
Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 6: Stochastic gradient methods
Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2019)



License Information for Mathematics of Data Slides

I This work is released under a Creative Commons License with the following terms:
I Attribution

I The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

I Non-Commercial
I The licensor permits others to copy, distribute, display, and perform the work. In return,

licensees may not use the work for commercial purposes – unless they get the licensor’s
permission.

I Share Alike
I The licensor permits others to distribute derivative works only under a license identical

to the one that governs the licensor’s work.
I Full Text of the License

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 1/ 48

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode


Outline

I This class
1. Stochastic programming
2. Stochastic gradient descent
3. Variance reduction technique

I Next class
1. Non-convex optimization
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Recall: Gradient descent

Problem (Unconstrained convex problem)
Consider the following convex minimization problem:

f? = min
x∈Rp

f(x)

f(x) is proper, closed, and convex (perhaps strongly-convex and/or smooth).

Gradient descent
Choose a starting point x0 and iterate

xk+1 = xk − γk∇f(xk)

where γk is a step-size to be chosen so that xk converges to x?.

f is L-smooth & convex f is L-smooth & non-convex
GD O(1/T ) (fast) O(1/T ) (optimal)
AGD O(1/T 2) (optimal) O(1/T ) (optimal) [6]

Why should we study anything else?
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Statistical learning

A basic statistical learning model [16]
A statistical learning model consists of the following three elements.
1. A sample of i.i.d. random variables (aj , bj) ∈ A× B, j = 1, . . . , n, following an

unknown probability distribution P.
2. A class (set) F of functions f : A → B.
3. A loss function L : B × B → R.

Definition (Risk)
Let (a, b) follow the probability distribution P and be independent of {(ai, bi)}ni=1.
Then, the risk corresponding to any f ∈ F is its expected loss:

R(f) := E(a,b) [L(f(a), b)] .

Statistical learning seeks to find a f? ∈ F that minimizes the risk, i.e., it solves

f? ∈ arg min
f∈F

R(f).

Many problems in machine learning cast into this formulation

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 48



Statistical learning

A basic statistical learning model [16]
A statistical learning model consists of the following three elements.
1. A sample of i.i.d. random variables (aj , bj) ∈ A× B, j = 1, . . . , n, following an

unknown probability distribution P.
2. A class (set) F of functions f : A → B.
3. A loss function L : B × B → R.

Definition (Risk)
Let (a, b) follow the probability distribution P and be independent of {(ai, bi)}ni=1.
Then, the risk corresponding to any f ∈ F is its expected loss:

R(f) := E(a,b) [L(f(a), b)] .

Statistical learning seeks to find a f? ∈ F that minimizes the risk, i.e., it solves

f? ∈ arg min
f∈F

R(f).

Many problems in machine learning cast into this formulation

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 48



Empirical risk minimization (ERM) I
• By the law of large numbers, we can expect that for any fixed f ∈ F ,

R(f) := E [L(f(a), b)] ≈
1
n

n∑
j=1

L(f(aj), bj)

when n is large enough, with high probability.

Statistical learning with Empirical risk minimization (ERM) [16]
We approximate f? by minimizing the empirical average of the loss instead of the risk.

arg min
f∈F

{
Rn(f) :=

1
n

n∑
j=1

L(f(aj), bj)

}
.

Example: Least squares
Recall that the LS estimator is given by

arg min
x∈Rp

{ 1
2n
‖b−Ax‖22

}
= arg min

x∈Rp

{
1

2n

n∑
j=1

(bj − 〈aj ,x〉)2

}
,

where we define b := (b1, . . . , bn)T and aTj to be the j-th row of A.
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Empirical risk minimization (ERM) II

Example: Logistic regression
Recall the logistic regression formulation

arg min
x,µ

{
1
n

n∑
j=1

log
(

1 + e−bj(〈x,aj〉+µ)
)

: x ∈ Rp, µ ∈ R

}

where b := (b1, . . . , bn)T ∈ {−1, 1}n.

Gradient descent for ERM

fk+1 = fk − γk∇Rn(f) = fk − γk
1
n

n∑
j=1

∇L(f(aj), bj).

Computational cost per iteration is proportional to sample size n,which is expensive
when n is large.
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Statistical learning with streaming data

Recall that statistical learning seeks to find a f? ∈ F that minimizes the expected risk,

f? ∈ arg min
f∈F

{
R(f) := E(a,b) [L(f(a), b)]

}
, .

In practice, data can arrive in a streaming way.

Example: Markowitz portfolio optimization

f? := min
x∈X

{
E
[
|ρ− 〈x, θt〉|2

]}
I ρ ∈ R is the desired return.
I X is intersection of the standard simplex and the constraint: 〈x,E[θt]〉 ≥ ρ.

Gradient method

fk+1 = fk − γk∇R(f) = fk − γkE(a,b)[∇L(fk(a), b)].

This can not be implemented in practice as the distribution of (a, b) is unknown.
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Stochastic programming

Problem (Mathematical formulation)
Consider the following convex minimization problem:

f? = min
x∈Rp

{
f(x) := E[f(x, θ)]

}
I θ is a random vector whose probability distribution is supported on set Θ.
I f(x) := E[f(x, θ)] is proper, closed, and convex.
I The solution set S? := {x? ∈ dom (f) : f(x?) = f?} is nonempty.
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Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose x0 ∈ Rp and (γk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = xk − γkG(xk, θk).

• G(xk, θk) is an unbiased estimate of the full gradient:

E[G(xk, θk)] = ∇f(xk).

Remark
I The cost of computing G(xk, θk) is n times cheaper than that of ∇f(xk).
I As G(xk, θk) is an unbiased estimate of the full gradient, SG would perform well.
I We assume {θk} are jointly independent.
I SG is not a monotonic descent method.
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Example: Convex optimization with finite sums

Convex optimization with finite sums
The problem

arg min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)

}
,

can be rewritten as

arg min
x∈Rp

{f(x) := Ei[fi(x)]} , i is uniformly distributed over {1, 2, · · · , n}.

Stochastic gradient descent (SGD)

xk+1 = xk − γk∇fi(xk) i is uniformly distributed over{1, ..., n}

• Note: Ei[∇fi(xk)] =
∑n

j=1∇fj(x
k)/n = ∇f(xk).

• The computational cost of SGD per iteration is p.
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Synthetic least-squares problem

min
x

{
f(x) :=

1
2n
‖Ax− b‖22 : x ∈ Rp

}
Setup
I A := randn(n, p) - standard Gaussian N (0, I), with n = 104, p = 102.
I x\ is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to ‖x\‖2 = 1.
I b := Ax\ + w, where w is Gaussian white noise with variance 1.
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• 1 epoch = 1 pass over the full gradient
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Convergence of SGD without strong convexity

Theorem (decaying step-size [14])
Assume
I E[‖xk − x?‖2] ≤ D2 for all k,
I E[‖G(xk, θk)‖2] ≤M2, (bounded gradient)
I γk = γ0/

√
k

Then

E[f(xk)− f(x?)] ≤
(
D2

γ0
+ γ0M

2
)

2 + log k
√
k

.

• O(1/
√
k) rate is optimal for SG if we do not consider the strong convexity.
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Convergence of SGD for strongly convex problems I

Theorem (strongly convex objective, fixed step-size [2])
Assume
I f is µ-strongly convex and L-smooth,
I E[‖G(xk, θk)‖2]2 ≤ σ2 +M‖∇f(xk)‖22 (Bounded variance),
I γk = γ ≤ 1

LM
.

Then
E[f(xk)− f(x?)] ≤

γLσ2

2µ
+ (1− µγ)k−1

(
f(x1)− f?

)
.

• Converge fast (linearly) to a neighborhood around x?

• Zero variance (σ = 0) =⇒ linear convergence

• Smaller step-sizes γ =⇒ converge to a better point, but with a slower rate
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Convergence of SGD for strongly convex problems II

Theorem (strongly convex objective, decaying step-size [2])
Assume
I f is µ-strongly convex and L-smooth,
I E[‖G(xk, θk)‖2]2 ≤ σ2 +M‖∇f(xk)‖22 (bounded variance),
I γk = c

k0+k with some appropriate constants c and k0.

Then
E[‖xk − x?‖2] ≤

C

k + 1
,

where C is a constant independent of k.

• Using the smooth property,

E[f(xk)− f(x?)] ≤ LE[‖xk − x?‖2] ≤
C

k + 1
.

• The rate is optimal if σ2 > 0 with the assumption of strongly-convexity.
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?Randomized Kaczmarz algorithm

Problem
Given a full-column-rank matrix A ∈ Rn×p and b ∈ Rn, solve the linear system

Ax = b.

Notations: b := (b1, . . . , bn)T and aTj is the j-th row of A.

Randomized Kaczmarz algorithm (RKA)

1. Choose x0 ∈ Rp .
2. For k = 0, 1, . . . perform:
2a. Pick jk ∈ {1, · · · , n} randomly with Pr(jk = i) = ‖ai‖22/‖A‖2F
2b. xk+1 = xk −

(
〈ajk

,xk〉 − bjk

)
ajk

/‖ajk
‖22.

Linear convergence [15]
Let x? be the solution of Ax = b and κ = ‖A‖F ‖A−1‖. Then

E‖xk − x?‖22 ≤ (1− κ−2)k‖x0 − x∗‖22

• RKA can be seen as a particular case of SGD [10].
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Example: SGD with different step sizes

2 4 6 8 10

epoch

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0
 = 1/(3 )

0
 = 1/(2 )

0
 = 1/

0
 = 2/

2 4 6 8 10

epoch

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Setup
• Synthetic least-squares problem as before

• γk = γ0/(k + k0).

γ0 = 1/µ is the best choice.
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Comparison with GD

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

• f : µ-strongly convex with L-Lipschitz smooth.

rate iteration complexity cost per iteration total cost
GD ρk log(1/ε) n n log(1/ε)
SGD 1/k 1/ε 1 1/ε

• SGD is more favorable when n is large — large-scale optimization problems
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Motivation for SGD with Averaging

• SGD iterates tend to oscillate around global minimizers

• Averaging iterates can reduce the oscillation effect

• Two types of averaging:

x̄k =
1
k

k∑
j=1

γjxj (vanilla averaging)

x̄k =

∑k

j=1 γjx
j∑k

j=1 γj
(weighted averaing)
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Convergence for SG-A I: strongly convex case

Stochastic gradient method with averaging (SG-A)

1. Choose x0 ∈ Rp and (γk)k∈N ∈ ]0,+∞[N.
2a. For k = 0, 1, . . . perform:

xk+1 = xk − γkG(xk, θk).

2b. x̄k = 1
k

∑k

j=1 xj .

Theorem (Convergence of SG-A [13])
Assume
I f is µ-strongly convex,
I E[‖G(xk, θk)‖2] ≤M2,
I γk = γ0/k for some γ0 ≥ 1/µ.

Then
E[f(x̄k)− f(x?)] ≤

γ0M2(1 + log k)
2k

.

• Same convergence rate with vanilla SGD.
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Convergence for SG-A II: non-strongly convex case

Stochastic gradient method with averaging (SG-A)

1. Choose x0 ∈ Rp and (γk)k∈N ∈ ]0,+∞[N.
2a. For k = 0, 1, . . . perform:

xk+1 = xk − γkG(xk, θk).

2b. x̄k = (
∑k

j=0 γj)
−1
∑k

j=0 γjx
j .

Theorem (Convergence of SG-A [11])
Let D = ‖x0 − x?‖ and E[‖G(xk, θk)‖2] ≤M2.
Then,

E[f(x̄k+1)− f(x?)] ≤
D2 +M2

∑k

j=0 γ
2
j

2
∑k

j=0 γj
.

In addition, choosing γk = D/(M
√
k + 1), we get,

E[f(x̄k)− f(x?)] ≤
MD(2 + log k)

√
k

.

• Same convergence rate with vanilla SGD.
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Example: SG-A method with different step sizes
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x

{
f(x) :=

1
2n
‖Ax− b‖22 : x ∈ Rp

}
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Setup
• Synthetic least-squares problem as before

• γk = γ0/(k + k0).

SG-A is more stable than SG.
γ0 = 2/µ is the best choice.
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Least mean squares algorithm

Least-square regression problem
Solve

x? ∈ arg min
x∈Rp

{
f(x) :=

1
2
E(a,b)(〈a,x〉 − b)2

}
,

given i.i.d. samples {(aj , bj)}nj=1 (particularly in a streaming way).

Stochastic gradient method with averaging

1. Choose x0 ∈ Rp and γ > 0.
2a. For k = 1, . . . , n perform:

xk = xk−1 − γ
(
〈ak,xk−1〉 − bk

)
ak.

2b. x̄k = 1
k+1

∑k

j=0 xj .

O(1/n) convergence rate, without strongly convexity [1]
Let ‖aj‖2 ≤ R and |〈aj ,x?〉 − bj | ≤ σ a.s.. Pick γ = 1/(4R2). Then

Ef(x̄n−1)− f∗ ≤
2
n

(
σ
√
p+R‖x0 − x?‖2

)2
.
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Popular SGD Variants

• Mini-batch SGD: For each iteration,

xk+1 = xk − γk
1
b

∑
θ∈Γ

G(xk, θ).

I γk: step-size
I b : mini-batch size
I Γ : a set of random variables θ of size b

• Accelerated SGD (Nesterov accelerated technique)

• SGD with Momentum

• Adaptive stochastic methods: AdaGrad...
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Adaptive methods for stochastic optimization

Remark
I Adaptive methods have extensive applications in stochastic optimization.

I We will see another nature of adaptive methods in this lecture.

I Mild additional assumption: bounded variance of gradient estimates.
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AdaGrad for stochastic optimization
• Only modification: ∇f(x)⇒ G(x, θ)

AdaGrad with Hk = λkI [8]
1. Set Q0 =0.
2. For k = 0, 1, . . . , T , iterate{

Qk = Qk−1 + ‖G(xk, θ)‖2
Hk =

√
QtI

xk+1 = xt − αkH−1
k
G(xk, θ)

Theorem (Convergence rate: stochastic, convex optimization [8])
Assume f is convex and L-smooth, such that minimizer of f lies in a convex, compact
set K with diameter D. Also consider bounded variance for unbiased gradient
estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then,

E[f(x)]− min
x∈Rd

f(x) = O

(
σD
√
T

)

• AdaGrad is adaptive also in the sense that it adapt to nature of the oracle.
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AcceleGrad for stochastic optimization
• Similar to AdaGrad, replace ∇f(x)⇒ G(x, θ)

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : Number of iterations T, x0 ∈ K, diameter D,
weights {αt}t∈[T ], learning rate {ηt}t∈[T ]
1. Set y0 = z0 = x0
2. For k = 0, 1, . . . , T , iterate

τt := 1/αt
xt+1 = τtzt + (1− τt)yt, define gt := ∇f(xt+1)
zt+1 = ΠK(zt − αtηtgt)
yt+1 = xt+1 − ηtgt

Output : yT ∝
∑T−1

t=0 αtyt+1

Theorem (Convergence rate [9])
Assume f is convex and G-Lipschitz and that minimizer of f lies in a convex, compact
set K with diameter D. Also consider bounded variance for unbiased gradient
estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then,

E[f(yT )]−min
x
f(x) = O

(
GD
√

log T
√
T

)
.
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Example: Synthetic least squares
• A ∈ Rn×d, where n = 200 and d = 50.
• Number of epochs: 20.
• Algorithms: SGD, AdaGrad & AcceleGrad.
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Convex optimization with finite sums

Problem (Convex optimization with finite sums)
We consider the following simple example in the next few slides:

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}

I fj is proper, closed, and convex.
I ∇fj is Lj-Lipschitz continuous for j = 1, . . . , n.
I The solution set S? := {x? ∈ dom(f) : f(x?) = f?} is nonempty.

• One prevalent choice is given by

G(xk, ik) = ∇fik (xk), ik is uniformly distributed over {1, 2, · · · , n}
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An observation of SGD step

xk+1 = xk − γk∇f(xk) (GD)

Lemma
Assume f is Lipschitz smooth with constant L. Then,

f(xk+1)− f(xk) ≤ (γ2
kL− γk)‖∇f(xk)‖2.

xk+1 = xk − γkG(xk, ik) (SGD)

Lemma
Assume f is Lipschitz smooth with constant L. Then,

E[f(xk+1)− f(xk)] ≤ (γ2
kL− γk)E[‖∇f(xk)‖2] + Lγ2

kE[‖G(xk, ik)−∇f(xk)‖2]

• The variance in gradient dominates later (as if ∇f(xk)→ 0).

• To ensure convergence, γk → 0. =⇒ Slow convergence!

Can we decrease the variance while using a constant step-size?
• Choose a stochastic gradient, s.t. E

[
‖G(xk; ik)‖2

]
→ 0.
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Variance reduction techniques: SVRG

• Select the stochastic gradient ∇fik , and compute a gradient estimate

rk = ∇fik (xk)−∇fik (x̃) +∇f(x̃),

where x̃ is a good approximation of x?.

• As x̃→ x? and xk → x?,

∇fik (xk)−∇fik (x̃) +∇f(x̃)→ 0.

• Therefore,

E
[
‖∇fik (xk)−∇fik (x̃) +∇f(x̃)‖2

]
→ 0.
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Stochastic gradient algorithm with variance reduction

Stochastic gradient with variance reduction (SVRG) [7, 18]
1. Choose x̃0 ∈ Rp as a starting point and γ > 0 and q ∈ N+.
2. For s = 0, 1, 2 · · · , perform:

2a. x̃ = x̃s, ṽ = ∇f(x̃), x0 = x̃.
2b. For k = 0, 1, · · · q − 1, perform:{

Pick ik ∈ {1, . . . , n} uniformly at random
rk = ∇fik (xk)−∇fik (x̃) + ṽ
xk+1 := xk − γrk,

(1)

2c. Update x̃s+1 = 1
m

∑q−1
j=0 xj .

Common features
I The SVRG method uses a multistage scheme to reduce the variance of the

stochastic gradient rk where xk and x̃s tend to x?.
I Learning rate γ does not necessarily tend to 0.
I Each stage, SVRG uses n+ 2q component gradient evaluations: n for the full

gradient at the beginning of each stage, and 2q for each of the q stochastic
gradient steps.
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Convergence analysis

Assumption A5.
(i) f is µ-strongly convex
(ii) The learning rate 0 < γ < 1/(4Lmax), where Lmax = max1≤j≤n Lj .
(iii) q is large enough such that

κ =
1

µγ(1− 4γLmax)q
+

4γLmax(q + 1)
(1− 4γLmax)q

< 1.

Theorem
Assumptions:
I The sequence {x̃s}k≥0 is generated by SVRG.
I Assumption A5 is satisfied.

Conclusion: Linear convergence is obtained:

Ef(x̃s)− f(x?) ≤ κs(f(x̃0)− f(x?)).
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Choice of γ and q, and complexity

Chose γ and q such that κ ∈ (0, 1):
For example

γ = 0.1/Lmax, q = 100(Lmax/µ) =⇒ κ ≈ 5/6.

Complexity

Ef(x̃s)− f(x?) ≤ ε, when s ≥ log((f(x̃0)− f(x?))/ε)/ log(κ−1)

Since at each stage needs n+ 2q component gradient evaluations, with
q = O(Lmax/µ), we get the overall complexity is

O
(

(n+ Lmax/µ) log(1/ε)
)
.
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?Variance reduction techniques: SAGA

Stochastic Average Gradient (SAGA) [4]
1a. Choose x̃0

i = x0 ∈ Rp,∀i, q ∈ N+ and stepsize γ > 0.
1b. Store ∇fi(x̃0

i ) in a table data-structure with length n.
2. For k = 0, 1 . . . perform:
2a. pick ik ∈ {1, . . . , n} uniformly at random
2b. Take x̃k+1

ik
= xk, store ∇fik (x̃k+1

ik
) in the table and leave

other entries the same.
2c. rk = ∇fik (xk)−∇fik (x̃kik ) + 1

n

∑n

j=1∇fj(x̃
k
j )

3. xk+1 = xk − γrk

Recipe:
In each iteration:
I Store last gradient evaluated at each datapoint.
I Previous gradient for datapoint j is ∇fj(x̃kj ).
I Perform SG-iterations with the following stochastic gradient

rk = ∇fik (xk)−∇fik (x̃kik ) +
1
n

n∑
j=1

∇fj(x̃kj ).
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?Variance reduction techniques: SAGA

• Select the stochastic gradient rk as

rk = ∇fik (xk)−∇fik (x̃kik ) +
1
n

n∑
j=1

∇fj(x̃kj ),

where, at each iteration, x̃ is updated as x̃kik = xk and x̃kj stays the same for j , ik.

• As x̃kj → x? and xk → x?,

∇fik (xk)−∇fik (x̃kik ) +
1
n

n∑
j=1

∇fj(x̃kj )→ 0.

• Therefore,

E
[
‖∇fik (xk)−∇fik (x̃kik ) +

1
n

n∑
j=1

∇fj(x̃kj )‖2
]
→ 0.
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?Convergence of SAGA

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

Theorem (Convergence of SAGA [4])
Suppose that f is µ-strongly convex and that the stepsize is γ = 1

2(µn+L) with

ρ = 1−
µ

2(µn+ L)
< 1,

C = ‖x0 − x?‖2 +
n

µn+ L
[f(x0)− 〈∇f(x?),x0 − x?〉 − f(x?)]

Then
E[‖xk − x?‖2] ≤ ρkC.

• Allows the constant step-size.

• Obtains linear rate convergence.
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SVRG vs SAGA

• SVRG update: {
rk = ∇fik (xk)−∇fik (x̃) +∇f(x̃)
xk+1 := xk − γrk,

• SAGA update:{
rk = ∇fik (xk)−∇fik (x̃kik ) + 1

n

∑n

j=1∇fj(x̃
k
j )

xk+1 := xk − γrk,

SVRG SAGA
Storage of gradients no yes

Epoch-base yes no
Parameters stepsize & epoch lengths stepsize

Gradient evaluations per step at least 2 1

Table: Comparisons of SVRG and SAGA [4]
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Taxonomy of algorithms

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

• f(x) = 1
n

∑n

j=1 fj(x): µ-strongly convex with L-Lipschitz continuous gradient.

Gradient descent SVRG/SAGA SGM
Linear Linear Sublinear

Table: Rate of convergence.

• κ = L/µ and s0 = 8
√
κn(
√

2α(n− 1) + 8
√
κ)−1 for 0 < α ≤ 1/8.

SVRG/SAGA AccGrad SGM
O((n+ κ) log(1/ε)) O((nκ) log(1/ε)) 1/ε

Table: Complexity to obtain ε-solution.
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Stochastic methods for non-convex problems

Remark (Convex optimization)
I Large scale convex optimization ⇒ demands stochastic methods.
I SGD, AdaGrad & AcceleGrad are optimal for general convex functions.

I Adaptive methods can also adapt to the stochasticity of the gradient oracle.

Remark (Non-convex optimization)
I Large scale non-convex optimization ⇒ demands stochastic methods.

I AdaGrad, ADAM, RMSProp are frequently used in neural network optimization
(more on next lecture!)
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SGD - Non-convex stochastic optimization

• SGD is not as well-studied for non-convex problems as for convex problems.

• There is a gap between SGD’s practical performance and theoretical understanding.

• Recall SGD update rule:

xk+1 = xk − αkG(xk, θ)

Theorem (A well-known result for SGD & Non-convex problems [5])
Let f be a non-convex and L-smooth function. Set αk = min

{
1
L
, C

σ
√
T

}
,

∀k = 1, ..., T , where σ2 is the variance of the gradients and C > 0 is constant. Then,

E[‖∇f(xR)‖2] = O

(
σ
√
T

)
,

where P(R = k) = 2αk−Lα2
k∑T

k=1
(2αk−Lα2

k
)
.
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Non-convergence of ADAM and a new method: AmsGrad

• It has been shown that ADAM may not converge for some objective functions [12].

• An ADAM alternative is proposed that is proved to be convergent [12].

AmsGrad
Input. Step size {αk}Tk=1, exponential decay rates {β1k}Tk=1,
β2
1. Set m0 = 0, v0 = 0 and v̂0 = 0
2. For k = 1, 2, . . . , T , iterate

gk = G(xk, θ)
mk = β1kmk−1 + (1− β1k)gk ← 1st order estimate
vk = β2vk−1 + (1− β2)g2

k ← 2nd order estimate
v̂k = max{v̂k−1, vk} and V̂k = diag(v̂k)
Hk =

√
v̂k

xk+1 = Π
√
V̂k

X (xk − αkm̂k/Hk)

where ΠAX (y) = arg minx∈X 〈(x− y), A(x− y)〉 (weighted projection onto X ).

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 42/ 48



AdaGrad & AmsGrad for non-convex optimization

Theorem (AdaGrad convergence rate: stochastic, non-convex [17])
Assume f is non-convex and L-smooth, such that ‖∇f(x)‖2 ≤ G2 and
f? = infx f(x) >∞. Also consider bounded variance for unbiased gradient estimates,
i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then with probability 1− δ,

min
k∈{1,..,T−1}

‖∇f(xk)‖2 = Õ

(
σ

δ3/2
√
T

)
• Note: As 1− δ → 1, the rate deteriorates by a factor of δ−3/2.

Theorem (AmsGrad convergence rate 1: stochastic, non-convex [3])
Let gk = G(xk, θ). Assume |g1,i| > c > 0, ∀i ∈ [d] and ‖gk‖ ≤ G. Consider a
non-increasing sequence β1k and β1k ≤ β1 ∈ [0, 1). Set αk = 1/

√
t. Then,

min
t∈[T ]

E
[
‖∇f(xk)‖2

]
= O

( log T
√
T

)
.
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AdaGrad & AmsGrad for non-convex optimization

Theorem (AdaGrad convergence rate: stochastic, non-convex [17])
Assume f is non-convex and L-smooth, such that ‖∇f(x)‖2 ≤ G2 and
f? = infx f(x) >∞. Also consider bounded variance for unbiased gradient estimates,
i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then with probability 1− δ,

min
k∈{1,..,T−1}

‖∇f(xk)‖2 = Õ

(
σ

δ3/2
√
T

)
• Note: As 1− δ → 1, the rate deteriorates by a factor of δ−3/2.

Theorem (AmsGrad convergence rate 2: stochastic, non-convex [19])
Consider f : Rd → R to be non-convex ans L-smooth. Assume ‖G(x, θ)‖∞ ≤ G∞
and set αk = 1/

√
dT . Also define xout = xk, for k = 1, . . . , T with probability

αk/
∑T

i=1 αi. Then,

E
[
‖∇f(xout)‖2

]
= O

(√
d

T

)
.
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Example: Logistic regression with non-convex regularizer
• Synthetic data: A ∈ Rn×d, n = 2000, d = 200.

• Batch size: 20 samples.

• Algorithms: SGD, AdaGrad, AmsGrad.
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