## Mathematics of Data: From Theory to Computation

Prof Volkan Cevher volkan.cevher@epfl.ch

Lecture 5: Unconstrained, smooth minimization III

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2019)













#### License Information for Mathematics of Data Slides

► This work is released under a <u>Creative Commons License</u> with the following terms:

#### Attribution

The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

#### ► Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.

#### Share Alike

- ► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ► Full Text of the License

#### Outline

- ▶ This lecture
  - 1. Adaptive gradient methods
  - 2. Newton's method
  - 3. Accelerated adaptive gradient methods
- Next lecture
  - 1. Stochastic gradient methods

#### Recommended reading

- Chapters 2, 3, 5, 6 in Nocedal, Jorge, and Wright, Stephen J., Numerical Optimization, Springer, 2006.
- Chapter 9 in Boyd, Stephen, and Vandenberghe, Lieven, Convex optimization, Cambridge university press, 2009.
- Chapter 1 in Bertsekas, Dimitris, Nonlinear Programming, Athena Scientific, 1999.
- Chapters 1, 2 and 4 in Nesterov, Yurii, Introductory Lectures on Convex Optimization: A Basic Course, Vol. 87, Springer, 2004.

#### Motivation

#### Motivation

This lecture covers some more advanced numerical methods for *unconstrained* and *smooth* convex minimization.

#### Recall: convex, unconstrained, smooth minimization

# Problem (Mathematical formulation)

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) \right\}$$
 (1)

where f is proper, closed, convex and twice differentiable. Note that (1) is unconstrained.

How de we design efficient optimization algorithms with accuracy-computation tradeoffs for this class of functions?

## Recall: Gradient descent methods (convex)

# Gradient descent (GD) algorithm

The gradient method we discussed before indeed use the local steepest direction:

$$\mathbf{p}^k = -\nabla f(\mathbf{x}^k)$$

so that

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k).$$

Key question: How do we choose  $\alpha_k$  so that we are guaranteed to successfully descend? (ideally as fast as possible)

# **Answer:** By exploiting the structures within the convex function

When  $f \in \mathcal{F}_L^{2,1}$ , we can use  $\alpha_k = 1/L$  so that  $\mathbf{x}^{k+1} = \mathbf{x}^k - \frac{1}{L} \nabla f(\mathbf{x}^k)$  is contractive.

- So far, we need to know L to achieve these rates.
- Another key question: What if we cannot compute L? Linesearch?
- One more key question: Is there any way of automatically exploiting local geometry?

#### Gradient descent vs. Accelerated gradient descent

#### Assumptions, step sizes and convergence rates

Gradient descent:

$$f \in \mathcal{F}_L^{2,1}, \quad \alpha = \frac{1}{L} \qquad \qquad f(\mathbf{x}^k) - f(\mathbf{x}^\star) \leq \frac{2L}{k+4} \|\mathbf{x}^0 - \mathbf{x}^\star\|_2^2.$$

Accelerated Gradient Descent:

$$f \in \mathcal{F}_L^{1,1}, \quad \alpha = \frac{1}{L}$$
  $f(\mathbf{x}^k) - f^* \le \frac{4L}{(k+2)^2} \|\mathbf{x}^0 - \mathbf{x}^*\|_2^2, \ \forall k \ge 0.$ 

- We require  $\alpha_t$  to be a function of L.
- It may not be possible to know exactly the Lipschitz constant.
- ullet Adaptation to local geometry o may lead to larger steps.

#### Adaptive first-order methods and Newton method

#### Adaptive methods

Adaptive methods converge with fast rates without knowing the smoothness constant.

They do so by making use of the information from gradients and their norms.

#### Newton method

Higher-order information, e.g., Hessian, gives a finer characterization of local behavior.

Newton method achieves asymptotically better local rates, but for additional cost.

#### How can we better adapt to the local geometry?



#### How can we better adapt to the local geometry?



#### How can we better adapt to the local geometry?



## Variable metric gradient descent algorithm

#### Variable metric gradient descent algorithm

- **1**. Choose  $\mathbf{x}^0 \in \mathbb{R}^p$  as a starting point and  $\mathbf{H}_0 \succ 0$ .
- **2**. For  $k = 0, 1, \cdots$ , perform:

$$\begin{cases} \mathbf{d}^k &:= -\mathbf{H}_k^{-1} \nabla f(\mathbf{x}^k), \\ \mathbf{x}^{k+1} &:= \mathbf{x}^k + \alpha_k \mathbf{d}^k, \end{cases}$$

where  $\alpha_k \in (0,1]$  is a given step size. **3**. Update  $\mathbf{H}_{k+1} \succ 0$  if necessary.

# Common choices of the variable metric $\mathbf{H}_k$

- $\mathbf{H}_{k} := \lambda_{k} \mathbf{I}$ ⇒ gradient descent method.
- $ightharpoonup \mathbf{H}_k := \mathbf{D}_k$  (a positive diagonal matrix)  $\Longrightarrow$  adaptive gradient methods.
- ightharpoonup  $\mathbf{H}_k := \nabla^2 f(\mathbf{x}^k)$ ⇒ Newton method.
- $\mathbf{H}_k \approx \nabla^2 f(\mathbf{x}^k)$ ⇒ quasi-Newton method.

## Adaptive gradient methods

#### Intuition

Adaptive gradient methods adapt locally by setting  $\mathbf{H}_k$  as a function of past gradient information  $g_1,g_2,\cdots g_t$ .

- ullet Generally,  $\mathbf{H}_k = h_t(g_1, g_2, \cdots, g_t)$  for some mapping  $h_t$
- Some well-known examples:

# AdaGrad [3]

$$H_k = \sqrt{\sum_{t=1}^k (\nabla f(x^t)^\top \nabla f(x^t))}$$

#### RmsProp [8]

$$H_k = \sqrt{\beta H_{k-1} + (1-\beta)\operatorname{diag}(\nabla f(x^k))^2}$$

# ADAM [4]

$$\hat{H}_k = \beta \hat{H}_{k-1} + (1 - \beta) \operatorname{diag}(\nabla f(x^k))^2$$

$$H_k = \sqrt{\hat{H}_k/(1 - \beta^k)}$$

# AdaGrad - Adaptive gradient method with $H_k = \lambda_k I$

 $\bullet$  If  $H_k=\lambda_k I$  , it becomes gradient descent method with adaptive stepsize  $\frac{\alpha_k}{\lambda_k}.$ 

## How stepsize adapts?

If gradient  $\|\nabla f(x^k)\|$  is large/small  $\to$  AdaGrad adjusts stepsize  $\alpha_k/\lambda_k$  smaller/larger

# Adaptive gradient descent(AdaGrad with $H_k = \lambda_k I$ ) [5]

- 1. Set  $Q_0 = 0$ .
- **2.** For  $k = 0, 1, \dots, T$ , iterate

$$\left\{ \begin{array}{ll} Q^k &= Q^{k-1} + \|\nabla f(x^k)\|^2 \\ H_k &= \sqrt{Q^k} I \\ x^{k+1} &= x^k - \alpha_k H_k^{-1} \nabla f(x^k) \end{array} \right.$$

## Adaptation through first-order information

- When  $H_k = \lambda_k I$ , AdaGrad estimates local geometry through gradient norms.
- Akin to estimating a local quadratic upper bound (majorization / minimization) using gradient history.

# AdaGrad - Adaptive gradient method with $H_k = D_k$

# Adaptation strategy of positive diagonal $H_k$

Adaptive stepsize + coordinate-wise extension = adaptive stepsize for each coordinate



# AdaGrad - Adaptive gradient method with $H_k = D_k$

Suppose H<sub>k</sub> is

$$H_k = \begin{bmatrix} \lambda_{k,1} & 0 \\ & \ddots & \\ 0 & & \lambda_{k,d} \end{bmatrix},$$

• For each coordinate i, we have different stepsize  $\frac{\alpha_k}{\lambda_{k,i}}$  is the stepsize.

## Adaptive gradient descent(AdaGrad with $H_k = D_k$ )

- 1. Set  $Q_0 = 0$ . 2. For k = 0, 1, ..., T, iterate

$$\begin{cases} Q^k &= Q^{k-1} + \operatorname{diag}(\nabla f(x^k))^2 \\ H_k &= \sqrt{Q^k} \\ x^{k+1} &= x^k - \alpha_k H_k^{-1} \nabla f(x^k) \end{cases}$$

#### Adaptation across each coordinate

- ▶ When  $H_k = D_k$ , we adapt across each coordinate individually.
- Essentially, we have a finer treatment of the function we want to optimize.

## Convergence rate for AdaGrad

# Original convergence for a different function class

Consider a proper, convex function f such that it is G-Lipschitz continuous (NOT L-smooth). Let  $D = \max_k \|x^k - x^*\|_2$  and  $\alpha_k = \frac{D}{\sqrt{2}}$ . Define  $\bar{\mathbf{x}}^k = (\sum_{i=1}^k \mathbf{x}^i)/t$ . Then,

$$f(\bar{\mathbf{x}}^T) - f(\mathbf{x}^*) \le \frac{1}{T} \sqrt{2D^2 \sum_{k=1}^T \|\nabla f(x^k)\|_2^2} \le \frac{\sqrt{2}DG}{\sqrt{T}}$$

# A more familiar convergence result [5]

Assume  $f \in F_L^{1,1}$ ,  $D = \max_t \|x^k - x^*\|_2$  and  $\alpha_k = \frac{D}{\sqrt{2}}$ . Define  $\bar{\mathbf{x}}^k = (\sum_{i=1}^k \mathbf{x}^i)/t$ .

Then,

$$f(\bar{\mathbf{x}}^T) - f(\mathbf{x}^*) \le \frac{1}{T} \sqrt{2D^2 \sum_{k=1}^T \|\nabla f(x^k)\|_2^2} \le \frac{4D^2 L}{T}$$

# RMSProp - Adaptive gradient method with $H_k = D_k$

## What could be improved over AdaGrad?

- 1. Gradients have equal weights in step size.
- 2. Consider a  $\it steep$  function, flat around minimum  $\to \it slow$  convergence at flat region.

#### AdaGrad with $H_k = D_k$

- 1. Set  $Q_0 = 0$ .
- **2.** For  $k = 0, 1, \ldots, T$ , iterate

$$\begin{cases} Q^k &= Q^{k-1} + \operatorname{diag}(\nabla f(x^k))^2 \\ H_k &= \sqrt{Q^k} \\ x^{k+1} &= x^k - \alpha_k H_k^{-1} \nabla f(x^k) \end{cases}$$

#### **RMSProp**

- 1. Set  $Q_0 = 0$ .
- **2.** For  $k = 0, 1, \ldots, T$ , iterate

$$\begin{cases} Q^k &= \beta Q^{k-1} + (1-\beta) \operatorname{diag}(\nabla f(x^k))^2 \\ H_k &= \sqrt{Q^k} \\ x^{k+1} &= x^k - \alpha_k H_k^{-1} \nabla f(x^k) \end{cases}$$

- RMSProp uses weighted averaging with constant  $\beta$
- Recent gradients have greater importance

#### ADAM - Adaptive moment estimation

## Over-simplified idea of ADAM

RMSProp + 2nd order moment estimation = ADAM

#### ADAM

**Input.** Step size  $\alpha$ , exponential decay rates  $\beta_1, \beta_2 \in [0,1)$ 

- 1. Set  $m_0, V_0 = 0$
- **2.** For  $k = 0, 1, \dots, T$ , iterate

$$\begin{cases} g_k &= \nabla f(x^{k-1})\\ m_k &= \beta_1 m_{k-1} + (1-\beta_1)g_k \leftarrow 1 \text{st order estimate}\\ v_k &= \beta_2 v_{k-1} + (1-\beta_2)g_k^2 \leftarrow 2 \text{nd order estimate}\\ \hat{m_k} &= m_k/(1-\beta_k^1) \leftarrow \text{Bias correction}\\ \hat{v}_k &= v_k/(1-\beta_k^2) \leftarrow \text{Bias correction}\\ H_k &= \sqrt{\hat{v}_k} + \epsilon\\ x^{k+1} &= x^k - \alpha \hat{m}_k/H_k \end{cases}$$
3. Return  $x^T$ 

(Every vector operation is element-wise operation)

# AcceleGrad - Adaptive gradient + Accelerated gradient [6]

#### Motivation behind AcceleGrad

Is it possible to achieve acceleration for  $f \in F_L^{2,1}$ , without knowing the Lipschitz constant?

#### AcceleGrad (Accelerated Adaptive Gradient Method)

**Input**: Number of iterations T,  $x_0 \in \mathcal{K}$ , diameter D, weights  $\{\alpha_k\}_{k\in[T]}$ , learning rate  $\{\eta_k\}_{k\in[T]}$ 

- 1. Set  $y_0 = z_0 = x_0$ 2. For k = 0, 1, ..., T, iterate

$$\begin{cases} \tau_k &:= 1/\alpha_k \\ x^{k+1} &= \tau_k z^k + (1-\tau_k) y^k, \text{define } g_k := \nabla f(x^{k+1}) \\ z^{k+1} &= \Pi_K (z^k - \alpha_k \eta_k g_k) \\ y^{k+1} &= x^{k+1} - \eta_k g_k \end{cases}$$
 Output : 
$$\overline{y}^T \propto \sum_{k=0}^{T-1} \alpha_k y^{k+1}$$

• This is essentially the MD + GD scheme, with an adaptive step size!

## AcceleGrad - Properties and convergence

#### Learning rate and weight computation

Assume that function f has uniformly bounded gradient norms  $\|\nabla f(x^k)\|^2 \leq G^2$ , i.e., f is G-Lipschitz continuous. AcceleGrad uses the following weights and learning rate:

$$\alpha_k = \frac{k+1}{4}, \quad \eta_k = \frac{2D}{\sqrt{G^2 + \sum_{\tau=0}^k \alpha_{\tau}^2 \|\nabla f(x_{\tau+1})\|^2}}$$

• Similar to RmsProp, AcceleGrad assignes greater weights to recent gradients.

# Convergence rate of AcceleGrad

Assume that f is convex and  $f \in F_L^{1,1}$ . Let K be a convex set with bounded diameter D, and assume  $x^\star \in K$ . Define  $\bar{y^T} = (\sum_{k=0}^{T-1} \alpha_k y^{k+1})/(\sum_{k=0}^{T-1} \alpha_k)$ . Then,

$$f(\overline{y}^T) - \min_{x \in \mathbb{R}^d} f(x) \le O\left(\frac{DG + LD^2 \log(LD/G)}{T^2}\right)$$

If f is only convex and G-Lipschitz, then

$$f(\overline{y}^T) - \min_{x \in \mathbb{R}^d} f(x) \le O\left(GD\sqrt{\log T}/\sqrt{T}\right)$$

## **Example: Logistic regression**

# Problem (Logistic regression)

Given  $\mathbf{A} \in \{0,1\}^{n \times p}$  and  $\mathbf{b} \in \{-1,+1\}^n$ , solve:

$$f^* := \min_{\mathbf{x}, \beta} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n \log \left( 1 + \exp \left( -\mathbf{b}_j (\mathbf{a}_j^T \mathbf{x} + \beta) \right) \right) \right\}.$$

#### Real data

- ▶ Real data: a4a with  $A \in \mathbb{R}^{n \times d}$ , where n = 4781 data points, d = 122 features
- $\blacktriangleright$  All methods are run for T=10000 iterations

# Example: Logistic regression with adaptive methods





#### **Newton method**

- Fast (local) convergence but expensive per iteration cost
- Useful when warm-started near a solution

## Local quadratic approximation using the Hessian

▶ Obtain a local quadratic approximation using the second-order Taylor series approximation to  $f(\mathbf{x}^k + \mathbf{p})$ :

$$f(\mathbf{x}^k + \mathbf{p}) \approx f(\mathbf{x}^k) + \langle \mathbf{p}, \nabla f(\mathbf{x}^k) \rangle + \frac{1}{2} \langle \mathbf{p}, \nabla^2 f(\mathbf{x}^k) \mathbf{p} \rangle$$

▶ The Newton direction is the vector  $\mathbf{p}^k$  that minimizes  $f(\mathbf{x}^k + \mathbf{p})$ ; assuming the Hessian  $\nabla^2 f_k$  to be **positive definite**, :

$$\nabla^2 f(\mathbf{x}^k) \mathbf{p}^k = -\nabla f(\mathbf{x}^k) \quad \Leftrightarrow \quad \mathbf{p}^k = -\left(\nabla^2 f(\mathbf{x}^k)\right)^{-1} \nabla f(\mathbf{x}^k)$$

▶ A unit step-size  $\alpha_k = 1$  can be chosen near convergence:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \left(\nabla^2 f(\mathbf{x}^k)\right)^{-1} \nabla f(\mathbf{x}^k) .$$

#### Remark

For  $f \in \mathcal{F}_L^{2,1}$  but  $f \notin \mathcal{F}_{L,\mu}^{2,1}$ , the Hessian may not always be positive definite.

## (Local) Convergence of Newton method

#### Lemma

Assume f is a twice differentiable convex function with minimum at  $\mathbf{x}^*$  such that:

- $ightharpoonup 
  abla^2 f(\mathbf{x}^*) \succeq \mu \mathbf{I} \text{ for some } \mu > 0,$
- ▶  $\|\nabla^2 f(\mathbf{x}) \nabla^2 f(\mathbf{y})\|_{2\to 2} \le M \|\mathbf{x} \mathbf{y}\|_2$  for some constant M > 0 and all  $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$ .

Moreover, assume the starting point  $\mathbf{x}^0 \in \mathrm{dom}(f)$  is such that  $\|\mathbf{x}^0 - \mathbf{x}^\star\|_2 < \frac{2\mu}{3M}$ . Then, the Newton method iterates converge quadratically:

$$\|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\| \leq \frac{M\|\mathbf{x}^k - \mathbf{x}^{\star}\|_2^2}{2\left(\mu - M\|\mathbf{x}^k - \mathbf{x}^{\star}\|_2\right)}.$$

#### Remark

This is the fastest convergence rate we have seen so far, but it requires to solve a  $p \times p$  linear system at each iteration,  $\nabla^2 f(\mathbf{x}^k) \mathbf{p}^k = -\nabla f(\mathbf{x}^k)!$ 

## \*Locally quadratic convergence of the Newton method-I

# Newton's method local quadratic convergence - Proof [7]

Since  $\nabla f(\mathbf{x}^{\star}) = 0$  we have

$$\begin{split} \mathbf{x}^{k+1} - \mathbf{x}^{\star} &= \mathbf{x}^k - \mathbf{x}^{\star} - (\nabla^2 f(\mathbf{x}^k))^{-1} \nabla f(\mathbf{x}^k) \\ &= (\nabla^2 f(\mathbf{x}^k))^{-1} \left( \nabla^2 f(\mathbf{x}^k) (\mathbf{x}^k - \mathbf{x}^{\star}) - (\nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^{\star})) \right) \end{split}$$

By Taylor's theorem, we also have

$$\nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^*) = \int_0^1 \nabla^2 f(\mathbf{x}^k + t(\mathbf{x}^* - \mathbf{x}^k))(\mathbf{x}^k - \mathbf{x}^*) dt$$

Combining the two above, we obtain

$$\begin{split} &\|\nabla^2 f(\mathbf{x}^k)(\mathbf{x}^k - \mathbf{x}^\star) - (\nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^\star))\| \\ &= \left\| \int_0^1 \left( \nabla^2 f(\mathbf{x}^k) - \nabla^2 f(\mathbf{x}^k + t(\mathbf{x}^\star - \mathbf{x}^k)) \right) (\mathbf{x}^k - \mathbf{x}^\star) dt \right\| \\ &\leq \int_0^1 \left\| \nabla^2 f(\mathbf{x}^k) - \nabla^2 f(\mathbf{x}^k + t(\mathbf{x}^\star - \mathbf{x}^k)) \right\| \|\mathbf{x}^k - \mathbf{x}^\star\| dt \\ &\leq M \|\mathbf{x}^k - \mathbf{x}^\star\|^2 \int_0^1 t dt = \frac{1}{2} M \|\mathbf{x}^k - \mathbf{x}^\star\|^2 \end{split}$$

## \*Locally quadratic convergence of the Newton method-II

## Newton's method local quadratic convergence - Proof [7].

Recall

$$\begin{split} \mathbf{x}^{k+1} - \mathbf{x}^{\star} &= (\nabla^2 f(\mathbf{x}^k))^{-1} \left( \nabla^2 f(\mathbf{x}^k) (\mathbf{x}^k - \mathbf{x}^{\star}) - (\nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^{\star})) \right) \\ \| \nabla^2 f(\mathbf{x}^k) (\mathbf{x}^k - \mathbf{x}^{\star}) - (\nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^{\star})) \| \leq \frac{1}{2} M \|\mathbf{x}^k - \mathbf{x}^{\star}\|^2 \end{split}$$

- ▶ Since  $\nabla^2 f(\mathbf{x}^*)$  is nonsingular, there must exist a radius r such that  $\|(\nabla^2 f(\mathbf{x}^k))^{-1}\| \le 2\|(\nabla^2 f(\mathbf{x}^*))^{-1}\|$  for all  $\mathbf{x}^k$  with  $\|\mathbf{x}^k \mathbf{x}^*\| \le r$ .
- Substituting, we obtain

$$\|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\| \leq M \|(\nabla^2 f(\mathbf{x}^{\star}))^{-1}\| \|\mathbf{x}^k - \mathbf{x}^{\star}\|^2 = \widetilde{M} \|\mathbf{x}^k - \mathbf{x}^{\star}\|^2,$$

where  $\widetilde{M} = M \| (\nabla^2 f(\mathbf{x}^*))^{-1} \|$ .

▶ If we choose  $\|\mathbf{x}^0 - \mathbf{x}^*\| \leq \min(r, 1/(2\widetilde{M}))$ , we obtain by induction that the iterates  $\mathbf{x}^k$  converge quadratically to  $\mathbf{x}^*$ .

#### Example: Logistic regression - GD, AGD, AcceleGrad + NM



#### **Parameters**

- Newton's method: maximum number of iterations 30, tolerance  $10^{-6}$ .
- $\,\blacktriangleright\,$  For GD, AGD & AcceleGrad: maximum number of iterations 10000 , tolerance  $10^{-6}.$
- ▶ Ground truth: Get a high accuracy approximation of  $\mathbf{x}^*$  and  $f^*$  by applying Newton's method for 200 iterations.

## \*Approximating Hessian: Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

• Useful for  $f(\mathbf{x}) := \sum_{i=1}^n f_i(\mathbf{x})$  with  $n \gg p$ .

## Main ingredients

Quasi-Newton direction:

$$\mathbf{p}^k = -\mathbf{H}_k^{-1} \nabla f(\mathbf{x}^k) = -\mathbf{B}_k \nabla f(\mathbf{x}^k).$$

- Matrix  $\mathbf{H}_k$ , or its inverse  $\mathbf{B}_k$ , undergoes low-rank updates:
  - Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
  - Limited memory BFGS (L-BFGS).
- Line-search: The step-size  $\alpha_k$  is chosen to satisfy the **Wolfe conditions**:

$$\begin{split} f(\mathbf{x}^k + \alpha_k \mathbf{p}^k) & \leq f(\mathbf{x}^k) + c_1 \alpha_k \langle \nabla f(\mathbf{x}^k), \mathbf{p}^k \rangle & \text{(sufficient decrease)} \\ \langle \nabla f(\mathbf{x}^k + \alpha_k \mathbf{p}^k), \mathbf{p}^k \rangle & \geq c_2 \langle \nabla f(\mathbf{x}^k), \mathbf{p}^k \rangle & \text{(curvature condition)} \end{split}$$

with  $0 < c_1 < c_2 < 1$ . For quasi-Newton methods, we usually use  $c_1 = 0.1$ .

- ▶ Convergence is guaranteed under the Dennis & Moré condition [2].
- For more details on quasi-Newton methods, see Nocedal&Wright's book [7].

#### \*Quasi-Newton methods

#### How do we update $\mathbf{B}_{k+1}$ ?

Suppose we have (note the coordinate change from  ${\bf p}$  to  $\bar{{\bf p}}$ )

$$m_{k+1}(\bar{\mathbf{p}}) := f(\mathbf{x}^{k+1}) + \langle \nabla f(\mathbf{x}^{k+1}), \bar{\mathbf{p}} - \mathbf{x}^{k+1} \rangle + \frac{1}{2} \langle \mathbf{B}_{k+1}(\bar{\mathbf{p}} - \mathbf{x}^{k+1}), (\bar{\mathbf{p}} - \mathbf{x}^{k+1})) \rangle.$$

We require the gradient of  $m_{k+1}$  to match the gradient of f at  $\mathbf{x}^k$  and  $\mathbf{x}^{k+1}$ .

- $ightharpoonup 
  abla m_{k+1}(\mathbf{x}^{k+1}) = \nabla f(\mathbf{x}^{k+1})$  as desired;
- ightharpoonup For  $\mathbf{x}^k$ , we have

$$\nabla m_{k+1}(\mathbf{x}^k) = \nabla f(\mathbf{x}^{k+1}) + \mathbf{B}_{k+1}(\mathbf{x}^k - \mathbf{x}^{k+1})$$

which must be equal to  $\nabla f(\mathbf{x}^k)$ .

ightharpoonup Rearranging, we have that  ${f B}_{k+1}$  must satisfy the **secant equation** 

$$\mathbf{B}_{k+1}\mathbf{s}^k = \mathbf{y}^k$$

where 
$$\mathbf{s}^k = \mathbf{x}^{k+1} - \mathbf{x}^k$$
 and  $\mathbf{v}^k = \nabla f(\mathbf{x}^{k+1}) - \nabla f(\mathbf{x}^k)$ .

▶ The secant equation can be satisfied with a positive definite matrix  $\mathbf{B}_{k+1}$  only if  $\langle \mathbf{s}^k, \mathbf{y}^k \rangle > 0$ , which is guaranteed to hold if the step-size  $\alpha_k$  satisfies the Wolfe conditions.

#### \*Quasi-Newton methods

# BFGS method [7] (from Broyden, Fletcher, Goldfarb & Shanno)

The BFGS method arises from directly updating  $\mathbf{H}_k = \mathbf{B}_k^{-1}$  . The update on the inverse B is found by solving

$$\min_{\mathbf{H}} \|\mathbf{H} - \mathbf{H}_k\|_{\mathbf{W}} \quad \text{subject to } \mathbf{H} = \mathbf{H}^T \text{ and } \mathbf{H}\mathbf{y}^k = \mathbf{s}^k \tag{1}$$

The solution is a rank-2 update of the matrix  $\mathbf{H}_k$ :

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

$$\mathbf{H}_{k+1} = \mathbf{V}_k^T \mathbf{H}_k \mathbf{V}_k + \eta_k \mathbf{s}^k (\mathbf{s}^k)^T ,$$

where  $\mathbf{V}_k = \mathbf{I} - n_k \mathbf{v}^k (\mathbf{s}^k)^T$ .

 $\blacktriangleright$  Initialization of  $\mathbf{H}_0$  is an art. We can choose to set it to be an approximation of  $\nabla^2 f(\mathbf{x}^0)$  obtained by finite differences or just a multiple of the identity matrix.

# Theorem (Convergence of BFGS)

Let  $f \in \mathcal{C}^2$ . Assume that the BFGS sequence  $\{\mathbf{x}^k\}$  converges to a point  $\mathbf{x}^{\star}$  and  $\sum_{k=1}^{\infty} \|\mathbf{x}^k - \mathbf{x}^{\star}\| \le \infty$ . Assume also that  $\nabla^2 f(\mathbf{x})$  is Lipschitz continuous at  $\mathbf{x}^{\star}$ . Then  $\mathbf{x}^k$  converges to  $\mathbf{x}^*$  at a superlinear rate.

#### Remarks

The proof shows that given the assumptions, the BFGS updates for  $\mathbf{B}_k$  satisfy the Dennis & Moré condition, which in turn implies superlinear convergence.

#### \*L-BFGS

#### Challenges for BFGS

- ▶ BFGS approach stores and applies a dense  $p \times p$  matrix  $\mathbf{H}_k$ .
- $\blacktriangleright$  When p is very large,  $\mathbf{H}_k$  can prohibitively expensive to store and apply.

# L(imited memory)-BFGS

- lacktriangle Do not store  $\mathbf{H}_k$ , but keep only the m most recent pairs  $\{(\mathbf{s}^i,\mathbf{y}^i)\}$ .
- ▶ Compute  $\mathbf{H}_k \nabla f(\mathbf{x}_k)$  by performing a sequence of operations with  $\mathbf{s}^i$  and  $\mathbf{y}^i$ :
  - Choose a temporary initial approximation H<sub>k</sub><sup>0</sup>.
  - ▶ Recursively apply  $\mathbf{H}_{k+1} = \mathbf{V}_k^T \mathbf{H}_k \mathbf{V}_k + \eta_k \mathbf{s}^k (\mathbf{s}^k)^T$ , m times starting from  $\mathbf{H}_k^0$ :

$$\begin{aligned} \mathbf{H}_{k} &= \left(\mathbf{V}_{k-1}^{T} \cdots \mathbf{V}_{k-m}^{T}\right) \mathbf{H}_{k}^{0} \left(\mathbf{V}_{k-m} \cdots \mathbf{V}_{k-1}\right) \\ &+ \eta_{k-m} \left(\mathbf{V}_{k-1}^{T} \cdots \mathbf{V}_{k-m+1}^{T}\right) \mathbf{s}^{k-m} (\mathbf{s}^{k-m})^{T} \left(\mathbf{V}_{k-m+1} \cdots \mathbf{V}_{k-1}\right) \\ &+ \cdots \\ &+ \eta_{k-1} \mathbf{s}^{k-1} (\mathbf{s}^{k-1})^{T} \end{aligned}$$

- From the previous expression, we can compute  $\mathbf{H}_k \nabla f(\mathbf{x}^k)$  recursively.
- ▶ Replace the oldest element in  $\{s^i, y^i\}$  with  $(s^k, y^k)$ .
- From practical experience,  $m \in (3, 50)$  does the trick.

## Recall: Convergence bounds for non-convex problems

#### Lower bound

Consider  $f \in \mathcal{F}_L^{1,1}$  and f is non-convex. Then any first-order method must satisfy,

$$\|\nabla f(\mathbf{x}^T)\| = \Omega\left(\frac{1}{\sqrt{T}}\right)$$

As a corollary,

$$T = \Omega\left(\epsilon^{-2}\right)[1]$$

## Convergence of adaptive methods for non-convex problems

- For convex problems, adaptive methods not always have proper convergence analysis.
- Similarly in non-convex setting, difficult to find a rigorous convergence bound.

## Convergence of AdaGrad (non-convex)

Assume that  $f\in\mathcal{F}_L^{1,1}$  and  $f^\star=\min f(x)>\infty.$  The scalar step-size version of AdaGrad satisfies:

$$\min_{k \in 1,...,T} \|\nabla f(x^k)\|^2 = O\left(\frac{(f(x_0) - f^*)^2}{T}\right)$$

• This characterization of convergence is weaker than  $\|\nabla f(x_T)\|^2 = O(1/T)$ .

## Recall: Logistic regression with non-convex regularizer

# Problem (Regularized logistic regression)

Given  $\mathbf{A} \in \{0,1\}^{n \times p}$  and  $\mathbf{b} \in \{-1,+1\}^n$ , solve:

$$f^* := \min_{\mathbf{x}, \beta} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n \log \left( 1 + \exp \left( -\mathbf{b}_j(\mathbf{a}_j^T \mathbf{x} + \beta) \right) \right) + \frac{\theta}{2} \phi(\mathbf{x}) \right\}.$$

where  $\phi(\mathbf{x}) = \sum_{i=1}^{d} \phi(\mathbf{x}_i)$ .

# Definition (Smoothly clipped absolute deviation (SCAD))

$$\phi(\mathbf{x}_i) = \begin{cases} \lambda |\mathbf{x}_i| & |\mathbf{x}_i| \le \lambda, \\ \left(-|\mathbf{x}_i|^2 + 2a\lambda |\mathbf{x}_i| - \lambda^2\right) / (2(a-1)) & \lambda < |\mathbf{x}_i| \le a\lambda, \\ (1+a)\lambda^2 / 2 & |\mathbf{x}_i| > a\lambda \end{cases}$$

# **SCAD** penalty

SCAD regularizer with  $\lambda = 1$ , a = 4.



## **Example: Convergence plot**

Convergence and time plots of GD and adaptive methods for nonconvex logistic regression problem.





#### Performance of optimization algorithms

#### Time-to-reach $\epsilon$

time-to-reach  $\epsilon$  = number of iterations to reach  $\epsilon$   $\times$  per iteration time

The **speed** of numerical solutions depends on two factors:

- ▶ Convergence rate determines the number of iterations needed to obtain an e-optimal solution.
- Per-iteration time depends on the information oracles, implementation, and the computational platform.

In general, convergence rate and per-iteration time are inversely proportional. Finding the fastest algorithm is tricky!

#### Performance of optimization algorithms (convex)

#### A non-exhaustive comparison:

| Assumptions on f                                | Algorithm                   | Convergence rate                                     | Iteration complexity                         |
|-------------------------------------------------|-----------------------------|------------------------------------------------------|----------------------------------------------|
| Lipschitz-gradient                              | Gradient descent<br>AdaGrad | Sublinear $(1/k)$<br>Sublinear $(1/k)$               | One gradient<br>One gradient                 |
| $f \in \mathcal{F}_L^{2,1}(\mathbb{R}^p)$       | Accelerated GD              | Sublinear $(1/k^2)$                                  | One gradient                                 |
| 2                                               | AcceleGrad<br>Newton method | Sublinear $(1/k^2)$<br>Sublinear $(1/k)$ , Quadratic | One gradient One gradient, one linear system |
|                                                 | Newton method               | ( / / /                                              | One gradient, one linear system              |
| Strongly convex, smooth                         | Gradient descent            | Linear $(e^{-k})$                                    | One gradient                                 |
| $f \in \mathcal{F}^{2,1}_{L,\mu}(\mathbb{R}^p)$ | Accelerated GD              | Linear $(e^{-k})$                                    | One gradient                                 |
|                                                 | Newton method               | Linear $(e^{-k})$ , Quadratic                        | One gradient, one linear system              |

Gradient descent:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k).$$

where the stepsize is chosen appropriately,  $\alpha \in (0,\frac{2}{L})$ 

AdaGrad:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha^k \nabla f(\mathbf{x}^k),$$

where scalar version of the step size is  $\alpha^k = \frac{D}{\sqrt{\sum_{i=1}^k \|\nabla f(x^i)\|^2}}$ 

## Performance of optimization algorithms (convex)

A non-exhaustive comparison:

| Assumptions on f                                | Algorithm        | Convergence rate              | Iteration complexity            |
|-------------------------------------------------|------------------|-------------------------------|---------------------------------|
|                                                 | Gradient descent | Sublinear $(1/k)$             | One gradient                    |
| Lipschitz-gradient                              | AdaGrad          | Sublinear $(1/k)$             | One gradient                    |
| $f \in \mathcal{F}_L^{2,1}(\mathbb{R}^p)$       | Accelerated GD   | Sublinear $(1/k^2)$           | One gradient                    |
|                                                 | AcceleGrad       | Sublinear $(1/k^2)$           | One gradient                    |
|                                                 | Newton method    | Sublinear $(1/k)$ , Quadratic | One gradient, one linear system |
| Strongly convex, smooth                         | Gradient descent | Linear $(e^{-k})$             | One gradient                    |
| $f \in \mathcal{F}_{L,\mu}^{2,1}(\mathbb{R}^p)$ | Accelerated GD   | Linear $(e^{-k})$             | One gradient                    |
|                                                 | Newton method    | Linear $(e^{-k})$ , Quadratic | One gradient, one linear system |

Accelerated gradient descent:

$$\mathbf{x}^{k+1} = \mathbf{y}^k - \alpha \nabla f(\mathbf{y}^k)$$
$$\mathbf{y}^{k+1} = \mathbf{x}^{k+1} + \gamma_{k+1} (\mathbf{x}^{k+1} - \mathbf{x}^k).$$

for some proper choice of  $\alpha$  and  $\gamma_{k+1}$ .

AcceleGrad:

$$\mathbf{x}^{k+1} = \tau_k \mathbf{z}^k + (1 - \tau_k) \mathbf{y}^k$$
$$\mathbf{z}^{k+1} = \mathbf{z}^k - \alpha_k \eta_k \nabla f(\mathbf{x}^k)$$
$$\mathbf{y}^{k+1} = \mathbf{x}^{k+1} - \eta_k \nabla f(\mathbf{x}^k).$$

$$\begin{aligned} &\text{for } \alpha_k = (k+1)/4, \, \tau_k = 1/\alpha_k \text{ and } \\ &\eta_k = \frac{2D}{\sqrt{G^2 + \sum_{i=0}^k (\alpha_k)^2 \|\nabla f(\mathbf{x}^k)\|^2}}. \end{aligned}$$

## Performance of optimization algorithms (convex)

#### A non-exhaustive comparison:

| Assumptions on f                                | Algorithm        | Convergence rate              | Iteration complexity            |
|-------------------------------------------------|------------------|-------------------------------|---------------------------------|
|                                                 | Gradient descent | Sublinear $(1/k)$             | One gradient                    |
| Lipschitz-gradient                              | AdaGrad          | Sublinear $(1/k)$             | One gradient                    |
| $f \in \mathcal{F}_L^{2,1}(\mathbb{R}^p)$       | Accelerated GD   | Sublinear $(1/k^2)$           | One gradient                    |
|                                                 | AcceleGrad       | Sublinear $(1/k^2)$           | One gradient                    |
|                                                 | Newton method    | Sublinear $(1/k)$ , Quadratic | One gradient, one linear system |
| Strongly convex, smooth                         | Gradient descent | Linear $(e^{-k})$             | One gradient                    |
| $f \in \mathcal{F}^{2,1}_{L,\mu}(\mathbb{R}^p)$ | Accelerated GD   | Linear $(e^{-k})$             | One gradient                    |
| ,,                                              | Newton method    | Linear $(e^{-k})$ , Quadratic | One gradient, one linear system |

The main computation of the Newton method requires the solution of the linear system

$$\nabla^2 f(\mathbf{x}^k) \mathbf{p}^k = -\nabla f(\mathbf{x}^k) \ .$$

#### References |

- Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary points of non-convex, smooth high-dimensional functions.
   2017.
- [2] JE Dennis and Jorge J Moré. A characterization of superlinear convergence and its application to quasi-newton methods. Mathematics of Computation, 28(126):549–560, 1974.
- [3] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.
- [4] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- [5] Kfir Levy. Online to offline conversions, universality and adaptive minibatch sizes. In Advances in Neural Information Processing Systems, pages 1613–1622, 2017.

#### References II

- [6] Kfir Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and acceleration. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018.
- [7] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 2006.
- [8] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.