
Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 7: Optimization for Deep Learning
Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2019)



License Information for Mathematics of Data Slides

I This work is released under a Creative Commons License with the following terms:
I Attribution

I The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

I Non-Commercial
I The licensor permits others to copy, distribute, display, and perform the work. In return,

licensees may not use the work for commercial purposes – unless they get the licensor’s
permission.

I Share Alike
I The licensor permits others to distribute derivative works only under a license identical

to the one that governs the licensor’s work.
I Full Text of the License

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 63

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode


Outline

• This class
I From convex to nonconvex optimization
I Backpropagation
I Convergence of SGD in nonconvex problems
I Escaping saddle points
I Overparametrization
I Generative Adversarial Networks
I Reinforcement Learning
• Next class
I Composite convex minimization

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 63



Recommended reading material

I I. Goodfellow; Y. Bengio and A. Courville Deep Learning, Chapters 6 and 8. MIT
Press. 2016.

I R. Ge; F. Huang; C. Jin and Y. Yuan Escaping from saddle points: Online
stochastic gradient for tensor decomposition In Conference on Learning Theory.
2015.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 63



Remark about notation for this lecture

For consistency with the deep learning literature, we use the following notation:

Previous lectures This lecture
data/sample a x

label b y
bias µ b

weight x W,β,B

Parameters are usually named weights and biases and are denoted by W and b,
respectively.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 63



Power of linear classifiers–I

Problem (Recall: Logistic regression)
Given a sample vector xi ∈ Rd and a binary class label yi ∈ {−1,+1} (i = 1, . . . , n),
we define the conditional probability of yi given xi as:

P(yi|xi, β) ∝ 1/(1 + e−yi(〈β,xi〉)),

where β ∈ Rd is some weight vector.

Figure: Linearly separable versus nonlinearly separable dataset

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 63



Power of linear classifiers–II

• Lifting dimensions to the rescue
I Convex optimization objective
I Might introduce the curse-of-dimensionality
I Possible to avoid via kernel methods, such as SVM

x

y

x
y

z

Figure: Non-linearly separable data (left). Linearly separable in R3 via z =
√
x2 + y2 (right).

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 63



An important alternative for non-linearly separable data

Definition (1-hidden-layer network with m neurons)

f(x;β,W, b) = βT σ(Wx + b)

• Parameters: β ∈ Rm, W ∈ Rm×d (weights), b ∈ Rm (bias)
• Activation function: σ : R→ R

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 63



Why neural networks?: An approximation theoretic motivation

Caveat
The number of neurons m needed to
approximate some function g can be
exponentially large!

Theorem (Universal approximation (Cybenko, 1989) [2])
Let σ(·) be a nonconstant, bounded, and increasing continuous function. Let
Id = [0, 1]d. The space of continuous functions on Id is denoted by C(Id).

Given ε > 0 and g ∈ C(Id) there exists a 1-hidden-layer network f with m neurons
such that f is an ε-approximation of g, i.e.,

sup
x∈Id

|g(x)− f(x)| ≤ ε

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 63



Why were NNs not popular before 2010?

I too big to optimize!
I did not have enough data
I could not find the optimum via algorithms

1

1

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 63



A natural generalization: Multilayer neural networks

Definition (2-hidden-layer network)

f(x;β,W1, b1,W2, b2) = βT σ(W2σ(W1x + b1) + b2)

• Parameters: β,W1,W2 (weights) b1, b2 (biases) of appropriate size.

k-layer networks are constructed analogously

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 63



The Landscape of ERM with multilayer networks

Recall: Empirical risk minimization (ERM)
Let f : Rn → R be a multilayer network and let {(xi, yi)}ni=1 be a sample with
yi ∈ {−1, 1} and xi ∈ Rn. The empirical risk minimization (ERM) is defined as

min
θ

{
Rn(θ) :=

1
n

n∑
i=1

L(f(xi; θ), yi)

}
(1)

where L(f(xi; θ), yi) is the value of a loss function on the sample (xi, yi) and θ are
the parameters of a network f .

Some frequently used loss functions
I L(f(x), y) = log(1 + exp(−yf(x))) (logistic loss)
I L(f(x), y) = (y − f(x))2 (squared error)
I L(f(x), y) = max(0, 1− yf(x)) (hinge loss)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 63



The Landscape of ERM with multilayer networks

1

Figure: convex (left) vs non-convex (right) optimization landscape

Conventional wisdom in ML until 2010:
Simple models + simple errors

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 63



Why is the loss non-convex?

Example
Consider a 1-hidden-layer network
f : R→ R with activation function
σ(x) = x, one hidden node and no bias

f(x;w1, w2) = w2w1x

with w1, w2 ∈ R. For a sample
(x0, y0) = (1, 1) the squared error is

(y0 − f(x0;w1, w2))2 = (1− w2w1)2

Show that it is neither convex nor concave.

w1
−2−1012

w
2

−2−1
0

1
2

z

5

10

15

20

25

Figure: Loss surface (1 − w2w1)2

• non-convexity even though activation function σ is linear

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 63



What is the role of the activation function σ?

Theorem (Universal approximation
(Leshno, 1993) [12])
1-hidden-layer networks have the universal
approximation property if and only if σ is
continuous and not a polynomial.

Example
I If σ(x) = x, the network computes an

affine function.
I W2(W1x+ b1) + b2 = Wx+ b.
I Cannot approximate non-affine

functions.

ReLU: Rectified Linear Unit
σ(x) = max(0, x)

−10 −5 0 5 10

0

2

4

6

8

10
ReLU

σ(x) = Tanh(x)

−10 −5 0 5 10

−1.0

−0.5

0.0

0.5

1.0
Tanh

Figure: some activation functions for which universal approximation holds

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 63



Supervised learning: Multi-class classification
• So far: Only single output networks

Figure: CIFAR10 dataset: 60000 32x32 color
images (3 channels) from 10 classes

Figure: MNIST dataset: 60000 28x28 grayscale
images (1 channel) from 10 classes

Goal
Image-label pairs (x, y) ⊆ Rd × {1, . . . , c} follow an unknown distibution P. Find
f : Rd → {1, . . . , c} with minimum misclassification probability

min
f∈F

P(f(x) , y)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 63



Using networks for multi-class classification

Definition (Multi-output network)
A 1-hidden-layer network with c outputs
f : Rd → Rc is defined as

f(x;W1, b1, B) := Bσ(W1x + b1)

with b1 ∈ Rd, W1 ∈ Rm×d and B ∈ Rc×m.

• Single output networks correspond to c = 1 Figure: Multi-output 1-layer network

Definition (Score-based classifier)
For a network f define if : Rd → {1, . . . , c} as

if (x) = arg max
i∈{1,...,c}

fi(x)

Example:

f(x0) =

 0.1
−0.8
1.4
1.1

 =⇒ if (x0) = 3

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 63



Cross-entropy loss for multiclass classification

• Goal: define a differentiable loss that correlates with misclassification error

Definition (Cross-entropy loss)
Let x ∈ Rd be a sample with label y ∈ {1, . . . , c}

L(f(x), y) = − log
(

exp(f(x)y)∑c

j=1 exp(f(x)j)

)

f(x0) =

 0.1
−0.8
1.4
1.1

 L(f(x0), 2) = 2.95

L(f(x0), 3) = 0.75

Generalizes logistic loss to multi-class problems

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 63



Minimization of the loss function

In order to use first order methods, we need to derive the gradient

∇θRn(θ) :=
1
n

n∑
i=1

∇θL(f(xi; θ), yi) :=
1
n

n∑
i=1

∇θLi(θ) (2)

where θ = [W1, b1, . . . ,Wk, bk, β] are the weights and biases of the network.

Example (Naive computation of the gradient)
Let f(x;W,β) = βT σ(Wx), and Li(W,β) = (yi − βT σ(Wxi))2 be the loss on a
sample, then

∂Li
∂β

= −2(yi − βT σ(Wxi))σ(Wxi) (3)

∂Li
∂W

= −2(yi − βT σ(Wxi))β � σ′(Wxi)xTi (4)

where � denotes element-wise product of vectors.

Many similar terms in both derivatives ⇒ Inefficient to compute them independently

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 63



Backpropagation

• Recursive computation of the derivative ∇θLi(θ)
1. Forward pass: Compute all pre-activation and hidden layer values
2. Backward pass: Compute the derivative of Li with respect to the weights and

biases, from last to first layer.

Complexity of computing ∇θLi(θ)

Method Complexity
Naive derivative O(k2H2)
Backpropagation O(kH2)

Where H is number of neurons per layer and k is the number of layers.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 63



?Forward pass

Forward pass scheme
Input: x(0) = x, W (l) and b(l) for l = 1, . . . , k.
1. For l = 1, . . . , k

Compute u(l) = W (l)x(l−1) + b(l)

Compute x(l) = σ(u(l))

Figure: Computation of u(l) and x(l) starting from x(l−1)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 63



?Backward pass

Suppose
∂L
∂x(l) is given, as well as all pre-activation and hidden layer values.

• Goal: obtain
∂L

∂W (l) ,
∂L
∂b(l)

and
∂L

∂x(l−1) .

1.

u(l) = W (l)x(l−1) + b(l) ⇒


∂L

∂W (l) =
∂L
∂u(l) (x(l−1))T

∂L
∂b(l)

=
∂L
∂u(l)

(chain rule)

2.
x(l) = σ(u(l))⇒

∂L
∂u(l) =

∂L
∂x(l) � σ

′(u(l)) (chain rule)

Where � is the Hadamard product (element-wise product).
3. Finally we have

u(l) = W (l)x(l−1) + b(l) ⇒
∂L

∂x(l−1) = (W (l))T
∂L
∂u(l) (chain rule)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 63



?Backward pass
Backward pass scheme

Input: Gradient of the loss w.r.t. the last layer values ∂L/∂x(k)

1. For l = k, . . . , 1
Compute ∂L

∂u(l) = ∂L
∂x(l) � σ′(u(l))

Compute ∂L
∂W (l) = ∂L

∂u(l) (x(l−1))T , ∂L
∂b(l) = ∂L

∂u(l)

Compute ∂L
∂x(l−1) = (W (l))T ∂L

∂u(l)

Figure: Computation of ∂L
∂b(l) ,

∂L
∂W (l) and ∂L

∂x(l−1) starting from ∂L
∂x(l)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 63



?Complexity of Backpropagation

The size of each layer (including input) is O(H), and the number of layers is O(k).

Forward pass scheme
1. For l = 1, . . . , k
I u(l) = W (l)x(l−1) + b(l) ⇒ O(H2)
I x(l) = σ(u(l)) ⇒ O(H)

Forward pass is O(kH2)

Backward pass scheme
1. For l = k, . . . , 1
I ∂L

∂u(l) = ∂L
∂x(l) � σ′(u(l)) ⇒ O(H)

I ∂L
∂W (l) = ∂L

∂u(l) (x(l−1))T ⇒ O(H2)

I ∂L
∂b(l) = ∂L

∂u(l) ⇒ O(1)

I ∂L
∂x(l−1) = (W (l))T ∂L

∂u(l) ⇒ O(H2)

Backward pass is O(kH2)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 24/ 63



Towards training with neural networks

• What do we have at hand?
1. Loss function L(θ) from multi-layer, multi-class, etc.
2. First-order gradient via backpropagation g = ∇L(θ)
• Barriers to training of neural networks:
1. Curse-of-dimensionality → first-order methods
2. Non-convexity → stochasticity and momentum
3. Ill-conditioning → adaptive gradient methods

Figure: A non-convex function. (a) and (c) are plateaus, (b) and (d) are global minima, (f) and
(h) are local minima, (e) and (g) are local maxima. [8]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 63



Recall: Stochastic Gradient Descent (SGD)

Vanilla Minibatch SGD
Input: learning rate {γ}N−1

t=0
1. initialize θ0
2. For t = 0, 1,... ,N-1:

obtain the minibatch gradient ĝt
update θt+1 ← θt − γtĝt

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 26/ 63



Convergence of SGD in non-convex problems

Assumptions
1. Function L is lower bounded: ∃θ∗ s.t. ∀θ ∈ Θ,L(θ) ≥ L(θ∗)

2. Function L has Lipschitz continuous gradient:

‖∇L(θ1)−∇L(θ2)‖2 ≤ L‖θ1 − θ2‖2 (5)

3. The unbiased stochastic gradient ĝθ has bounded variance.

E(ĝ) = g (6)

E(‖ĝ− g‖22) ≤ σ2 (7)

Theorem (Convergence of SGD in non-convex problems [1])
For SGD with assumptions above, N iterations and stepsize γt = 1

L
√
N

we have

E

[
1
N

N−1∑
t=0

‖ĝt‖22

]
∼ O

( 1
√
N

)
(8)

• Convergence is captured by the gradient norm

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 63



?Convergence of SGD

Proof
Take the assumption 2 and algorithmic update policy θt+1 = θt − γĝt

L(θt+1)− L(θt) ≤ (θt+1 − θt)T gt +
L

2
‖θt+1 − θt‖22

= −γtĝtT gt +
γ2
t L

2
‖ĝt‖22

(9)

Take the expectation and use the assumption 3

E[L(θt+1)− L(θt)] = −γt‖gt‖22 +
γ2
t L

2
(‖gt‖22 + σ2) (10)

Set the learning rate γt = 1
L
√
N

E[L(θt+1)− L(θt)] = −
1

L
√
N
‖gt‖22 +

1
2LN

(‖gt‖22 + σ2)

≤ −
1

2L
√
N
‖gt‖22 +

σ2

2LN

(11)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 63



? Convergence of SGD

Proof (Cont’d).
Sum the inequality of N steps together and use assumption 1

L(θ0)− L(θ∗) ≥ L(θ0)− E[L(θN )]

= E

[
N−1∑
t=0

(L(θt)− L(θt+1))

]

≥
1

2L
E

[
N−1∑
t=0

(
‖gt‖22√
N
−
σ2

N
)

] (12)

Rearrange the inequality, we have the following

E

[
1
N

N−1∑
t=0

‖gt‖22

]
≤

1
√
N

[2L(L(θ0)− L(θ∗) + σ2)] (13)

The right hand side vanishes as N →∞, so E
[

1
N

∑N−1
t=0 ‖gt‖

2
2
]
vanishes also. This

indicates the model converges to a critical point. �

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 63



Minibatch and momentum

Minibatch Momentum

Advantages Fast, unbiased, no extra memory
Help scape saddle points

Help escape poor local minima
Help smooth out variations

Disadvantages Might get stuck in poor local minimas Might overshoot with high ρ and γ

Figure: Stochasticity introduced by minibatch can help scape saddle points (Left). Momentum can
help escape local minima (Right).

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 30/ 63



Escaping from saddle points

Recall (Classification of stationary points)
Let f : Rd → R be twice differentiable and let x̄ be a stationary point. Let {λi}ni=1 be
the eigenvalues of the hessian ∇2f(x̄), then
I λi > 0 for all i ⇒ x̄ is a local minimum
I λi < 0 for all i ⇒ x̄ is a local maximum
I λi > 0, λj < 0 for some i, j and λi , 0 for all i ⇒ x̄ is a saddle point
I Other case ⇒ inconclusive

(a) (b)

(c) (d)

Figure 5: Illustrations of three different types of saddle points (a-c) plus a gutter structure (d). Note
that for the gutter structure, any point from the circle x2 + y2 = 1 is a minimum. The shape of the
function is that of the bottom of a bottle of wine. This means that the minimum is a “ring” instead of
a single point. The Hessian is singular at any of these points. (c) shows a Monkey saddle where you
have both a min-max structure as in (b) but also a 0 eigenvalue, which results, along some direction,
in a shape similar to (a).

12

Figure: Minmax saddle (λi , 0 for all i)

(a) (b)

(c) (d)

Figure 5: Illustrations of three different types of saddle points (a-c) plus a gutter structure (d). Note
that for the gutter structure, any point from the circle x2 + y2 = 1 is a minimum. The shape of the
function is that of the bottom of a bottle of wine. This means that the minimum is a “ring” instead of
a single point. The Hessian is singular at any of these points. (c) shows a Monkey saddle where you
have both a min-max structure as in (b) but also a 0 eigenvalue, which results, along some direction,
in a shape similar to (a).

12

Figure: Monkey saddle (λi = 0 for some i)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 63



The strict saddle property

Definition (Strict saddle)
A twice differentiable function f : Rd → R is (α, γ, ε, δ)-strict saddle if for any point x
at least one of the following is true
1. ‖∇f(x)‖ ≥ ε.
2. λmin (∇2f(x)) ≤ −γ.
3. there is a local minimum x∗ such that ‖x− x∗‖ ≤ δ and the function f

restricted to a 2δ neighborhood of x∗ is α strongly convex.

(Informal)
For any point whose gradient is small, it is either close to a local minimum, or is a
saddle point (or local maximum) with a significant negative eigenvalue.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 32/ 63



Perturbed SGD algorithm

Perturbed Stochastic Gradient Descent [6]
Input: Stochastic Gradient Oracle SG(x), initial point x0, num-
ber of iterations T , step size η
1. For t = 0 to T - 1:

sample noise ξ uniformly from unit sphere
update xt+1 ← xt − η(SG(xt) + ξ)

Minibatch SGD
If the noise from the stochastic gradient oracle already has nonnegligible variance in
every direction then the additional noise ξ is not needed.

Stochastic Gradient Langevin Dynamics [17]
Input: Stochastic Gradient Oracle SG(x), initial point x0, num-
ber of iterations T , step size η
1. For t = 0 to T - 1:

sample noise ξ standard Gaussian
update xt+1 ← xt − ηSG(xt) +

√
2ηξ

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 33/ 63



Perturbed SGD escapes saddle points

Theorem (Convergence of PSGD [6])
Suppose that f has the following properties
I f is an (α, γ, ε, δ)-strict saddle,
I f is β-smooth.
I its Hessian is ρ-Lipschitz. i.e.

∥∥∇2f(x)−∇2f(y)
∥∥ ≤ ρ ‖x− y‖.

Then there exists a threshold ηmax such that by choosing
I η ≤ ηmax/max{1, log(1/ζ)}
I T = O(η−2 log(1/ζ)).

the algorithm Perturbed SGD outputs with probability at least 1− ζ a point xT that
is O(

√
η log(1/ηζ)) close to some local minimum x∗.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 63



Overparametrization

A few phenomena about neural networks:
I Deep neural networks can fit random labels. [19]
I In practice, simple first-order methods can find global minimizers.

Overparametrization can explain these mysteries!

Overparametrization
Number of parameters � number of training data.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 63



GD finds global minimizers of overparametrized networks

Theorem (Convergence Rate of Gradient Descent [4])
I f(x;β,W, b): 1-hidden-layer network with width m.
I m = Ω(n

6

δ3 ) where n =number of samples.
I W0 is initialized with a normal distribution, β0 ∼ Unif[−1, 1]m.
I Stepsize η = O(n−2).

With probability at least 1− δ, for the empirical risk Rn we have

Rn(βt,Wt, bt) ≤ (1− η)tRn(β0,W0, b0) (14)

Linear convergence of GD for overparametrized 1-hidden layer networks.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 36/ 63



Optimization landscape of overparametrized neural networks

Figure: Loss landscape with few parameters (left) vs overparametrized regime (right).

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 37/ 63



The generalization error

• Goal: Minimize the misclassification error P(f(x) , y)

• ERM with cross-entropy loss ⇒ few errors on the training set {xi, yi}ni=1.

What about performance on unseen data?

Definition (Generalization error)
Suppose f is trained by ERM on a set Xtrain = {xi, yi}ni=1.

Generalization error := True error− Training error

:= P(if (x) , y)−
1
n

n∑
i=1

1{if (xi),yi}

We use a sample Xtest = {x̂i, ŷi}n
′
i=1 to estimate

P(if (x) , y) '
1
n′

n′∑
i=1

1{if (x̂i),ŷi} (test error)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 38/ 63



The effect of overparametrization on generalization

Figure: MNIST (left) and CIFAR10 (right)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 39/ 63



Adaptivity may lead to overfit

Flat Minimum Sharp Minimum

Training Function
Testing Function

f(x)

Figure: Sharp Minima vs Flat Minima [10]

• Intuition suggests flat minima has better generalization property than sharp minima

• Empirically, adaptive methods finds sharper minima than ones found by SGD

• The relationship between sharpness of minima and their generalization is open [3]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 40/ 63



Adaptivity may lead to overfit

• Adaptive learning methods may converge fast but generalize worse

20 40 60 80 100
Epoch

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

T
ra

in
in

g
 P

e
rp

le
x
it

y

20 40 60 80 100
Epoch

5.0

5.2

5.4

5.6

5.8

6.0

D
e
v
e
lo

p
m

e
n
t 

P
e
rp

le
x
it

y

SGD: 5.09±0.04

HB: 5.13±0.01

AdaGrad: 5.24±0.02

RMSProp: 5.28±0.00

Adam: 5.35±0.01

Adam (Default): 5.47±0.02

Figure: Performance of different optimizers in training and development set of a language modeling
problem. The training and test perplexity are the exponential values of training and test losses.[18]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 41/ 63



Neural Network Architectures
• Deeper and more complicated models correlates with better performance

• No universal optimizers other than slow and steady SGD

• A long way to go (makes it exciting)...

Figure: Performance of popular architectures on test set in CIFAR10 (left) and CIFAR100 (right). 2

1Credit to: https://github.com/bearpaw/pytorch-classification
2Credit to: https://github.com/bearpaw/pytorch-classification

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 42/ 63



Beyond supervised learning: Generative Adversarial Networks

• Goal: Learn to generate samples from a distribution given a dataset.

1Math of AI | Volkan Cevher | https://lions.epfl.ch 

input

output

Figure: Schematic of a generative model [7, 9]

How to frame this as an optimization problem?

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 43/ 63



A notion of distance between distributions

Figure: The Earth Mover’s distance

Minimum cost transportation problem (Monge’s problem)
Find a transport map T : Rd → Rd such that T (X) ∼ Y , minimizing the cost

cost(T ) := EX ‖X − T (X)‖ (15)

Might not exist!

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 44/ 63



The Wasserstein distance

Definition
Let µ and ν be two probability measures on Rd. Their set of couplings is defined as

Γ(µ, ν) := {π probability measure on Rd × Rd with marginals µ, ν} (16)

Definition (Primal form of the Wasserstein distance)

W (µ, ν) := inf
π∈Γ(µ,ν)

E(x,y)∼π ‖x− y‖ (17)

Theorem (Kantorovich-Rubinstein duality)

W (µ, ν) = sup{Ex∼µf(x)−Ey∼νf(y) : f is 1-Lipschitz} (18)

The coupling π is the primal variable, the function f is the dual variable

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 45/ 63



Minimax formulation of GANs

Ingredients:

•: fixed noise distribution θ (e.g., normal)
•: target distribution ν (natural images)
•: class of functions G (generators)
•: class of functions F (dual variables)

GANs formulation

min
g∈G

max
f∈F

Ex∼θf(g(x))−Ey∼νf(y) (19)

F is the class of 1-Lipschitz functions ⇒ minimization of Wasserstein distance

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 46/ 63



General diagram of GANs

Generator

N
oi

se
 v

ec
to

r

Dataset

Dual variable

sample

sample

Loss

Figure: Generator/dual variable/dataset relation in GANs

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 47/ 63



Challenges in GANs training

• Tons of heuristics

• No guarantees of convergence (except some simple settings)

• Difficult to enforce 1-Lipschitz constraint

• Privacy concerns (memorization)
Which Training Methods for GANs do actually Converge?

(a) SimGD (b) AltGD

Figure 2. Training behavior of the Dirac-GAN. The starting iterate
is marked in red.

✓ = 0, there is not even an optimal discriminator parameter
for the Dirac-GAN. Indeed, we found that two-time scale
updates as suggested by Heusel et al. (2017) do not help con-
vergence towards the Nash-equilibrium (see Figure 22 in the
supplementary material). However, our example seems to
be a prototypical situation for (unregularized) GAN training
which usually deals with distributions that are concentrated
on lower dimensional manifolds (Arjovsky & Bottou, 2017).

We now take a closer look at the discretized system.

Lemma 2.4. For simultaneous gradient descent, the Ja-
cobian of the update operator Fh(✓, ) has eigenvalues
�1/2 = 1 ± hf 0(0)i with absolute values

p
1 + h2f 0(0)2

at the Nash-equilibrium. Independently of the learning rate,
simultaneous gradient descent is therefore not stable near
the equilibrium. Even stronger, for every initial condition
and learning rate h > 0, the norm of the iterates (✓k, k)
obtained by simultaneous gradient descent is monotonically
increasing.

The behavior of simultaneous gradient descent for our ex-
ample problem is visualized in Figure 2a.

Similarly, for alternating gradient descent we have

Lemma 2.5. For alternating gradient descent with ng gen-
erator and nd discriminator updates, the Jacobian of the
update operator Fh(✓, ) has eigenvalues

�1/2 = 1 � ↵2

2
±

s✓
1 � ↵2

2

◆2

� 1. (5)

with ↵ :=
p

ngndhf 0(0). For ↵  2, all eigenvalues are
hence on the unit circle. Moreover for ↵ > 2, there are
eigenvalues outside the unit circle.

Even though Lemma 2.5 shows that alternating gradient
descent does not converge linearly to the Nash-equilibrium,
it could in principle converge with a sublinear convergence
rate. However, this is very unlikely because – as Lemma 2.3
shows – even the continuous system does not converge. In-
deed, we empirically found that alternating gradient descent
oscillates in stable cycles around the equilibrium and shows
no sign of convergence (Figure 2b).

2.3. Where do instabilities come from?

Our simple example shows that naive gradient based GAN
optimization does not always converge to the equilibrium
point. To get a better understanding of what can go wrong
for more complicated GANs, it is instructive to analyze
these instabilities in depth for this simple example problem.

To understand the instabilities, we have to take a closer
look at the oscillatory behavior that GANs exhibit both for
the Dirac-GAN and for more complex systems. An intu-
itive explanation for the oscillations is given in Figure 1:
when the generator is far from the true data distribution,
the discriminator pushes the generator towards the true data
distribution. At the same time, the discriminator becomes
more certain, which increases the discriminator’s slope (Fig-
ure 1a). Now, when the generator reaches the target distri-
bution (Figure 1b), the slope of the discriminator is largest,
pushing the generator away from the target distribution. As
a result, the generator moves away again from the true data
distribution and the discriminator has to change its slope
from positive to negative. After a while, we end up with a
similar situation as in the beginning of training, only on the
other side of the true data distribution. This process repeats
indefinitely and does not converge.

Another way to look at this is to consider the local behavior
of the training algorithm near the Nash-equilibrium. Indeed,
near the Nash-equilibrium, there is nothing that pushes the
discriminator towards having zero slope on the true data
distribution. Even if the generator is initialized exactly on
the target distribution, there is no incentive for the discrimi-
nator to move to the equilibrium discriminator. As a result,
training is unstable near the equilibrium point.

This phenomenon of discriminator gradients orthogonal to
the data distribution can also arise for more complex exam-
ples: as long as the data distribution is concentrated on a
low dimensional manifold and the class of discriminators
is big enough, there is no incentive for the discriminator to
produce zero gradients orthogonal to the tangent space of
the data manifold and hence converge to the equilibrium
discriminator. Even if the generator produces exactly the
true data distribution, there is no incentive for the discrim-
inator to produce zero gradients orthogonal to the tangent
space. When this happens, the discriminator does not pro-
vide useful gradients for the generator orthogonal to the data
distribution and the generator does not converge.

Note that these instabilities can only arise if the true data
distribution is concentrated on a lower dimensional man-
ifold. Indeed, Nagarajan & Kolter (2017) showed that -
under some suitable assumptions - gradient descent based
GAN optimization is locally convergent for absolutely con-
tinuous distributions. Unfortunately, this assumption may
not be satisfied for data distributions like natural images to

Figure: Mode collapse (left). Simultaneous vs alternating generator/discriminator updates (right).

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 48/ 63



?Reinforcement Learning Game

◦ Environment: Markov Decision Process (MDP)M = (S,A, T, γ, P0, R)

◦ Agent: Parameterized deterministic policy µθ : S → A, where θ ∈ Θ

Beyond supervised learning: Reinforcement Learning
At time step t = 0: S0 ∼ P0(·)
for t = 1, 2, . . . do:

agent observes the environment’s state St ∈ S
agent chooses an action At = µθ(St) ∈ A
agent receives a reward Rt+1 = R(St, At)
agent finds itself in a new state St+1 ∼ T (· | St, At)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 49/ 63



?Exploration vs. Exploitation in RL

◦ Challenge: Exploration vs. exploitation!

◦ Objective (non-concave): maxθ∈Θ J(θ) := E

[∑∞
t=1 γ

t−1Rt

∣∣∣ µθ,M]
. The environment only reveals the rewards after actions

. Exploitation: Maximize objective by choosing the appropriate action

. Exploration: Gather information on other actions

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 50/ 63



?Standard Reinforcement Learning

◦ Markov Decision Process (MDP):M = (S,A, T, γ, P0, R)
. S: state space

. A: action space

. T : S × S ×A → [0, 1]: state transition dynamics

. γ ∈ (0, 1): discounting factor

. P0 : S → [0, 1]: initial state distribution

. R : S ×A → R: reward function

◦ Agent’s (deterministic) policy: µ : S → A

Reinforcement Learning Game
for t = 1, 2, . . . do:

agent observes the environment’s state St ∈ S
agent chooses an action At = µ(St) ∈ A
agent receives a reward Rt+1 = R(St, At), and finds itself in a new state St+1

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 51/ 63



?Standard Reinforcement Learning

◦ Discounted return:

Z =
∞∑
t=1

γt−1Rt

◦ State and state-action value functions:

V µ(s) := E [Z | S1 = s;µ,M]
Qµ(s, a) := E [Z | S1 = s,A1 = a;µ,M]

◦ Performance objective:

max
µ

J(µ) := E
s∼D

[V µ(s)] = E
s∼D

[Qµ(s, µ(s))]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 52/ 63



?Deterministic Policy Gradient

◦ Deterministic policy parametrization:

{µθ : θ ∈ Θ}

◦ The off-policy performance objective:

max
θ∈Θ

J(θ) := J(µθ) = E
s∼D

[Qµθ (s, µθ(s))]

◦ The off-policy gradient: [15]

∇θJ(θ) ≈ Es∼D
[
∇θµθ(s)∇aQµθ (s, a)|a=µθ(s)

]
≈

1
N

∑
∇aQφ(s, a)∇θµθ(s)

. biased gradient estimate

. function approximation Qφ for critic

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 53/ 63



?An optimization interpretation

◦ Objective (non-concave): maxθ∈Θ J(θ) := E

[∑∞
t=1 γ

t−1Rt

∣∣∣ µθ,M]
◦ Exploitation: Progress in the gradient direction

θt+1 ← θt + ηt ̂∇θJ(θt)

◦ Exploration: Add stochasticity while collecting the episodes

. noise injection in the action space [15, 13]

a = µθ(s) +N (0, σ2I)

. noise injection in the parameter space [14]

θ̃ = θ +N (0, σ2I)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 54/ 63



?Deep learning optimizers: Ill-Conditioned Curvature

When optimizing a high-dimensional function, it is possible that the gradients in some
dimensions are much larger than some others.

Using the same learning rate for all dimensions might cause either overshoot in
dimensions of large gradients or slow convergence in ones of small gradients.

Figure: Examples of well-conditioned curvature (left) and ill-conditioned curvature (right).

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 55/ 63



?AdaGrad [5]

AdaGrad
Input: global learning rate {γ}N−1

t=0 , damping coefficient δ
1. initialize θ0, r← 0
2. For t = 0, 1,... ,N-1:

obtain the minibatch gradient ĝt
update r← r + ĝt � ĝt
update θt+1 ← θt − γt

δ+
√

r ĝt

I Adaptive learning rate.
I ‘Effective learning rate’ decreases monotonically if γt is a constant (early stop).
I Suitable for the sparse gradient cases.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 56/ 63



?RMSProp [16]

I To solve the early stop, average can be used in place of accumulation.
I A decaying coefficient τ can be used to maintain an online average estimate.
I Recent gradients have more weight when calculating the average.

AdaGrad
Input: global learning rate {γ}N−1

t=0 ,
damping coefficient δ
1. initialize θ0, r← 0
2. For t = 0, 1,... ,N-1:

obtain the minibatch gradient ĝt
update r← r + ĝt � ĝt
update θt+1 ← θt − γt

δ+
√

r ĝt

RMSProp
Input: global learning rate {γ}N−1

t=0 , damping
coefficient δ, decaying coefficient τ
1. initialize θ0, r← 0
2. For t = 0, 1,... ,N-1:

obtain the minibatch gradient ĝt
update r← τr + (1− τ)ĝt � ĝt
update θt+1 ← θt − γt

δ+
√

r ĝt

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 57/ 63



?Adam [11]

I Now there are two ways to accelerate training:
I Momentum e.g. HB SGD
I Adaptive learning rate e.g. AdaGrad, RMSProp

I How about mixing them together?

Adam
Input: global learning rate {γ}N−1

t=0 , damping coefficient δ, first
order decaying parameter β1, second order decaying parameter
β2
1. initialize θ0, m1 ← 0, m2 ← 0
2. For t = 0, 1,... ,N-1:

obtain the minibatch gradient ĝt
update m1 ← β1m1 + (1− β1)ĝt
update m2 ← β2m2 + (1− β2)ĝt � ĝt
correct bias m̂1 ← m1

1−βt+1
1

m̂2 ← m2
1−βt+1

2
update θt+1 ← θt − γt m̂1

δ+
√

m̂2

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 58/ 63



?Summary: A Uniform Framework

θt+1 = θt − αtH−1
t ĝt + βtH

−1
t Ht−1(θt − θt−1)

Gt = Ht �Ht, Dt = ĝt � ĝt

SGD HB AdaGrad RMSProp Adam

Gt I I Gt−1 + Dt τGt−1 + (1 − τ)Dt β2
1−βt2

Gt−1 + 1−β2
1−βt2

Dt

αt γt γt γt γt γt
1−β1
1−βt1

βt 0 ρ 0 0
β1(1−βt−1

1 )

1−βt1

I Two ways to accelerate SGD: momentum and adaptive learning rate.
I The ‘effective learning rate’ of the algorithm is αtH−1

t .
I The ‘effective momentum’ of the algorithm is βtH−1

t Ht−1.
I Ht is the preconditioner of the stochastic gradient ĝt.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 59/ 63



References I

[1] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima
Anandkumar.
signsgd: compressed optimisation for non-convex problems.
arXiv preprint arXiv:1802.04434, 2018.

[2] George Cybenko.
Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

[3] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio.
Sharp minima can generalize for deep nets.
arXiv preprint arXiv:1703.04933, 2017.

[4] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh.
Gradient descent provably optimizes over-parameterized neural networks.
arXiv preprint arXiv:1810.02054, 2018.

[5] John Duchi, Elad Hazan, and Yoram Singer.
Adaptive subgradient methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[6] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan.
Escaping from saddle points—online stochastic gradient for tensor decomposition.
In Conference on Learning Theory, pages 797–842, 2015.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 60/ 63



References II

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 2672–2680.
Curran Associates, Inc., 2014.

[8] Benjamin D Haeffele and René Vidal.
Global optimality in neural network training.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7331–7339, 2017.

[9] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stability, and variation.
In International Conference on Learning Representations, 2018.

[10] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang.
On large-batch training for deep learning: Generalization gap and sharp minima.
arXiv preprint arXiv:1609.04836, 2016.

[11] Diederik Kingma and Jimmy Ba.
Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 61/ 63



References III

[12] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken.
Multilayer feedforward networks with a nonpolynomial activation function can
approximate any function.
Neural Networks, 6(6):861 – 867, 1993.

[13] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015.

[14] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y
Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz.
Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

[15] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller.
Deterministic policy gradient algorithms.
In ICML, 2014.

[16] Tijmen Tieleman and Geoffrey Hinton.
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude.
COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 62/ 63



References IV

[17] Max Welling and Yee W Teh.
Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning
(ICML-11), pages 681–688, 2011.

[18] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin
Recht.
The marginal value of adaptive gradient methods in machine learning.
In Advances in Neural Information Processing Systems, pages 4148–4158, 2017.

[19] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization.
arXiv preprint arXiv:1611.03530, 2016.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 63/ 63


