# Mathematics of Data: From Theory to Computation 

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 10: Constrained convex minimization I
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2019)

## License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License


## Outline

- Today

1. Primal-dual methods

- Next week

1. Frank-Wolfe method
2. Primal-dual Frank Wolfe methods

## Recommended readings

- Jorge Nocedal, Stephen Wright, Numerical Optimization, Chapter 17. Springer, 2016.
- Yangyang Xu, Accelerated first-order primal-dual proximal methods for linearly constrained composite convex programming. SIAM J. Optim. 27(3):1459-1484, 2017.


## Swiss army knife of convex formulations

## A primal problem prototype

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\} \tag{1}
\end{equation*}
$$

- $f$ is a proper, closed and convex function
- $\mathcal{X}$ and $\mathcal{K}$ are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$ are known
- An optimal solution $\mathbf{x}^{\star}$ to (1) satisfies $f\left(\mathbf{x}^{\star}\right)=f^{\star}, \mathbf{A} \mathbf{x}^{\star}-\mathbf{b} \in \mathcal{K}$ and $\mathbf{x}^{\star} \in \mathcal{X}$


## An example from the sparseland

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{1}:\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2} \leq \kappa,\|\mathbf{x}\|_{\infty} \leq c\right\} \tag{SOCP}
\end{equation*}
$$

## Broad context for (1):

- Standard convex optimization formulations: linear programming, convex quadratic programming, second order cone programming, semidefinite programming and geometric programming.
- Reformulations of existing unconstrained problems via convex splitting: composite convex minimization, consensus optimization, ...


## The role of convexity

## An example from sparseland $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$

$$
\begin{equation*}
\mathbf{x}^{\star} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{1}:\|\mathbf{A x}-\mathbf{b}\|_{2} \leq\|\mathbf{w}\|_{2},\|\mathbf{x}\|_{\infty} \leq 1\right\} \tag{SOCP}
\end{equation*}
$$

## Theorem (A model recovery guarantee [24])

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ be a matrix of i.i.d. Gaussian random variables with zero mean and variances $1 / n$. For any $t>0$ with probability at least $1-6 \exp \left(-t^{2} / 26\right)$, we have

$$
\left\|\mathbf{x}^{\star}-\mathbf{x}^{\natural}\right\|_{2} \leq\left[\frac{2 \sqrt{2 s \log \left(\frac{p}{s}\right)+\frac{5}{4} s}}{\sqrt{n}-\sqrt{2 s \log \left(\frac{p}{s}\right)+\frac{5}{4} s}-t}\right]\|\mathbf{w}\|_{2}:=\varepsilon, \quad \text { when }\left\|\mathbf{x}^{\natural}\right\|_{0} \leq s .
$$

## Observations:

- perfect recovery (i.e., $\varepsilon=0$ ) with $n \geq 2 s \log \left(\frac{p}{s}\right)+\frac{5}{4} s$ whp when $\mathbf{w}=0$.
- $\epsilon$-accurate solution in $k=\mathcal{O}\left(\sqrt{2 p+1} \log \left(\frac{1}{\epsilon}\right)\right)$ iterations via IPM ${ }^{1}$ with each iteration requiring the solution of a structured $n \times 2 p$ linear system. ${ }^{2}$
- robust to noise.

[^0]
## An alternative formulation

- For a lighter notation, we focus on the following problem.


## A simplified template

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b},\} \tag{2}
\end{equation*}
$$

- $f$ is a proper, closed and convex function
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$ are known
- An optimal solution $\mathbf{x}^{\star}$ to (2) satisfies $f\left(\mathbf{x}^{\star}\right)=f^{\star}, \mathbf{A} \mathbf{x}^{\star}=\mathbf{b}$.
- This is equivalent with:


## A primal problem prototype

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\}, \tag{3}
\end{equation*}
$$

- $f$ is a proper, closed and convex function
- $\mathcal{X}$ and $\mathcal{K}$ are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$ are known
- An optimal solution $\mathbf{x}^{\star}$ to (3) satisfies $f\left(\mathbf{x}^{\star}\right)=f^{\star}, \mathbf{A} \mathbf{x}^{\star}-\mathbf{b} \in \mathcal{K}$ and $\mathbf{x}^{\star} \in \mathcal{X}$


## *How do we reformulate?

## A primal problem template

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\} .
$$

- Let $\mathbf{r}_{1}=\mathbf{A x}-\mathbf{b} \in \mathbb{R}^{n}$ and $\mathbf{r}_{2}=\mathbf{x} \in \mathbb{R}^{p}$.


## First step

$$
\min _{\mathbf{x}, \mathbf{r}_{1}, \mathbf{r}_{2}}\left\{f(\mathbf{x}): \mathbf{r}_{1} \in \mathcal{K}, \mathbf{r}_{2} \in \mathcal{X}, \mathbf{A} \mathbf{x}-\mathbf{b}=\mathbf{r}_{1}, \mathbf{x}=\mathbf{r}_{2}\right\} .
$$

- Define $\mathbf{z}=\left[\begin{array}{l}\mathbf{x} \\ \mathbf{r}_{1} \\ \mathbf{r}_{2}\end{array}\right] \in \mathbb{R}^{2 p+n}, \overline{\mathbf{A}}=\left[\begin{array}{ccc}\mathbf{A} & -\mathbf{I}_{n \times n} & \mathbf{0}_{n \times p} \\ \mathbf{I}_{p \times p} & \mathbf{0}_{p \times n} & -\mathbf{I}_{p \times p}\end{array}\right], \overline{\mathbf{b}}=\left[\begin{array}{l}\mathbf{b} \\ \mathbf{0}\end{array}\right]$, $\bar{f}(\mathbf{z})=f(\mathbf{x})+\delta_{\mathcal{K}}\left(\mathbf{r}_{1}\right)+\delta_{\mathcal{X}}\left(\mathbf{r}_{2}\right)$ where $\delta_{\mathcal{X}}(\mathbf{x})=1$, if $\mathbf{x} \in \mathcal{X}$, and $\delta_{\mathcal{X}}(\mathbf{x})=+\infty, \mathrm{o} / \mathrm{w}$.

The simplified template

$$
\min _{\mathbf{z} \in \mathbb{R}^{2 p+n}}\{\bar{f}(\mathbf{z}): \overline{\mathbf{A}} \mathbf{z}=\overline{\mathbf{b}}\} .
$$

## Performance of optimization algorithms

## Exact vs. approximate solutions

- Computing an exact solution $\mathrm{x}^{\star}$ to (2) is impracticable
- Algorithms seek $\mathbf{x}_{\epsilon}^{\star}$ that approximates $\mathbf{x}^{\star}$ up to $\epsilon$ in some sense


## A performance metric: Time-to-reach $\epsilon$

time-to-reach $\epsilon=$ number of iterations to reach $\epsilon \times$ per iteration time
A key issue: Number of iterations to reach $\epsilon$
The notion of $\epsilon$-accuracy is elusive in constrained optimization!

## Numerical $\epsilon$-accuracy

- Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

$$
\begin{aligned}
& f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} \leq \epsilon \\
& f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})
\end{aligned}
$$

- Constrained case: We need to also measure the infeasibility of the iterates!

$$
f^{\star}-f\left(\mathbf{x}_{\epsilon}^{\star}\right) \leq \epsilon!!!
$$

$$
\begin{equation*}
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\} \tag{4}
\end{equation*}
$$

## Our definition of $\epsilon$-accurate solutions [26]

Given a numerical tolerance $\epsilon \geq 0$, a point $\mathbf{x}_{\epsilon}^{\star} \in \mathbb{R}^{p}$ is called an $\epsilon$-solution of (4) if

$$
\left\{\begin{aligned}
f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} & \leq \epsilon(\text { objective residual }) \\
\left\|\mathbf{A} \mathbf{x}_{\epsilon}^{\star}-\mathbf{b}\right\| & \leq \epsilon(\text { feasibility gap })
\end{aligned}\right.
$$

- When $\mathbf{x}^{\star}$ is unique, we can also obtain $\left\|\mathbf{x}_{\epsilon}^{\star}-\mathbf{x}^{\star}\right\| \leq \epsilon$ (iterate residual).
- $\epsilon$ can be different for the objective, feasibility gap, or the iterate residual.


## Primal-dual methods for (1):

## Plenty ...

- Penalty and augmented Lagrangian methods:
- Quadratic penalty method [4].
- Exact penalty method [3].
- Augmented Lagrangian method [18, 25].
- Variants of the Arrow-Hurwitz's method:
- Chambolle-Pock's algorithm [5], and its variants, e.g., He-Yuan's variant [16].
- Primal-dual Hybrid Gradient (PDHG) method and its variants [12, 14].
- Proximal-based decomposition (Chen-Teboulle's algorithm) [6].
- Splitting techniques from monotone inclusions:
- Primal-dual splitting algorithms $[2,7,30,8,9]$.
- Three-operator splitting [10].
- Dual splitting techniques:
- Alternating minimization algorithms (AMA) [13, 30].
- Alternating direction methods of multipliers (ADMM) [11, 17].
- Accelerated variants of AMA and ADMM [9, 15].
- Preconditioned ADMM, Linearized ADMM and inexact Uzawa algorithms [5, 22].
- Second-order decomposition methods:
- Dual (quasi) Newton methods [31].
- Smoothing decomposition methods via barriers functions [19, 27, 34].


## Performance of optimization algorithms

Finding the fastest algorithm within the zoo is tricky!

- heuristics \& tuning parameters
- non-optimal rates \& strict assumptions
- lack of precise characterizations


## Outline

Primal approach: Penalization

## Dual approach: Lagrangian-based method

## Primal-dual approach: Augmented Lagrangian

## A primal approach: Penalty methods

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}
$$

- Rule of thumb: Convert constrained problem (difficult) to unconstrained (easy)


## Penalization

- Penalized function with penalty parameter $\mu>0$ :

$$
F_{\mu}(\mathbf{x}):=\left\{f(\mathbf{x})+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\}
$$

Observations:

- Minimize a weighted combination of $f(\mathbf{x})$ and $\|\mathbf{A x}-\mathbf{b}\|^{2}$ at the same time.
- $\mu$ determines the weight of $\|\mathbf{A x}-\mathbf{b}\|^{2}$.
- As $\mu \rightarrow \infty$, we enforce $\mathbf{A x}=\mathbf{b}$.
- Other functions than the quadratic $\frac{1}{2}\|\cdot\|^{2}$ are also possible. For example, exact nonsmooth penalty functions:
- $\mu\|\mathbf{A x}-\mathbf{b}\|_{2}$ or $\mu\|\mathbf{A x}-\mathbf{b}\|_{1}$
- They work with finite $\mu$, but they are difficult to solve [21, Section 17.2], [3]


## Quadratic penalty: Intuition



$$
\|\mathbf{A x}-\mathbf{b}\|=0
$$

## Quadratic penalty: Conceptual algorithm

## Quadratic penalty method (QP):

1. Choose $\mathbf{x}_{0} \in \mathbb{R}^{p}$ and $\mu_{0}>0$.
2. For $k=0,1, \cdots$, perform:
2.a. $\mathbf{x}_{k}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\frac{\mu_{k}}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\}$.
2.b. Update $\mu_{k+1}>\mu_{k}$.

## Theorem [21, Theorem 17.1]

Assume that $f$ is smooth and $\mu_{k} \rightarrow \infty$. Then, every limit point $\overline{\mathbf{x}}$ of the sequence $\left\{\mathbf{x}_{k}\right\}$ is a solution of the constrained problem,

$$
\mathbf{x}^{\star} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}
$$

## *Quadratic penalty: Proof of convergence

## Theorem [21, Theorem 17.1]

Assume that $f$ is smooth and $\mu_{k} \rightarrow \infty$. Then, every limit point $\overline{\mathbf{x}}$ of the sequence $\left\{\mathbf{x}_{k}\right\}$ is a solution of the constrained problem.

## Proof

Suppose $\mathbf{x}^{\star}$ is the solution of the constrained problem, then,

$$
\begin{equation*}
f\left(\mathbf{x}^{\star}\right) \leq f(\mathbf{x}), \forall \mathbf{x} \text { with } \mathbf{A} \mathbf{x}=\mathbf{b} . \tag{5}
\end{equation*}
$$

Since $\mathbf{x}_{k} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}} F_{\mu_{k}}(\mathbf{x})$ and $\mathbf{A} \mathbf{x}^{\star}=\mathbf{b}$,

$$
\begin{equation*}
f\left(\mathbf{x}_{k}\right)+\frac{\mu_{k}}{2}\left\|\mathbf{A} \mathbf{x}_{k}-\mathbf{b}\right\|^{2} \leq f\left(\mathbf{x}^{\star}\right)+\frac{\mu_{k}}{2}\left\|\mathbf{A} \mathbf{x}^{\star}-\mathbf{b}\right\|^{2}=f\left(\mathbf{x}^{\star}\right) . \tag{6}
\end{equation*}
$$

Rearranging, we get

$$
\begin{equation*}
\left\|\mathbf{A} \mathbf{x}_{k}-\mathbf{b}\right\|^{2} \leq \frac{2}{\mu_{k}}\left(f\left(\mathbf{x}^{\star}\right)-f\left(\mathbf{x}_{k}\right)\right) . \tag{7}
\end{equation*}
$$

$\bar{x}$ is a limit point: $\lim _{k \in \mathcal{K}} \mathbf{x}_{k}=\overline{\mathbf{x}}$, for a subsequence $\mathcal{K}$.

- Taking the limit of (7) and using $\mu_{k} \rightarrow \infty$ gives $\|\mathbf{A} \overline{\mathbf{x}}-\mathbf{b}\|=0$.
- Taking the limit of (6) and using that $\|\mathbf{A} \overline{\mathbf{x}}-\mathbf{b}\|=0$ gives $f(\overline{\mathbf{x}}) \leq f\left(\mathbf{x}^{\star}\right)$.
- Since $f\left(x^{\star}\right)$ is the minimum value and $\bar{x}$ is feasible, we conclude that $\bar{x}$ is a solution.


## Quadratic penalty: Limitations

## Quadratic penalty method (QP):

1. Choose $\mathbf{x}_{0} \in \mathbb{R}^{p}$ and $\mu_{0}>0$.
2. For $k=0,1, \cdots$, perform:
2.a. $\mathbf{x}_{k}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\frac{\mu_{k}}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\}$.
2.b. Update $\mu_{k+1}>\mu_{k}$.

- III-conditioned subproblems as $\mu_{k} \rightarrow \infty$ :

$$
\mathbf{x}_{k}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\frac{\mu_{k}}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\} .
$$

Common improvements:

- Solve the subproblem inexactly, i.e., up to $\epsilon$ accuracy.
- Linearization to simplify subproblems.
We cover this idea in the sequel.


## Quadratic penalty: Linearization

Generalized quadratic penalty method:

1. Choose $\mathbf{x}_{0} \in \mathbb{R}^{p}, \mu_{0}>0$ and positive semidefinite matrix $\mathbf{Q}_{k}$.
2. For $k=0,1, \cdots$, perform:
2.a. $\mathbf{x}_{k}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\frac{\mu_{k}}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}+\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{k-1}\right\|_{\mathbf{Q}_{k}}^{2}\right\}$
2.b. Update $\mu_{k+1}>\mu_{k}$.

- We minimize a majorizer of $F_{\mu}(\mathbf{x})$, parametrized by $\mathbf{Q}_{k}$.
- $\mathbf{Q}_{k}=\mathbf{0}$ recovers the standard QP.
- $\mathbf{Q}_{k}=\mathbf{I}$ gives strongly convex subproblems.
- $\mathbf{Q}_{k}=\alpha_{k} \mathbf{I}-\mu_{k} \mathbf{A}^{\top} \mathbf{A}$, with $\alpha_{k} \geq \mu_{k}\|\mathbf{A}\|^{2}$ gives

$$
\begin{aligned}
\mathbf{x}_{k} & =\arg \min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+\frac{\mu_{k}}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}+\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{k-1}\right\|_{\mathbf{Q}_{k}}^{2} \\
& =\operatorname{prox} \frac{1}{\alpha_{k}} f\left(\mathbf{x}_{k-1}-\frac{\mu_{k}}{\alpha_{k}} \mathbf{A}^{\top}\left(\mathbf{A} \mathbf{x}_{k-1}-\mathbf{b}\right)\right) \quad \text { Only one proximal operator! }
\end{aligned}
$$

$\triangleright$ Picking $\alpha_{k}=\mu_{k}\|\mathbf{A}\|^{2}$ gives

$$
\mathbf{x}_{k}=\operatorname{prox} \frac{1}{\mu_{k}\|\mathbf{A}\|^{2}} f\left(\mathbf{x}_{k-1}-\frac{1}{\|\mathbf{A}\|^{2}} \mathbf{A}^{\top}\left(\mathbf{A} \mathbf{x}_{k-1}-\mathbf{b}\right)\right) .
$$

## *Derivation for linearization

- $\mathbf{Q}_{k}=\alpha_{k} \mathbf{I}-\mu_{k} \mathbf{A}^{\top} \mathbf{A}$, with $\alpha_{k} \geq \mu_{k}\|\mathbf{A}\|^{2}$ gives

$$
\begin{aligned}
\mathbf{x}_{k} & =\arg \min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+\frac{\mu_{k}}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}+\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{k-1}\right\|_{\mathbf{Q}_{k}}^{2} \\
& =\arg \min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+\frac{\mu_{k}}{2}\left\|\mathbf{A} \mathbf{x}-\mathbf{A} \mathbf{x}_{k-1}\right\|^{2}+\mu_{k}\left\langle\mathbf{A} \mathbf{x}_{k-1}-\mathbf{b}, \mathbf{A} \mathbf{x}-\mathbf{A} \mathbf{x}_{k-1}\right\rangle \\
& +\frac{\mu_{k}}{2}\left\|\mathbf{A} \mathbf{x}_{k-1}-\mathbf{b}\right\|^{2}+\frac{\alpha_{k}}{2}\left\|\mathbf{x}-\mathbf{x}_{k-1}\right\|^{2}-\frac{\mu_{k}}{2}\left\|\mathbf{A} \mathbf{x}-\mathbf{A} \mathbf{x}_{k-1}\right\|^{2} \\
& =\arg \min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+\mu_{k}\left\langle\mathbf{A x}, \mathbf{A} \mathbf{x}_{k-1}-\mathbf{b}\right\rangle+\frac{\alpha_{k}}{2}\left\|\mathbf{x}-\mathbf{x}_{k-1}\right\|^{2} \\
& =\arg \min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+\frac{\alpha_{k}}{2}\left\|\mathbf{x}-\left(\mathbf{x}_{k-1}-\frac{\mu_{k}}{\alpha_{k}} \mathbf{A}^{\top}\left(\mathbf{A} \mathbf{x}_{k-1}-\mathbf{b}\right)\right)\right\|^{2} \\
& =\operatorname{prox} \frac{1}{\alpha_{k}} f\left(\mathbf{x}_{k-1}-\frac{\mu_{k}}{\alpha_{k}} \mathbf{A}^{\top}\left(\mathbf{A} \mathbf{x}_{k-1}-\mathbf{b}\right)\right) \quad \text { Only one proximal operator! }
\end{aligned}
$$

## Per-iteration time: The key role of the prox-operator

## Recall: Prox-operator

$$
\operatorname{prox}_{f}(\mathbf{x}):=\underset{\mathbf{z} \in \mathbb{R}^{p}}{\arg \min ^{p}}\left\{f(\mathbf{z})+\frac{1}{2}\|\mathbf{z}-\mathbf{x}\|^{2}\right\}
$$

Key properties:

- single valued \& non-expansive since $f$ is a proper convex function.
- distributes when the primal problem has decomposable structure:

$$
f(\mathbf{x}):=\sum_{i=1}^{m} f_{i}\left(\mathbf{x}_{i}\right), \quad \text { and } \quad \mathcal{X}:=\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m}
$$

where $m \geq 1$ is the number of components.

- often efficient \& has closed form expression. For instance, if $f(\mathbf{z})=\|\mathbf{z}\|_{1}$, then the prox-operator performs coordinate-wise soft-thresholding by 1.


## Quadratic penalty: Linearized methods

Linearized quadratic penalty method (LQP):

1. Choose $\mathbf{x}_{0} \in \mathbb{R}^{p}, \sigma_{0}=1, \mu_{0}>0$.
2. For $k=0,1, \cdots$, perform:
2.a. $\mathbf{x}_{k+1}:=\operatorname{prox} \frac{1}{\mu_{k}\|\mathbf{A}\|^{2}} f\left(\mathbf{x}_{k}-\frac{1}{\|\mathbf{A}\|^{2}} \mathbf{A}^{\top}\left(\mathbf{A} \mathbf{x}_{k}-\mathbf{b}\right)\right)$.
2.b. Update $\sigma_{k+1}$ such that $\frac{\left(1-\sigma_{k+1}\right)^{2}}{\sigma_{k+1}}=\frac{1}{\sigma_{k}}$.
2.c. Update $\mu_{k+1}=\sqrt{\sigma_{k+1}}$.

## Quadratic penalty: Linearized methods

Linearized quadratic penalty method (LQP):

1. Choose $\mathbf{x}_{0} \in \mathbb{R}^{p}, \sigma_{0}=1, \mu_{0}>0$.
2. For $k=0,1, \cdots$, perform:
2.a. $\mathbf{x}_{k+1}:=\operatorname{prox} \frac{1}{\mu_{k}\|\mathbf{A}\|^{2}} f\left(\mathbf{x}_{k}-\frac{1}{\|\mathbf{A}\|^{2}} \mathbf{A}^{\top}\left(\mathbf{A} \mathbf{x}_{k}-\mathbf{b}\right)\right)$.
2.b. Update $\sigma_{k+1}$ such that $\frac{\left(1-\sigma_{k+1}\right)^{2}}{\sigma_{k+1}}=\frac{1}{\sigma_{k}}$.
2.c. Update $\mu_{k+1}=\sqrt{\sigma_{k+1}}$.

## Accelerated linearized quadratic penalty method (ALQP):

1. Choose $\mathbf{x}_{0}, \mathbf{y}_{0} \in \mathbb{R}^{p}, \tau_{0}=1, \mu_{0}>0$.
2. For $k=0,1, \cdots$, perform:
2.a. $\mathbf{x}_{k+1}:=\operatorname{prox} \frac{1}{\mu_{k}\|\mathbf{A}\|^{2}} f\left(\mathbf{y}_{k}-\frac{1}{\|\mathbf{A}\|^{2}} \mathbf{A}^{\top}\left(\mathbf{A} \mathbf{y}_{k}-\mathbf{b}\right)\right)$.
2.b. $\mathbf{y}_{k+1}:=\mathbf{x}_{k+1}+\frac{\tau_{k+1}\left(1-\tau_{k}\right)}{\tau_{k}}\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)$.
2.c. Update $\mu_{k+1}=\mu_{k}\left(1+\tau_{k+1}\right)$.
2.d. Update $\tau_{k+1} \in(0,1)$ the unique positive root of $\tau^{3}+$ $\tau^{2}+\tau_{k}^{2} \tau-\tau_{k}^{2}=0$.

## Convergence of LQP and ALQP

## Theorem (Convergence [29])

- LQP:

$$
\begin{cases}\left|f\left(\mathbf{x}_{k}\right)-f\left(x^{\star}\right)\right| & \leq \mathcal{O}\left(\frac{\mu_{0}}{\sqrt{k}}+\frac{1}{\mu_{0} \sqrt{k}}\right) \\ \left\|\mathbf{A} \mathbf{x}_{k}-\mathbf{b}\right\| & \leq \mathcal{O}\left(\frac{1}{\mu_{0} \sqrt{k}}\right)\end{cases}
$$

- $A L Q P:$

$$
\begin{cases}\left|f\left(\mathbf{x}_{k}\right)-f\left(x^{\star}\right)\right| & \leq \mathcal{O}\left(\frac{\mu_{0}}{k}+\frac{1}{\mu_{0} k}\right) \\ \left\|\mathbf{A} \mathbf{x}_{k}-\mathbf{b}\right\| & \leq \mathcal{O}\left(\frac{1}{\mu_{0} k}\right)\end{cases}
$$

- Poor (worst case) performance in practice.


## What happens in practice

- A nonsmooth problem: SQRT Lasso

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}\|\mathbf{A x}-\mathbf{b}\|_{2}+\lambda\|\mathbf{x}\|_{1}
$$



## Outline

## Primal approach: Penalization

Dual approach: Lagrangian-based method

## Primal-dual approach: Augmented Lagrangian

## An alternative to penalization

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}
$$

- Recall the penalization approach:

$$
\begin{gathered}
f^{\star}=f\left(\mathbf{x}^{\star}\right)+\frac{\mu}{2}\left\|\mathbf{A} \mathbf{x}^{\star}-\mathbf{b}\right\|^{2}, \quad \forall \mu>0 . \\
F_{\mu}(\mathbf{x})=f(\mathbf{x})+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2} .
\end{gathered}
$$

$\triangleright$ Another unconstrained formulation at the solution

$$
f^{\star}=f\left(\mathbf{x}^{\star}\right)+\max _{\lambda \in \mathbb{R}^{n}}\left\langle\lambda, \mathbf{A} \mathbf{x}^{\star}-\mathbf{b}\right\rangle .
$$

$\triangleright$ We then define

$$
\begin{array}{r}
F_{\lambda}(\mathbf{x})=f(\mathbf{x})+\max _{\lambda \in \mathbb{R}^{n}}\langle\lambda, \mathbf{A x}-\mathbf{b}\rangle \\
\max _{\lambda \in \mathbb{R}^{n}}\langle\lambda, \mathbf{A x}-\mathbf{b}\rangle= \begin{cases}0, & \text { if } \mathbf{A x}=\mathbf{b} \\
+\infty, & \text { if } \mathbf{A x} \neq \mathbf{b} .\end{cases}
\end{array}
$$

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}=\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\lambda \in \mathbb{R}^{n}}\{f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\}
$$

## Exchanging max and min

$$
\begin{gathered}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}=\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\lambda \in \mathbb{R}^{n}}\{f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\} \\
\mathcal{L}(\mathbf{x}, \lambda)=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle
\end{gathered}
$$

- Since $\mathbf{A x} \mathbf{x}^{\star}=\mathbf{b}$, it holds for any $\lambda$

$$
\begin{aligned}
\mathcal{L}\left(\mathbf{x}^{\star}, \lambda\right)=f\left(x^{\star}\right) & =f\left(\mathbf{x}^{\star}\right)+\left\langle\lambda, \mathbf{A} \mathbf{x}^{\star}-\mathbf{b}\right\rangle \\
& \geq \min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\} \\
& =\min _{\mathbf{x} \in \mathbb{R}^{p}} \mathcal{L}(\mathbf{x}, \lambda)
\end{aligned}
$$

- Take maximum of both sides in $\lambda$ :

$$
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\lambda \in \mathbb{R}^{n}} \mathcal{L}(\mathbf{x}, \lambda) \geq \max _{\lambda \in \mathbb{R}^{n}} \min _{\mathbf{x} \in \mathbb{R}^{p}} \mathcal{L}(\mathbf{x}, \lambda)=: \max _{\lambda \in \mathbb{R}^{n}} d(\lambda)=d^{\star} .
$$

- max min is the best lower bound to min max.


## Terminology

- We established

$$
f^{\star} \geq \max _{\lambda \in \mathbb{R}^{n}} d(\lambda)=d^{\star}
$$

- Lagrangian function:

$$
\mathcal{L}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle .
$$

Here, $\lambda \in \mathbb{R}^{n}$ is the vector of Lagrange multipliers (or dual variables) w.r.t. $\mathbf{A x}=\mathbf{b}$.

- Primal problem:

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\},
$$

- Dual function:

$$
\begin{equation*}
d(\lambda):=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{\mathcal{L}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\} . \tag{8}
\end{equation*}
$$

$\triangleright$ Let $\mathbf{x}^{*}(\lambda)$ be a solution of (8) then $d(\lambda)$ is finite if $x^{*}(\lambda)$ exists.
$\triangleright$ Dual function is concave $\Rightarrow$ (potentially) easier to solve.
$\triangleright f^{\star} \geq d^{\star}$ is called weak duality.

## Primal and dual functions

$$
\begin{aligned}
f\left(x^{\star}\right) & =\min _{\mathbf{x} \in \mathbb{R}}\left\{\mathbf{x}^{2}: \mathbf{x}-1=0\right\} \\
d(\lambda)=\min _{\mathbf{x} \in \mathbb{R}} \mathcal{L}(\mathbf{x}, \lambda) & =\min _{\mathbf{x} \in \mathbb{R}}\left\{\mathbf{x}^{2}+\langle\lambda, \mathbf{x}-1\rangle\right\} .
\end{aligned}
$$



Figure adapted from [1]

## A visual clue

- Recall weak duality: $f^{\star} \geq \max _{\lambda \in \mathbb{R}^{n}} \min _{\mathbf{x} \in \mathbb{R}^{p}} \mathcal{L}(\mathbf{x}, \lambda)$, then it follows

$$
\max _{\lambda \in \mathbb{R}^{n}} \min _{\mathbf{x} \in \mathbb{R}^{p}} \mathcal{L}(\mathbf{x}, \lambda) \leq \min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\lambda \in \mathbb{R}^{n}} \mathcal{L}(\mathbf{x}, \lambda)=\left\{\begin{array}{l}
f^{\star}, \text { if } \mathbf{A x}=\mathbf{b} \\
+\infty, \text { if } \mathbf{A} \mathbf{x} \neq \mathbf{b}
\end{array}\right.
$$



## Saddle point

A point $\left(\mathbf{x}^{\star}, \lambda^{\star}\right) \in \mathbb{R}^{p} \times \mathbb{R}^{n}$ is called a saddle point of the Lagrangian function $\mathcal{L}$ if

$$
\mathcal{L}\left(\mathbf{x}^{\star}, \lambda\right) \leq \mathcal{L}\left(\mathbf{x}^{\star}, \lambda^{\star}\right) \leq \mathcal{L}\left(\mathbf{x}, \lambda^{\star}\right), \forall \mathbf{x} \in \mathbb{R}^{p}, \lambda \in \mathbb{R}^{n} .
$$

Recall the minimax form:

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\lambda \in \mathbb{R}^{n}}\{\mathcal{L}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\} .
$$

## Saddle point

A point $\left(\mathbf{x}^{\star}, \lambda^{\star}\right) \in \mathbb{R}^{p} \times \mathbb{R}^{n}$ is called a saddle point of the Lagrangian function $\mathcal{L}$ if

$$
\mathcal{L}\left(\mathbf{x}^{\star}, \lambda\right) \leq \mathcal{L}\left(\mathbf{x}^{\star}, \lambda^{\star}\right) \leq \mathcal{L}\left(\mathbf{x}, \lambda^{\star}\right), \forall \mathbf{x} \in \mathbb{R}^{p}, \lambda \in \mathbb{R}^{n} .
$$

Recall the minimax form:

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\lambda \in \mathbb{R}^{n}}\{\mathcal{L}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\} .
$$

Illustration of saddle point


## Necessary and sufficient condition

Minimax form:

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\lambda \in \mathbb{R}^{n}}\{\mathcal{L}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\}
$$

## Theorem (Necessary and sufficient optimality condition)

Under the Slater's condition: relint $(\operatorname{dom} f) \cap\{\mathbf{x}: \mathbf{A x}=\mathbf{b}\} \neq \emptyset$, the $\boldsymbol{K} K \boldsymbol{T}$ condition

$$
\begin{cases}0 & \in \partial_{\mathbf{x}} \mathcal{L}\left(\mathbf{x}^{\star}, \lambda^{\star}\right)=\mathbf{A}^{T} \lambda^{\star}+\partial f\left(\mathbf{x}^{\star}\right) \\ 0 & =\nabla_{\lambda} \mathcal{L}\left(\mathbf{x}^{\star}, \lambda^{\star}\right)=\mathbf{A} \mathbf{x}^{\star}-\mathbf{b}\end{cases}
$$

is necessary and sufficient for a point $\left(\mathrm{x}^{\star}, \lambda^{\star}\right) \in \mathbb{R}^{p} \times \mathbb{R}^{n}$ being an optimal solution for the primal problem and dual problem:

$$
f^{\star}:=\left\{\begin{array}{ll}
\min _{\substack{\mathbf{x} \in \mathbb{R}^{p}}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{A x}=\mathbf{b},
\end{array} \quad \text { and } \quad d^{\star}:=\max _{\lambda \in \mathbb{R}^{n}} d(\lambda)\right.
$$

- By definition of $f^{\star}$ and $d^{\star}$, we always have $d^{\star} \leq f^{\star}$ (weak duality).
- If a primal solution exists and the Slater's condition holds, we have $d^{\star}=f^{\star}$ (strong duality).
- Any solution $\left(\mathbf{x}^{\star}, \lambda^{\star}\right)$ of the KKT condition is also a saddle point.


## *Slater's qualification condition

Recall relint $(\operatorname{dom} f)$ the relative interior of the domain. The Slater condition requires

$$
\begin{equation*}
\operatorname{relint}(\operatorname{dom} f) \cap\{\mathbf{x}: \quad \mathbf{A x}=\mathbf{b}\} \neq \emptyset \tag{9}
\end{equation*}
$$

## Special cases

- If $\operatorname{dom} f=\mathbb{R}^{p}$, then (9) $\Leftrightarrow \exists \overline{\mathbf{x}}: \mathbf{A} \overline{\mathbf{x}}=\mathbf{b}$.
- If $\operatorname{dom} f=\mathbb{R}^{p}$ and instead of $\mathbf{A x}=\mathbf{b}$, we have the feasible set $\{\mathbf{x}: h(\mathbf{x}) \leq 0\}$, where $h$ is $\mathbb{R}^{p} \rightarrow R^{q}$ is convex, then

$$
(9) \Leftrightarrow \exists \overline{\mathbf{x}}: h(\overline{\mathbf{x}})<0
$$

## *Example: Slater's condition

## Example

Let us consider the feasible set $\mathcal{D}_{\alpha}:=\mathcal{X} \cap \mathcal{A}_{\alpha}$ as

$$
\mathcal{X}:=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}, \mathcal{A}_{\alpha}:=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}+x_{2}=\alpha\right\}
$$

where $\alpha \in \mathbb{R}$.

## *Example: Slater's condition

## Example

Let us consider the feasible set $\mathcal{D}_{\alpha}:=\mathcal{X} \cap \mathcal{A}_{\alpha}$ as

$$
\mathcal{X}:=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}, \mathcal{A}_{\alpha}:=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}+x_{2}=\alpha\right\},
$$

where $\alpha \in \mathbb{R}$.

## Slater's condition holds and does not hold


$\mathcal{D}_{1 / 2}$ satisfies Slater's condition $-\mathcal{D} \sqrt{2}^{\text {-does not satisfy Slater's condition }}$

## Example: Nonsmoothness of the dual function

Consider a constrained convex problem:

$$
\begin{array}{ll}
\min _{\mathbf{x} \in \mathbb{R}^{3}} & \left\{f(\mathbf{x}):=x_{1}^{2}+2 x_{2}\right\} \\
\text { s.t. } & 2 x_{3}-x_{1}-x_{2}=1 \\
& \mathbf{x} \in \mathcal{X}:=[-2,2] \times[-2,2] \times[0,2]
\end{array}
$$

The dual function is defined as

$$
d(\lambda):=\min _{\mathbf{x} \in \mathcal{X}}\left\{x_{1}^{2}+2 x_{2}+\lambda\left(2 x_{3}-x_{1}-x_{2}-1\right)\right\}
$$

is concave and nonsmooth as illustrated in the figure below.


## Dual subgradient method

Recall the dual problem:

$$
d^{\star}:=\max _{\lambda \in \mathbb{R}^{n}} d(\lambda)
$$

Subgradient ascent method can be applied to solve it.

## Dual subgradient method

Recall the dual problem:

$$
d^{\star}:=\max _{\lambda \in \mathbb{R}^{n}} d(\lambda)
$$

Subgradient ascent method can be applied to solve it.

## A plausible algorithmic strategy for $\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A x}=\mathbf{b}\}$ :

A natural minimax formulation:

$$
\left(\mathbf{x}^{\star}, \lambda^{\star}\right) \in \arg \max _{\lambda \in \mathbb{R}^{n}} \min _{\mathbf{x} \in \mathbb{R}^{p}}\{\mathcal{L}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\} .
$$

Lagrangian subproblem: $\mathbf{x}^{*}(\lambda) \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}} \mathcal{L}(\mathbf{x}, \lambda)$
Dual problem: $\quad \lambda^{\star} \in \arg \max _{\lambda \in \mathbb{R}^{n}}\left\{d(\lambda):=\mathcal{L}\left(\mathbf{x}^{*}(\lambda), \lambda\right)\right\}$

- $\lambda$ is the Lagrange multiplier.
- The function $d(\lambda)$ is the dual function, which is concave!
- The optimal dual objective value is $d^{\star}=d\left(\lambda^{\star}\right)$.

A basic strategy $\Rightarrow$ Find $\lambda^{\star}$ and then solve for $\mathbf{x}^{\star}=\mathbf{x}^{*}\left(\lambda^{\star}\right)$ for primal

- Conceptual, since we do not have exact solution $\lambda^{\star}$


## Dual subgradient method

## Properties of dual function

- $d$ is concave, but not necessarily differentiable.
- Subgradient: $\mathbf{A x} \mathbf{x}^{*}(\lambda)-\mathbf{b} \in \partial d(\lambda)$, where $\mathbf{x}^{*}(\lambda)$ is such that

$$
\mathbf{x}^{*}(\lambda):=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\{\mathcal{L}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\} .
$$

> Dual subgradient method (DSGM):
> 1. Choose $\lambda_{0} \in \mathbb{R}^{n}$.
> 2. For $k=0,1, \cdots$, perform:
> 2.a. $\mathbf{x}^{*}\left(\lambda_{k}\right):=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\mathcal{L}\left(\mathbf{x}, \lambda_{k}\right):=f(\mathbf{x})+\left\langle\lambda_{k}, \mathbf{A x}-\mathbf{b}\right\rangle\right\}$.
> 2.b. Compute the subgradient $\nabla d\left(\lambda_{k}\right):=\mathbf{A} \mathbf{x}^{*}\left(\lambda_{k}\right)-\mathbf{b}$.
> 2.c. Update $\lambda_{k+1}:=\lambda_{k}+\frac{R}{\sqrt{k+1}} \nabla d\left(\lambda_{k}\right)$, where $R$ is a
> given constant.

## Convergence of DSGM

## Well-definedness

- Problem below may not have solution $\mathbf{x}^{*}(\lambda)$ for any $\lambda$. Then DSGM is not well-defined except if $f(\mathbf{x})=f_{1}(\mathbf{x})+\delta_{\mathcal{X}}(x)$ and $\mathcal{X}$ is bounded.

$$
\mathbf{x}^{*}(\lambda):=\arg \min _{\mathbf{x} \in \mathcal{X}}\left\{\mathcal{L}(\mathbf{x}, \lambda):=f_{1}(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\right\} .
$$

- Impractical to evaluate $R_{\star}:=\left\|\lambda_{0}-\lambda^{\star}\right\|_{2}$, use an upper bound $R$ of $R_{\star}$.


## Convergence of DSGM

## Well-definedness

- Problem below may not have solution $\mathbf{x}^{*}(\lambda)$ for any $\lambda$. Then DSGM is not well-defined except if $f(\mathbf{x})=f_{1}(\mathbf{x})+\delta_{\mathcal{X}}(x)$ and $\mathcal{X}$ is bounded.

$$
\mathbf{x}^{*}(\lambda):=\arg \min _{\mathbf{x} \in \mathcal{X}}\left\{\mathcal{L}(\mathbf{x}, \lambda):=f_{1}(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\right\} .
$$

- Impractical to evaluate $R_{\star}:=\left\|\lambda_{0}-\lambda^{\star}\right\|_{2}$, use an upper bound $R$ of $R_{\star}$.


## Theorem (Convergence)

Assume that $\left\|\mathbf{A x} \mathbf{x}^{*}\left(\lambda_{k}\right)-\mathbf{b}\right\| \leq M_{d}$ for all $k \geq 0$. Then $\left\{\lambda_{k}\right\}$ generated by DSGM satisfies

$$
d^{\star}-d\left(\lambda_{k}\right) \leq \frac{M_{d} R_{\star}}{\sqrt{k+1}}, \forall k \geq 0
$$

where $R_{\star}:=\min _{\lambda^{\star}}\left\|\lambda_{0}-\lambda^{\star}\right\|_{2}$. Convergence rate of DSGM is $\mathcal{O}(1 / \sqrt{k})$, instead of $\mathcal{O}(1 / k)$ of accelerated linearized quadratic penalty.

- Approximate solution for primal via averaging: $\mathbf{x}^{\epsilon}=\frac{1}{k} \sum_{i=0}^{k-1} \mathbf{x}^{*}\left(\lambda_{i}\right)$ [33]


## Outline

## Primal approach: Penalization

## Dual approach: Lagrangian-based method

Primal-dual approach: Augmented Lagrangian

## Combining Lagrangian and penalty approaches

- Quadratic penalty approach:

$$
F_{\mu}(\mathbf{x})=f(\mathbf{x})+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}
$$

- Lagrangian approach:

$$
\mathcal{L}(\mathbf{x}, \lambda)=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle .
$$

$\triangleright$ Combine to get augmented Lagrangian (AL):

$$
\mathcal{L}_{\mu}(\mathbf{x}, \lambda)=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}
$$

## Properties of augmented Lagrangian

- Corresponding dual function is concave and $\frac{1}{\mu}$-smooth:

$$
d_{\mu}(\lambda)=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\} .
$$

Can apply gradient or accelerated gradient methods in the dual!

- $\mu$ does not need to increase until infinity.

No more ill-conditioned subproblems!

## Example: Behavior of the augmented Lagrangian dual function

Consider a constrained convex problem:

$$
\begin{array}{ll}
\min _{\mathbf{x} \in \mathbb{R}^{3}} & \left\{f(\mathbf{x}):=x_{1}^{2}+x_{2}^{2}\right\} \\
\text { s.t. } & 2 x_{3}-x_{1}-x_{2}=1, \\
& \mathbf{x} \in \mathcal{X}:=[-2,2] \times[-2,2] \times[0,2] .
\end{array}
$$

The augmented Lagrangian dual function is defined as

$$
d_{\mu}(\lambda):=\min _{\mathbf{x} \in \mathcal{X}}\left\{x_{1}^{2}+x_{2}^{2}+\lambda\left(2 x_{3}-x_{1}-x_{2}-1\right)+(\mu / 2)\left\|2 x_{3}-x_{1}-x_{2}-1\right\|_{2}^{2}\right\}
$$

is concave and smooth as illustrated in the figure below.


## Augmented dual problem

## Dual problem:

$$
\begin{equation*}
d^{\star}:=\max _{\lambda \in \mathbb{R}^{n}}\left\{d(\lambda)=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\right\} \tag{10}
\end{equation*}
$$

Augmented dual problem:

$$
\begin{equation*}
d_{\mu}^{*}:=\max _{\lambda \in \mathbb{R}^{n}}\left\{d_{\mu}(\lambda)=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\}, \quad \mu>0 \tag{11}
\end{equation*}
$$

## Augmented dual problem

## Dual problem:

$$
\begin{equation*}
d^{\star}:=\max _{\lambda \in \mathbb{R}^{n}}\left\{d(\lambda)=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\right\} \tag{10}
\end{equation*}
$$

Augmented dual problem:

$$
\begin{equation*}
d_{\mu}^{*}:=\max _{\lambda \in \mathbb{R}^{n}}\left\{d_{\mu}(\lambda)=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\}, \quad \mu>0 \tag{11}
\end{equation*}
$$

## Relation between augmented dual problem and dual problem

If a primal solution exists and Slater's condition holds, we have

- The dual solution set of (11) coincides with the one of the dual problem (10).
- $f^{\star}=d^{\star}=d_{\mu}^{*}$ for any $\mu>0$.

Recall: The augmented dual problem (11) is smooth and concave $\Rightarrow$ Gradient and accelerated gradient methods can be applied to solve it.

## Augmented Lagrangian method: Conceptual

$$
\begin{array}{r}
d_{\mu}(\lambda)=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\} \\
\mathbf{x}_{\mu}^{*}(\lambda)=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\}
\end{array}
$$

Augmented Lagrangian method (ALM):

1. Choose $\lambda_{0} \in \mathbb{R}^{n}$ and $\mu>0$.
2. For $k=0,1, \cdots$, perform:
2.a. Solve (12) to compute $\nabla d_{\mu}\left(\lambda_{k}\right):=\mathbf{A x} \mathbf{x}_{\mu}^{*}\left(\lambda_{k}\right)-\mathbf{b}$.
2.b. Update $\lambda_{k+1}:=\lambda_{k}+\mu \nabla d_{\mu}\left(\lambda_{k}\right)$.

## Augmented Lagrangian method: Conceptual

$$
\begin{array}{r}
d_{\mu}(\lambda)=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\}  \tag{12}\\
\mathbf{x}_{\mu}^{*}(\lambda)=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\}
\end{array}
$$

## Augmented Lagrangian method (ALM):

1. Choose $\lambda_{0} \in \mathbb{R}^{n}$ and $\mu>0$.
2. For $k=0,1, \cdots$, perform:
2.a. Solve (12) to compute $\nabla d_{\mu}\left(\lambda_{k}\right):=\mathbf{A} \mathbf{x}_{\mu}^{*}\left(\lambda_{k}\right)-\mathbf{b}$.
2.b. Update $\lambda_{k+1}:=\lambda_{k}+\mu \nabla d_{\mu}\left(\lambda_{k}\right)$.

ALM can be accelerated by Nesterov's optimal method.

## Accelerated augmented Lagrangian method (AALM)

1. Choose $\lambda_{0} \in \mathbb{R}^{n}$ and $\mu>0$. Set $\tilde{\lambda}_{0}:=\lambda_{0}$ and $t_{0}:=1$
2. For $k=0,1, \cdots$, perform:
2.a. Solve (12) to compute $\nabla d_{\mu}\left(\tilde{\lambda}_{k}\right):=\mathbf{A} \mathbf{x}_{\mu}^{*}\left(\tilde{\lambda}_{k}\right)-\mathbf{b}$.
2.b. Update

$$
\begin{cases}\lambda_{k+1} & :=\tilde{\lambda}_{k}+\mu \nabla d_{\mu}\left(\tilde{\lambda}_{k}\right) \\ \tilde{\lambda}_{k+1} & :=\lambda_{k+1}+\left(\left(t_{k}-1\right) / t_{k+1}\right)\left(\lambda_{k+1}-\lambda_{k}\right) \\ t_{k+1} & :=\left(1+\sqrt{1+4 t_{k}^{2}}\right) / 2\end{cases}
$$

## Convergence of ALM and AALM

Theorem (Convergence [20])

- Let $\left\{\lambda_{k}\right\}$ be the sequence generated by ALM. Then

$$
d^{\star}-d_{\mu}\left(\lambda_{k}\right) \leq \frac{\left\|\lambda_{0}-\lambda^{\star}\right\|_{2}^{2}}{2 \mu(k+1)}
$$

- Let $\left\{\lambda_{k}\right\}$ be the sequence generated by AALM. Then

$$
d^{\star}-d_{\mu}\left(\lambda_{k}\right) \leq \frac{2\left\|\lambda_{0}-\lambda^{\star}\right\|_{2}^{2}}{\mu(k+1)^{2}}
$$

- Guarantees are given for the dual problem and not for the primal!
- Approximate solution for primal via averaging: $\mathbf{x}^{\epsilon}=\frac{1}{k} \sum_{i=0}^{k-1} \mathbf{x}_{\mu}^{*}\left(\lambda_{i}\right)$ [33]


## Drawbacks and enhancements

At each step, ALM solves

$$
\begin{equation*}
\mathbf{x}_{\mu}^{*}(\lambda):=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\mathcal{L}_{\mu}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\} \tag{13}
\end{equation*}
$$

## Drawbacks

1. Drawback 1: The quadratic term $\|\mathbf{A x}-\mathbf{b}\|^{2}$ in (13) destroys the separability as well as the tractable proximity of $f$.
2. Drawback 2: Solving (13) exactly is impractical.

## Drawbacks and enhancements

At each step, ALM solves

$$
\begin{equation*}
\mathbf{x}_{\mu}^{*}(\lambda):=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\mathcal{L}_{\mu}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\} \tag{13}
\end{equation*}
$$

## Drawbacks

1. Drawback 1: The quadratic term $\|\mathbf{A x}-\mathbf{b}\|^{2}$ in (13) destroys the separability as well as the tractable proximity of $f$.
2. Drawback 2: Solving (13) exactly is impractical.

## Enhancements

1. Process the quadratic term $\|\mathbf{A x}-\mathbf{b}\|^{2}$ by linearization.
2. Allow inexactness of solving (13), while guaranteeing the same convergence rate.

## Going back to primal: Linearized Augmented Lagrangian method

- Linearization idea from Slide 19: Majorize the augmented Lagrangian

$$
\mathbf{x}_{k+1}:=\arg \min _{\mathbf{x} \in \mathcal{X}}\left\{f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}+\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{\mathbf{Q}_{k}}^{2}\right\}
$$

- When $\mathbf{Q}_{k}=\alpha_{k} \mathbf{I}-\mu \mathbf{A}^{\top} \mathbf{A} \geq 0$ with $\alpha_{k} \geq \mu\|\mathbf{A}\|^{2}$ (same calculation as in Slide 19):

$$
\mathbf{x}_{k+1}=\operatorname{prox}_{\frac{1}{\alpha_{k}} f}\left(\mathbf{x}_{k}-\frac{1}{\alpha_{k}} \mathbf{A}^{\top}\left(\lambda_{k}+\mu\left(\mathbf{A} \mathbf{x}_{k}-\mathbf{b}\right)\right)\right)
$$

- We pick $\alpha_{k}=\mu\|\mathbf{A}\|^{2}$.


## Linearized augmented Lagrangian method (LALM)

1. Choose $\mathbf{x}_{0} \in \mathbb{R}^{p}, \lambda_{0} \in \mathbb{R}^{n}$ and $\mu>0$.
2. For $k=0,1, \cdots$, perform:
2.a. Update

$$
\begin{cases}\mathbf{x}_{k+1} & :=\operatorname{prox} \frac{1}{\mu\|A\|^{2}} f\left(\mathbf{x}_{k}-\frac{1}{\mu\|A\|^{2}} \mathbf{A}^{\top}\left(\lambda_{k}+\mu\left(\mathbf{A} \mathbf{x}_{k}-\mathbf{b}\right)\right)\right) \\ \lambda_{k+1} & :=\lambda_{k}+\mu\left(\mathbf{A} \mathbf{x}_{k+1}-\mathbf{b}\right)\end{cases}
$$

## Convergence of Linearized ALM

Theorem (Convergence [32])
Let $\mu>0$ and define $\overline{\mathbf{x}}_{k}=\frac{1}{k} \sum_{i=1}^{k} \mathbf{x}_{i}$. Then, the iterates of LALM satisfy:

$$
\begin{array}{r}
\left\|\mathbf{A} \overline{\mathbf{x}}_{k}-\mathbf{b}\right\| \leq \frac{1}{k}\left(\frac{\mu}{2}\left\|\mathbf{x}_{0}-\mathbf{x}^{\star}\right\|^{2}+\frac{\max \left\{\left(1+\left\|\lambda^{\star}\right\|\right)^{2}, 4\left\|\lambda^{\star}\right\|^{2}\right\}}{\mu}\right) \\
\left|f\left(\overline{\mathbf{x}}_{k}\right)-f\left(\mathbf{x}^{\star}\right)\right| \leq \frac{1}{k}\left(\frac{\mu}{2}\left\|\mathbf{x}_{0}-\mathbf{x}^{\star}\right\|^{2}+\frac{\max \left\{\left(1+\left\|\lambda^{\star}\right\|\right)^{2}, 4\left\|\lambda^{\star}\right\|^{2}\right\}}{\mu}\right)
\end{array}
$$

- Guarantees are for the primal and in fact optimal [23].
- No need to solve difficult subproblems at each iteration.
- Guarantees are for $\overline{\mathbf{x}}_{k}$, and not $\mathbf{x}_{k}$.


## Alternative approach for subproblems of ALM

- Primal subproblem:

$$
\begin{equation*}
\mathbf{x}_{\mu}^{*}(\lambda):=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\mathcal{L}_{\mu}(\mathbf{x}, \lambda):=f(\mathbf{x})+\langle\lambda, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle+\frac{\mu}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}\right\} \tag{14}
\end{equation*}
$$

- This is a composite optimization problem.

Accelerated proximal methods (e.g. FISTA) can be used to solve this up to some accuracy.

## Conceptual inexact augmented Lagrangian method:

1. Choose $\lambda_{0} \in \mathbb{R}^{n}, \mu>0$ and a decreasing nonnegative sequence $\epsilon_{k}$.
2. For $k=0,1, \cdots$, perform:
2.a. Solve (14) with FISTA until $\mathcal{L}_{\mu}\left(\mathbf{x}_{\mu}^{\epsilon_{k}}\left(\lambda_{k}\right), \lambda_{k}\right) \leq \mathcal{L}_{\mu}\left(\mathbf{x}_{\mu}^{*}\left(\lambda_{k}\right), \lambda_{k}\right)+\epsilon_{k}$.
2.b. Update $\lambda_{k+1}:=\lambda_{k}+\mu\left(\mathbf{A} \mathbf{x}_{\mu}^{\epsilon_{k}}\left(\lambda_{k}\right)-\mathbf{b}\right)$.

- Conceptual since $\mathbf{x}_{\mu}^{*}\left(\lambda_{k}\right)$ is unknown.
$\triangleright$ Solve (14) for increasing (explicit) number of iterations $m_{k}>0$.


## *An explicit inexact ALM

## Inexact ALM (Double Loop ASGARD [28])

1. $\mathbf{x}_{0}=\hat{x}_{0,0}=\bar{x}_{0,0}=\tilde{x}_{0,0} \in \mathbb{R}^{p}, \lambda_{0} \in \mathbb{R}^{n}$. Set $\mu_{k}>0, \tau_{0}=1, m_{0}>2$.
2. For $k=0,1, \cdots$, perform:
2.a For $i=0,1, \cdots, m_{k}-1$, perform (accelerated proximal method):

$$
\begin{cases}\hat{\mathbf{x}}_{k, i} & =\left(1-\tau_{k}\right) \overline{\mathbf{x}}_{k, i}+\tau_{k} \tilde{\mathbf{x}}_{k, i}, \\ \tilde{\mathbf{x}}_{k, i+1} & =\operatorname{prox} \frac{1}{\mu_{k}\|A\|^{2}} f\left(\tilde{\mathbf{x}}_{k, i}-\frac{1}{\mu_{k}\|\mathbf{A}\|^{2}} A^{\top}\left(\lambda_{k}+\mu_{k}\left(A \hat{\mathbf{x}}_{k, i}-\mathbf{b}\right)\right)\right), \\ \overline{\mathbf{x}}_{k, i+1} & =\hat{\mathbf{x}}_{k, i}+\tau_{k}\left(\tilde{\mathbf{x}}_{k, i+1}-\tilde{\mathbf{x}}_{k, i}\right), \\ \tau_{k+1} & =\frac{2}{k+2},\end{cases}
$$

2.b Restart primal and dual variable updates

$$
\left\{\begin{array}{llr}
\overline{\mathbf{x}}_{k+1,0} & =\tilde{\mathbf{x}}_{k, m_{k}} & \\
\lambda_{k+1} & =\lambda_{k}+\mu_{k}\left(A \overline{\mathbf{x}}_{k+1,0}-\mathbf{b}\right), & \text { dual variable update } \\
\tau_{0} & =1 & \\
\mu_{k+1} & =\mu_{k} \omega, & \mu_{k} \text { needs to increase now } \\
m_{k+1} & =m_{k} \omega, & \text { number of inner iterations increase }
\end{array}\right.
$$

- Corresponds to inexact ALM with explicit inner termination rule.
- We can prove optimal $\mathcal{O}(1 / k)$ on the last iterate.


## Example: Last iterate vs average iterate of LALM

## Problem: Basis pursuit

Given $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$, solve

$$
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{1}: \mathbf{A} \mathbf{x}=\mathbf{b}\right\}
$$

## Data generation

- $\mathbf{A}$ is a row-normalized standard Gaussian matrix.
- $\mathrm{x}^{\star}$ is a $k$-sparse vector generated randomly.
- Noiseless case: $\mathbf{b}:=\mathbf{A x}$.
- Noisy case: $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\star}+\mathcal{N}\left(0,10^{-3}\right)$.


## Example: Last iterate vs average iterate of LALM

- Noiseless case.

- Noisy case.




## References I

[1] Intuition behind lagrange duality.
https://masszhou.github.io/2016/09/10/Lagrange-Duality/.
Accessed: 2019-11-24.
[2] H.H. Bauschke and P. Combettes.
Convex analysis and monotone operators theory in Hilbert spaces.
Springer-Verlag, 2011.
[3] Dimitri P Bertsekas.
Necessary and sufficient conditions for a penalty method to be exact.
Mathematical programming, 9(1):87-99, 1975.
[4] Dimitri P Bertsekas.
On penalty and multiplier methods for constrained minimization.
SIAM Journal on Control and Optimization, 14(2):216-235, 1976.
[5] A. Chambolle and T. Pock.
A first-order primal-dual algorithm for convex problems with applications to imaging.
Journal of Mathematical Imaging and Vision, 40(1):120-145, 2011.
[6] G. Chen and M. Teboulle.
A proximal-based decomposition method for convex minimization problems. Math. Program., 64:81-101, 1994.

## References II

[7] P. L. Combettes and V. R. Wajs.
Signal recovery by proximal forward-backward splitting.
Multiscale Model. Simul., 4:1168-1200, 2005.
[8] D. Davis.
Convergence rate analysis of the forward-Douglas-Rachford splitting scheme.
UCLA CAM report 14-73, 2014.
[9] D. Davis and W. Yin.
Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions.
UCLA CAM report 14-58, 2014.
[10] D. Davis and W. Yin.
A three-operator splitting scheme and its optimization applications.
Tech. Report., 2015.
[11] J. Eckstein and D. Bertsekas.
On the Douglas - Rachford splitting method and the proximal point algorithm for maximal monotone operators.
Math. Program., 55:293-318, 1992.

## References III

[12] J. E. Esser.
Primal-dual algorithm for convex models and applications to image restoration, registration and nonlocal inpainting.
Phd. thesis, University of California, Los Angeles, Los Angeles, USA, 2010.
[13] D. Gabay and B. Mercier.
A dual algorithm for the solution of nonlinear variational problems via finite element approximation.
Computers \& Mathematics with Applications, 2(1):17-40, 1976.
[14] T. Goldstein, E. Esser, and R. Baraniuk.
Adaptive Primal-Dual Hybrid Gradient Methods for Saddle Point Problems. Tech. Report., http://arxiv.org/pdf/1305.0546v1.pdf:1-26, 2013.
[15] T. Goldstein, B. ODonoghue, and S. Setzer.
Fast Alternating Direction Optimization Methods.
SIAM J. Imaging Sci., 7(3):1588-1623, 2012.
[16] B. He and X. Yuan.
Convergence analysis of primal-dual algorithms for saddle-point problem: from contraction perspective.
SIAM J. Imaging Sciences, 5:119-149, 2012.

## References IV

[17] B.S. He and X.M. Yuan.
On the $O(1 / n)$ convergence rate of the Douglas-Rachford alternating direction method.
SIAM J. Numer. Anal., 50:700-709, 2012.
[18] Magnus R Hestenes.
Multiplier and gradient methods.
Journal of optimization theory and applications, 4(5):303-320, 1969.
[19] I. Necoara and J.A.K. Suykens.
Interior-point lagrangian decomposition method for separable convex optimization.
J. Optim. Theory and Appl., 143(3):567-588, 2009.
[20] V. Nedelcu, I. Necoara, and Q. Tran-Dinh.
Computational Complexity of Inexact Gradient Augmented Lagrangian Methods:
Application to Constrained MPC.
SIAM J. Optim. Control, 52(5):3109-3134, 2014.
[21] J. Nocedal and S.J. Wright.
Numerical Optimization.
Springer Series in Operations Research and Financial Engineering. Springer, 2
edition, 2006.

## References V

[22] Y. Ouyang, Y. Chen, G. LanG. Lan., and E. JR. Pasiliao. An accelerated linearized alternating direction method of multiplier.
Tech, 2014.
[23] Yuyuan Ouyang and Yangyang Xu .
Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems.
arXiv preprint arXiv:1808.02901, 2018.
[24] Samet Oymak, Christos Thrampoulidis, and Babak Hassibi.
Simple bounds for noisy linear inverse problems with exact side information.
2013.
arXiv:1312.0641v2 [cs.IT].
[25] Michael JD Powell.
A method for nonlinear constraints in minimization problems.
Optimization, pages 283-298, 1969.
[26] Q. Tran-Dinh and V. Cevher.
Constrained convex minimization via model-based excessive gap.
In Proc. the Neural Information Processing Systems Foundation conference (NIPS2014), pages 1-9, Montreal, Canada, December 2014.

## References VI

[27] Q. Tran-Dinh, I. Necoara, C. Savorgnan, and M. Diehl.
An Inexact Perturbed Path-Following Method for Lagrangian Decomposition in Large-Scale Separable Convex Optimization.
SIAM J. Optim., 23(1):95-125, 2013.
[28] Quoc Tran-Dinh, Ahmet Alacaoglu, Olivier Fercoq, and Volkan Cevher. An adaptive primal-dual framework for nonsmooth convex minimization.
arXiv preprint arXiv:1808.04648, 2018.
[29] Quoc Tran-Dinh, Olivier Fercoq, and Volkan Cevher.
A smooth primal-dual optimization framework for nonsmooth composite convex minimization.
SIAM Journal on Optimization, 28(1):96-134, 2018.
[30] P. Tseng.
Applications of splitting algorithm to decomposition in convex programming and variational inequalities.
SIAM J. Control Optim., 29:119-138, 1991.
[31] E. Wei, A. Ozdaglar, and A.Jadbabaie.
A Distributed Newton Method for Network Utility Maximization.
http://web. mit. edu/asuman/www/publications.htm, 2011.

## References VII

[32] Yangyang Xu.
Accelerated first-order primal-dual proximal methods for linearly constrained composite convex programming.
SIAM Journal on Optimization, 27(3):1459-1484, 2017.
[33] A. Yurtsever, Q. Tran-Dinh, and V. Cevher.
Universal primal-dual proximal-gradient methods.
Tech. Report. (LIONS, EPFL), Available at:
http://arxiv.org/pdf/1502.03123.pdf., 2015.
[34] G. Zhao.
A Lagrangian dual method with self-concordant barriers for multistage stochastic convex programming.
Math. Progam., 102:1-24, 2005.


[^0]:    ${ }^{1}$ There is a subtle yet important caveat here that I am sweeping under the carpet!
    ${ }^{2}$ When $\mathbf{w}=0$, the IPM complexity (\# of iterations $\times$ cost per iteration) amounts to $\mathcal{O}\left(n^{2} p^{1.5} \log \left(\frac{1}{\epsilon}\right)\right)$.

