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Outline

> This class:
1. Linear minimization oracle
2. Conditional gradient method (CGM)
3. CGM-type methods for problems with affine constraints

> Next class
1. Alternating primal-dual methods
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Recommended reading material

> M. Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization In
Proc. 30th International Conference on Machine Learning, 2013.

> A. Yurtsever, O. Fercoq, F. Locatello and V. Cevher, A Conditional Gradient
Framework for Composite Convex Minimization with Applications to Semidefinite
Programming In Proc. 35th International Conference on Machine Learning, 2018.
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Motivation

Motivation

In previous class, we learned optimization techniques for solving constrained convex
minimization problems, based on the powerful proximal gradient framework.
Unfortunately, the proximal operator can impose an undesirable computational burden
and even intractability in many applications.

In this lecture, we will cover the conditional gradient-type methods (a.k.a.,

Frank-Wolfe algorithm). These methods leverage the so called linear minimization
oracle, which is arguably cheaper to evaluate than proximal operator.
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Recall the proximal operator

Definition (Proximal operator)

Let g € F(RP) and x € RP. The proximal operator of g is defined as:

1 2
prox,(x) = arg min < g(y) + =|ly — x . 1
L g() g IP{() ZHY ||2} (1)

Proximal operator helps us processing nonsmooth terms.

Definition (Tractable proximity)

Given g € F(RP). We say that g is proximally tractable if prox, defined by (1) can be
computed efficiently.
> "efficiently" = {closed form solution, low-cost computation, polynomial time}.

> We denote fpmx(RP) the class of proximally tractable convex functions.
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Not all non-smooth functions are prox-friendly

Surprisingly, proximal operator can be intractable, e.g., for dual of structural SVMs [5].

Even some tractable proximal operators can impose
undesirable computational burden!

Name Function Proximal operator Complexity
T1-norm 7o) = =T proxay (%) = sign() & [x[ = A7 | O)
£2-norm F(x) = lxll2 proxy r(x) = [1 — A/[Ixl2]4+x O(p)
Support function f(x) := maxyec xTy proxy 7 (x) = x — Amc (x)

Box indicator [(X) 1= 6[a py(X) proxy y(x) = my p)(x) O(p)
Positive semidefinite F(X) == dp (X) proxy 7 (X) = U[E]+UT, where X = O(p3)
cone indicator + usu”T
Hyperplane indicator f(x) = dx(x), X = proxys(x) = 7x(x) = x + O(p)
{x : alx = b} b—alx
Talz )®
Simplex indicator f(x) = dx(x),X = proxy £ (x) = (x—v1) forsome v € R, A(p)
{x : x>0, 1Tx = 1} which can be efficiently calculated
Convex quadratic f(x) = (1/2)xTQx + proxy f(x) = (AI + Q) 'x O(plogp) —
a'x o®*)
Square £2-norm F(x) = (1/2)l1x/12 prox ¢ (x) = (1/(1 4 A))x O(p)
log-function f(x) := —log(x) proxy s (z) = (2 + axt/? 4 x)/2 O(1)
log det-function f(x) := — log det(X) proxy ¢ (X) is the log-function prox ap- o(p3)
plied to the individual eigenvalues of X
Here: [x]4 := max{0, x} and 6 x is the indicator function of the convex set X, sign is the sign function, Si
is the cone of symmetric positive semidefinite matrices.
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Example: prox for the indicator of a nuclear-norm ball

Consider dx, the indicator of nuclear-norm ball X := {X : X eRPXPIX]|, < a}

Proximal operator of §x(X)

1 .
prox;, (X) = arg min {5X (Y)+ =Y — X||%} = proj y (X)
YERPXP 2

prox of the indicator nuclear-norm ball is equivalent to proj onto nuclear norm-ball.

This can be computed as follows:
> Compute SVDof X — UXZVT =X.
> Form a vector s € RP by the diagonal entries of ¥ ~— s = diag(X).
> Project s onto #1 norm ball = §=argminx{||s — x| : [x|; < a}
> Form a diagonal matrix with entries 8§ — 3 = diag*(8)

> Form the output ==  proj;(X)=UXVT
Finding SVD is costly in when p is big!
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A basic constrained problem setting

Problem setting

7 i= min {60 s x € ¥}, @

xERP
Assumptions
> X is nonempty, convex, closed and bounded.
> fe ]'—i’l(Rp) (i.e., convex with Lipschitz gradient).

Recall proximal gradient algorithm

Basic proximal-gradient scheme (ISTA)
1. Choose xV € dom (F) arbitrarily as a starting point.
2. Fork=0,1,---, generate a sequence {x*};>¢ as:

xktl .= ProX, (xk — an(xk))

o AL
where o := =

> Prox-operator of indicator of X is projection onto X == ensures feasibility

How else can we ensure feasibility?
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Frank-Wolfe’s approach - |

7= min {69 s x e

Conditional gradient method (CGM, see [4] for review)
A plausible strategy which dates back to 1956 [2]. At iteration k:
1. Consider the linear approximation of f at x*

P (x) = F(x*) + Vf(x")T(x = x¥)
2. Minimize this approximation within constraint set
%* € min ¢y (x) = min Vf(x*)Tx
zeX zeX
3. Take a step towards %* with step-size v, € [0,1]
Xk = xk 4y (%% — xF)

> xk+t1 js feasible since it is convex combination of two other feasible points.
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Frank-Wolfe’s approach - Il

lions@epfl

f* ::;reliRg{f(X)WGX}

Conditional gradient method (CGM)
1. Choose xV € X.
2. For k=0,1,... perform:

%k := arg min Vf(x*)Tx
xeX

k+1

x = (1 — yp)xP 4+ %F,

where v, := }%2
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On the linear minimization oracle

Definition (Linear minimization oracle)

Let X’ be a convex, closed and bounded set. Then, the linear minimization oracle of X’
(Imo ) returns a vector X such that

Imoy (x) := X € arg min x’y 3)
yeX

> Imoy returns an extreme point of X.
> Imoy is arguably cheaper than projection.

> Imoy is not single valued, note € in the definition.
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Example: lmo of nuclear-norm bal

Consider dx, the indicator of nuclear-norm ball X := {X X eRPP X, < a}

Imo of nuclear-norm ball
Imoy (X) := X € arg min_ (Y, X)
Yex

This can be computed as follows:
> Compute top singular vectors of X ~=—  (u1,01,v1) = svds(X,1).
> Form the rank-1 output — X = —ulav?

We can efficiently approximate top singular vectors by power method!
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Convergence guarantees of CGM

Problem setting

= g {0 xe ),

X ERP
Assumptions

> X is nonempty, convex, closed and bounded.

> fe J'—i’l(Rp) (i.e., convex with Lipschitz gradient).

Theorem
Under assumptions listed above, CGM with step size i = ki” satisfies
4L.D
k * X
x°)— f(x") < 4
£ty = fx) < 22 )

where Dy := maxy ycx ||x — yl||2 is diameter of constraint set.
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Proof of convergence rate of CGM - part | (self study)

Proof

First, recall the following result about Lipschitz gradient functions f € ]—‘é’l
FEHF) < FF) + (VAR M —xF) + %llxk+1 -3
Remark that x*+1 — xF = v, (%F — x*)
FOR) < F0M) +p(THGR), &4 k) 2 TIRE MR )

k

Since x*, %% and x* are all in X, we have

(Vf(xk),fck —xk> :)I(réi)I}Vf(xk),x—xk> < <Vf(xk)7x* —xk> < fF - f(xk)

. since f is convex
%% —x*||2 < max ||lx —yll2 = Dx

B

Substituting into (5) and substracting f* we get

FEE) = £ < (1= ) (F6) — 7 + 225 DY
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Proof of convergence rate of CGM - part Il (self study)

FER) = £ < (=) () — ) 925 DY

Proof (Continued)
We will use induction technique: First note

Yo=1 = [f(x')-f"<3LD%
Now, suppose (4) holds, then

ALD
FEH) = < A=) o+

2
Tk
_ k 4LDx 4
k2 k41 (B4

L
2

2

X

L o, _ A4LDy
—D3% <
2)2 2 k+2

which completes the proof by induction.
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*Example: Phase retrieval

Phase retrieval

Aim: Recover signal x € CP from the measurements b € R":
2
b; = ’(ai,xt‘)| =+ wj.

(a; € CP are known measurement vectors, w; models noise).
e Non-linear measurements — non-convex maximum likelihood estimators.

PhaselLift [1]

Phase retrieval can be solved as a convex matrix completion problem, following a
combination of

> semidefinite relaxation (xhth = Xh)
> convex relaxation (rank — || - ||«)

albeit in terms of the lifted variable X € CPXP,
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Example: Phase retrieval - I

Problem formulation

We solve the following PhaseLift variant:

1
pri= min {2140 -bIB: X < X >0}, (6)

Xecpxp

Experimental setup [13]

Coded diffraction pattern measurements, b = [b1,...,br] with L = 20 different

masks
b, = |££t(d © x7)?

— © denotes Hadamard product; | - |2 applies element-wise
— dg are randomly generated octonary masks (distributions as proposed in [1])

— Parametric choices: \0 = 07; e=10"2; k= mean(b).
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Example: Phase retrieval - 1lI

103 I I

107
=
o 10*
E
10°
41+CGM (Imo)
-O-FISTA (prox)
107"+ T T T T T 1
93 25 o7 29 ol 13 ols
p

Test with synthetic data: Prox vs sharp

— Synthetic data: x% = randn(p, 1) + 4 - randn(p, 1).
ing criteria: X =x*l2 -2

— Stopping criteria: e S 10—~.

— Averaged over 10 Monte-Carlo iterations.

Note that the problem is p X p dimensional!
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Recall the prototype problem

A primal problem prototype

f* := min {f(x):Ax:b,on)(}7 ©)

xERP
f is a proper, closed and convex function
X is nonempty, closed convex set
A € R"*P and b € R™ are known
An optimal solution x* to (7) satisfies f(x*) = f*, Ax* =b and x* € X

We further assume X is a bounded set!

vV vV VvV VY Y

Classical CGM does not apply to (7)

> lmo of the intersection of {x : Ax = b} and X is difficult to compute.
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CGM with quadratic penalty

Quadratic penalty strategy for min{f(x): Ax =b,x € X'}

A quadratic penalty formulation:

min {f(x) + %HAX _blZ:xe X}

XERP

> B > 0 is the penalty parameter.
> fa(x) := f(x)+ ﬁHAx — b||2 is the penalized objective function.

> Note that fz(x) is smooth with parameter L + 87 1||A[|%.

Our strategy [14] = Take a CGM step on f3 and decrease 8 progressively to 0

Homotopy conditional gradient method (HCGM)
1. Choose x? € X, and By > 0.
2. For k=0,1,... perform:

X% =lmox (Vf(x*) + B, AT (AX* — b))
xFFL = (1 — )% 4 i RE,
where v, 1= ki+2 and 3 = i‘fm.
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Convergence guarantees of HCGM

Recall Lagrange duality

L(x,A) == f(x) + (A, Ax — b)

max min £(x,A) < minmax £(x, ) (Duality)
A xeX XEX A

dual problem primal problem

> )\ is called the Lagrange multiplier.
> The function d(\) is called the dual function, and it is concave!
> The optimal dual objective value is d* = d(A\*).

(Duality) holds with equality under vague assumptions = (Strong duality).

Theorem
Assume that strong duality holds. Then, the iterates of HCGM satisfies

* * A 2
“lAxE =B < o) - £ < 2D (G + S )

k 289 L, a2
laxt - bl < 2 (Inl+ Dx /5 + ).
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Augmented Lagrangian CGM: CGAL

Quadratic penalty strategy for min{f(x): Ax =b,x € X'}

Augmented problem formulation:

1
min {f(x)#»ﬁHAxfng:Ax:b7 xEX}

xERP

> Write down the Lagrangian:

/B

L1/(x,2) = [(x) + (A, Ax = b) + —= | Ax — b|]®

> Note that £ ,5(- ) is smooth with parameter L + BLA2.

1. Take a CGM step wrt Ly /5(-, )
Our strategy [12] = 2. Take a gradient step wrt £ /5(x, -)
3. Decrease ( progressively to 0

Challenge: Step size in dual (step 2.)
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Convergence guarantees of CGAL

Conditional gradient augmented Lagrangian method (CGAL)
1. Choose xY € X, AU € R™, and Sy > 0.
2. For k=0,1,... perform:

%k = Ilmox (Vf(x*) + ATA + 8, AT (Ax" — b))
xEFL = (1 — ) %P 4y %F
Mo+l = NP o (AxFTL — b)

Bo
k12"

where v 1= kLH and B =

Theorem

Assume that strong duality holds. Let us choose dual step size wy, by the following rule

n2(Ly + Ap41)D%

. k k41
2||Axk+1 — b||2 if |IAY + ax(Ax b)|| < Dy

Wi = oy = min{Bl—O,
and wy, = 0 otherwise, for some Dy > 0. Then, the iterates of CGAL satisfies

_ k_ * kY _ p* L A2 BoDy
A%k —blIX < F0) - £+ < 4D (e + 5ok ) + 222

3D D
lAxt — bl < 3 (322 1 x) + 52 /Lo +IATR)
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*Generalization of HCGM for Ax —b e

Quadratic penalty strategy for min{f(x): Ax —b € K,x € X'}

Define the distance function

dist(y, ) := min ||y — z||.
zelC
Quadratic penalty takes the form
. 1. 2 .
f&é}’ {f(x) + ﬁdlst (Ax —b,K) :x € X}
Gradient of dist?(z, K) is

Vdist?(y, K) = 2(y — projx(¥))-

Hence, HCGM can be generalized by changing lmo step as

%% .= lmox (Vf(x*) + B;lAT(Axk — b — projx (Ax* — b))).

Same guarantees hold, by replacing ||Ax — b|| by dist(Ax — b, K).
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*Generalization of CGAL for Ax—be K

Augmented Lagrangian for min{f(x) : Ax —b € K,x € X'}
Similarly, CGAL can be extended for Ax — b € K constraint, by replacing

> Imo step as
%% .= Imox (Vf(xk) +ATNF +ﬁk_1AT(Axk —b — projx (Ax" —b+/3k)\k)))

> and dual update step as

AL = Ak o (Axl”1 — b + proj (Ax* T —b + /Bk+1>\k))

Same guarantees hold, by replacing ||Ax — b|| by dist(Ax — b, K).
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Example: Generalized eigenvalue problem

max
XERPXP

{Tr(BX) (Tr (AX) =1, X € 8, Tr(X) < a}

10° 4 t
5 Vo ™o,
— 1072 4 10-2 4 G S
= 104 4 ol 4
~ = 107 L
x "
o~ 1070 4 ‘ 1076 4 - L
I ,‘>< i ,
— :
1074 = 0% i -
= = ':
= 10710 —ggéi{ L 10-10 H L
10712 : S 10712 ‘ ke
10° 10! 102 10 10* 10° 10! 102 10% 104
iteration iteration

p = 1000

a > 0 is a model parameter

vy v.vYy

Dotted lines represent X* (output of Imo)
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Example: k-means clustering

Lf () = f*I/1.f]

1072 L
10-3 ] [—CGAL P10 L
- — HCGM X
Tl e —— Mm L .
10° 10' 10?2 10® 10* 10° 106 10° 10' 10?2 10* 10* 10° 106
iteration iteration

> Test setup with preprocessed MNIST dataset [14]
> p = 1000

» o = 10 is the number of clusters
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Example: Max-cut SDP

>
»

lions@epfl

1
max {7Tr (LX) : diag(X) =1, X € 8%, Tr(X) = p}
Xerrxp (4
L L L L 10? L L L L
(U
10 10" 4
[ = 10"
=10 =
- = 107"
L1074 I 102
- S 1072 4
&2 = 103
S 6 S E|
— 1074
——CGAL 10-4
- - HCGM 3
1078 T T : L 107° : : : -
10 100 102 10 10 10° 10 100 10> 10° 10" 10°
iteration iteration

UF Sparse graphs: GSet collection, G40 dataset p = 2000

L is graph Laplacian matrix.
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*CGM as approximation method for subsolvers

Recall projection oracle
Projection (of z onto X’) oracle returns the solution of the following problem:
.1 2
min { —|x—z|3: x€X
x€eRrP (2

CGM applies to this problem.

Conditional gradient sliding [6]
> Consider ISTA or FISTA for solving (8).
> Replace projection step with approximate projection oracle.

> Approximate projection using CGM.

Inexact augmented Lagrangian method (with CGM) [7]
Similar ideas works for more general templates.

> Consider augmented Lagrangian (AL) method for solving (7).
> Replace solution AL subproblem with approximate solution of AL subproblem.

> Approximate solution of AL subproblem using CGM.
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A basic constrained stochastic problem

Problem setting (Stochastic)

£+ = min {Bl7G,0) i x € x ], ®)

xERP
Assumptions
> @ is a random vector whose probability distribution is supported on set ©
> X is nonempty, convex, closed and bounded.
> f(-,0) € fi’l(RP) for all 6 (i.e., convex with Lipschitz gradient).

Example (Finite-sum model)
1 n
Blf(x.0)] =~ fi(x)
=1l

> j =0 is a drawn uniformly from © = {1,2,...,n}

> fi € fi’l(Rp) for all j (i.e., convex with Lipschitz gradient).
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Stochastic conditional gradient method - |

Stochastic conditional gradient method (SFW1)

1. Choose xV € X.
2. For k=0,1,... perform:

%k = Imox (Vf(x*,6;))
xFFL = (1 — ) xP 4y RF,
where v, := %ﬁ, and Vf is an unbiased estimator of V.

Theorem [3]

Assume that the following variance condition holds
B||Vrech) - Ve, 00| < (2)2.
’ T \k+1

Then, the iterates of SFW satisfies

B . 4LD?
BIAG,0)] = " <

(*) — SFW requires decreasing variance!
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Stochastic conditional gradient method - |

Stochastic conditional gradient method (SFW1)
1. Choose x" € X.
2. For k=0,1,... perform:

%k = Imox (Vf(x*,6;))
xFFL = (1 — g )xF + e kF,
where v, := k%tz' and Vf is an unbiased estimator of Vf.

Example (Finite-sum model)

= =3 5
j=1

Assume f; is G-Lipschitz continuous for all j. Suppose that S}, is a random sampling
(with replacement) from © = {1,2,...,n}. Then,

- G2
VI, 0r) - |S‘]€ZSkf] — E||Vf(x>—Vf(x,ek>|{2s@.

Hence, by choosing |Sk| = (%)2 we satisfy the variance condition for SFW.
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Stochastic conditional gradient method - 11

Stochastic conditional gradient method (SFW2)
1. Choose x” € X and set z° = 0.
2. For k=0,1,... perform:

zFH = (1= pp)zF + e VF(xF, 0)
%k = lmox (zF*1)
xFFL = (1= )xP + kR,

where v 1= k?k8’ and pg = W.

Theorem [9]

Assume that the unbiased estimator @f has a bounded variance, i.e.,
E HVf(xk) — @f(xk,é’k)H2 < o2 for some o < co.

Then, the iterates of SFW?2 satisfies E[f(x*,0)] — f* < ﬁ,

where Q := max {91/3(f(x0) — ), LTDQ +2Dmax{2 HVf(xO)H , 4/ 1652 +2L2D2}}.

Slower rate than SFW1, but requires a single datapoint each iteration in finite-sum!
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Stochastic CGM with quadratic penalty

Stochastic homotopy conditional gradient method (SHCGM)

1. Choose x9 € X', Bg > 0, and set z° = 0.

2. For k=0,1,... perform:
zF = (1 pp)zF + pp VF(XF, 0k)
%k = lmox (21 + B;lAT(Axk —b))
xFFL = (1 — ) xP 4 RE,

4 and Bk =

9 _ Bo
where 7, 1= Fi8 Pk = Gisple (e+8)1/2"

SHCGM template and convergence rates [8]

7+ i= min {Bf(x,60)]: Ax=b, x€ X},

SHCGM is the combination of HCGM and SFW2. lterates converges with

Bf(x*,0)— f* > —|y*|-E|Ax b
Ef(Xk,e)—f* S O(kll/s)
E|Ax —b)| e O(rm)
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Example: Stochastic matrix completion

2
max ¢ > (X = Yi,)? X[l <8L,1<X <5

(4,5)€Q
54— 35 10
145 L
1 t 3 <100 ] L
ra =
@ 2.5 L =
=] s
= E10°
[ % 24 L 2
L & ]
= 10t

kN r SHCGM
0.5 ' . T 1 T r T 10° o o u
0 2500 5000 7500 10000 0 2500 5000 7500 10000 100 100 102 10°  10*

iteration iteration

iteration

> Q) is the set of observed entries from the true matrix Y
> 1 <X < 5 is the hard threshold on the estimated ratings

> (31 = 7000, MovieLens100k dataset, 100,000 ratings from 1682 users for 943
movies
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Example: Online covariance matrix estimation

max {E[X —ww" |7 [ X1 < 8,X € ST, Tr(X) < a}

XERPXP
~ 100
0 =
% 10 4 E /OT 10-1 ]
= &' 1072 ]
ks \
03 10714 " t _— 103 ]|—SHCGM
\ P i|—HCGM-10
> = 10 §|—HCAM-50
10-2 ] = 105 ||—HCGM-100
—HCGM-200
10° 10t 10* 10° 10° 10t 10* 10%
time (sec) time (sec)

> p = 1000, a, 8 are model parameters

> Entries of vector ¢ are selected uniformly at random from [—1,1]
> Covariance matrix X is block diagonal with 10 blocks of ¢¢ T

> Streaming observations w € N (0, %)
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A basic constrained non-convex problem

Problem setting

7= min {769 i x € 2,

xERP
Assumptions
> X is nonempty, convex, closed and bounded.

> f has L-Lipschitz continuous gradients, but it is non-convex.

Stationary point
Due to constraints, ||V f(x*)|| = 0 may not hold!

Frank-Wolfe gap: Following measure, known as FW-gap, generalizes the definition of
stationary point for constrained problems:

grw (x) = max (x— ) V(%)

> grw(x) >0 for all x € X.
> x € X is a stationary point if and only if grw (x) = 0.
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CGM for non-convex problems

CGM for non-convex problems
1. Choose xU € X, K > 0 total number of iterations.
2. For k=0,1,...,K — 1 perform:

{5{’“ = lmox (V£(x*))

xFFL = (1 — ) xP 4y RF,
where v 1= ﬁ
Theorem
Denote % chosen uniformly random from {x',x2,...,xX}. Then, CGM satisfies
min _orw(x) < Blarw(®)] < —= ( £ - £+ 22
k:l,Q,...,KgFW = FlgFw - VK 2 ’

* There exist stochastic CGM methods for non-convex problems. See [10] for details.

ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 38/ 46



*Non-convex approach: Burer-Monteiro factorization

e SDP template:

min {tr(cm) Az =b,x = 0,2% = z,tr(z) = p}

T ERPXP

e Burer-Monteiro splitting

min {tr(cuu*) cAuwu* =bu eU :={u: ||ul|lr < \/ﬁ}}

wERPXT

> Nonlinear and non-convex problem (Lu = Auu* = b, tr(cuu*))
> Local minima vs. saddle points issues

> Local minima vs. global minimum: r = Q(/p), due to Pataki and Barvinok

Barvinok, Problems of distance geometry and convex properties of quadratic maps, Disc Comp Geo, 1995.
Pataki, On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues, Math Oper Res, 1998.
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*Inexact augmented Lagrangian framework
e Our idea [11]: Solve primal subproblems with stricter tolerance, i.e., e — 0

Obtain w7 such that

dist(—=VuLg(ut,y),dg(u™)) <ef ,or [Lst order stationarity]
Amin(VuuLg(uT,y)) > —es [2nd order stationarity]
iALM: yt = y—i—a(L(qu)—b)

Pick Bt < Band et =Bt

— Bounded dual

+ = i 1
Update o _oomm<|\L(u)—b|\klog2(k+1)’1>

> L(u) = Auu* & g(u) = tr(cuu*)

€

e Our result: FOS with O (}3) & SOS O (%) total complexity

Cartis, C., Gould, N. I., and Toint, P. L. “Optimality of orders one to three and beyond: Characterization and evaluation complexity in

constrained nonconvex optimization,” Journal of Complexity, 2018.
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*Numerical experiment: Clustering

o Model free k-means clustering SDP:
min {tr(cx) czl=1,2>0, >0, z*¥ ==z, tr(z) = p}7

e Nonconvex formulation:

min {tr(cuu*) cuul=1, u>0, Jullr < \/ﬁ},
~
u

o Preprocessing & setup & rounding as in (Mixon et. al., 2017)

Objective Residual Feasibility
10°
) 102
% 10
S —
| — 10
— -
S
= 10° [ —IAL IBFGS(r = 20) =t
— iAL APGM(r = 20)
——SDPNAL+ 10°
HOGM
10
" 10° 10’ 102 m‘:u‘ 102
time(secs) time(secs)

D.Mixon, S.Villar and R.Ward, Clustering subgaussian mixtures by semidefinite programming, 2017
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*DARN with GANs - Numerical Results (MNIST)

e De-adversarial-noise with generative adversarial networks:

minimize lw — (wo + n)|l,
w,z
subject to w = G(z),
o ] " 100
_ 1o r—= + —— (5 adam
o L
g 80+ O foifL
= ) _ === base
g 6x107 S 60+
g 5
3 =
é 4x10" {4 gd s 407
2 axiot | O AL 204
~ —#— adam
A e ——— 0
100 10 10? 103
iteration (t) time
Figure: £ error per iteration Figure: misclassification error per iteration
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*Numerical experiment: Basis Pursuit

min{H:rHl : Az = b}

e Convex formulation:

e Non-convex formulation:

x =t — a2~
change of variables $_+ =u9?, 27 :=u$? and u = [u] ,ug]T
A=A -4
min {||u||§ © Au? = b}
Feasibility Gap Objective Residual
10° — 10°
f— S
& [
< 10 |[——IAL IBFGS S 10
- —— AL TR =
—— 1AL APGM T
1078 107
10’ 102 108 10% 10' 102 108 104
iters iters

e Potential with more structured norms (e.g., latent group lasso norm)
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