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Outline

I This class:
1. Linear minimization oracle
2. Conditional gradient method (CGM)
3. CGM-type methods for problems with affine constraints

I Next class
1. Alternating primal-dual methods
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Recommended reading material

I M. Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization In
Proc. 30th International Conference on Machine Learning, 2013.

I A. Yurtsever, O. Fercoq, F. Locatello and V. Cevher, A Conditional Gradient
Framework for Composite Convex Minimization with Applications to Semidefinite
Programming In Proc. 35th International Conference on Machine Learning, 2018.
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Motivation

Motivation
In previous class, we learned optimization techniques for solving constrained convex
minimization problems, based on the powerful proximal gradient framework.
Unfortunately, the proximal operator can impose an undesirable computational burden
and even intractability in many applications.

In this lecture, we will cover the conditional gradient-type methods (a.k.a.,
Frank-Wolfe algorithm). These methods leverage the so called linear minimization
oracle, which is arguably cheaper to evaluate than proximal operator.
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Recall the proximal operator

Definition (Proximal operator)
Let g ∈ F(Rp) and x ∈ Rp. The proximal operator of g is defined as:

proxg(x) ≡ arg min
y∈Rp

{
g(y) +

1
2
‖y− x‖22

}
. (1)

Proximal operator helps us processing nonsmooth terms.

Definition (Tractable proximity)
Given g ∈ F(Rp). We say that g is proximally tractable if proxg defined by (1) can be
computed efficiently.
I ”efficiently" = {closed form solution, low-cost computation, polynomial time}.
I We denote Fprox(Rp) the class of proximally tractable convex functions.
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Not all non-smooth functions are prox-friendly

Surprisingly, proximal operator can be intractable, e.g., for dual of structural SVMs [5].
Even some tractable proximal operators can impose

undesirable computational burden!

Name Function Proximal operator Complexity
`1-norm f(x) := ‖x‖1 proxλf (x) = sign(x)⊗ [|x| − λ]+ O(p)
`2-norm f(x) := ‖x‖2 proxλf (x) = [1− λ/‖x‖2]+x O(p)
Support function f(x) := maxy∈C xT y proxλf (x) = x− λπC(x)
Box indicator f(x) := δ[a,b](x) proxλf (x) = π[a,b](x) O(p)
Positive semidefinite
cone indicator

f(X) := δ
S
p
+

(X) proxλf (X) = U[Σ]+UT , where X =
UΣUT

O(p3)

Hyperplane indicator f(x) := δX (x), X :=
{x : aT x = b}

proxλf (x) = πX (x) = x +(
b−aT x
‖a‖2

)
a

O(p)

Simplex indicator f(x) = δX (x),X :=
{x : x ≥ 0, 1T x = 1}

proxλf (x) = (x−ν1) for some ν ∈ R,
which can be efficiently calculated

Õ(p)

Convex quadratic f(x) := (1/2)xTQx +
qT x

proxλf (x) = (λI + Q)−1x O(p log p)→
O(p3)

Square `2-norm f(x) := (1/2)‖x‖2
2 proxλf (x) = (1/(1 + λ))x O(p)

log-function f(x) := − log(x) proxλf (x) = ((x2 + 4λ)1/2 + x)/2 O(1)
log det-function f(x) := − log det(X) proxλf (X) is the log-function prox ap-

plied to the individual eigenvalues of X
O(p3)

Here: [x]+ := max{0,x} and δX is the indicator function of the convex set X , sign is the sign function, Sp+
is the cone of symmetric positive semidefinite matrices.
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Example: prox for the indicator of a nuclear-norm ball

Consider δX , the indicator of nuclear-norm ball X :=
{

X : X ∈ Rp×p, ‖X‖∗ ≤ α
}

Proximal operator of δX (X)

proxδX (X) ≡ arg min
Y∈Rp×p

{
δX (Y) +

1
2
‖Y−X‖2F

}
≡ projX (X)

prox of the indicator nuclear-norm ball is equivalent to proj onto nuclear norm-ball.

This can be computed as follows:
I Compute SVD of X =⇒ UΣV T = X.
I Form a vector s ∈ Rp by the diagonal entries of Σ =⇒ s = diag(Σ).
I Project s onto `1 norm ball =⇒ ŝ = arg minx{‖s− x‖ : ‖x‖1 ≤ α}
I Form a diagonal matrix with entries ŝ =⇒ Σ̂ = diag∗(ŝ)
I Form the output =⇒ projX (X) = UΣ̂V T

Finding SVD is costly in when p is big!
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A basic constrained problem setting

Problem setting

f? := min
x∈Rp

{
f(x) : x ∈ X

}
, (2)

Assumptions
I X is nonempty, convex, closed and bounded.
I f ∈ F1,1

L (Rp) (i.e., convex with Lipschitz gradient).

Recall proximal gradient algorithm
Basic proximal-gradient scheme (ISTA)

1. Choose x0 ∈ dom (F ) arbitrarily as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1 := proxαg
(
xk − α∇f(xk)

)
where α := 1

L
.

I Prox-operator of indicator of X is projection onto X =⇒ ensures feasibility

How else can we ensure feasibility?
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Frank-Wolfe’s approach - I

f? := min
x∈Rp

{
f(x) : x ∈ X

}
,

Conditional gradient method (CGM, see [4] for review)
A plausible strategy which dates back to 1956 [2]. At iteration k:
1. Consider the linear approximation of f at xk

φk(x) := f(xk) +∇f(xk)T (x− xk)

2. Minimize this approximation within constraint set

x̂k ∈ min
x∈X

φk(x) = min
x∈X
∇f(xk)Tx

3. Take a step towards x̂k with step-size γk ∈ [0, 1]

xk+1 = xk + γk(x̂k − xk)

I xk+1 is feasible since it is convex combination of two other feasible points.
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Frank-Wolfe’s approach - II

X

{X : f(x) ≤ f(xk)}

−∇f(xk)

xk

x̂k

xk+1

f? := min
x∈Rp

{
f(x) : x ∈ X

}

Conditional gradient method (CGM)
1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:{

x̂k := arg min
x∈X
∇f(xk)Tx

xk+1 := (1− γk)xk + γkx̂k,

where γk := 2
k+2 .
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On the linear minimization oracle

Definition (Linear minimization oracle)
Let X be a convex, closed and bounded set. Then, the linear minimization oracle of X
(lmoX ) returns a vector x̂ such that

lmoX (x) := x̂ ∈ arg min
y∈X

xTy (3)

I lmoX returns an extreme point of X .
I lmoX is arguably cheaper than projection.
I lmoX is not single valued, note ∈ in the definition.
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Example: lmo of nuclear-norm bal

Consider δX , the indicator of nuclear-norm ball X :=
{

X : X ∈ Rp×p, ‖X‖∗ ≤ α
}

lmo of nuclear-norm ball

lmoX (X) := X̂ ∈ arg min
Y∈X

〈Y,X〉

This can be computed as follows:
I Compute top singular vectors of X =⇒ (u1, σ1,v1) = svds(X, 1).
I Form the rank-1 output =⇒ X = −u1αvT1

We can efficiently approximate top singular vectors by power method!
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Convergence guarantees of CGM

Problem setting

f? := min
x∈Rp

{
f(x) : x ∈ X

}
,

Assumptions
I X is nonempty, convex, closed and bounded.
I f ∈ F1,1

L (Rp) (i.e., convex with Lipschitz gradient).

Theorem
Under assumptions listed above, CGM with step size γk = 2

k+2 satisfies

f(xk)− f(x?) ≤
4LDX
k + 1

(4)

where DX := maxx,y∈X ‖x− y‖2 is diameter of constraint set.
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Proof of convergence rate of CGM - part I (self study)

Proof
First, recall the following result about Lipschitz gradient functions f ∈ F1,1

L

f(xk+1) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉+
L

2
‖xk+1 − xk‖22.

Remark that xk+1 − xk = γk(x̂k − xk)

f(xk+1) ≤ f(xk) + γk〈∇f(xk), x̂k − xk〉+ γ2
k

L

2
‖x̂k − xk‖22. (5)

Since xk, x̂k and x? are all in X , we have
〈∇f(xk), x̂k − xk〉 = min

x∈X
∇f(xk),x− xk〉 ≤ 〈∇f(xk),x? − xk〉 ≤ f? − f(xk)︸                                              ︷︷                                              ︸

since f is convex
‖x̂k − xk‖2 ≤ max

x,y∈X
‖x− y‖2 = DX

Substituting into (5) and substracting f? we get

f(xk+1)− f? ≤ (1− γk)(f(xk)− f?) + γ2
k

L

2
D2
X
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Proof of convergence rate of CGM - part II (self study)

f(xk+1)− f? ≤ (1− γk)(f(xk)− f?) + γ2
k

L

2
D2
X

Proof (Continued)
We will use induction technique: First note

γ0 = 1 =⇒ f(x1)− f? ≤ 1
2LD

2
X

Now, suppose (4) holds, then

f(xk+1)− f? ≤ (1− γk)
4LDX
k + 1

+ γ2
k

L

2
D2
X

=
k

k + 2
4LDX
k + 1

+
4

(k + 2)2
L

2
D2
X ≤

4LDX
k + 2

which completes the proof by induction.
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?Example: Phase retrieval

Phase retrieval
Aim: Recover signal x\ ∈ Cp from the measurements b ∈ Rn:

bi =
∣∣〈ai,x\〉∣∣2 + ωi.

(ai ∈ Cp are known measurement vectors, ωi models noise).
• Non-linear measurements → non-convex maximum likelihood estimators.

PhaseLift [1]
Phase retrieval can be solved as a convex matrix completion problem, following a
combination of
I semidefinite relaxation (x\x\H = X\)
I convex relaxation (rank→ ‖ · ‖∗)

albeit in terms of the lifted variable X ∈ Cp×p.
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Example: Phase retrieval - II

Problem formulation
We solve the following PhaseLift variant:

f? := min
X∈Cp×p

{1
2
‖A(X)− b‖22 : ‖X‖∗ ≤ κ, X ≥ 0

}
. (6)

Experimental setup [13]
Coded diffraction pattern measurements, b = [b1, . . . ,bL] with L = 20 different
masks

b` = |fft(dH` � x\)|2

→ � denotes Hadamard product; | · |2 applies element-wise
→ d` are randomly generated octonary masks (distributions as proposed in [1])
→ Parametric choices: λ0 = 0n; ε = 10−2; κ = mean(b).
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Example: Phase retrieval - III

p
23 25 27 29 211 213 215

ti
m
e
(s
)

10−1

100

101

102

103

CGM (lmo)
FISTA (prox)

Test with synthetic data: Prox vs sharp
→ Synthetic data: x\ = randn(p, 1) + i · randn(p, 1).

→ Stopping criteria: ‖x
\−xk‖2
‖x\‖2

≤ 10−2.
→ Averaged over 10 Monte-Carlo iterations.

Note that the problem is p× p dimensional!
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Recall the prototype problem

A primal problem prototype

f? := min
x∈Rp

{
f(x) : Ax = b, x ∈ X

}
, (7)

I f is a proper, closed and convex function
I X is nonempty, closed convex set
I A ∈ Rn×p and b ∈ Rn are known
I An optimal solution x? to (7) satisfies f(x?) = f?, Ax? = b and x? ∈ X
I We further assume X is a bounded set!

Classical CGM does not apply to (7)
I lmo of the intersection of {x : Ax = b} and X is difficult to compute.
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CGM with quadratic penalty

Quadratic penalty strategy for min{f(x) : Ax = b,x ∈ X}
A quadratic penalty formulation:

min
x∈Rp

{
f(x) +

1
2β
‖Ax− b‖22 : x ∈ X

}
I β > 0 is the penalty parameter.
I fβ(x) := f(x) + 1

2β ‖Ax− b‖22 is the penalized objective function.
I Note that fβ(x) is smooth with parameter L+ β−1‖A‖2.

Our strategy [14] ⇒ Take a CGM step on fβ and decrease β progressively to 0

Homotopy conditional gradient method (HCGM)
1. Choose x0 ∈ X , and β0 > 0.
2. For k = 0, 1, . . . perform:{

x̂k := lmoX (∇f(xk) + β−1
k

AT (Axk − b))
xk+1 := (1− γk)xk + γkx̂k,

where γk := 2
k+2 and βk = β0√

k+2 .
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Convergence guarantees of HCGM

Recall Lagrange duality

L(x, λ) := f(x) + 〈λ,Ax− b〉

max
λ

min
x∈X
L(x, λ)︸                   ︷︷                   ︸

dual problem

≤ min
x∈X

max
λ
L(x, λ)︸                   ︷︷                   ︸

primal problem

(Duality)

I λ is called the Lagrange multiplier.
I The function d(λ) is called the dual function, and it is concave!
I The optimal dual objective value is d? = d(λ?).

(Duality) holds with equality under vague assumptions ⇒ (Strong duality).

Theorem
Assume that strong duality holds. Then, the iterates of HCGM satisfies

−‖Axk − b‖‖λ?‖ ≤ f(xk)− f? ≤ 2DX
(

L
k+1 + ‖A‖2

β0
√
k+1

)
‖Axk − b‖ ≤ 2β0√

k+1

(
‖λ?‖+DX

√
L
β0

+ ‖A‖
2

β2
0

)
.
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Augmented Lagrangian CGM: CGAL

Quadratic penalty strategy for min{f(x) : Ax = b,x ∈ X}
Augmented problem formulation:

min
x∈Rp

{
f(x) +

1
2β
‖Ax− b‖22 : Ax = b, x ∈ X

}
I Write down the Lagrangian:

L1/β(x, λ) = f(x) + 〈λ,Ax− b〉+
1/β
2
‖Ax− b‖2

I Note that L1/β( ·λ) is smooth with parameter L+ β−1‖A‖2.

Our strategy [12] ⇒

1. Take a CGM step wrt L1/β( · , λ)
2. Take a gradient step wrt L1/β(x, · )
3. Decrease β progressively to 0

Challenge: Step size in dual (step 2.)
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Convergence guarantees of CGAL
Conditional gradient augmented Lagrangian method (CGAL)

1. Choose x0 ∈ X , λ0 ∈ Rn, and β0 > 0.
2. For k = 0, 1, . . . perform:{

x̂k := lmoX (∇f(xk) + ATλk + β−1
k

AT (Axk − b))
xk+1 := (1− γk)xk + γkx̂k

λk+1 := λk + ωk(Axk+1 − b)

where γk := 2
k+2 and βk = β0√

k+2 .

Theorem
Assume that strong duality holds. Let us choose dual step size ωk by the following rule

ωk = αk := min{ 1
β0
,
η2
k(Lf + λk+1)D2

X
2‖Axk+1 − b‖2

} if ‖λk + αk(Axk+1 − b)‖ ≤ DY

and ωk = 0 otherwise, for some DY ≥ 0. Then, the iterates of CGAL satisfies
−‖Axk − b‖‖λ?‖ ≤ f(xk)− f? ≤ 4DX

(
L
k+1 + ‖A‖2

β0
√
k+1

)
+ β0DY

2
√
k+1

‖Axk − b‖ ≤ 2β0√
k+1

(
3DY

2 +‖λ?‖+DX
β0

√
Lβ0+‖A‖2

)
Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 24/ 46



?Generalization of HCGM for Ax− b ∈ K

Quadratic penalty strategy for min{f(x) : Ax− b ∈ K,x ∈ X}
Define the distance function

dist(y,K) := min
z∈K
‖y− z‖.

Quadratic penalty takes the form

min
x∈Rp

{
f(x) +

1
2β

dist2(Ax− b,K) : x ∈ X
}

Gradient of dist2(z,K) is

∇dist2(y,K) = 2(y− projK(y)).

Hence, HCGM can be generalized by changing lmo step as

x̂k := lmoX (∇f(xk) + β−1
k

AT (Axk − b− projK(Axk − b))).

Same guarantees hold, by replacing ‖Ax− b‖ by dist(Ax− b,K).
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?Generalization of CGAL for Ax− b ∈ K

Augmented Lagrangian for min{f(x) : Ax− b ∈ K,x ∈ X}
Similarly, CGAL can be extended for Ax− b ∈ K constraint, by replacing
I lmo step as

x̂k := lmoX
(
∇f(xk)+ATλk+β−1

k
AT
(
Axk−b−projK(Axk−b+βkλ

k)
))

I and dual update step as

λk+1 := λk + ωk
(
Axk+1 − b + projK(Axk+1 − b + βk+1λ

k)
)

Same guarantees hold, by replacing ‖Ax− b‖ by dist(Ax− b,K).
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Example: Generalized eigenvalue problem

max
X∈Rp×p

{
Tr (BX) : Tr (AX) = 1, X ∈ Sp+, Tr (X) ≤ α

}

iteration
100 101 102 103 104

|f
(X

)
−

f
⋆
|/
|f

⋆
|

10−12

10−10

10−8

10−6

10−4

10−2

CGAL
HCGM

iteration
100 101 102 103 104

‖A
X

−
b‖

2

10−12

10−10

10−8

10−6

10−4

10−2

100

I A and B generated synthetically with iid Gaussian entries.
I p = 1000
I α > 0 is a model parameter
I Dotted lines represent X̂k (output of lmo)
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Example: k-means clustering

min
X∈Rp×p

{
Tr (X) : X1 = 1, X ≥ 0, X ∈ Sp+, Tr (X) = α

}

iteration
100 101 102 103 104 105 106

d
is
t(
A
x
,K

)

10−3

10−2

10−1

100

101

102

iteration
100 101 102 103 104 105 106

|f
(x
)
−

f
⋆
|/
|f

⋆
|

10−4

10−3

10−2

10−1

100

101

102

CGAL
HCGM

I Test setup with preprocessed MNIST dataset [14]
I p = 1000
I α = 10 is the number of clusters
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Example: Max-cut SDP

max
X∈Rp×p

{1
4

Tr (LX) : diag(X) = 1, X ∈ Sp+, Tr (X) = p

}

iteration
100 101 102 103 104 105

|f
(X

)
−

f
⋆
|/
|f

⋆
|

10−8

10−6

10−4

10−2

100

CGAL
HCGM

iteration
100 101 102 103 104 105

∥A
X

−
b∥
/∥

b∥
10−5

10−4

10−3

10−2

10−1

100

101

102

I UF Sparse graphs: GSet collection, G40 dataset p = 2000
I L is graph Laplacian matrix.
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?CGM as approximation method for subsolvers

Recall projection oracle
Projection (of z onto X ) oracle returns the solution of the following problem:

min
x∈Rp

{1
2
‖x− z‖22 : x ∈ X

}
CGM applies to this problem.

Conditional gradient sliding [6]
I Consider ISTA or FISTA for solving (8).
I Replace projection step with approximate projection oracle.
I Approximate projection using CGM.

Inexact augmented Lagrangian method (with CGM) [7]
Similar ideas works for more general templates.
I Consider augmented Lagrangian (AL) method for solving (7).
I Replace solution AL subproblem with approximate solution of AL subproblem.
I Approximate solution of AL subproblem using CGM.
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A basic constrained stochastic problem

Problem setting (Stochastic)

f? := min
x∈Rp

{
E[f(x, θ)] : x ∈ X

}
, (8)

Assumptions
I θ is a random vector whose probability distribution is supported on set Θ
I X is nonempty, convex, closed and bounded.
I f(·, θ) ∈ F1,1

L (Rp) for all θ (i.e., convex with Lipschitz gradient).

Example (Finite-sum model)

E[f(x, θ)] =
1
n

n∑
j=1

fj(x)

I j = θ is a drawn uniformly from Θ = {1, 2, . . . , n}
I fj ∈ F1,1

L (Rp) for all j (i.e., convex with Lipschitz gradient).
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Stochastic conditional gradient method - I

Stochastic conditional gradient method (SFW1)
1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:{

x̂k := lmoX (∇̃f(xk, θk))
xk+1 := (1− γk)xk + γkx̂k,

where γk := 2
k+2 , and ∇̃f is an unbiased estimator of ∇f .

Theorem [3]
Assume that the following variance condition holds

E
∥∥∇f(xk)− ∇̃f(xk, θk)

∥∥2
≤
(
LD

k + 1

)2
. ( ? )

Then, the iterates of SFW satisfies

E[f(xk, θ)]− f? ≤
4LD2

k + 1
.

( ? ) → SFW requires decreasing variance!
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Stochastic conditional gradient method - I

Stochastic conditional gradient method (SFW1)
1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:{

x̂k := lmoX (∇̃f(xk, θk))
xk+1 := (1− γk)xk + γkx̂k,

where γk := 2
k+2 , and ∇̃f is an unbiased estimator of ∇f .

Example (Finite-sum model)

E[f(x, θ)] =
1
n

n∑
j=1

fj(x)

Assume fj is G-Lipschitz continuous for all j. Suppose that Sk is a random sampling
(with replacement) from Θ = {1, 2, . . . , n}. Then,

∇̃f(xk, θk) :=
1
|Sk|

∑
j∈Sk

fj(xk) =⇒ E
∥∥∇f(x)− ∇̃f(x, θk)

∥∥2
≤

G2

|Sk|
.

Hence, by choosing |Sk| = (G(k+1)
LD

)2 we satisfy the variance condition for SFW.
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Stochastic conditional gradient method - II

Stochastic conditional gradient method (SFW2)
1. Choose x0 ∈ X and set z0 = 0.
2. For k = 0, 1, . . . perform:zk+1 := (1− ρk)zk + ρk∇̃f(xk, θk)

x̂k := lmoX (zk+1)
xk+1 := (1− γk)xk + γkx̂k,

where γk := 9
k+8 , and ρk = 4

(k+8)2/3 .

Theorem [9]
Assume that the unbiased estimator ∇̃f has a bounded variance, i.e.,

E
∥∥∇f(xk)− ∇̃f(xk, θk)

∥∥2
≤ σ2 for some σ <∞.

Then, the iterates of SFW2 satisfies E[f(xk, θ)]− f? ≤
Q

(k + 9)1/3 ,

where Q := max
{

91/3(f(x0)− f?), LD
2

2 + 2Dmax
{

2
∥∥∇f(x0)

∥∥ ,√16σ2 + 2L2D2
}}

.

Slower rate than SFW1, but requires a single datapoint each iteration in finite-sum!
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Stochastic CGM with quadratic penalty

Stochastic homotopy conditional gradient method (SHCGM)
1. Choose x0 ∈ X , β0 > 0, and set z0 = 0.
2. For k = 0, 1, . . . perform:zk+1 := (1− ρk)zk + ρk∇̃f(xk, θk)

x̂k := lmoX (zk+1 + β−1
k

AT (Axk − b))
xk+1 := (1− γk)xk + γkx̂k,

where γk := 9
k+8 , ρk = 4

(k+8)2/3 , and βk = β0
(k+8)1/2 .

SHCGM template and convergence rates [8]

f? := min
x∈Rp

{
E[f(x, θ)] : Ax = b, x ∈ X

}
,

SHCGM is the combination of HCGM and SFW2. Iterates converges with
Ef(xk, θ)− f? ≥ − ‖y?‖ · E ‖Ax− b‖
Ef(xk, θ)− f? ∈ O

(
1

k1/3

)
E ‖Ax− b‖ ∈ O

(
1

k5/12

)
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Example: Stochastic matrix completion

max
X

 ∑
(i,j)∈Ω

(Xi,j −Yi,j)2 : ‖X‖∗ ≤ β1, 1 ≤ X ≤ 5



I Ω is the set of observed entries from the true matrix Y
I 1 ≤ X ≤ 5 is the hard threshold on the estimated ratings
I β1 = 7000, MovieLens100k dataset, 100, 000 ratings from 1682 users for 943

movies
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Example: Online covariance matrix estimation

max
X∈Rp×p

{
E‖X− ωω>‖2F : ‖X‖1 ≤ β,X ∈ Sp+,Tr(X) ≤ α

}

I p = 1000, α, β are model parameters
I Entries of vector φ are selected uniformly at random from [−1, 1]
I Covariance matrix Σ is block diagonal with 10 blocks of φφ>
I Streaming observations ω ∈ N (0,Σ)
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A basic constrained non-convex problem

Problem setting

f? := min
x∈Rp

{
f(x) : x ∈ X

}
,

Assumptions
I X is nonempty, convex, closed and bounded.
I f has L-Lipschitz continuous gradients, but it is non-convex.

Stationary point
Due to constraints, ‖∇f(x?)‖ = 0 may not hold!

Frank-Wolfe gap: Following measure, known as FW-gap, generalizes the definition of
stationary point for constrained problems:

gFW (x) := max
y∈X

(x− y)T∇f(x)

I gFW (x) ≥ 0 for all x ∈ X .
I x ∈ X is a stationary point if and only if gFW (x) = 0.
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CGM for non-convex problems

CGM for non-convex problems
1. Choose x0 ∈ X , K > 0 total number of iterations.
2. For k = 0, 1, . . . ,K − 1 perform:{

x̂k := lmoX (∇f(xk))
xk+1 := (1− γk)xk + γkx̂k,

where γk := 1√
K+1 .

Theorem
Denote x̄ chosen uniformly random from {x1,x2, . . . ,xK}. Then, CGM satisfies

min
k=1,2,...,K

gFW (xk) ≤ E[gFW (x̄)] ≤
1
√
K

(
f(x0)− f? +

LD2

2

)
.

? There exist stochastic CGM methods for non-convex problems. See [10] for details.
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?Non-convex approach: Burer-Monteiro factorization

• SDP template:

min
x∈Rp×p

{
tr(cx) : Ax = b, x � 0, x∗ = x, tr(x) = ρ

}
• Burer-Monteiro splitting

min
u∈Rp×r

{
tr(cuu∗) : Auu∗ = b, u ∈ U := {u : ‖u‖F ≤

√
ρ}
}

. Nonlinear and non-convex problem (Lu = Auu∗ = b, tr(cuu∗))

. Local minima vs. saddle points issues

. Local minima vs. global minimum: r = Ω(√p), due to Pataki and Barvinok

Barvinok, Problems of distance geometry and convex properties of quadratic maps, Disc Comp Geo, 1995.
Pataki, On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues, Math Oper Res, 1998.
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?Inexact augmented Lagrangian framework

• Our idea [11]: Solve primal subproblems with stricter tolerance, i.e., ε→ 0

iALM:



Obtain u+ such that

dist(−∇uLβ(u+, y), ∂g(u+)) ≤ εf , or [1st order stationarity]
λmin(∇uuLβ(u+, y)) ≥ −εs [2nd order stationarity]

y+ = y + σ
(
L(u+)− b

)
Pick β+ < β and ε+ = β+

Update σ+ = σ0 min
(

1
||L(u)−b||k log2(k+1) , 1

)
=⇒ Bounded dual

. L(u) = Auu∗ & g(u) = tr(cuu∗)

• Our result: FOS with O
(

1
ε3

)
& SOS Õ

(
1
ε5

)
total complexity

Cartis, C., Gould, N. I., and Toint, P. L. “Optimality of orders one to three and beyond: Characterization and evaluation complexity in

constrained nonconvex optimization,” Journal of Complexity, 2018.
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?Numerical experiment: Clustering
• Model free k-means clustering SDP:

min
{
tr(cx) : x1 = 1, x ≥ 0, x � 0, x∗ = x, tr(x) = ρ

}
,

• Nonconvex formulation:

min
{
tr(cuu∗) : uu∗1 = 1, u ≥ 0, ‖u‖F ≤

√
ρ︸                        ︷︷                        ︸

U

}
,

• Preprocessing & setup & rounding as in (Mixon et. al., 2017)
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D.Mixon, S.Villar and R.Ward, Clustering subgaussian mixtures by semidefinite programming, 2017
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?DARN with GANs - Numerical Results (MNIST)

• De-adversarial-noise with generative adversarial networks:

minimize
w,z

‖w − (w0 + η)‖?
subject to w = G(z),

iAL

Figure: `∞ error per iteration

iAL

Figure: misclassification error per iteration
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?Numerical experiment: Basis Pursuit
• Convex formulation:

min
{
‖x‖1 : Ax = b

}
• Non-convex formulation:

change of variables

x := x+ − x−

x+ := u◦21 , x− := u◦22 and u := [u>1 , u>2 ]>

Ā := [A,−A]

min
{
‖u‖22 : Āu◦2 = b

}
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• Potential with more structured norms (e.g., latent group lasso norm)
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