
T:x€X

o Growing interest in first-order gradient methods® due to their scalability and generalization performance
o In the sequel, the set X is convex:
»Ve,y e X Va€l0,1], azr+(l-a)yecX.

o In the sequel, the function f may not be convex:

> flaz + (1 — a)y)Xof(z) + (1 - o) f(y), Vz,y € X, Va€[0,1].

L\ an, Guanghui. First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020
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Application: Deep learning via empirical risk minimization
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Definition (Optimization formulation)

The deep-learning training problem is given by

n
1
* : — . .
ey Earggrcrélgré flz) = - E L(hz(a;),b;) p,
i=1

where X’ denotes the constraints on the parameters.

o A single hidden layer neural network with params z := [X1, Xa, 1, 2]

activation weight input bias bias
1 4
he(a) = | Xg o X1 al+{p| |+ |pe
hidden layer = learned features
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Loss function examples

0-1 loss
= Hinge loss

§ | TECHNION

Definition (Hinge loss)

For a binary classification problem, the hinge loss for a score value b1 € R
and class label by € 1 is given by L(b1,b2) = max (0,1 — b1 X ba).

Definition (¢,-losses)

For all by,b2 € R™ X R™, we can use Lq(b1,b2) = ||by — b2]|d, where

lg-norm: ||b]|3 := 2?21 [b;|? for b € R™ and g € [1,00)

Definition (Wasserstein distance)

Let 1 and v be two probability measures on R% an define their couplings
as I'(u, v) := {m probability measure on R? x R% with marginals y, v}.

1/2
W (p,v) = ( inf B )or |z — y||2)

mE€ (p,v)
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A basic iterative strategy

f*= min f(z) (argmin — z*)
rreX

General idea of an optimization algorithm

Guess a solution, and then refine it based on oracle information.

Repeat the procedure until the result is good enough.
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Basic principles of descent methods

Template for iterative descent methods

1. Let g € X be a starting point.

2. Generate a sequence of vectors 1, z2, -+ € X so that we have descent:
f($t+1) < f(z¢), forallt=0,1,...

until z; satisfies f(z¢) — f* <e.

Such a sequence {zt},~ can be generated as:
Ti4+1 = Tt + Pt
where p: is a descent direction and o > 0 a step-size.

Remarks: o lterative algorithms can use various oracle information in the optimization problem
o The type of oracle information used becomes a defining characteristic of the algorithm
o Example oracles: Objective value, gradient, and Hessian result in 0-th, 1-st, 2-nd order methods

o The oracle choices determine « and p; as well as the overall convergence rate and complexity

[ -1
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First-order methods use subdifferentials & gradients

- )+ e —y)

T -y @ | 4 e J) + (Vi) — )

Definition (Subdifferential)

The subdifferential of f at x, denoted df(z), is the set of all vectors v satisfying

fW) = f(@) + v,y —2) +o(lly —zl) asy— =

If the function f is differentiable, then its subdifferential contains only the gradient.
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Basic principles of descent methods (X' = R?)

o Recall the representation of the algorithmic iterates:

Tp41 = Tt + tpr. ot + D(f, z¢)

o For a differentiable f, apply Taylor's theorem with a; = o(1)

level gete

F(zer1) = f(@e) + ae(VF(ze), pe) + O [pe]13)-
. Figure: Descent directions in 2D should be an
o To obtain f(z¢41) < f(xt), we need (V f(xt), pt) < 0! element of the cone of descent directions D(f, -).

Observations: o The local steepest descent direction is the negative gradient p; := —V f(x¢)

> (Vf(xt), pe) = [V (@o)llllpt] cos 6
> 0 is the angle between V f(z¢) and p;

o We can use a subgradient p; € —9f(z¢) as a descent direction

cpe
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Brief detour: Gradients of vector valued functions

Jacobian
When f : R™ =33 R is a vector valued function, the following d x n matrix J of partial derivatives!
fi
J =
(5@, ; = 55, @)

is called the Jacobian of f at z.

Observations: o The Jacobian is the transpose of the gradient, when f is real valued.
o Thinking in terms of Jacobians is really helpful when we need to use the chain rule.
Chain Rule via Jacobians
Let o denote the functional composition: go f := g(f(x)). If go f is differentiable at z, then the following holds
Jgor (@) = Jg(f ()T ().

Hence, the chain rule, which is helpful in differentiating function compositions, can be related to a simple
product of Jacobian matrices.

L\We overload the notation x; to denote ith coordinate when it is clear from the context. When we have Tt, We use Ty ;.

cpr-
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An example
Example

The gradient of f : x — sza(Wlx + p) is given by the following expression:

Vi) =Jsx)" =W/ (¢/(Wiz + p) © wa),

where o is a non-linear function that applies to each coordinate, and ® denotes the component wise product.

Proof: f is a composition of the functions kogoh
> h(x) = Wiz + p, whose Jacobian is Jp, (z) = Wi.
o(x1)
> g(z) = , whose Jacobian is J4(z) = diag(o’(z1),...,0'(zn)).
o(zn)
» k(z) = w] = whose Jacobian is Jj(z) = wj .

> By the chain rule, we have that
Jp(@) = e (g(h(z))) - Ig(h(x)) - Tn(z)
=w, -diag(o’((Wiz + pl1),..., 0 (Wiz + pln)) - W
Simply transpose the Jacobian to get the gradient and use © to replace the diagonal matrix.
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A simple iterative algorithm: Gradient descent

N

> Choose initial point: zg.
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A simple iterative algorithm: Gradient descent

%,;‘V]‘c(”r'o)

L >~ best direction

» Choose initial point: xg.

> Take a step in the negative gradient direction with a step size a > 0:
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A simple iterative algorithm: Gradient descent

%,;‘V]‘c(”r'o)

>“e- best-direction |

» Choose initial point: xg.
» Take a step in the negative gradient direction with a step size a > 0: z¢41 = ¢ — aV f(z¢).

> Repeat this procedure until z¢ is accurate enough.
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Challenges for an iterative optimization algorithm

Problem

Find the minimum z* of f(x), given starting point xo based on only local information.

> Fog of war
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Challenges for an iterative optimization algorithm

Problem

Find the minimum x* of f(x), given starting point xo based on only local information.

> Fog of war, non-differentiability, discontinuities, local minima, stationary points...

f(@)
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A notion of convergence: Stationarity
o Let f: RP — R be twice-differentiable and z* = mingerr f(x)

Gradient method

Choose a starting point o and iterate
Ti41 = 2t — aV f(xe)

where o > 0 is a step-size to be chosen so that x; converges to z*.

Definition (First order stationary point (FOSP))

A point Z is a first order stationary point of a twice differentiable function f if

Vf(z)=0.
Fixed-point characterization
Multiply by -1 and add Z to both sides to obtain the fixed point condition:

z=z—aVf(x) for all a € R.
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Geometric interpretation of stationarity

f(=)

Observation: o Neither z, nor Z is necessarily equal to z* !!

Proposition (*Local minima, maxima, and saddle points)

Let T be a stationary point of a twice differentiable function f.
> If V2f(Z) = 0, then the point & is called a local minimum or a second order stationary point (SOSP).
> If V2f(Z) < 0, then the point & is called a local maximum.

- If VQf(E) = 0, then the point & can be a saddle point, a local minimum, or a local maximum.
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Local minima

: 4
min{z

daf

dx

Choose zg =0 and o =

xlzxo—aﬁ

5

xgz—ﬁ
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dx |m:m0

—32° + 2° + 3z}

:4:1:3—9952—i—2:1:—|—§

2

—1

L4

local minimum
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global minimum

x4 converges to a local minimum!
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From local to global optimality
Definition (Local minimum)
Given f: RP — R U {400}, a vector z* € RP is called a local minimum of f if there exists € > 0 s.t.

f(z*) < f(z) Vz €RP with |z —2*| <e

Theorem

If Q C RP is a convex set and f: RP — (—oo, +00] is a proper convex function, then a local minimum of f over
Q is also a global minimum of f over Q.

Proof.
Suppose z* is a local minimum but not global, i.e. there exist z € RP s.t. f(z) < f(z*). By convexity,
flaa* + (1 - a)a) < af(a*) + (1 — a)f(@) < f(@*),Ya € [0, 1]
which contradicts the local minimality of x*. m]

Theorem
Let f: RP — R be a convex differentiable function. Then any stationary point of f is a global minimum.



Effect of very small step-size «...

1 2
i PR

df

dx
T
0 1 2
Choose 29 = 5 and a« = %
_ df _ 1o __
T = x9 — aﬂ{x:xo =5— 1—02 =4.8
vy =a —aff| _=48-51.8=1462

) T converges very slowlx:.
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Effect of very large step-size a...

min i(x —3)2

af
% = r —
X
5 6
i) X9

Choose 29 = 5 and a« = %

— df
71 =0~ gy,

d

.’132 = xl - a%‘z:ml -
x; diverges.
ePFL
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A geometrical intuition:

How does smoothness help?
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A geometrical intuition: How does smoothness help?

Structure in optimization: * k

(1) F0) 2 f(x) + (V) x —xF)
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A geometrical intuition: How does smoothness help?

Majorize:
FO6) < FO) (70,3 x¥) + £ = x4 = Qo)
Minimize:

xF1 = argmin Qy (x, x*)
x

1 2 f(x)
= argmin ||x — <x1c - 7Vf(xk)>
x L i
= x = 1Y) \, B
L P
Structure in optimization: <* xh+1 ik

(1) F0) = fx) +(VF(x),x - %) .
(2)  fO) < FOP) (V) x = x) + Sl = xF 3
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A geometrical intuition: How does smoothness help?

Majorize:

L'>L (2)

F) < F) + (V") % = x5) + %HX* x* 3 = Que(x, %)

Minimize:

xF*1 = arg min Qr (%, xk)
x

2
= arg m)in — <xk %Vf(x’ﬂ)

x _
=xF— %Vf(xk) \q

f(x)

slower

Structure in optimization: * 3. k
(1) 00 = fF(x") + (V") x = xb) I xFH1
2 fx) Sf(xk)+<Vf(xk),x—xk>+§|\x—xk||§
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Stationarity measures with constraints & non-smoothness

‘ » VI (@0)

“&To BESRE e
~an(1'§\

=%

o Smooth: Gradient mapping norm
> |Ga(ze)|? = gz llee — Px(ze — aVif(z)lI?
» Py denotes the projection operator to X'

> possible to compute

o Non-smooth: Generalized subdifferential distance
> dist(0, d(f (1) + dx (z¢)))?
> Oy refers to the indicator function for the set X’

> hard in general (even approximately)

Adaptive Optimization Methods | Volkan Cevher, https://lions.epfl.ch
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The one formula is very flexible

(b*

min max ®(z,y) (argminargmax — z*,y*)
r:x€X y:yey
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The one formula is very flexible

®* = min max ®(z,y) (argminargmax — x*,y*)
r:x€X y:yey
f(=)

f*= min f(z) (argmin — z*)
X
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Application: Adversarial training

Figure: (Left) An £,-attack: The alteration is hard to perceive. (Right) An £;-attack: The alteration in this case is obvious.

Adversarial Training

Let hy : R™ — R be a model with parameters = and let {(a;, b;) ™ ., with the data a; € RP and the labels b;.
The problem of adversarial training is the following adversarial optimization problem

— L(h b;)| ~ minE ~ L(h b;
min Z[nlﬁ}rﬁie « (a; +n), )] min (a,b)]P’|:ma|X< (ha (i +1),b;)

Note the similarity with the template mingcx maxycy ®(z,y).
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Danskin’s theorem

Danskin's theorem (Bertsekas variant)

Let ®(z,y) : RP x Y — R, where ) C R™ is a compact set and define f(z) := max,cy ®(z,y). Let ®(z,y) is

an extended real-valued closed proper convex function for each y in the compact set ; the interior of the
domain of f is nonempty; ®(z,y) is jointly continuous on the relative interior of the domain of f and Y.

Define Y* := arg max,cy ®(z,y) as the set of maximizers and y* € Y* as an element of this set. We have

1. f(x) is a convex function.
2. If y* = argmax,cy ®(x,y) is unique, then the function f(z) = max,cy ®(x,y) is differentiable at x:

Vzf(z) =V <max¢>(m, y)> = Vo ®(z,y").
yey

3. If y* = argmaxycy ®(x,y) is not unique, then the subdifferential 0, f(x) of f is given by

Oz f(x) = conv {0, P(z,y*) : y* € YV*}.

Remarks: o The adversarial problem is not convex in x in general.
o With proper initialization, overparameterization works argue that it is effectively convex.

o (Sub)Gradients of f; are calculated as 9f;(z) = Vg L(ha (a; +n*(2)), bs).
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A corollary to Danskin’s theorem

Adversarial Training V(@)

Let hy : R™ — R be a model with parameters x and let {(a;, i)},
with a; € RP and b; be the corresponding labels. The adversarial
training optimization problem is given by @i+ D(f,x1)

n

1 — 1
min { — fi(x) = — max L(hg (a; +1),b;
Ed n ; @) ’VLZI [ntlnloo<e (e ( )be)

i=

level cete

Figure: Descent directions in 2D
=:f; () should be an element of the cone of
descent directions D(f, -).
L is not continuously differentiable due to ReLU, max-pooling, etc.

Descent directions [4]

Define Y* := arg max,cy ®(x,y) as the set of maximizers, y* € Y*, and f(z) := maxycy ®(x,y). As long as
Vz®(x,y*) is non-zero, it is a descent direction (and not a subgradient!) for f(x).

Remarks: o VzL(he (a; +n*(2)),b;) is a descent direction for f;(z).
o We cannot find global maximizers Y*.

o Only when y* is a singleton, Vo L(hs (a; + n*(x)), ;) is a (sub)gradient [1].

Q\IECHN‘!Q!:! Adaptive Optimization Methods | Volkan Cevher, https://lions.epfl.ch Slide 25/ 29 =



A more general minimax problem: Generative adversarial networks

Vanilla GAN [2]

;rgg ryneax Ea~py, [logdy(a)] + Bw~pg [log (1 — dy (ha(w)))] (1)

> Binary cross-entropy modeling.

> dy(a) : J — [0, 1] represents the probability that a came from the real data distribution 1.

output

Figure: Schematic of a generative model, h,(w) [2, 3].
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Worst-case iteration complexities of classical projected first-order methods'?

f(z) gradient oracle L-smooth Stationarity measure GD/SGD Accelerated GD/SGD
. _fx — 1 1
Convex stochastic yes flzy) — fF = (@] ( \/E) (@) ( \/Z)
Convex deterministic yes flze) — fF = (@] (%) (@] (f%)
. _oex 1 1
Convex stochastic no flzy) — fF = (@) ( \/?) (@] ( ﬁ)
i 2 _ 13 133
Nonconvex stochastic yes [[Gy(ze)|l* = (@] ( \ﬁ) (@] ( \ﬁ)
Nonconvex deterministic yes HG,,(zt)Hz = o %)4 (@] %)4
Nonconvex stochastic no dist(0, O(f(x¢) + Sx (w4)))2 = 7356 7356

o Basic structures, such as smoothness or strong convexity, help, but there are more structures that can be used:

> max-form, metric subregularity, Polyak-Lojasiewicz, Kurdyka-Lojasiewicz, weak convexity,3 growth cond...

1Y Nesterov, “Introductory lectures on convex optimization: A basic course,” Springer Science, 2013

2y Carmon, J.C. Duchi, O. Hinder, and A. Sidford, “Lower bounds for finding stationary points I-II." Mathematical Programming, 2019.

3D. Davis and D. Drusvyatskiy, “Stochastic model-based minimization of weakly convex functions,” SIOPT, 2019

4S. Ghadimi and G. Lan, “Accelerated gradient methods for nonconvex nonlinear and stochastic programming,” MathProg, 2016.

5J. Zhang, et al., “On complexity of finding stationary points of nonsmooth nonconvex functions,” arXiv:2002.04130, 2020.
6O Shamir, "Can We Find Near-Approximately-Stationary Points of Nonsmooth Nonconvex Functions?" arXiv:2002.11962, 2020
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Worst-case iteration complexities of classical projected first-order methods'?

f(z) gradient oracle L-smooth Stationarity measure GD/SGD Accelerated GD/SGD
Convex stochastic yes flzy) — f* = [@] (%) (@] (%)
Convex deterministic yes flze) — fF = ] (%) ] (t%)
Convex stochastic no flze) — f* = (@} (%) (@} (%)
Nonconvex stochastic yes HGn(act)H2 = ] (\%)3 O (\%)3
Nonconvex deterministic yes Gy (ze)l|? = o %)4 o %)4
Nonconvex stochastic no dist(0, O(f(x¢) + Sx(x))? = 7356 7356

at the end of the presentation

o Basic structures, such as smoothness orW

» max-form, metric subregularity, Polyak-Lojasiewicz, Kurdyka-Lojasiewicz, weak convexity,3 growth cond...

1Y Nesterov, “Introductory lectures on convex optimization: A basic course,” Springer Science, 2013

2y Carmon, J.C. Duchi, O. Hinder, and A. Sidford, “Lower bounds for finding stationary points I-II." Mathematical Programming, 2019.
3D. Davis and D. Drusvyatskiy, “Stochastic model-based minimization of weakly convex functions,” SIOPT, 2019

4S. Ghadimi and G. Lan, “Accelerated gradient methods for nonconvex nonlinear and stochastic programming,” MathProg, 2016.

5J. Zhang, et al., “On complexity of finding stationary points of nonsmooth nonconvex functions,” arXiv:2002.04130, 2020.

50 Shamir, "Can We Find Near-Approximately-Stationary Points of Nonsmooth Nonconvex Functions?" arXiv:2002.11962, 2020
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Worst-case is often too pessimistic

o GD: 441 = mt — %Vf(zt) o Rates are not everything!

> overall computational effort is what matters

> H H
Global quadratic upper bound constants &implementations are key

Qr(x, x)

. . L .1 © Knowledge of smoothness, the value of L,...
o iy = argmin{ f(e) + (VS (@) = 20) + 5o - a3

> challenging

IVf(z) = VWl < Ly - |

L is a global worst-case constant

f(@) < flwn) + (V@) w — ) + gH«I? — a3

o Must “somehow” adapt to a “different” function

> online and without knowing L

» can reduce overall computational effort!
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