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I This lecture
1. Review of probability theory
2. Learning as an optimization problem

I Next lecture
1. Basic concepts in convex analysis
2. Complexity theory review
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Recommended reading

I Probability and Measure, Patrick Billingsley, Wiley-Interscience, 1995.
I Chapter 7, 8, & 9 in K. P. Murphy, Machine Learning: A Probabilistic

Perspective, MIT Press, 2012.
I V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Inf.

Theory, vol. 10, no. 5, pp. 988–999, Sep. 1999.
I ?Chapter 5 in A. W. van der Vaart, Asymptotic Statistics, Cambridge Univ.

Press, 1998.
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Motivation: Graphical model learning

Example: Log-determinant for LMIs
• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.
Let ⌃ be the covariance matrix corresponding to the graphical model of
the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that
approximates the inverse ⌃�1.

Optimization problem

min
⇥�0

8
><
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Thursday, June 12, 14

“Collaboration” detection in Prof. Sévère’s class
Prof. Sévère is assigning projects to 5 students in his class. In theory, the projects are
supposed to be done in isolation, but the students tend to “collaborate”. How can
Prof. Sévère detect these unwanted collaboration?

A potential approach:
I Assign independent exams.
I Check whether positive correlation exists among students.

Graphical model selection
Many modern applications, such as in social media, involve detecting the underlying
communities based on signals (or data) collected from individual nodes.

Inference procedure:
I Collect independent data.
I Check whether positive correlation exists among nodes.
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Motivation

Key question
I How do we model the problem rigorously?
I How can we solve the problem?

(Partial) answer
I How do we model the problem rigorously? Probability and statistical learning
I How can we solve the problem? Optimization algorithms
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Motivation

Formal Setup
We introduce the rigorous framework for probability theory, and discuss several
important statistical and learning problems that motivate our subsequent optimization
lectures.
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Basic concepts in probability theory

Definition (Sample space)
The sample space Ω of an experiment is the set of all possible outcomes of that
experiment.

Definition (Event)
An event E corresponds to a subset of the sample space; i.e., E ⊆ Ω.

Definition (Probability measure)
Probability measure P (E) maps event E from Ω onto the interval [0, 1] and satisfies
the following Kolmogorov axioms:
I P (E) ≥ 0,
I P (Ω) = 1 and
I P

(⋃n

i=1 Ei
)

=
∑n

i=1 P (Ei), where E1, ..., En are mutually exclusive (i.e.
Ei ∩ Ej = ∅ for all i , j). Such events are called mutually exclusive or disjoint.
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The rules of probability

Let A and B denote two events in a sample space Ω, and let P (B) , 0.

Definition (Marginal probability)
The probability of an event (A) occurring (P (A)).

Definition (Joint probability)
P (A,B) is the probability of event A and event B occurring. Symmetry property
holds, i.e. P (A,B) = P (B,A).

Definition (Conditional probability)
P (B|A) is the probability that B will occur given that A has occurred.

Rules
I Sum rule: P (A) =

∑
B
P (A,B)

I Product rule: P (A,B) = P (B|A)P (A).
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Bayes’ rule

Bayes’ rule

P (A|B) =
P (B|A)P (A)

P (B)
Constituents:
I P (A), the prior probability, is the probability of A before B is observed.
I P (A|B), the posterior probability, is the probability of A given B, i.e., after B is

observed.
I P (B|A) is the probability of observing B given A. As a function of A with B

fixed, this is the likelihood.
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Probability density function (pdf)

Probability density function (pdf)
The probability density function of a continuous random variable X is an integrable
function p(x) satisfying the following:
1. The density is nonnegative: i.e., p(x) ≥ 0 for any x,
2. Probabilities integrate to 1: i.e.,

∫∞
−∞ p(x)dx = 1,

3. The probability that x belongs to the interval [a, b] is given by the integral of
p(x) over that interval: i.e.,

P (a ≤ X ≤ b) =
∫ b

a

p(x)dx.

Basic rules of probability
1. Analog of sum rule: p(x) =

∫
p(x, y)dy

2. Product rule: p(x, y) = p(y|x)p(x).
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Expectations and variances

Definition (Expectation (1st moment, mean))

E[X] =


∑

x∈X xP (X = x) discrete∫∞
−∞ xp(x)dx continuous

Definition (Variance (2nd moment))

V[X] =


∑

x∈X (x− E[X])2P (X = x) discrete∫∞
−∞(x− E[X])2p(x)dx continuous

Definition (Conditional expectation and Covariance)

E[X|Y = y] =
∑
x∈X

xP (X = x|Y = y)

cov[x, y] = E
[(
x− E[X]

)(
y − E[Y ]

)]
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Normal (Gaussian) Distribution

Gaussian distribution
For x ∈ Rd, the multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2 exp
(
−

1
2

(x− µ)TΣ−1(x− µ)
)
,

where µ ∈ Rd is the mean, Σ ∈ Rd×d is the covariance matrix and |Σ| denotes the
determinant of Σ.
I In the case of a single variable

N (x|µ, σ2) =
1

(2πσ2)1/2 exp
(
−

1
2σ2 (x− µ)2

)
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Basic statistics

Parametric estimation model
A parametric estimation model consists of the following four elements:
1. A parameter space, which is a subset X of Rp

2. A parameter x\, which is an element of the parameter space
3. A class of probability distributions PX := {Px : x ∈ X}, parametrized by x ∈ X
4. A sample b, which follows the probability distribution b ∼ Px\ ∈ PX

Statistical estimation seeks to approximate the value of x\, given X , PX , and b.

Definition (Estimator)
An estimator x̂ is a mapping that takes X , PX , and b as inputs, and outputs a value
in Rp.

I The output of an estimator depends on the sample, and hence, is random.
I The output of an estimator is not necessarily equal to x\.
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Ordinary least-squares estimator

Ordinary least-squares estimator (OLS)
The ordinary least-squares estimator is given by

x̂OLS ∈ arg min
x

{
‖b−Ax‖2

2 : x ∈ Rp
}
.
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Ordinary least-squares estimator: An intuitive model

Gaussian linear model
Let x\ ∈ Rp. Let b := Ax\ + w ∈ Rn for some matrix A ∈ Rn×p, where w is a
Gaussian vector with zero mean and covariance matrix σ2I.

The probability density function px(·) is given by

px(b) =
( 1
√

2πσ2

)n
exp
(
−

1
2σ2 ‖b−Ax‖2

2

)
.

Therefore, the maximum likelihood (ML) estimator is defined as

x̂ML ∈ arg min
x

{
− log px(b) =

n

2
log(2πσ2) +

1
2σ2 ‖b−Ax‖2

2 : x ∈ Rp
}
,

which is equivalent to

x̂ML ∈ arg min
x

{
‖b−Ax‖2

2 : x ∈ Rp
}
.

OLS is the ML estimator for the Gaussian linear model.
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Maximum-likelihood estimator

Recall the general setting.

Parametric estimation model
A parametric estimation model consists of four elements:
1. A parameter space, which is a subset X of Rp,
2. A parameter x\, which is an element of the parameter space,
3. A class of probability distributions PX := {Px : x ∈ X}, parametrized by x ∈ X ,
4. A sample b, which follows the probability distribution Px\ ∈ PX .

Definition (Maximum-likelihood estimator)
The maximum-likelihood (ML) estimator is given by

x̂ML ∈ arg min
x
{− log px(b)} ,

where px(·) denotes the probability density function or probability mass function of
Px, for x ∈ X .
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Gene mutation

Gene mutation
Suppose the mutation probability is P (mutation) = µ, and you want to estimate µ.
Suppose you have observed m mutations in N experiments.

The probability mass function is given by the binomial distribution

p(# mutations = m|µ) =
(N
m

)
µm(1− µ)N−m.

The maximum-likelihood estimator is

µML = arg min
µ∈[0,1]

−m logµ− (N −m) log(1− µ).

It is easy to see that µML = m
N
.
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Logistic regression

Logistic regression [1]
Let x\ ∈ Rp. Let a1, . . . ,an ∈ Rp be given. The sample is given by
b := (b1, . . . , bn) ∈ {−1, 1}n, where each bi is a Bernoulli random variable satisfying

P {bi = 1} = 1− P {bi = −1} =
[
1 + exp

(
−
〈
ai,x\

〉)]−1
,

and b1, . . . , bn are independent.

The probability mass function px(·) is given by

px(b) = Πni=1 [1 + exp (−bi 〈ai,x〉)]−1 .

Therefore, the maximum-likelihood estimator is defined as

x̂ML ∈ arg min
x

{
− log px(b) =

n∑
i=1

log [1 + exp (−bi 〈ai,x〉)] : x ∈ Rp
}
.

I x̂ML defines a linear classifier. For any new ai, i ≥ n+ 1, we can predict the
corresponding bi by predicting bi = 1 if 〈ai, x̂ML〉 ≥ 0, and bi = −1 otherwise.
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Graphical model learning revisited

Graphical model selection
Let Θ\ ∈ Rp×p be a positive-definite matrix. The sample is given by x1, . . . ,xn ∈ Rp,
which are i.i.d. random vectors with zero mean and covariance matrix Θ\−1.

We can consider the M -estimator

Θ̂M ∈ arg min
Θ

{
Tr
(
Σ̂Θ
)
− log det (Θ) : Θ ∈ Sp++

}
,

where Σ̂ is the empirical covariance matrix, i.e., Σ̂ := (1/n)
∑n

i=1 xixTi [2].
Example: Log-determinant for LMIs
• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.
Let ⌃ be the covariance matrix corresponding to the graphical model of
the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that
approximates the inverse ⌃�1.

Optimization problem

min
⇥�0

8
><
>:
� log det(⇥) + trace(⌃⇥)| {z }

f(x)

+ ⇢kvec(⇥)k1| {z }
g(x)

9
>=
>;
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Graphical model learning contd.

Graphical model selection
Let Θ\ ∈ Rp×p be a positive-definite matrix. The sample is given by x1, . . . ,xn ∈ Rp,
which are i.i.d. random vectors with zero mean and covariance matrix Θ\−1.

The M -estimator becomes the ML estimator when xi’s are Gaussian random vectors.
The probability density function pΘ(·) is given by

pΘ(x1, . . . ,xn) = Πni=1

[
(2π)−p/2 det

(
Θ−1

)−1/2
exp
(
−

1
2

xTi Θxi
)]

= (2π)−np/2 det(Θ)n/2 exp

[
−

1
2

n∑
i=1

(
xTi Θxi

)]
Therefore, the ML estimator is defined as

x̂ML ∈ arg min
Θ

{
−
np

2
log(2π)−

n

2
log det (Θ) +

n

2
Tr
(
Σ̂Θ
)

: Θ ∈ Sp++

}
,

which is equivalent to the M -estimator Θ̂M .
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Basic statistical learning

Statistical Learning Model [3]
A statistical learning model consists of the following three elements.
1. A sample of i.i.d. random variables (ai, bi) ∈ A× B, i = 1, . . . , n, following an

unknown probability distribution P.
2. A class (set) F of functions f : A → B.
3. A loss function L : B × B → R.

Definition
Let (a, b) follow the probability distribution P and be independent of
(a1, b1), . . . , (an, bn). Then, the risk corresponding to any f ∈ F is its expected loss:

R(f) := E(a,b) [L(f(a), b)] .

Statistical learning seeks to find a f? ∈ F that minimizes the risk, i.e., it solves

f? ∈ arg min
f
{R(f) : f ∈ F} .

I Since P is unknown, the optimization problem above is intractable.
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Empirical risk minimization (ERM)

By the law of large numbers, we can expect that for each f ∈ F ,

R(f) := E [L(a, b)] ≈
1
n

n∑
i=1

L(f(ai), bi)

when n is large enough, with high probability.

Empirical risk minimization (ERM) [3]
We approximate f? by minimizing the empirical average of the loss instead of the risk.
That is, we consider the optimization problem

f̂n ∈ arg min
f

{
1
n

n∑
i=1

L(f(ai), bi) : f ∈ F

}
.
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Least squares revisited

Recall that the LS estimator is given by

x̂LS ∈ arg min
{
‖b−Ax‖2

2 : x ∈ Rp
}

= arg min

{
1
n

n∑
i=1

(bi − 〈ai,x〉)2 : x ∈ Rp
}
,

where we define b := (b1, . . . , bn) and ai to be the i-th row of A.

A statistical learning view of least squares
This corresponds to a statistical learning model, for which
I the sample is given by (ai, bi) ∈ Rp × R, i = 1, . . . , n,
I the function class F is given by F := {fx(·) := 〈·,x〉 : x ∈ Rp}, and
I the loss function is given by L(fx(a), b) := (b− fx(a))2.

The corresponding ERM solution is

f̂n(·) := 〈·, x̂LS〉 .

I Thus the LS estimator also seeks to, given a, minimize the error of predicting the
corresponding b by a linear function in terms of the squared error.
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Neural networks, deep learning

Neural Networks
Choose an activation function σ and the number of layer k.
I the sample is given by (ai, bi) ∈ Rp × R, i = 1, . . . , n,
I the function class F is given by F :=

{
fw(·), w ∈ Rd

}
, where

w = (W1, c1,W2, c2, . . . ,Wk, ck), Wi ∈ Rdi×di−1 , ci ∈ Rdi ,

fw(a) = σ (Wkσ (· · ·σ (W2σ (W1a + c1) + c2) · · · ) + ck)

I the loss function is given by L(fw(a), b) := (b− fw(a))2.
The corresponding ERM solution is

f̂n(·) := fŵ(·), ŵ B arg min
w

{
1
n

n∑
i=1

(bi − fw(ai))2

}
(1)

I Thus the LS estimator corresponds to a 1-layer neural network where W1 ∈ Rp
and c1 = 0.
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Neural networks, deep learning (cont.)

Neural Networks
Choose an activation function σ and the number of layer k.
I the sample is given by (ai, bi) ∈ Rp × R, i = 1, . . . , n,
I the function class F is given by F :=

{
fw(·), w ∈ Rd

}
, where

w = (W1, c1,W2, c2, . . . ,Wk, ck), Wi ∈ Rdi×di−1 , ci ∈ Rdi ,

fw(a) = σ (Wkσ (· · ·σ (W2σ (W1a + c1) + c2) · · · ) + ck)

I the loss function is given by L(fw(a), b) := (b− fw(a))2.
The corresponding ERM solution is

f̂n(·) := fŵ(·), ŵ B arg min
w

{
1
n

n∑
i=1

(bi − fw(ai))2

}
(?)

I Achieve the state-of-the-art in numerous learning problems [4].
I (?) is an extremely difficult optimization problem.
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Practical Issues

How do we numerically approximate x̂ ∈ arg minx∈Rp {F (x)} for a given F?

General idea of an optimization algorithm
Guess a solution, and then refine it based on oracle information.
Repeat the procedure until the result is good enough.

General concept about the approximation error
It depends on the characteristics of the function F and the chosen numerical
optimization algorithm.
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Practical Issues

Role of convexity
Convexity provides a key optimization framework in obtaining numerical
approximations at theoretically well-understood computational costs.

To precisely understand these ideas, we need to understand basics of convex analysis.

Absence of convexity
Many important optimization problems, such as in deep learning, are inherently
non-convex, and non-convex problems are NP-hard in general.

We will also study non-convex optimization algorithms.
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