# Mathematics of Data: From Theory to Computation

Prof Volkan Cevher volkan.cevher@epfl.ch

Lecture 4: Unconstrained, smooth minimization II

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2019)













#### License Information for Mathematics of Data Slides

► This work is released under a <u>Creative Commons License</u> with the following terms:

#### Attribution

▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

#### Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.

#### Share Alike

- ► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ► Full Text of the License

#### Outline

- ▶ This lecture
  - 1. Gradient and accelerated gradient descent methods
- Next lecture
  - 1. Adaptive gradient methods
  - 2. Second-order optimization methods

### Recommended reading

- Chapters 2, 3, 5, 6 in Nocedal, Jorge, and Wright, Stephen J., Numerical Optimization, Springer, 2006.
- Chapter 9 in Boyd, Stephen, and Vandenberghe, Lieven, Convex optimization, Cambridge university press, 2009.
- Chapter 1 in Bertsekas, Dimitris, Nonlinear Programming, Athena Scientific, 1999.
- Chapters 1, 2 and 4 in Nesterov, Yurii, Introductory Lectures on Convex Optimization: A Basic Course, Vol. 87, Springer, 2004.

#### Overview

#### Overview

This lecture covers the basics of numerical methods for *unconstrained* and *smooth* convex minimization.

#### Recall: Convex, unconstrained, smooth minimization

# Problem (Mathematical formulation)

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) \right\}$$
 (1)

where f is convex and twice differentiable. Note that (1) is unconstrained.

How de we design efficient optimization algorithms with accuracy-computation tradeoffs for this class of functions?

## Basic principles of descent methods

# Template for iterative descent methods

- 1. Let  $\mathbf{x}^0 \in \text{dom}(f)$  be a starting point.
- 2. Generate a sequence of vectors  $\mathbf{x}^1, \mathbf{x}^2, \dots \in \text{dom}(f)$  so that we have descent:

$$f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k), \ \text{ for all } k = 0, 1, \dots$$

until  $\mathbf{x}_k$  is  $\epsilon$ -optimal.

Such a sequence  $\left\{\mathbf{x}^k\right\}_{k\geq 0}$  can be generated as:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{p}^k$$

where  $\mathbf{p}^k$  is a descent direction and  $\alpha_k > 0$  a step-size.

#### Remarks

- ▶ Iterative algorithms can use various **oracle** information from the objective, such as its value, gradient, or Hessian, in different ways to obtain  $\alpha_k$  and  $\mathbf{p}^k$
- ▶ These choices determine the overall convergence rate and complexity
- ▶ The type of oracle information used becomes a defining characteristic

## Basic principles of descent methods

#### A condition for local descent directions

The iterates are given as:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{p}^k$$

By Taylor's theorem, we have

$$f(\mathbf{x}^{k+1}) = f(\mathbf{x}^k) + \alpha_k \langle \nabla f(\mathbf{x}^k), \mathbf{p}^k \rangle + O(\alpha_k^2 \|\mathbf{p}\|_2^2).$$

For  $\alpha_k$  small enough, the term  $\alpha_k \langle \nabla f(\mathbf{x}^k), \mathbf{p}^k \rangle$  dominates  $O(\alpha_k^2)$  for a fixed  $\mathbf{p}^k$ . Therefore, in order to have  $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$ , we require

$$\langle \nabla f(\mathbf{x}^k), \ \mathbf{p}^k \rangle < 0$$

## Basic principles of descent methods

### Local steepest descent direction

Since

$$\langle \nabla f(\mathbf{x}^k), \mathbf{p}^k \rangle = \|\nabla f(\mathbf{x}^k)\| \|\mathbf{p}^k\| \cos \theta,$$

where  $\theta$  is the angle between  $\nabla f(\mathbf{x}^k)$  and  $\mathbf{p}^k$  , we have that

$$\mathbf{p}^k := -\nabla f(\mathbf{x}^k)$$

is the local steepest descent direction.



Figure: Descent directions in 2D should be an element of the cone of descent directions  $\mathcal{D}(f,\cdot)$ .

#### A reminder on notation

#### Important notation used throughout the whole lecture:

- $\mathcal{F}_L^{l,m}$ : Functions that are l-times differentiable with m-th order Lipschitz property In this lecture, m=1, and  $l\in\{1,2,\infty\}$
- $\mathcal{F}_{L,\mu}^{l,m}$ : Subset of  $\mathcal{F}_{L}^{l,m}$  also satisfying  $\mu$ -strong convexity

#### Gradient descent methods

## Gradient descent (GD) algorithm

The gradient method we discussed before indeed use the local steepest direction:

$$\mathbf{p}^k = -\nabla f(\mathbf{x}^k)$$

so that

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k).$$

Key question: How do we choose  $\alpha_k$  so that we are guaranteed to successfully descend? (ideally as fast as possible)

#### **Gradient descent methods**

## Gradient descent (GD) algorithm

The gradient method we discussed before indeed use the local steepest direction:

$$\mathbf{p}^k = -\nabla f(\mathbf{x}^k)$$

so that

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k).$$

Key question: How do we choose  $\alpha_k$  so that we are guaranteed to successfully descend? (ideally as fast as possible)

# Answer: By exploiting the structures within the convex function

When  $f\in\mathcal{F}_L^{2,1}$ , we can use  $\alpha_k=1/L$  so that  $\mathbf{x}^{k+1}=\mathbf{x}^k-\frac{1}{L}\nabla f(\mathbf{x}^k)$  is contractive.

- GD method only uses the gradient information, hence called a first-order method.
- First-order methods employ only the value of f and  $\nabla f$  at specific points.
- Second-order methods also use the Hessian  $\nabla^2 f$ .



Slide 12/ 48



# Structure in optimization:

(1) 
$$f(\mathbf{x}) \ge f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle$$

#### Majorize:

$$f(\mathbf{x}) \leq f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}^k\|_2^2 := Q_L(\mathbf{x}, \mathbf{x}^k)$$

$$\mathbf{Minimize:}$$

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} Q_L(\mathbf{x}, \mathbf{x}^k)$$

$$= \arg\min_{\mathbf{x}} \left\| \mathbf{x} - \left( \mathbf{x}^k - \frac{1}{L} \nabla f(\mathbf{x}^k) \right) \right\|^2$$

$$= \mathbf{x}^k - \frac{1}{L} \nabla f(\mathbf{x}^k)$$
Structure in optimization:
$$\mathbf{x}^* = \mathbf{x}^{k+1} \mathbf{x}^k$$

#### Structure in optimization:

(1) 
$$f(\mathbf{x}) \ge f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle$$

(1) 
$$f(\mathbf{x}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}^k\|_2^2$$

#### Majorize:

$$f(\mathbf{x}) \leq f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{L'}{2} \|\mathbf{x} - \mathbf{x}^k\|_2^2 := Q_{L'}(\mathbf{x}, \mathbf{x}^k)$$

$$\mathbf{Minimize:}$$

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} Q_{L'}(\mathbf{x}, \mathbf{x}^k)$$

$$= \arg\min_{\mathbf{x}} \left\| \mathbf{x} - \left( \mathbf{x}^k - \frac{1}{L'} \nabla f(\mathbf{x}^k) \right) \right\|^2$$

$$= \mathbf{x}^k - \frac{1}{L'} \nabla f(\mathbf{x}^k)$$

$$\mathbf{Slower}$$

#### Structure in optimization:

(1) 
$$f(\mathbf{x}) \ge f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle$$

(1)  $f(\mathbf{x}) \ge f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle$ (2)  $f(\mathbf{x}) \le f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}^k\|_2^2$ 

# Majorize: $f(\mathbf{x}) \le f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}^k\|_2^2 := Q_L(\mathbf{x}, \mathbf{x}^k)$ (2) Minimize: (1) $\mathbf{x}^{k+1} = \arg \min Q_L(\mathbf{x}, \mathbf{x}^k)$ $= \arg\min_{\mathbf{x}} \left\| \mathbf{x} - \left( \mathbf{x}^k - \frac{1}{L} \nabla f(\mathbf{x}^k) \right) \right\|^2 \qquad \mathbf{f}(\mathbf{x})$ $=\mathbf{x}^k - \frac{1}{r}\nabla f(\mathbf{x}^k)$ $\mathbf{x}^{\star}$ $\mathbf{x}^k$

## Structure in optimization:

(1) 
$$f(\mathbf{x}) \ge f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle$$

(2) 
$$f(\mathbf{x}) \le f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}^k\|_2^2$$

(3) 
$$f(\mathbf{x}) \ge f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{\overline{\mu}}{2} ||\mathbf{x} - \mathbf{x}^k||_2^2$$

## Convergence rate of gradient descent

#### **Theorem**

Let the starting point for GD be  $\mathbf{x}^0 \in \text{dom}(f)$ .

• If  $f \in \mathcal{F}_L^{2,1}$ , with the choice  $\alpha = \frac{1}{L}$ , the iterates of GD satisfy

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \frac{2L}{k+4} \|\mathbf{x}^0 - \mathbf{x}^*\|_2^2$$

• If  $f \in \mathcal{F}^{2,1}_{L,\mu}$ , with the choice  $\alpha = \frac{2}{L+\mu}$ , the iterates of GD satisfy

$$\|\mathbf{x}^k - \mathbf{x}^*\|_2 \le \left(\frac{L-\mu}{L+\mu}\right)^k \|\mathbf{x}^0 - \mathbf{x}^*\|_2$$

• If  $f \in \mathcal{F}^{2,1}_{L,\mu}$ , with the choice  $\alpha = \frac{1}{L}$ , the iterates of GD satisfy

$$\|\mathbf{x}^k - \mathbf{x}^*\|_2 \le \left(\frac{L - \mu}{L + \mu}\right)^{\frac{k}{2}} \|\mathbf{x}^0 - \mathbf{x}^*\|_2$$

# Proof of convergence rates of gradient descent - part I (self-study)

ullet We first need to prove a basic result about functions in  $\mathcal{F}_L^{1,1}$ 

#### Lemma

Let  $f \in \mathcal{F}_L^{1,1}$ . Then it holds that

$$\frac{1}{L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^2 \le \langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$$
 (2)

## Proof (Advanced material).

First, recall the following result about Lipschitz gradient functions  $h \in \mathcal{F}_L^{1,1}$ 

$$h(\mathbf{x}) \le h(\mathbf{y}) + \langle \nabla h(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||_2^2.$$
 (3)

To prove the result, let  $\phi(\mathbf{y}) := f(\mathbf{y}) - \langle \nabla f(\mathbf{x}), \mathbf{y} \rangle$ , with  $\nabla \phi(\mathbf{y}) = \nabla f(\mathbf{y}) - \nabla f(\mathbf{x})$ . Clearly,  $\phi(\mathbf{y})$  attains its minimum value at  $\mathbf{y}^* = \mathbf{x}$ . Hence, and by also applying (3) with  $h = \phi$  and  $\mathbf{x} = \mathbf{y} - \frac{1}{L} \nabla \phi(\mathbf{y})$ , we get

$$\phi(\mathbf{x}) \le \phi\left(\mathbf{y} - \frac{1}{L}\nabla\phi(\mathbf{y})\right) \le \phi(\mathbf{y}) - \frac{1}{2L}\|\nabla\phi(\mathbf{y})\|_{2}^{2}.$$

Substituting the above definitions into the left and right hand sides gives

$$f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2L} \| \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}) \|_2^2 \le f(\mathbf{y})$$
 (4)

By adding two copies of (4) with each other, with x and y swapped, we obtain (2).

# Proof of convergence rates of gradient descent - part II (self-study)

#### Theorem

If  $f \in \mathcal{F}_L^{2,1}$ , with the choice  $\alpha = \frac{1}{L}$ , the iterates of GD satisfy

$$\left| f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \frac{2L}{k+4} \|\mathbf{x}^0 - \mathbf{x}^*\|_2^2 \right| \tag{5}$$

#### Proof

- Consider the constant step-size iteration  $\mathbf{x}^{k+1} = \mathbf{x}^k \alpha \nabla f(\mathbf{x}^k)$ .
- Let  $r_k := \|\mathbf{x}^k \mathbf{x}^\star\|$ , where  $\mathbf{x}^\star$  denotes a minimizer. Show  $r_k \leq r_0$ .

$$\begin{split} r_{k+1}^2 &:= \|\mathbf{x}^{k+1} - \mathbf{x}^\star\|^2 = \|\mathbf{x}^k - \mathbf{x}^\star - \alpha \nabla f(\mathbf{x}^k)\|^2 \\ &= \|\mathbf{x}^k - \mathbf{x}^\star\|^2 - 2\alpha \langle \nabla f(\mathbf{x}^k) - \nabla f(\mathbf{x}^\star), \mathbf{x}^k - \mathbf{x}^\star \rangle + \alpha^2 \|\nabla f(\mathbf{x}^k)\|^2 \\ &\leq r_k^2 - \alpha (2/L - \alpha) \|\nabla f(\mathbf{x}^k)\|^2 \quad \text{(by (2))} \\ &\leq r_L^2, \quad \forall \alpha < 2/L. \end{split}$$

Hence, the gradient iterations are contractive when  $\alpha < 2/L$  for all  $k \geq 0$ .

▶ An auxiliary result: Let  $\Delta_k := f(\mathbf{x}^k) - f^\star$ . Show  $\Delta_k \leq r_0 \|\nabla f(\mathbf{x}^k)\|$ .

$$\Delta_k < \langle \nabla f(\mathbf{x}^k), \mathbf{x}^k - \mathbf{x}^* \rangle < \|\nabla f(\mathbf{x}^k)\| \|\mathbf{x}^k - \mathbf{x}^*\| = r_k \|\nabla f(\mathbf{x}^k)\| < r_0 \|\nabla f(\mathbf{x}^k)\|.$$

# Proof of convergence rates of gradient descent - part III (self-study)

## Proof (continued)

▶ We can establish **convergence** along with the auxiliary result above:

$$f(\mathbf{x}^{k+1}) \le f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x}^{k+1} - \mathbf{x}^k \rangle + \frac{L}{2} \|\mathbf{x}^{k+1} - \mathbf{x}^k\|^2$$
$$= f(\mathbf{x}^k) - \omega_k \|\nabla f(\mathbf{x}^k)\|^2, \quad \omega_k := \alpha(1 - L\alpha/2).$$

Subtract  $f^*$  from both sides and apply the last inequality of the previous slide to get

$$\Delta_{k+1} \leq \Delta_k - (\omega_k/r_0^2)\Delta_k^2$$
 . Thus, dividing by  $\Delta_{k+1}\Delta_k$ 

$$\Delta_{k+1}^{-1} \ge \Delta_k^{-1} + (\omega_k/r_0^2)\Delta_k/\Delta_{k+1} \ge \Delta_k^{-1} + (\omega_k/r_0^2).$$

By induction, we have  $\Delta_{k+1}^{-1} \geq \Delta_0^{-1} + (\omega_k/r_0^2)(k+1)$ . Then, taking  $(\cdot)^{-1}$  of both sides (and hence replacing  $\geq$  by  $\leq$ ) and substituting all of the definitions gives

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \frac{2(f(\mathbf{x}_0) - f(\mathbf{x}^*)) \|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{2\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2 + k\alpha(2 - \alpha L)(f(\mathbf{x}_0) - f^*)},$$

- In order to choose the **optimal** step-size, we maximize the function  $\phi(\alpha)=\alpha(2-\alpha L)$ . Hence, the optimal step size for the gradient method for  $f\in \mathcal{F}_L^{1,1}$  is given by  $\alpha=\frac{1}{L}$ .
- Finally, since  $f(\mathbf{x}_0) \leq f^* + \nabla f(\mathbf{x}^*)^T (\mathbf{x}_0 \mathbf{x}^*) + (L/2) \|\mathbf{x}_0 \mathbf{x}^*\|_2^2 = f^* + (L/2) r_0^2$ , we obtain (5).

# Proof of convergence rates of gradient descent - part IV (self-study)

#### **Theorem**

• If  $f \in \mathcal{F}^{2,1}_{L,\mu}$ , with the choice  $\alpha = \frac{2}{L+\mu}$ , the iterates of GD satisfy

$$\|\mathbf{x}^k - \mathbf{x}^*\|_2 \le \left(\frac{L - \mu}{L + \mu}\right)^k \|\mathbf{x}^0 - \mathbf{x}^*\|_2$$
 (6)

• If  $f \in \mathcal{F}^{2,1}_{L,\mu}$ , with the choice  $\alpha = \frac{1}{L}$ , the iterates of GD satisfy

$$\left\| \|\mathbf{x}^k - \mathbf{x}^\star\|_2 \le \left(\frac{L - \mu}{L + \mu}\right)^{\frac{k}{2}} \|\mathbf{x}^0 - \mathbf{x}^\star\|_2 \right\| \tag{7}$$

Before proving the convergence rate, we first need a result about functions in  $\mathcal{F}_{L,\mu}^{1,1}$ . It is proved similarly to (2).

#### **Theorem**

If  $f \in \mathcal{F}^{1,1}_{L,u}$ , then for any  ${\bf x}$  and  ${\bf y}$ , we have

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \frac{\mu L}{\mu + L} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{1}{\mu + L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^2.$$
 (8)

# Proof of convergence rates of gradient descent - part V (self-study)

# Proof of (6) and (7)

Let  $r_k = \|\mathbf{x}^k - \mathbf{x}^*\|$ . Then, using (8) and the fact that  $\nabla f(x^*) = 0$ , we have

$$\begin{aligned} r_{k+1}^2 &= \|\mathbf{x}_{k+1} - \mathbf{x}^* - \alpha \nabla f(\mathbf{x}^k)\|^2 \\ &= r_k^2 - 2\alpha \langle \nabla f(\mathbf{x}^k), \mathbf{x}^k - \mathbf{x}^* \rangle + \alpha^2 \|\nabla f(\mathbf{x}^k)\|^2 \\ &\leq \left(1 - \frac{2\alpha\mu L}{\mu + L}\right) r_k^2 + \alpha \left(\alpha - \frac{2}{\mu + L}\right) \|\nabla f(\mathbf{x}^k)\|^2 \end{aligned}$$

▶ Since  $\mu \leq L$ , we have  $\alpha \leq \frac{2}{\mu + L}$  in both the cases  $\alpha = \frac{1}{L}$  or  $\alpha = \frac{2}{\mu + L}$ . So the last term in the previous inequality is negative, and hence

$$r_{k+1}^2 \le \left(1 - \frac{2\alpha\mu L}{\mu + L}\right)^k r_0^2$$

- ▶ Plugging  $\alpha = \frac{1}{L}$  and  $\alpha = \frac{2}{n+L}$ , we obtain the rates as advertised.
- ▶ For  $f \in \mathcal{F}_{L,\mu}^{1,1}$ , the **optimal** step-size is given by  $\alpha = \frac{2}{\mu + L}$  (i.e., it optimizes the worst case bound).

## Convergence rate of gradient descent

### Convergence rate of gradient descent

$$\begin{split} &f \in \mathcal{F}_L^{2,1}, \quad \alpha = \frac{1}{L} & f(\mathbf{x}^k) - f(\mathbf{x}^\star) \leq \frac{2L}{k+4} \|\mathbf{x}^0 - \mathbf{x}^\star\|_2^2 \\ &f \in \mathcal{F}_{L,\mu}^{2,1}, \quad \alpha = \frac{2}{L+\mu} & \|\mathbf{x}^k - \mathbf{x}^\star\|_2 \leq \left(\frac{L-\mu}{L+\mu}\right)^k \|\mathbf{x}^0 - \mathbf{x}^\star\|_2 \\ &f \in \mathcal{F}_{L,\mu}^{2,1}, \quad \alpha = \frac{1}{L} & \|\mathbf{x}^k - \mathbf{x}^\star\|_2 \leq \left(\frac{L-\mu}{L+\mu}\right)^{\frac{k}{2}} \|\mathbf{x}^0 - \mathbf{x}^\star\|_2 \end{split}$$

#### Remarks

- Assumption: Lipschitz gradient. Result: convergence rate in objective values.
- Assumption: Strong convexity. <u>Result</u>: convergence rate in sequence of the iterates and in objective values.
- Note that the suboptimal step-size choice  $\alpha=\frac{1}{L}$  adapts to the strongly convex case (i.e., it features a linear rate vs. the standard sublinear rate).

# **Example: Ridge regression**

## **Optimization formulation**

- Let  $\mathbf{A} \in \mathbb{R}^{n \times p}$  and  $\mathbf{b} \in \mathbb{R}^n$  given by the model  $\mathbf{b} = \mathbf{A} \mathbf{x}^{\natural} + \mathbf{w}$ , where  $\mathbf{w} \in \mathbb{R}^n$  is some noise.
- lacktriangle We can try to estimate  $\mathbf{x}^{
  atural}$  by solving the Tikhonov regularized least squares

$$\min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x}) := \frac{1}{2} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 + \frac{\rho}{2} \|\mathbf{x}\|_2^2.$$

where  $\rho \geq 0$  is a regularization parameter.

#### Remarks

- $f \in \mathcal{F}_{L,u}^{2,1}$  with:
  - $L = \lambda_n(\mathbf{A}^T\mathbf{A}) + \rho$
  - $\mu = \lambda_1(\mathbf{A}^T\mathbf{A}) + \rho;$
  - where  $\lambda_1(\mathbf{A}^T\mathbf{A}) \leq \ldots \leq \lambda_p(\mathbf{A}^T\mathbf{A})$  are the eigenvalues of  $\mathbf{A}^T\mathbf{A}$ .
- ightharpoonup The ratio  $\frac{L}{\mu}$  decreases as ho increases, leading to faster linear convergence.
- ▶ Note that if n < p and  $\rho = 0$ , we have  $\mu = 0$ , hence  $f \in \mathcal{F}_L^{2,1}$  and we can expect only O(1/k) convergence from the gradient descent method.

## **Example: Ridge regression**



# Information theoretic lower bounds [5]

What is the **best** achievable rate for a **first-order** method (one using gradient information but not higher-order quantities)?

$$f \in \mathcal{F}_L^{\infty,1}$$
: Smooth and Lipschitz-gradient

It is possible to construct a function in  $\mathcal{F}_L^{\infty,1}$ , for which **any** first order method must satisfy

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \ge \frac{3L}{32(k+1)^2} \|\mathbf{x}^0 - \mathbf{x}^*\|_2^2 \quad \text{for all } k \le (p-1)/2$$

# $f \in \mathcal{F}_{L,n}^{\infty,1}$ : Smooth and strongly convex

It is possible to construct a function in  $\mathcal{F}_{L,\mu}^{\infty,1}$ , for which **any** first order method must satisfy

$$\|\mathbf{x}^k - \mathbf{x}^*\|_2 \ge \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^k \|\mathbf{x}^0 - \mathbf{x}^*\|_2$$

Gradient descent is O(1/k) for  $\mathcal{F}_L^{\infty,1}$  and it is slower for  $\mathcal{F}_{L,\mu}^{\infty,1}$ , hence it does not achieve the lower bounds!

#### **Problem**

Is it possible to design optimal first-order methods with convergence rates matching the theoretical lower bounds?

#### **Problem**

Is it possible to design optimal first-order methods with convergence rates matching the theoretical lower bounds?

# Solution [Nesterov's accelerated scheme]

Accelerated Gradient (AG) methods achieve optimal convergence rates at a negligible increase in the computational cost.

#### **Problem**

Is it possible to design optimal first-order methods with convergence rates matching the theoretical lower bounds?

# Solution [Nesterov's accelerated scheme]

Accelerated Gradient (AG) methods achieve optimal convergence rates at a negligible increase in the computational cost.

# Accelerated Gradient algorithm for $\mathcal{F}_{\scriptscriptstyle I}^{1,1}$ (AG-L)

- **1.** Set  $\mathbf{x}^0 = \mathbf{y}^0 \in \text{dom}(f)$  and  $t_0 := 1$ .
- **2.** For k = 0, 1, ..., iterate

$$\begin{cases} \mathbf{x}^{k+1} &= \mathbf{y}^k - \frac{1}{L} \nabla f(\mathbf{y}^k) \\ t_{k+1} &= (1 + \sqrt{4t_k^2 + 1})/2 \\ \mathbf{y}^{k+1} &= \mathbf{x}^{k+1} + \frac{(t_k - 1)}{t_{k+1}} (\mathbf{x}^{k+1} - \mathbf{x}^k) \end{cases}$$

#### **Problem**

Is it possible to design optimal first-order methods with convergence rates matching the theoretical lower bounds?

# Solution [Nesterov's accelerated scheme]

Accelerated Gradient (AG) methods achieve optimal convergence rates at a negligible increase in the computational cost.

# Accelerated Gradient algorithm for $\mathcal{F}_{\scriptscriptstyle I}^{1,1}$ (AG-L)

- **1.** Set  $\mathbf{x}^0 = \mathbf{y}^0 \in \text{dom}(f)$  and  $t_0 := 1$ .
- **2.** For k = 0, 1, ..., iterate

$$\begin{cases} \mathbf{x}^{k+1} &= \mathbf{y}^k - \frac{1}{L} \nabla f(\mathbf{y}^k) \\ t_{k+1} &= (1 + \sqrt{4t_k^2 + 1})/2 \\ \mathbf{y}^{k+1} &= \mathbf{x}^{k+1} + \frac{(t_k - 1)}{t_{k+1}} (\mathbf{x}^{k+1} - \mathbf{x}^k) \end{cases}$$

# Accelerated Gradient algorithm for $\mathcal{F}_{L,\mu}^{1,1}$ (AG- $\mu$ L)

- 1. Choose  $\mathbf{x}^0 = \mathbf{y}^0 \in \text{dom}(f)$
- **2.** For k = 0, 1, ..., iterate

$$\begin{cases} \mathbf{x}^{k+1} &= \mathbf{y}^k - \frac{1}{L}\nabla f(\mathbf{y}^k) \\ \mathbf{y}^{k+1} &= \mathbf{x}^{k+1} + \gamma(\mathbf{x}^{k+1} - \mathbf{x}^k) \end{cases}$$
 where  $\gamma = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ .

#### **Problem**

Is it possible to design optimal first-order methods with convergence rates matching the theoretical lower bounds?

# Solution [Nesterov's accelerated scheme]

Accelerated Gradient (AG) methods achieve optimal convergence rates at a negligible increase in the computational cost.

# Accelerated Gradient algorithm for $\mathcal{F}_L^{1,1}$ (AG-L)

- **1.** Set  $\mathbf{x}^0 = \mathbf{y}^0 \in \text{dom}(f)$  and  $t_0 := 1$ .
- **2.** For k = 0, 1, ..., iterate

$$\begin{cases} \mathbf{x}^{k+1} &= \mathbf{y}^k - \frac{1}{L} \nabla f(\mathbf{y}^k) \\ t_{k+1} &= (1 + \sqrt{4t_k^2 + 1})/2 \\ \mathbf{y}^{k+1} &= \mathbf{x}^{k+1} + \frac{(t_k - 1)}{t_{k+1}} (\mathbf{x}^{k+1} - \mathbf{x}^k) \end{cases}$$

# Accelerated Gradient algorithm for $\mathcal{F}_{I,\mu}^{1,1}$ (AG- $\mu$ L)

- 1. Choose  $\mathbf{x}^0 = \mathbf{y}^0 \in \text{dom}(f)$
- **2.** For k = 0, 1, ..., iterate

$$\begin{cases} \mathbf{x}^{k+1} &= \mathbf{y}^k - \frac{1}{L}\nabla f(\mathbf{y}^k) \\ \mathbf{y}^{k+1} &= \mathbf{x}^{k+1} + \gamma(\mathbf{x}^{k+1} - \mathbf{x}^k) \end{cases}$$
 where  $\gamma = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$ .

NOTE: AG is not monotone, but the cost-per-iteration is essentially the same as GD.

# Global convergence of AGD [5]

# Theorem (f is convex with Lipschitz gradient)

If  $f \in \mathcal{F}_L^{1,1}$  or  $\mathcal{F}_{L,\mu}^{1,1}$ , the sequence  $\{\mathbf{x}^k\}_{k \geq 0}$  generated by AGD-L satisfies

$$f(\mathbf{x}^k) - f^* \le \frac{4L}{(k+2)^2} \|\mathbf{x}^0 - \mathbf{x}^*\|_2^2, \ \forall k \ge 0.$$
 (9)

# Global convergence of AGD [5]

# Theorem (f is convex with Lipschitz gradient)

If  $f \in \mathcal{F}_L^{1,1}$  or  $\mathcal{F}_{L,\mu}^{1,1}$ , the sequence  $\{\mathbf{x}^k\}_{k \geq 0}$  generated by AGD-L satisfies

$$f(\mathbf{x}^k) - f^* \le \frac{4L}{(k+2)^2} \|\mathbf{x}^0 - \mathbf{x}^*\|_2^2, \ \forall k \ge 0.$$
 (9)

AGD-L is optimal for  $\mathcal{F}_L^{1,1}$  but NOT for  $\mathcal{F}_{L,\mu}^{1,1}$ !

# Theorem (f is strongly convex with Lipschitz gradient)

If  $f \in \mathcal{F}^{1,1}_{L,\mu}$ , the sequence  $\{\mathbf{x}^k\}_{k\geq 0}$  generated by AGD- $\mu$ L satisfies

$$f(\mathbf{x}^k) - f^* \le L \left(1 - \sqrt{\frac{\mu}{L}}\right)^k \|\mathbf{x}^0 - \mathbf{x}^*\|_2^2, \ \forall k \ge 0$$
 (10)

$$\|\mathbf{x}^{k} - \mathbf{x}^{\star}\|_{2} \le \sqrt{\frac{2L}{\mu}} \left(1 - \sqrt{\frac{\mu}{L}}\right)^{\frac{k}{2}} \|\mathbf{x}^{0} - \mathbf{x}^{\star}\|_{2}, \ \forall k \ge 0.$$
 (11)

- AGD-L's iterates are not guaranteed to converge.
- ullet AGD-L does not have a **linear** convergence rate for  $\mathcal{F}_{L,\mu}^{1,1}$ .
- ullet AGD- $\mu$ L does, but needs to know  $\mu$ .

# AGD achieves the iteration lowerbound within a constant!

## **Example: Ridge regression**



3.5

#### **Enhancements**

## Two enhancements

- 1. Line-search for estimating L for both GD and AGD.
- 2. Restart strategies for AGD.

#### **Enhancements**

### Two enhancements

- 1. Line-search for estimating  ${\cal L}$  for both GD and AGD.
- 2. Restart strategies for AGD.

### When do we need a line-search procedure?

We can use a line-search procedure for both GD and AGD when

- L is **known** but it is expensive to evaluate;
- The global constant L usually does not capture the local behavior of f or it is unknown;

#### **Enhancements**

### Two enhancements

- 1. Line-search for estimating L for both GD and AGD.
- 2. Restart strategies for AGD.

### When do we need a line-search procedure?

We can use a line-search procedure for both GD and AGD when

- L is **known** but it is expensive to evaluate;
- The global constant L usually does not capture the local behavior of f or it is unknown;

#### Line-search

At each iteration, we try to find a constant  $L_k$  that satisfies:

$$f(\mathbf{x}^{k+1}) \leq Q_{L_k}(\mathbf{x}^{k+1}, \mathbf{y}^k) := f(\mathbf{y}^k) + \langle \nabla f(\mathbf{y}^k), \mathbf{x}^{k+1} - \mathbf{y}^k \rangle + \frac{L_k}{2} \|\mathbf{x}^{k+1} - \mathbf{y}^k\|_2^2.$$

Here:  $L_0 > 0$  is given (e.g.,  $L_0 := c \frac{\|\nabla f(\mathbf{x}^1) - \nabla f(\mathbf{x}^0)\|_2}{\|\mathbf{x}^1 - \mathbf{x}^0\|_2}$ ) for  $c \in (0, 1]$ .

## How can we better adapt to the local geometry?



## How can we better adapt to the local geometry?



#### **Enhancements**

# Why do we need a restart strategy?

- ▶ AG- $\mu L$  requires knowledge of  $\mu$  and AG-L does not have optimal convergence for strongly convex f.
- AG is non-monotonic (i.e.,  $f(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^k)$  is not always satisfied).
- AG has a periodic behavior, where the momentum depends on the local condition number  $\kappa = L/\mu$ .
- A restart strategy tries to reset this momentum whenever we observe high periodic behavior. We often use function values but other strategies are possible.

## Restart strategies

- O'Donoghue Candes's strategy [7]: There are at least three options: Restart with fixed number of iterations, restart based on objective values, and restart based on a gradient condition.
- 2. Giselsson-Boyd's strategy [4]: Do not require  $t_k=1$  and do not necessary require function evaluations.
- 3. Fercoq-Qu's strategy [3]: Unconditional periodic restart for strongly convex functions. Do not require the strong convexity parameter.

## Oscillatory behavior of AGD

- Minimize a quadratic function  $f(\mathbf{x})=\mathbf{x}^T\mathbf{\Phi}\mathbf{x}$ , with p=200 and  $\kappa(\mathbf{\Phi})=L/\mu=2.4\times 10^4$
- ullet Use stepsize lpha=1/L and update  $\mathbf{x}^{k+1}+\gamma_{k+1}(\mathbf{x}^{k+1}-\mathbf{x}^k)$  where
  - $\gamma_{k+1} = \theta_k (1 \theta_k) / (\theta_k^2 + \theta_{k+1})$
  - $\theta_{k+1}$  solves  $\theta_{k+1}^2 = (1 \theta_{k+1})\theta_k^2 + q\theta_{k+1}$ .
- ullet The parameter q should be equal to the reciprocal of condition number  $q^*=\mu/L$ .
- A different choice of q might lead to oscillatory behavior.



Slide 34/48

### **Example: Ridge regression**



## The (special) quadratic case - Step-size

Consider the minimization of a quadratic function

$$\min_{\mathbf{x}} f(\mathbf{x}) := \frac{1}{2} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle$$

where  ${\bf A}$  is a  $p \times p$  symmetric positive definite matrix, i.e.,  ${\bf A} = {\bf A}^T \succ 0$ .

#### Gradient Descent

$$\alpha_k = 1/L \quad \text{with } L = \|\mathbf{A}\|$$

## Steepest descent

$$\alpha_k = \frac{\|\nabla f(\mathbf{x}^k)\|^2}{\langle \nabla f(\mathbf{x}^k), \mathbf{A} \nabla f(\mathbf{x}^k) \rangle}$$
(12)

#### Barzilai-Borwein

$$\alpha_k = \frac{\|\nabla f(\mathbf{x}^{k-1})\|^2}{\langle \nabla f(\mathbf{x}^{k-1}), \mathbf{A} \nabla f(\mathbf{x}^{k-1}) \rangle}$$
(13)

# The (special) quadratic case – convergence rates

For  $f(\mathbf{x}) = \frac{1}{2} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle$ , we have  $L = \|\mathbf{A}\| = \lambda_p$  and  $\mu = \lambda_1$ , where  $0 < \lambda_1 \le \lambda_2 \le \cdots \lambda_p$  are the eigenvalues of  $\mathbf{A}$ .

# Theorem (Gradient Descent)

$$\|\mathbf{x}^k - \mathbf{x}^{\star}\|_2 \le \left(1 - \frac{\lambda_1}{\lambda_p}\right)^k \|\mathbf{x}^0 - \mathbf{x}^{\star}\|_2$$

## Theorem (Steepest Descent)

$$\|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\|_{\mathbf{A}} \le \left(\frac{\lambda_p - \lambda_1}{\lambda_p + \lambda_1}\right)^k \|\mathbf{x}^0 - \mathbf{x}^{\star}\|_{\mathbf{A}}$$

### Theorem (Barzilai-Borwein)

Under the condition  $\lambda_p < 2\lambda_1$ 

$$\|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\|_{2} \le \left(\frac{\lambda_{p} - \lambda_{1}}{\lambda_{1}}\right)^{k} \|\mathbf{x}^{0} - \mathbf{x}^{\star}\|_{2}$$

## **Example: Quadratic function**







## The gradient method for non-convex optimization

- Gradient descent does not match lower bounds in convex setting.
- How about non-convex problems?

### Lower bounds for non-convex problems

Consider  $f \in \mathcal{F}_L^{1,1}$  and f is non-convex. Then any first-order method must satisfy,

$$\|\nabla f(\mathbf{x}^t)\| = \Omega\left(\frac{1}{\sqrt{t}}\right)$$

As a corollary,

$$T = \Omega\left(\epsilon^{-2}\right)[2]$$

Gradient descent is optimal for non-convex problems, up to some constant factor!

## The gradient method for non-convex optimization

- Gradient descent does not match lower bounds in convex setting.
- How about non-convex problems?

### Lower bounds for non-convex problems

Consider  $f \in \mathcal{F}_L^{1,1}$  and f is non-convex. Then any first-order method must satisfy,

$$\|\nabla f(\mathbf{x}^t)\| = \Omega\left(\frac{1}{\sqrt{t}}\right)$$

As a corollary,

$$T = \Omega\left(\epsilon^{-2}\right)[2]$$

- ullet In fact, we cannot talk about acceleration for  $f \in \mathcal{F}_L^{1,1}$ .
- Acceleration for non-convex, L-Lipschitz gradient functions is not as meaningful.

## Example: Logistic regression with non-convex regularizer

## Problem (Regularized logistic regression)

Given  $\mathbf{A} \in \{0,1\}^{n \times p}$  and  $\mathbf{b} \in \{-1,+1\}^n$ , solve:

$$f^{\star} := \min_{\mathbf{x}, \beta} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^{n} \log \left( 1 + \exp \left( -\mathbf{b}_{j} (\mathbf{a}_{j}^{T} \mathbf{x} + \beta) \right) \right) + \frac{\theta}{2} \phi(\mathbf{x}) \right\}.$$

where  $\phi(\mathbf{x}) = \sum_{i=1}^{d} \phi(\mathbf{x}_i)$ .

# Definition (Smoothly clipped absolute deviation (SCAD))

$$\phi(\mathbf{x}_i) = \begin{cases} \lambda |\mathbf{x}_i| & |\mathbf{x}_i| \le \lambda, \\ \left(-|\mathbf{x}_i|^2 + 2a\lambda |\mathbf{x}_i| - \lambda^2\right) / (2(a-1)) & \lambda < |\mathbf{x}_i| \le a\lambda, \\ (1+a)\lambda^2 / 2 & |\mathbf{x}_i| > a\lambda \end{cases}$$

# **SCAD** penalty

SCAD regularizer with  $\lambda = 1$ , a = 4.



# **Example: Non-convex logistic regression**

Gradient descent for SCAD-regularized logistic regression



ullet Approximates the optimum by lower bounding the function via hyperplanes at  ${f x}_t$ 



ullet Approximates the optimum by lower bounding the function via hyperplanes at  ${f x}_t$ 



ullet Approximates the optimum by lower bounding the function via hyperplanes at  ${f x}_t$ 



ullet Approximates the optimum by lower bounding the function via hyperplanes at  ${f x}_t$ 



### \*Gradient descent + mirror descent: Nesterov's acceleration

- There has been quite a few interpretations of Nesterov's accelerated gradient method.
- One way to achieve acceleration is to combine gradient and mirror descent.

### Nesterov's Optimal Scheme [6], Linear Coupling [1]

- **1.** Set  $\mathbf{x}^0 = \mathbf{y}^0 = \mathbf{z}^0 \in \text{dom}(f)$ .
- **2.** Define  $d_{\phi}(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x}) \phi(\mathbf{y}) \langle \nabla \phi(\mathbf{y}), \mathbf{x} \mathbf{y} \rangle$ .
- **3.** For k = 0, 1, ..., iterate

$$\begin{cases} &\alpha^{k+1} = \frac{k+2}{2L}, \quad \text{and} \ \tau^k = \frac{1}{\alpha^{k+1}L} = \frac{2}{k+2} \\ &\mathbf{x}^{k+1} = \tau^k \mathbf{z}^k + (1 - \tau^k) \mathbf{y}^k \\ &\mathbf{y}^{k+1} = \arg\min_{\mathbf{y}} \left\langle \nabla f(\mathbf{x}^{k+1}), \mathbf{y} - \mathbf{x}^{k+1} \right\rangle + \frac{L}{2} \|\mathbf{y} - \mathbf{x}^{k+1}\|^2 \quad \text{(Gradient Descent)} \\ &\mathbf{z}^{k+1} = \arg\min_{\mathbf{z}} \left\langle \nabla f(\mathbf{x}^{k+1}), \mathbf{z} - \mathbf{z}^k \right\rangle + \frac{1}{\alpha^{k+1}} d_{\phi}(\mathbf{z}, \mathbf{z}^k) \quad \text{(Mirror Descent)} \end{cases}$$

#### Gradient descent + mirror descent

 $\mathbf{y}^{k+1}$  update: gradient descent (recall majorization/minimization)  $\mathbf{z}^{k+1}$  update: mirror descent (recall bregman divergence)

### \*Gradient descent + mirror descent: Nesterov's acceleration

### Intuition behind this alternative interpretation

- Gradient descent takes larger steps when the gradient is large, i.e., when we are far away from optimum
- Mirror descent has tighter lowers bounds with respect to optimum when gradients are small, i.e., when close to optimum
- Essentially, this methods exploits the complementary behavior of each method.

### Convergence rates

Let f has L-Lipschitz gradient with respect to some norm  $\|\cdot\|$  and  $d_{\phi}(\cdot,\cdot)$  be a Bregman divergence w.r.t. some 1-strongly convex function  $\phi$ . Define  $D=\sup_{\mathbf{x}}d_{\phi}(\mathbf{x}^{\star},\mathbf{x})$ . Then,

$$f(\mathbf{y}^T) - f(\mathbf{x}^*) \le \frac{4DL}{T^2} \tag{14}$$

#### References |

[1] Zeyuan Allen-Zhu and Lorenzo Orecchia.

Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent. In *Proceedings of the 8th Innovations in Theoretical Computer Science*, ITCS '17, 2017.

Full version available at http://arxiv.org/abs/1407.1537.

- [2] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary points of non-convex, smooth high-dimensional functions. 2017.
- [3] Olivier Fercoq and Zheng Qu. Restarting accelerated gradient methods with a rough strong convexity estimate. 2016. arXiv:16009.07358v1
- [4] Pontus Giselsson and Stephen Boyd.
   Monotonicity and restart in fast gradient methods.
   In IEEE 53rd Ann. Conf. Decision and Control, pages 5058–5063, 2014.
- [5] Yu. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston, MA, 2004.

#### References II

- [6] Yu. Nesterov. Smooth minimization of non-smooth functions. Math. Program., Ser. A, 103:127–152, 2005.
- [7] Brendan O'Donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes. Found. Comput. Math., 15(3):715–732, 2015.