Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 5: Unconstrained, smooth minimization Il]

Laboratory for Information and Inference Systems (LIONS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2019)

STIFTUNG eSDSC N

lions@epfl i Google Al

License Information for Mathematics of Data Slides

\{

This work is released under a Creative Commons License with the following terms:
Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

v

> Non-Commercial

> The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees may not use the work for commercial purposes — unless they get the licensor's
permission.

Share Alike

> The licensor permits others to distribute derivative works only under a license identical
to the one that governs the licensor’'s work.

> Full Text of the License

v

ICLGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 44

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

Outline

> This lecture

1. Adaptive gradient methods
2. Newton's method
3. Accelerated adaptive gradient methods

> Next lecture

1. Stochastic gradient methods

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 44

Recommended reading

> Chapters 2, 3, 5, 6 in Nocedal, Jorge, and Wright, Stephen J., Numerical
Optimization, Springer, 2006.

> Chapter 9 in Boyd, Stephen, and Vandenberghe, Lieven, Convex optimization,
Cambridge university press, 2009.

> Chapter 1 in Bertsekas, Dimitris, Nonlinear Programming, Athena Scientific,
1999.

> Chapters 1, 2 and 4 in Nesterov, Yurii, Introductory Lectures on Convex
Optimization: A Basic Course, Vol. 87, Springer, 2004.

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 44 EPFL

Motivation

Motivation

This lecture covers some more advanced numerical methods for unconstrained and
smooth convex minimization.

lions@ep Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 44

Recall: convex, unconstrained, smooth minimization

Problem (Mathematical formulation)

F* := min {F(x) := f(x)} (1)
xERP

where f is proper, closed, convex and twice differentiable.
Note that (1) is unconstrained.

How de we design efficient optimization algorithms with accuracy-computation
tradeoffs for this class of functions?

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 44

Recall: Gradient descent methods (convex)

Gradient descent (GD) algorithm
The gradient method we discussed before indeed use the local steepest direction:
p* = -Vf(xF)

so that
xFHL = xF — 0, Vf(xF).

Key question: How do we choose a, so that we are guaranteed to successfully
descend? (ideally as fast as possible)

Answer: By exploiting the structures within the convex function

When f € }'i’l, we can use ay = 1/L so that x#*+1 = xk — 1V f(x*) is contractive.

e So far, we need to know L to achieve these rates.
e Another key question: What if we cannot compute L? Linesearch?

e One more key question: |s there any way of automatically exploiting local geometry?

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 44

Gradient descent vs. Accelerated gradient descent

Assumptions, step sizes and convergence rates
Gradient descent:

1 2L
feryt, a=g FOM) = 6 < = I =l

Accelerated Gradient Descent:

feF, a=< FxR) — <

4L

m”xo —x*|3, Vk > 0.

e We require a+ to be a function of L.
e It may not be possible to know exactly the Lipschitz constant.

e Adaptation to local geometry — may lead to larger steps.

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 44 EPFL

Adaptive first-order methods and Newton method

Adaptive methods
Adaptive methods converge with fast rates without knowing the smoothness constant.

They do so by making use of the information from gradients and their norms.

Newton method

Higher-order information, e.g., Hessian, gives a finer characterization of local behavior.

Newton method achieves asymptotically better local rates, but for additional cost.

iGNl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 44 EPFL

How can we better adapt to the local geometry?

f(x)

Global quadratic upper bound
Qux,x")

< o x40 = arginin { 1)+ (95 x) + Ll - 3

IVF(@) = Vil < Llly — | zzT

F0) < FO) 4 VAT x—x8) 2 e x¥ 2
L is a global worst-case constant

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 44 EPFL

How can we better adapt to the local geometry?

f(x)

Local quadratic upper bound

Qr(x,x")

xR ox"t! = arg min {f(x’\) (VP x —xF) + %Hx - kaé}
195~ V@I < Dly—all 2 180 5 10 10—+ Bt

L is a global worst-case constant (\) . applies only locally
(x¥)

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 44 EPFL

How can we better adapt to the local geometry?

f(x)

£ |
f(x) < f(x* \—T/\x"',\/\;xfx"\—Efox"‘Hil‘ﬂ
e

1

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 44 EPFL

Variable metric gradient descent algorithm

Variable metric gradient descent algorithm

1. Choose xU € RP as a starting point and Hy > 0.

2. For k=0,1,---, perform:
d* = —H 'V f(xF),
xktL = xk 4 adF,

where ay, € (0,1] is a given step size.
3. Update Hy | > O if necessary.

Common choices of the variable metric Hy,

> Hy .= M1 = gradient descent method.
> H,; := Dy, (a positive diagonal matrix) =—> adaptive gradient methods.
> H; = V2f(xF) = Newton method.

> H, =~ V2f(x*) = quasi-Newton method.

lions@epfl

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 44

Adaptive gradient methods

Intuition

Adaptive gradient methods adapt locally by setting H;, as a function of past gradient
information g1, g2, - gt-

e Generally, Hy, = h¢(g1,92, -, g¢) for some mapping h¢

e Some well-known examples:

AdaGrad [3]

Hi = /S (V) TV E)

RmsProp [8]

Hy, = \/BHi_1 + (1 — B)diag(V f(z*))2
ADAM [4]

Hy, = BHy_1 + (1 — B)diag(V f(z*))?

Hy, = /Hy/(1 - BF)

ICLGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 44

AdaGrad - Adaptive gradient method with Hy = A\ [

o If Hy = A\ I, it becomes gradient descent method with adaptive stepsize i—i

How stepsize adapts?

If gradient ||V f(z¥)|| is large/small — AdaGrad adjusts stepsize /A, smaller/larger

Adaptive gradient descent(AdaGrad with H;, = A\, I) [5]
1. Set Qo =0.
2. For k=0,1,...,T, iterate

QF =QF ' +|VfEh)?

H, =\/Q'

k1 =gk — akHI;1Vf(xk)

Adaptation through first-order information

> When Hj, = A\ I, AdaGrad estimates local geometry through gradient norms.

> Akin to estimating a local quadratic upper bound (majorization / minimization)
using gradient history.

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 44

AdaGrad - Adaptive gradient method with H, = Dy,

Adaptation strategy of positive diagonal Hj,

Adaptive stepsize + coordinate-wise extension = adaptive stepsize for each coordinate

Local quadratic upper bound

Qu.(x,x")

%) oxht! = argngn {f(x"') +(VF(xF),x —xP) + %Hx - kaﬁ}

, ok T by, L 12
IVF@) = Viwl < Lly—z| @ 76 < JO) + V6T =) + gl =

L is a global worst-case constant applies only locally

iGNl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 44 EPFL

AdaGrad - Adaptive gradient method with H, = Dy,
e Suppose Hy, is

Ak,1 0
Hy =

0 Ak.d

e For each coordinate i, we have different stepsize ol

is the stepsize.
Ak,i P

Adaptive gradient descent(AdaGrad with Hy = Dy)
1. Set Qo =0.
2. For k=0,1,...,T, iterate

QF =QF ! +diag(Vf(z"))?

Hy, \/@

gkt =gk — aklelVf(xk)

Adaptation across each coordinate

> When Hj = Dj, we adapt across each coordinate individually.

> Essentially, we have a finer treatment of the function we want to optimize.

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 17/ 44

Convergence rate for AdaGrad

Original convergence for a different function class

Consider a proper, convex function f such that it is G-Lipschitz continuous (NOT

L-smooth). Let D = max lzF — 2*||2 and aj, = % Define %% = (Zle x?)/t.

Then,

JE) - f(x*) < = 2D2i||Vf(xk)||2 o V208
<= 1< 22

k=1

A more familiar convergence result [5]

. k ;

Assume f € Fi’l, D = mtax||xlC —x*|]2 and ap, = % Define x* = (Zi:1 x")/t.
Then,

1 a 4D?L

FET) = £) < — | 202) IV Eh)I3 <
T T
k=1
ICLGHEI{N Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 44

RMSProp - Adaptive gradient method with H;, = D,

What could be improved over AdaGrad?
1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum — slow convergence at flat region.

AdaGrad with Hy = Dy RMSProp
1. Set Qo =0. 1. Set Qo =0.
2. For k=0,1,...,T, iterate 2. Fork=0,1,...,T, iterate
QF =QF ' 4 diag(Vf(z"))? QF =pQF T+ (1 — B)diag(VF(zF))?
Hy, = 4/QF Hy = 4/QF
gh+1 :xk—akH;1Vf(a:k) zh+1 :xk—aklelVf(:ck)

® RMSProp uses weighted averaging with constant g

o Recent gradients have greater importance

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 44 EPF

ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM

ADAM

Input. Step size «, exponential decay rates 1, 82 € [0,1)

1. Set mg, Vo =0
2. Fork=0,1,...,T, iterate

gk =V

mg = fBimg_1+ (1 — B1)gk < 1st order estimate
Vg = Povg_1 + (1 — ﬂg)gg < 2nd order estimate
my =my/(1 — BF) + Bias correction

Dy, = vi/(1 — B¥) + Bias correction

Hy, = m +e€

zhtl =2k — amiy/Hy
3. Return =7

(Every vector operation is element-wise operation)

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 44

AcceleGrad - Adaptive gradient + Accelerated gradient [6]

Motivation behind AcceleGrad

Is it possible to achieve acceleration for f € Fz’l, without knowing the Lipschitz
constant?

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : Number of iterations T, zg € K, diameter D,
weights {ag }re[r), learning rate {nx}rejm

1. Set Yo = 20 = X0

2. For k=0,1,...,T, iterate

Tk =1/ay

k= 2k 4 (1 — 7)y", define g, := Vf(zFtT)
2 =T (2% — awnrgr)

Yt =M g

Output : 37 ZZ:OI apyktt

e This is essentially the MD + GD scheme, with an adaptive step size!

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 44

AcceleGrad - Properties and convergence

Learning rate and weight computation

Assume that function f has uniformly bounded gradient norms ||V f(z*)||? < G2, i.e.,
f is G-Lipschitz continuous. AcceleGrad uses the following weights and learning rate:

_k+1 2D

ap = 4) Ne = =
V& + T 029 (e 0|2

e Similar to RmsProp, AcceleGrad assignes greater weights to recent gradients.

Convergence rate of AcceleGrad

Assume that f is convex and f € FLl‘l. Let K be a convex set with bounded diameter

D, and assume z* € K. Define yT = (z:ol oakykJrl)/(ZZ;Ol ay). Then,

2
f@T) — Helg}i f) <0 (DG+ LD 10g(LD/G)>

T2
If f is only convex and G-Lipschitz, then

£GT) = min f(@) < 0 (6D /log T/ VT)

z€RY

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 44

Example: Logistic regression
Problem (Logistic regression)
Given A € {0,1}"*P and b € {—1,+1}", solve:

i e= mi; f(x):= % Z log (1 + exp (fbj (aJTx 4F B)))
j=1

Real data

> Real data: ada with A € R"*%, where n = 4781 data points, d = 122 features
> All methods are run for T' = 10000 iterations

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 44

Example: Logistic regression with adaptive methods

10° W 10°
“ “
| |
—~ 102 —~ 102
i |[[—GD \ & |[[—cD
-~ —AGD =~ —AGD
i AcceleGrad L[|~ AcceleGrad
107 | — AdaGrad(Hy, = A\ I) 107 | — AdaGrad(Hy = A1)
AdaGrad(Hy, = DiI) AdaGrad(Hy, = D;I)
—_ADAM — ADAM \
6 -6
mwo" 10 102 10% 10* 10 109 102 107 10° 10
iterations (t) time (sec)

IHHGITNl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 24/ 44 EPFL

Newton method

e Fast (local) convergence but expensive per iteration cost
o Useful when warm-started near a solution

Local quadratic approximation using the Hessian

> Obtain a local quadratic approximation using the second-order Taylor series
approximation to f(x* + p):

70t +B) % F04) + (B, V1)) + 3 (b, V2 (<))

> The Newton direction is the vector p* that minimizes f(x* + p); assuming the
Hessian V2 f; to be positive definite, :

=i
Vif(xF)pF = -Vixr) e pF=—(VfF)) Vi)
> A unit step-size ap = 1 can be chosen near convergence:
xktl = xk _ (VQf(xk))71 Vf(xk) .
Remark

> For f €]-'i’l but f ¢ J:E’L, the Hessian may not always be positive definite.

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 44 EPFL

(Local) Convergence of Newton method

Lemma
Assume f is a twice differentiable convex function with minimum at X* such that:
> V2f(x*) = pl for some pu > 0,

> |[V2f(x) — V2f(y)|lam2 < M||x — y||2 for some constant M > 0 and all
x,y € dom(f).

Moreover, assume the starting point x° € dom(f) is such that ||x° — x*||2 <
Then, the Newton method iterates converge quadratically:

2/
3M -

/ k 2
|ka+1 —X*” < J\/IHX _X*II2
2 (n— Mjx* —x*||2)

Remark

This is the fastest convergence rate we have seen so far, but it requires to solve a
p X p linear system at each iteration, V2 f(x*)pF = —V f(x*)!

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 26/ 44 EPFL

*Locally quadratic convergence of the Newton method-I

Newton's method local quadratic convergence - Proof [7]
Since V f(x*) = 0 we have

XL xr = xF (V2 () TV (xF)
= (V2F(xR) 71 (V2 (M) (xF — x*) = (VF(xF) = Vf(x")))

By Taylor's theorem, we also have

1
Vi) - Vi) = / V2f(x* +t(x* — xF))(x" — x*)dt
0
Combining the two above, we obtain

IV2 £ () (x" = x*) = (VF(x*) = Vf(x)|

1
< / || V2 £ () = V2 (8 + £ = xF)) || [k — x*|dt
0

1
/ (V2f(xk) — V2f(xF 4 t(x* = xk))> (xF —x*)dt
0

1
1
< M|x* - x*||2/ tdt = o M|[x* —x*||?
0

IGLHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 44

*Locally quadratic convergence of the Newton method-II

Newton's method local quadratic convergence - Proof [7].

> Recall
xFHL = (V2 () 71 (V2 (R (P — %) = (VF(F) = V£(x*)))

IV2F () (x* —x*) = (VF(x*) = V) < %Mllxk - x*||?

> Since V2 f(x*) is nonsingular, there must exist a radius r such that
[(V2F) THIE < 20(V2F () M for all x* with [lx* — x*[| < r.

> Substituting, we obtain
[l —x* || < MV) TS = x*)1? = MIx* — <12,

where M = M||[(V2f(x*) 7.

> If we choose ||x° — x*|| < min(r, 1/(2]\7[)) we obtain by induction that the
iterates x* converge quadratically to x*.

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 44

Example: Logistic regression - GD, AGD, AcceleGrad + NM

—GD —GD
—AGD —AGD
" —NM " A —NM
AcceleGrad AcceleGrad
“ “
| |
—~10? —~10%
g g
= =
10 104
0® "
0 10! 10° 10% 10 10 10? 107 10° 10!
iterations (t) time (sec)
Parameters

> Newton's method: maximum number of iterations 30, tolerance 10~ 6.

> For GD, AGD & AcceleGrad: maximum number of iterations 10000, tolerance
10-6.

> Ground truth: Get a high accuracy approximation of x* and f* by applying
Newton's method for 200 iterations.

ICLGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 44

*Approximating Hessian: Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

o Useful for f(x) := :L:l fi(x) with n > p.

Main ingredients
Quasi-Newton direction:

p" = —H; 'Vf(x*) = -BxVf(x").

v

Matrix Hy, or its inverse By, undergoes low-rank updates:

> Rank 1 or 2 updates: famous Broyden—Fletcher—-Goldfarb—Shanno (BFGS) algorithm.
> Limited memory BFGS (L-BFGS).

> Line-search: The step-size o is chosen to satisfy the Wolfe conditions:

F(xE 4 app®) < £(x*) + cran (VF(xF), p*) (sufficient decrease)
(Vf(x* 4+ ap®), p*) > c2(VF(x¥), p") (curvature condition)

with 0 < ¢; < c2 < 1. For quasi-Newton methods, we usually use ¢; = 0.1.

v

Convergence is guaranteed under the Dennis & Moré condition [2].

v

For more details on quasi-Newton methods, see Nocedal&Wright's book [7].

IGLHEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 30/ 44

*Quasi-Newton methods

How do we update Bj17

Suppose we have (note the coordinate change from p to p)
_ _ 1 _ _
my11(p) i= fFT) (VA p—xF 1) +) (Bry1(p — x), (B — x*T1))).

We require the gradient of my, 1 to match the gradient of f at x* and x*+!

> Vmpyq (xFt1) = V£(xFt1) as desired;
k

v

For x®, we have

mG+1(xk) = Vf(Xk+1) ar Bk+1(xk — Xk+1)
which must be equal to Vf(xF).
> Rearranging, we have that By ; must satisfy the secant equation
By =y*

where sF = xF+1 — x* and y* = Vf(xFt1) — Vf(xF).

> The secant equation can be satisfied with a positive definite matrix By only if
(s®,y*) > 0, which is guaranteed to hold if the step-size oy, satisfies the Wolfe
conditions.

ILIHGEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfi.ch Slide 31/ 44 EPFL

*Quasi-Newton methods

BFGS method [7] (from Broyden, Fletcher, Goldfarb & Shanno)

The BFGS method arises from directly updating Hy = B;l. The update on the
inverse B is found by solving

min |H — Hy|lw subject to H=HT and Hy* = s* (1)

The solution is a rank-2 update of the matrix Hy:
Hyp1 = VIHEVE +mps®(s5)7

where Vi, =T — n,y*(sF)T.

> Initialization of Hg is an art. We can choose to set it to be an approximation of
V2 f(x?) obtained by finite differences or just a multiple of the identity matrix.

Theorem (Convergence of BFGS)

Let f € C2. Assume that the BFGS sequence {x*} converges to a point x* and
220:1 Ix* — x*|| < co. Assume also that V2 f(x) is Lipschitz continuous at x*.

Then x* converges to x* at a superlinear rate.

Remarks

The proof shows that given the assumptions, the BFGS updates for By, satisfy the
Dennis & Moré condition, which in turn implies superlinear convergence.

ILLHGEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfi.ch Slide 32/ 44

*L-BFGS
Challenges for BFGS

> BFGS approach stores and applies a dense p x p matrix Hy.

> When p is very large, Hy can prohibitively expensive to store and apply.

L(imited memory)-BFGS

> Do not store Hy, but keep only the m most recent pairs {(s?,y?)}.
> Compute H;V f(x3) by performing a sequence of operations with s and y*:

> Choose a temporary initial approximation H(,i

> Recursively apply Hy 1 = VszVk + ngs® (sk)T

, m times starting from Hg:
H), = (Vle . -~Vf,m) H (Vo Vi_1)
+ Nk—m (V;@Fq 0a0 Vkam,#»l) s TP T (Vieemar - Vo)
+ e
+ st DT
> From the previous expression, we can compute Hka(xk) recursively.
> Replace the oldest element in {s?, y*} with (s*,y*).

> From practical experience, m € (3,50) does the trick.

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 33/ 44

Recall: Convergence bounds for non-convex problems

Lower bound
Consider f € fé’l and f is non-convex. Then any first-order method must satisfy,

IV =0 (%)

As a corollary,

T=0(e?) (1

ILLHGEEI] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 44

Convergence of adaptive methods for non-convex problems

e For convex problems, adaptive methods not always have proper convergence analysis.

e Similarly in non-convex setting, difficult to find a rigorous convergence bound.

Convergence of AdaGrad (non-convex)

Assume that f €]—'i’l and f* = min f(x) > oo. The scalar step-size version of
AdaGrad satisfies:

. _o U@ =172
 min_ V@) =0 (T>

[XX)

e This characterization of convergence is weaker than ||V f(z7)||? = O(1/T).

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 44

Recall: Logistic regression with non-convex regularizer

Problem (Regularized logistic regression)
Given A € {0,1}"*P and b € {—1,+1}", solve:

x,B

f*i=min< f(x):= % Z log (1 + exp (—bj (aJTx + b’))) + gqb(x)
j=1

where ¢(x) = S0 é(xi).
Definition (Smoothly clipped absolute deviation (SCAD))

$(xi) =4 (= Pal® +2aA x| =A%) /(2(a = 1)) A< [xi| S a,
(1+a)X2/2 [xi| > aX

ICLGHEI{N Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 36/ 44

SCAD penalty

SCAD regularizer with A =1, a =

3

|
~

25

0.5

UNEENHN Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 37/ 44

Example: Convergence plot

Convergence and time plots of GD and adaptive methods for nonconvex logistic
regression problem.

1037 ; ; A

102 \ 102 \

if 10’ ?: 10
= =
B 10 > 10°
- —GD = —GD
107 AcceleGrad 107 AcceleGrad
— AdaGrad(H;, = A1) — AdaGrad(H = A1)
102 AdaGrad(Hy = DiI) 102 AdaGrad(Hy, = DiI)
— ADAM —ADAM
0 3
0 10! 102 10° 10* 1 102 107" 10° 10!
iterations (t) time (sec)

IHHGITNl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 38/ 44 EPFL

Performance of optimization algorithms

Time-to-reach ¢

time-to-reach € = number of iterations to reach ¢ X per iteration time

The speed of numerical solutions depends on two factors:

> Convergence rate determines the number of iterations needed to obtain an
e-optimal solution.

> Per-iteration time depends on the information oracles, implementation, and the
computational platform.

In general, convergence rate and per-iteration time are inversely proportional.
Finding the fastest algorithm is tricky!

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 39/ 44

Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
Lipschitz-gradient AdaGrad Sublinear (1/k) One gradient
fe]:i'l(R”) Accelerated GD Sublinear (1/k2) One gradient
AcceleGrad Sublinear (1/k2) One gradient
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Strongly convex, smooth Gradient descent Linear (e_k) One gradient
fe .7:21; (RP) Accelerated GD Linear (e —*) One gradient
Newton method Linear (eik), Quadratic One gradient, one linear system
Gradient descent: AdaGrad:

xFH = xF — av (b)),

where the stepsize is chosen appropriately,
ae(0,4)

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

xFHl = xF — oszf(xk)7

where scalar version of the step size is
: D

RS

Vs

Slide 40/ 44 =P

Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
Lipschitz-gradient AdaGrad Sublinear (1/k) One gradient
;e Filrp) Accelerated GD Sublinear (1/k2) One gradient
AcceleGrad Sublinear (1/k2) One gradient
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Strongly convex, smooth Gradient descent Linear (cfk) One gradient
fe Fi’; (RP) Accelerated GD Linear (e~ F) One gradient
Newton method Linear (e_k), Quadratic One gradient, one linear system
AcceleGrad:

Accelerated gradient descent:
xEHL = g 4 (1 - m)y*
2" = 2F — o VF(xF)

yP =< g v ().

=y = 0 f(yh)
YT = My T =),

for ap = (k+1)/4, 7, = 1/, and
2D

\/G2+Z,’;D(ak>2nw<xk>u2

for some proper choice of a and yi41.

M =

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 41/ 44

Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
Lipschitz-gradient AdaGrad Sublinear (1/k) One gradient
fe]—'i’l (RP) Accelerated GD Sublinear (1/k2) One gradient
AcceleGrad Sublinear (1/k2) One gradient
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Strongly convex, smooth Gradient descent Linear (efk) One gradient
fe]?i”i (RP) Accelerated GD Linear (e~ F) One gradient
Newton method Linear (e_k), Quadratic One gradient, one linear system

The main computation of the Newton method requires the solution of the linear
system

V2 f(xF)pk = -V (x") .

ILGHEI{] Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 42/ 44 EPF

References |

[1] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford.
Lower bounds for finding stationary points of non-convex , smooth
high-dimensional functions.

2017.

[2] JE Dennis and Jorge J Moré.
A characterization of superlinear convergence and its application to quasi-newton
methods.
Mathematics of Computation, 28(126):549-560, 1974.

[3] John Duchi, Elad Hazan, and Yoram Singer.
Adaptive subgradient methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.

[4] Diederik Kingma and Jimmy Ba.

Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

o

Kfir Levy.
Online to offline conversions, universality and adaptive minibatch sizes.
In Advances in Neural Information Processing Systems, pages 1613-1622, 2017.

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 43/ 44 EPFL

References ||

[6] Kfir Levy, Alp Yurtsever, and Volkan Cevher.
Online adaptive methods, universality and acceleration.
In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, 2018.

[7] J. Nocedal and S.J. Wright.
Numerical Optimization.
Springer, 2006.

[8] Tijmen Tieleman and Geoffrey Hinton.
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude.
COURSERA: Neural networks for machine learning, 4(2):26-31, 2012.

Il Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 44/ 44 EPFL

	Lecture 04 – Convex unconstrained, smooth minimization - part II

