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Outline

> This lecture

1. Adaptive gradient methods
2. Newton's method
3. Accelerated adaptive gradient methods

> Next lecture

1. Stochastic gradient methods
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Recommended reading

> Chapters 2, 3, 5, 6 in Nocedal, Jorge, and Wright, Stephen J., Numerical
Optimization, Springer, 2006.

> Chapter 9 in Boyd, Stephen, and Vandenberghe, Lieven, Convex optimization,
Cambridge university press, 2009.

> Chapter 1 in Bertsekas, Dimitris, Nonlinear Programming, Athena Scientific,
1999.

> Chapters 1, 2 and 4 in Nesterov, Yurii, Introductory Lectures on Convex
Optimization: A Basic Course, Vol. 87, Springer, 2004.
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Motivation

Motivation

This lecture covers some more advanced numerical methods for unconstrained and
smooth convex minimization.
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Recall: convex, unconstrained, smooth minimization

Problem (Mathematical formulation)

F* := min {F(x) := f(x)} (1)
xERP

where f is proper, closed, convex and twice differentiable.
Note that (1) is unconstrained.

How de we design efficient optimization algorithms with accuracy-computation
tradeoffs for this class of functions?
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Recall: Gradient descent methods (convex)

Gradient descent (GD) algorithm
The gradient method we discussed before indeed use the local steepest direction:
p* = -Vf(xF)

so that
xFHL = xF — 0, Vf(xF).

Key question: How do we choose a, so that we are guaranteed to successfully
descend? (ideally as fast as possible)

Answer: By exploiting the structures within the convex function

When f € }'i’l, we can use ay = 1/L so that x#*+1 = xk — 1V f(x*) is contractive.

e So far, we need to know L to achieve these rates.
e Another key question: What if we cannot compute L? Linesearch?

e One more key question: |s there any way of automatically exploiting local geometry?
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Gradient descent vs. Accelerated gradient descent

Assumptions, step sizes and convergence rates
Gradient descent:

1 2L
feryt, a=g FOM) = 6 < = I =l

Accelerated Gradient Descent:

feF, a=< FxR) — <

4L

m”xo —x*|3, Vk > 0.

e We require a+ to be a function of L.
e It may not be possible to know exactly the Lipschitz constant.

e Adaptation to local geometry — may lead to larger steps.
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Adaptive first-order methods and Newton method

Adaptive methods
Adaptive methods converge with fast rates without knowing the smoothness constant.

They do so by making use of the information from gradients and their norms.

Newton method

Higher-order information, e.g., Hessian, gives a finer characterization of local behavior.

Newton method achieves asymptotically better local rates, but for additional cost.
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How can we better adapt to the local geometry?

f(x)

Global quadratic upper bound
Qux,x")

< o x40 = arginin { 1)+ (95 x) + Ll - 3

IVF(@) = Vil < Llly — | zzT

F0) < FO) 4 VAT x—x8) 2 e x¥ 2
L is a global worst-case constant
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How can we better adapt to the local geometry?

f(x)

Local quadratic upper bound

Qr(x,x")

xR ox"t! = arg min {f(x’\) (VP x —xF) + %Hx - kaé}
195~ V@I < Dly—all 2 180 5 10 10—+ Bt

L is a global worst-case constant (\) . applies only locally
(x¥)
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How can we better adapt to the local geometry?

f(x)

£ |
f(x) < f(x* \—T/\x"',\/\;xfx"\—Efox"‘Hil‘ﬂ
e

1
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Variable metric gradient descent algorithm

Variable metric gradient descent algorithm

1. Choose xU € RP as a starting point and Hy > 0.

2. For k=0,1,---, perform:
d* = —H 'V f(xF),
xktL = xk 4 adF,

where ay, € (0,1] is a given step size.
3. Update Hy | > O if necessary.

Common choices of the variable metric Hy,

> Hy .= M1 = gradient descent method.
> H,; := Dy, (a positive diagonal matrix) =—> adaptive gradient methods.
> H; = V2f(xF) = Newton method.

> H, =~ V2f(x*) = quasi-Newton method.

lions@epfl
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Adaptive gradient methods

Intuition

Adaptive gradient methods adapt locally by setting H;, as a function of past gradient
information g1, g2, - gt-

e Generally, Hy, = h¢(g1,92, -, g¢) for some mapping h¢

e Some well-known examples:

AdaGrad [3]

Hi = /S (V) TV E)

RmsProp [8]

Hy, = \/BHi_1 + (1 — B)diag(V f(z*))2
ADAM [4]

Hy, = BHy_1 + (1 — B)diag(V f(z*))?

Hy, = /Hy/(1 - BF)
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AdaGrad - Adaptive gradient method with Hy = A\ [

o If Hy = A\ I, it becomes gradient descent method with adaptive stepsize i—i

How stepsize adapts?

If gradient ||V f(z¥)|| is large/small — AdaGrad adjusts stepsize /A, smaller/larger

Adaptive gradient descent(AdaGrad with H;, = A\, I) [5]
1. Set Qo =0.
2. For k=0,1,...,T, iterate

QF  =QF ' +|VfEh)?

H, =\/Q'

k1 =gk — akHI;1Vf(xk)

Adaptation through first-order information

> When Hj, = A\ I, AdaGrad estimates local geometry through gradient norms.

> Akin to estimating a local quadratic upper bound (majorization / minimization)
using gradient history.
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AdaGrad - Adaptive gradient method with H, = Dy,

Adaptation strategy of positive diagonal Hj,

Adaptive stepsize + coordinate-wise extension = adaptive stepsize for each coordinate

Local quadratic upper bound

Qu.(x,x")

%) oxht! = argngn {f(x"') +(VF(xF),x —xP) + %Hx - kaﬁ}

, ok T by, L 12
IVF@) = Viwl < Lly—z| @ 76 < JO) + V6T =) + gl =

L is a global worst-case constant applies only locally
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AdaGrad - Adaptive gradient method with H, = Dy,
e Suppose Hy, is

Ak,1 0
Hy =

0 Ak.d

e For each coordinate i, we have different stepsize ol

is the stepsize.
Ak,i P

Adaptive gradient descent(AdaGrad with Hy = Dy)
1. Set Qo =0.
2. For k=0,1,...,T, iterate

QF  =QF ! +diag(Vf(z"))?

Hy, \/@

gkt =gk — aklelVf(xk)

Adaptation across each coordinate

> When Hj = Dj, we adapt across each coordinate individually.

> Essentially, we have a finer treatment of the function we want to optimize.
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Convergence rate for AdaGrad

Original convergence for a different function class

Consider a proper, convex function f such that it is G-Lipschitz continuous (NOT

L-smooth). Let D = max lzF — 2*||2 and aj, = % Define %% = (Zle x?)/t.

Then,

JE) - f(x*) < = 2D2i||Vf(xk)||2 o V208
<= 1< 22

k=1

A more familiar convergence result [5]

. k ;

Assume f € Fi’l, D = mtax||xlC —x*|]2 and ap, = % Define x* = (Zi:1 x")/t.
Then,

1 a 4D?L

FET) = £) < — | 202 ) IV Eh)I3 <
T T
k=1
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RMSProp - Adaptive gradient method with H;, = D,

What could be improved over AdaGrad?
1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum — slow convergence at flat region.

AdaGrad with Hy = Dy RMSProp
1. Set Qo =0. 1. Set Qo =0.
2. For k=0,1,...,T, iterate 2. Fork=0,1,...,T, iterate
QF  =QF ' 4 diag(Vf(z"))? QF =pQF T+ (1 — B)diag(VF(zF))?
Hy, = 4/QF Hy = 4/QF
gh+1 :xk—akH;1Vf(a:k) zh+1 :xk—aklelVf(:ck)

® RMSProp uses weighted averaging with constant g

o Recent gradients have greater importance
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ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM

ADAM

Input. Step size «, exponential decay rates 1, 82 € [0,1)

1. Set mg, Vo =0
2. Fork=0,1,...,T, iterate

gk =V

mg = fBimg_1+ (1 — B1)gk < 1st order estimate
Vg = Povg_1 + (1 — ﬂg)gg < 2nd order estimate
my  =my/(1 — BF) + Bias correction

Dy, = vi/(1 — B¥) + Bias correction

Hy, = m +e€

zhtl =2k — amiy/Hy
3. Return =7

(Every vector operation is element-wise operation)
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AcceleGrad - Adaptive gradient + Accelerated gradient [6]

Motivation behind AcceleGrad

Is it possible to achieve acceleration for f € Fz’l, without knowing the Lipschitz
constant?

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : Number of iterations T, zg € K, diameter D,
weights {ag }re[r), learning rate {nx}rejm

1. Set Yo = 20 = X0

2. For k=0,1,...,T, iterate

Tk =1/ay

k= 2k 4 (1 — 7)y", define g, := Vf(zFtT)
2 =T (2% — awnrgr)

Yt =M g

Output : 37 ZZ:OI apyktt

e This is essentially the MD + GD scheme, with an adaptive step size!
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AcceleGrad - Properties and convergence

Learning rate and weight computation

Assume that function f has uniformly bounded gradient norms ||V f(z*)||? < G2, i.e.,
f is G-Lipschitz continuous. AcceleGrad uses the following weights and learning rate:

_k+1 2D

ap = 4 ) Ne = =
V& + T 029 (e 0|2

e Similar to RmsProp, AcceleGrad assignes greater weights to recent gradients.

Convergence rate of AcceleGrad

Assume that f is convex and f € FLl‘l. Let K be a convex set with bounded diameter

D, and assume z* € K. Define yT = ( z:ol oakykJrl)/(ZZ;Ol ay). Then,

2
f@T) — Helg}i f) <0 (DG+ LD 10g(LD/G)>

T2
If f is only convex and G-Lipschitz, then

£GT) = min f(@) < 0 (6D /log T/ VT)

z€RY
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Example: Logistic regression
Problem (Logistic regression)
Given A € {0,1}"*P and b € {—1,+1}", solve:

i e= mi; f(x):= % Z log (1 + exp (fbj (aJTx 4F B)))
j=1

Real data

> Real data: ada with A € R"*%, where n = 4781 data points, d = 122 features
> All methods are run for T' = 10000 iterations
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Example: Logistic regression with adaptive methods

10° W 10°
“ “
| |
—~ 102 —~ 102
i |[[—GD \ & |[[—cD
-~ —AGD =~ —AGD
i AcceleGrad L[|~ AcceleGrad
107 | — AdaGrad(Hy, = A\ I) 107 | — AdaGrad(Hy = A1)
AdaGrad(Hy, = DiI) AdaGrad(Hy, = D;I)
—_ADAM — ADAM \
6 -6
mwo" 10 102 10% 10* 10 109 102 107 10° 10
iterations (t) time (sec)
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Newton method

e Fast (local) convergence but expensive per iteration cost
o Useful when warm-started near a solution

Local quadratic approximation using the Hessian

> Obtain a local quadratic approximation using the second-order Taylor series
approximation to f(x* + p):

70t +B) % F04) + (B, V1)) + 3 (b, V2 (<))

> The Newton direction is the vector p* that minimizes f(x* + p); assuming the
Hessian V2 f; to be positive definite, :

=i
Vif(xF)pF = -Vixr) e pF=—(VfF)) Vi)
> A unit step-size ap = 1 can be chosen near convergence:
xktl = xk _ (VQf(xk))71 Vf(xk) .
Remark

> For f € ]-'i’l but f ¢ J:E’L, the Hessian may not always be positive definite.
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(Local) Convergence of Newton method

Lemma
Assume f is a twice differentiable convex function with minimum at X* such that:
> V2f(x*) = pl for some pu > 0,

> |[V2f(x) — V2f(y)|lam2 < M||x — y||2 for some constant M > 0 and all
x,y € dom(f).

Moreover, assume the starting point x° € dom(f) is such that ||x° — x*||2 <
Then, the Newton method iterates converge quadratically:

2/
3M -

/ k 2
|ka+1 —X*” < J\/IHX _X*II2
2 (n— Mjx* —x*||2)

Remark

This is the fastest convergence rate we have seen so far, but it requires to solve a
p X p linear system at each iteration, V2 f(x*)pF = —V f(x*)!
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*Locally quadratic convergence of the Newton method-I

Newton's method local quadratic convergence - Proof [7]
Since V f(x*) = 0 we have

XL xr = xF (V2 () TV (xF)
= (V2F(xR) 71 (V2 (M) (xF — x*) = (VF(xF) = Vf(x")))

By Taylor's theorem, we also have

1
Vi) - Vi) = / V2f(x* +t(x* — xF))(x" — x*)dt
0
Combining the two above, we obtain

IV2 £ () (x" = x*) = (VF(x*) = Vf(x)|

1
< / || V2 £ () = V2 (8 + £ = xF)) || [k — x*|dt
0

1
/ (V2f(xk) — V2f(xF 4 t(x* = xk))> (xF —x*)dt
0

1
1
< M|x* - x*||2/ tdt = o M|[x* —x*||?
0
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*Locally quadratic convergence of the Newton method-II

Newton's method local quadratic convergence - Proof [7].

> Recall
xFHL = (V2 () 71 (V2 (R (P — %) = (VF(F) = V£(x*)))

IV2F () (x* —x*) = (VF(x*) = V) < %Mllxk - x*||?

> Since V2 f(x*) is nonsingular, there must exist a radius r such that
[(V2F ) THIE < 20(V2F () M for all x* with [lx* — x*[| < r.

> Substituting, we obtain
[l —x* || < MV ) TS = x*)1? = MIx* — <12,

where M = M||[(V2f(x*) 7.

> If we choose ||x° — x*|| < min(r, 1/(2]\7[)) we obtain by induction that the
iterates x* converge quadratically to x*.
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Example: Logistic regression - GD, AGD, AcceleGrad + NM

—GD —GD
—AGD —AGD
" —NM " A —NM
AcceleGrad AcceleGrad
“ “
| |
—~10? —~10%
g g
= =
10 104
0® "
0 10! 10° 10% 10 10 10? 107 10° 10!
iterations (t) time (sec)
Parameters

> Newton's method: maximum number of iterations 30, tolerance 10~ 6.

> For GD, AGD & AcceleGrad: maximum number of iterations 10000, tolerance
10-6.

> Ground truth: Get a high accuracy approximation of x* and f* by applying
Newton's method for 200 iterations.
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*Approximating Hessian: Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

o Useful for f(x) := :L:l fi(x) with n > p.

Main ingredients
Quasi-Newton direction:

p" = —H; 'Vf(x*) = -BxVf(x").

v

Matrix Hy, or its inverse By, undergoes low-rank updates:

> Rank 1 or 2 updates: famous Broyden—Fletcher—-Goldfarb—Shanno (BFGS) algorithm.
> Limited memory BFGS (L-BFGS).

> Line-search: The step-size o is chosen to satisfy the Wolfe conditions:

F(xE 4 app®) < £(x*) + cran (VF(xF), p*) (sufficient decrease)
(Vf(x* 4+ ap®), p*) > c2(VF(x¥), p") (curvature condition)

with 0 < ¢; < c2 < 1. For quasi-Newton methods, we usually use ¢; = 0.1.

v

Convergence is guaranteed under the Dennis & Moré condition [2].

v

For more details on quasi-Newton methods, see Nocedal&Wright's book [7].
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*Quasi-Newton methods

How do we update Bj17

Suppose we have (note the coordinate change from p to p)
_ _ 1 _ _
my11(p) i= fFT) (VA p—xF 1) + ) (Bry1(p — x), (B — x*T1))).

We require the gradient of my, 1 to match the gradient of f at x* and x*+!

> Vmpyq (xFt1) = V£(xFt1) as desired;
k

v

For x®, we have

mG+1(xk) = Vf(Xk+1) ar Bk+1(xk — Xk+1)
which must be equal to Vf(xF).
> Rearranging, we have that By ; must satisfy the secant equation
By =y*

where sF = xF+1 — x* and y* = Vf(xFt1) — Vf(xF).

> The secant equation can be satisfied with a positive definite matrix By only if
(s®,y*) > 0, which is guaranteed to hold if the step-size oy, satisfies the Wolfe
conditions.
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*Quasi-Newton methods

BFGS method [7] (from Broyden, Fletcher, Goldfarb & Shanno)

The BFGS method arises from directly updating Hy = B;l. The update on the
inverse B is found by solving

min |H — Hy|lw subject to H=HT and Hy* = s* (1)

The solution is a rank-2 update of the matrix Hy:
Hyp1 = VIHEVE +mps®(s5)7

where Vi, =T — n,y*(sF)T.

> Initialization of Hg is an art. We can choose to set it to be an approximation of
V2 f(x?) obtained by finite differences or just a multiple of the identity matrix.

Theorem (Convergence of BFGS)

Let f € C2. Assume that the BFGS sequence {x*} converges to a point x* and
220:1 Ix* — x*|| < co. Assume also that V2 f(x) is Lipschitz continuous at x*.

Then x* converges to x* at a superlinear rate.

Remarks

The proof shows that given the assumptions, the BFGS updates for By, satisfy the
Dennis & Moré condition, which in turn implies superlinear convergence.
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*L-BFGS
Challenges for BFGS

> BFGS approach stores and applies a dense p x p matrix Hy.

> When p is very large, Hy can prohibitively expensive to store and apply.

L(imited memory)-BFGS

> Do not store Hy, but keep only the m most recent pairs {(s?,y?)}.
> Compute H;V f(x3) by performing a sequence of operations with s and y*:

> Choose a temporary initial approximation H(,i

> Recursively apply Hy 1 = VszVk + ngs® (sk)T

, m times starting from Hg:
H), = (Vle . -~Vf,m) H (Vo Vi_1)
+ Nk—m (V;@Fq 0a0 Vkam,#»l) s TP T (Vieemar - Vo)
+ e
+ st DT
> From the previous expression, we can compute Hka(xk) recursively.
> Replace the oldest element in {s?, y*} with (s*,y*).

> From practical experience, m € (3,50) does the trick.
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Recall: Convergence bounds for non-convex problems

Lower bound
Consider f € fé’l and f is non-convex. Then any first-order method must satisfy,

IV =0 (%)

As a corollary,

T=0(e?) (1
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Convergence of adaptive methods for non-convex problems

e For convex problems, adaptive methods not always have proper convergence analysis.

e Similarly in non-convex setting, difficult to find a rigorous convergence bound.

Convergence of AdaGrad (non-convex)

Assume that f € ]—'i’l and f* = min f(x) > oo. The scalar step-size version of
AdaGrad satisfies:

. _o U@ =172
 min_ V@) =0 (T>

[XX)

e This characterization of convergence is weaker than ||V f(z7)||? = O(1/T).
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Recall: Logistic regression with non-convex regularizer

Problem (Regularized logistic regression)
Given A € {0,1}"*P and b € {—1,+1}", solve:

x,B

f*i=min< f(x):= % Z log (1 + exp (—bj (aJTx + b’))) + gqb(x)
j=1

where ¢(x) = S0 é(xi).
Definition (Smoothly clipped absolute deviation (SCAD))

$(xi) =4 (= Pal® +2aA x| =A%) /(2(a = 1)) A< [xi| S a,
(1+a)X2/2 [xi| > aX
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SCAD penalty

SCAD regularizer with A =1, a =

3

|
~

25

0.5
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Example: Convergence plot

Convergence and time plots of GD and adaptive methods for nonconvex logistic
regression problem.

1037 ; ; A

102 \ 102 \

if 10’ ?: 10
= =
B 10 > 10°
- —GD = —GD
107 AcceleGrad 107 AcceleGrad
— AdaGrad(H;, = A1) — AdaGrad(H = A1)
102 AdaGrad(Hy = DiI) 102 AdaGrad(Hy, = DiI)
— ADAM —ADAM
0 3
0 10! 102 10° 10* 1 102 107" 10° 10!
iterations (t) time (sec)
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Performance of optimization algorithms

Time-to-reach ¢

time-to-reach € = number of iterations to reach ¢ X per iteration time

The speed of numerical solutions depends on two factors:

> Convergence rate determines the number of iterations needed to obtain an
e-optimal solution.

> Per-iteration time depends on the information oracles, implementation, and the
computational platform.

In general, convergence rate and per-iteration time are inversely proportional.
Finding the fastest algorithm is tricky!
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Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
Lipschitz-gradient AdaGrad Sublinear (1/k) One gradient
fe ]:i'l(R”) Accelerated GD Sublinear (1/k2) One gradient
AcceleGrad Sublinear (1/k2) One gradient
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Strongly convex, smooth Gradient descent Linear (e_k) One gradient
fe .7:21; (RP) Accelerated GD Linear (e —*) One gradient
Newton method Linear (eik), Quadratic One gradient, one linear system
Gradient descent: AdaGrad:

xFH = xF — av (b)),

where the stepsize is chosen appropriately,
ae(0,4)
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xFHl = xF — oszf(xk)7

where scalar version of the step size is
: D
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Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
Lipschitz-gradient AdaGrad Sublinear (1/k) One gradient
;e Filrp) Accelerated GD Sublinear (1/k2) One gradient
AcceleGrad Sublinear (1/k2) One gradient
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Strongly convex, smooth Gradient descent Linear (cfk) One gradient
fe Fi’; (RP) Accelerated GD Linear (e~ F) One gradient
Newton method Linear (e_k), Quadratic One gradient, one linear system
AcceleGrad:

Accelerated gradient descent:
xEHL = g 4 (1 - m)y*
2" = 2F — o VF(xF)

yP =< g v ().

=y = 0 f(yh)
YT = My T =),

for ap = (k+1)/4, 7, = 1/, and
2D

\/G2+Z,’;D(ak>2nw<xk>u2

for some proper choice of a and yi41.

M =
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Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient
Lipschitz-gradient AdaGrad Sublinear (1/k) One gradient
fe ]—'i’l (RP) Accelerated GD Sublinear (1/k2) One gradient
AcceleGrad Sublinear (1/k2) One gradient
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Strongly convex, smooth Gradient descent Linear (efk) One gradient
fe ]?i”i (RP) Accelerated GD Linear (e~ F) One gradient
Newton method Linear (e_k), Quadratic One gradient, one linear system

The main computation of the Newton method requires the solution of the linear
system

V2 f(xF)pk = -V (x") .
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