Mathematics of Data: From Theory to Computation

Prof Volkan Cevher volkan.cevher@epfl.ch

Lecture 1: Introduction to Continuous Optimization

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2019)

License Information for Mathematics of Data Slides

► This work is released under a <u>Creative Commons License</u> with the following terms:

Attribution

The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.

Share Alike

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ► Full Text of the License

Logistics

- Credits: 4
- Prerequisites: Previous coursework in calculus, linear algebra, and probability is required. Familiarity with optimization is useful.
- ► Grading: Continuous control via homework exercises & exam (cf., syllabus)
- HW topics: Support vector machines, compressive subsampling, neural networks, power flow...
- ► Moodle: My courses > Genie electrique et electronique (EL) > Master > EE-556 syllabus & course outline & HW exercises
- TA's: Thomas Sanchez (head TA), Paul Rolland, Maria Vladarean, Chaehwan Song, Ali Kavis, Mehmet Fatih Sahin, Fabian Latorre, and Ahmet Alacaoglu.

Outline

- ► This class:
 - 1. What is an optimization problem?
 - 2. Gradient descent: A basic introduction
 - 3. Common templates on convex/non-convex optimization
- Next class
 - 1. Review of probability, statistics and linear algebra

Recommended reading material

- Chapter 1 in S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, 2009.
- Chapter 1 in Nocedal, Jorge, and Wright, Stephen J., Numerical Optimization, Springer, 2006.

What is optimization?

Problem (Mathematical formulation)

The optimization problem

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{1}$$

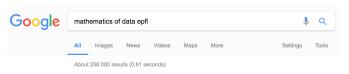
consists in finding a minimizer $\mathbf{x}^\star \in \mathcal{S}_f^\star$. We say (1) has a solution if \mathcal{S}_f^\star is non-empty

Definition (Set of minimizers)

Let $f:\mathcal{X} \to \mathbb{R}$ and $\delta > 0$

- $\mathbf{x}_{\text{loc}}^{\star} \in \mathcal{X} \text{ is a local minimizer of } f \text{ if } \left\| f(\mathbf{x}_{\text{loc}}^{\star}) \leq f(\mathbf{x}) \text{ for all } \mathbf{x} : \left\| \mathbf{x} \mathbf{x}_{\text{loc}}^{\star} \right\| \leq \delta$
- $ightharpoonup \mathcal{S}_f^{\star}$ is the set of minimizers of f

Example: Google PageRank



Mathematics of data: from theory to computation | EPFL

edu.epfl.ch/coursebook/en/mathematics-of-data-from-theory-to-computation-EE-556
English. Summary. This course reviews recent advances in convex optimization and statistical analysis in the wake of Big Data. We provide an overview of the ...

EE 556 - Mathematics of Data: From Theory to Computation - lions | epfl lions.epfl.ch > STI > IEL > LIONS > Teaching >

Aug 1, 2016 - Convex optimization offers a unified framework in obtaining numerical solutions to data analytics problems with provable statistical guarantees ...

[PDF] Mathematics of Data: From Theory to Computation - Iions | epfl lions.epfl.ch/files/content/sites/.../mathematics of data/lecture%206%20(2014).pdf

Lecture 06: Motivation for nonsmooth, constrained minimization. Mathematics of Data: From Theory to Computation. Prof. Volkan Cevher volkan.cevher@epfl.ch.

Statistics for data science | EPFL

edu.epfl.ch/coursebook/en/statistics-for-data-science-MATH-413 >

MATH-413 ... Statistics lies at the foundation of data science, providing a unifying ... Data science, inference, likelihood, regression, regularisation, statistics.

Swiss Data Science Center

https://datascience.ch/ -

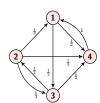
The Initiative creates both Master courses in data science at EPFL and ETH Zurich ... in data science methods and topics ranging from mathematical foundations, ...

You've visited this page 4 times. Last visit: 7/2/17

Modeling Google PageRank

A basic model

• A toy graph and transition matrix:



• Compute the conditional probabilities:

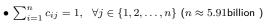
$$\begin{split} P(\text{The Washington Post}|\text{Google News}) &= 2/8 \\ P(\text{The Atlantic}|\text{Google News}) &= 1/8 \end{split}$$

$$\mathbf{E} = \begin{bmatrix} 0 & \frac{1}{3} & 0 & 1 \\ 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{3} & 0 & 0 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{2} & 0 \end{bmatrix}$$

Modeling Google PageRank

• Transition matrix for world wide web:

$$\mathbf{E} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix}$$



 \bullet Estimated memory to store $\mathbf{E}:10^{12}~\mathrm{GB!}$

Modeling Google PageRank

• Transition matrix for world wide web:

$$\mathbf{E} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix}$$

- $\sum_{i=1}^{n} c_{ij} = 1$, $\forall j \in \{1, 2, ..., n\}$ $(n \approx 5.91$ billion)
- \bullet Estimated memory to store $\mathbf{E}:10^{12}~\text{GB!}$
- A bit of mathematical modeling:
 - $ightharpoonup r_i^k$: Probability of being at node i at k^{th} state. Let us define a state vector

$$\mathbf{r}^k = \left[r_1^k, r_2^k, \dots, r_n^k\right]^\top$$

ightharpoonup Multiplying \mathbf{r}^k by \mathbf{E} takes one random step along the edges of the graph:

$$r_i^1 = \sum_{i=1}^n c_{ij} r_j^0 = (\mathbf{E} \mathbf{r}^0)_i,$$

since $c_{ij} = P(i|j)$ (by the law of total probability).

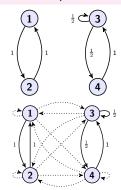
Towards a Formal Formulation for Google PageRank

Goal

Find the ranking vector \mathbf{r}^* after an infinite number of random steps.

• Disconnected web: Initial state vector affects the ranking vector.

<u>A solution:</u> Model the event that the surfer will quit the current webpage and open another.



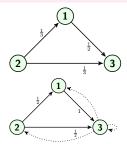
Towards a Formal Formulation for Google PageRank

Goal

Find the ranking vector \mathbf{r}^{\star} after an infinite number of random steps.

ullet Sink nodes: Column of zeros in ${\bf E}$, moves ${\bf r}$ to ${\bf 0}!$

<u>A solution:</u> Create artifical links from sink nodes to all the nodes.



Towards a Formal Formulation for Google PageRank

Goal

Find the ranking vector \mathbf{r}^* after an infinite number of random steps.

Disconnected web: Initial state vector affects the ranking vector.
 A solution: Model the event that the surfer guits the current webpage to open another.

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix} = \frac{1}{n} \mathbb{1} \mathbb{1}^{\top}$$

• Sink nodes: Column of zeros in **E**, moves **r** to **0**! A solution: Create artifical links from sink nodes to all the nodes.

$$\lambda_i = \left\{ \begin{array}{ll} 1 & \text{if } \mathbf{i}^{th} \text{ node is a sink node,} \\ 0 & \text{otherwise.} \end{array} \right.$$

Optimization formulation of Google PageRank

ullet Define the pagerank matrix ${f M}$ as

$$\mathbf{M} = (1 - p)(\mathbf{E} + \frac{1}{n} \mathbb{1} \lambda^T) + p\mathbf{B}.$$

M is a column stochastic matrix.

Problem Formulation

- We characterize the solution as
 - $\mathbf{Mr}^{\star} = \mathbf{r}^{\star}$.
 - \bullet \mathbf{r}^{\star} is a probability state vector:

$$r_i \ge 0, \quad \sum_{i=1}^n r_i = 1.$$

ullet Find $\mathbf{r} \geq 0$ such that $\mathbf{M}\mathbf{r} = \mathbf{r}$ and $\mathbf{1}^{\top}\mathbf{r} = 1$.

Optimization formulation of Google PageRank

ullet Define the pagerank matrix ${f M}$ as

$$\mathbf{M} = (1 - p)(\mathbf{E} + \frac{1}{n} \mathbb{1} \lambda^T) + p\mathbf{B}.$$

M is a column stochastic matrix.

Problem Formulation

- We characterize the solution as
 - $\mathbf{Mr}^{\star} = \mathbf{r}^{\star}$.
 - \bullet \mathbf{r}^{\star} is a probability state vector:

$$r_i \ge 0, \quad \sum_{i=1}^n r_i = 1.$$

ullet Find $\mathbf{r} \geq 0$ such that $\mathbf{M}\mathbf{r} = \mathbf{r}$ and $\mathbf{1}^{\top}\mathbf{r} = 1$.

Optimization formulation

$$\min_{\mathbf{x} \in \mathbb{R}^n} \bigg\{ f(\mathbf{x}) = \frac{1}{2} \| M\mathbf{x} - \mathbf{x} \|^2 + \frac{\gamma}{2} \left(\mathbb{1}^T \mathbf{x} - 1 \right)^2 \bigg\}.$$

The general formulation: Least-squares

Optimization formulation (Least-squares estimator)

$$\min_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{2} \frac{\|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2}{f(\mathbf{x})},$$

where $\mathbf{x} = \mathbf{r}$, $\mathbf{b} = \begin{bmatrix} \mathbf{r} \\ \frac{\gamma}{2n} \mathbf{1} \end{bmatrix}$, $\mathbf{A} = \begin{bmatrix} \mathbf{M} \\ \frac{\gamma}{2n} \mathbf{1} \mathbf{1}^{\top} \end{bmatrix}$, d = n in Google PageRank problem.

Linear regression problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^d$ and $\mathbf{A} \in \mathbb{R}^{n \times d}$ (full column rank). Goal: estimate \mathbf{x}^{\natural} , given \mathbf{A} and

$$\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w},$$

where w denotes unknown noise.

• Many other examples:

Image reconstruction (MRI), stock market prediction, house pricing, etc.

Regression/Classification/Generation Examples

- Example: Taking a mortgage.
- Houses data (source: https://www.homegate.ch)

• Example: Image classification

• Imagenet: 1000 object classes. 1.2M/100K train/test images source: https://www.imagenet.org

- Example: Image generation (GANs).
- Target distribution:

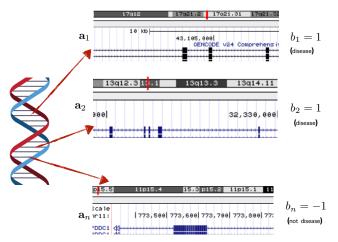
source: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

• How to generate (fake) images from the same distribution?

source: Progressive Growing of GANs for Improved Quality, Stability, and Variation Karras et al. ICLR 2018

Breast Cancer Detection

Genome data for breast cancer (source: http://genome.ucsc.edu):



• A patient with genome data a_t : has he got breast cancer or not (i.e., $b_t = 1$ or -1)?

Score-based Classifiers (I)

Goal

Predict either b=1 or b=-1 given a.

• For a genome sequence a compute a score $s_{\mathbf{x}}(\mathbf{a}) \in (-\infty, \infty)$:

Example:
$$\mathbf{a} \to s_{\mathbf{x}}(\mathbf{a}) = \mathbf{x}^{\top} \mathbf{a}$$

weights = importance of genes

• Use the logistic function

$$t \mapsto h(t) := \frac{1}{1 + \exp(-t)}.$$

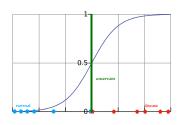
to transform $s_{\mathbf{x}}(\mathbf{a})$ into a probability of disease:

$$P(b=1|\mathbf{a},\mathbf{x}) = h(s_{\mathbf{x}}(\mathbf{a})) \in (0,1)$$

Score-based Classifiers (II)

• We have a model for the conditional probability of disease given a

$$P(b=1|\mathbf{a}, \mathbf{x}) = \frac{1}{1 + \exp(-s_{\mathbf{x}}(\mathbf{a}))}$$



$$P(b=1|\mathbf{a},\mathbf{x})$$
 $\begin{cases} > 0.5, & \text{if } s_{\mathbf{x}}(\mathbf{a}) \text{ is positive,} \\ \leq 0.5, & \text{otherwise.} \end{cases}$

$$\mbox{Prediction} = \begin{cases} \mbox{disease}, & \mbox{if } P(b=1|\mathbf{a},\mathbf{x}) > 0.5, \\ \mbox{normal}, & \mbox{if } P(b=1|\mathbf{a},\mathbf{x}) < 0.5. \\ \mbox{uncertain}, & \mbox{if } P(b=1|\mathbf{a},\mathbf{x}) = 0.5. \end{cases}$$

Score-based Classifiers: How do we choose x?

• Classification diagram:

$$\begin{split} (\mathbf{a}_i,b_i)_{i=1}^n \xrightarrow{\text{modeling parameter } \mathbf{x}} & P(b_i|\mathbf{a}_i,\mathbf{x}) & \xrightarrow{\text{independency}} p(\mathbf{x}) := \prod_{i=1}^n P(b_i|\mathbf{a}_i,\mathbf{x}) \\ & \downarrow \text{maximizing w.r.t } \mathbf{x} \\ & \mathbf{a}_t \longrightarrow & P(b|\mathbf{a}_t,\mathbf{x}^\star) \longleftarrow & \mathbf{x}^\star \end{split}$$
 evaluating logistic function $\downarrow b_t$

• Maximizing $\log p(\mathbf{x})$ gives the log-likelihood estimator.

Logistic regression vs Neural networks

Optimization formulation (max Log-likelihood)

$$\min_{\mathbf{x} \in \mathbb{R}^p} \underbrace{\log p(\mathbf{x}) = \sum_{i=1}^n \log(1 + \exp(-b_i(s_{\mathbf{x}}(\mathbf{a}_i))))}_{f(\mathbf{x})}$$
(2)

Problem (Choice of score function)

• Logistic Regression:

$$s_{\mathbf{x}}(\mathbf{a}) = \mathbf{x}^{\top} \mathbf{a}$$
 \Rightarrow (2) is convex (3)

• Neural Networks $(\mathbf{x} = [\mathbf{v}, \mathbf{W}])$:

$$s_{\mathbf{x}}(\mathbf{a}) = \mathbf{v}^{\top} \sigma(\mathbf{W}\mathbf{a})$$
 \Rightarrow (2) is non-convex (4)

Optimization landscapes

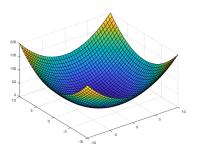


Figure: convex function

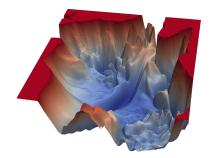


Figure: nonconvex function

A basic *iterative* strategy

General idea of an optimization algorithm

Guess a solution, and then refine it based on oracle information.

Repeat the procedure until the result is good enough.

Approximate vs. exact optimality and local optimality (I)

Is it possible to solve an optimization problem?

"In general, optimization problems are unsolvable" - Y. Nesterov [1]

- Even when a closed-form solution exists, numerical accuracy may still be an issue.
- ▶ We must be content with approximately optimal solutions.
- ► Sometimes we can only find **locally** optimal solutions.

Approximate vs. exact optimality and local optimality (II)

Definition

We say that $\mathbf{x}_{\epsilon}^{\star}$ is ϵ -optimal in **objective value** if

$$f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star} \le \epsilon$$
.

Definition

We say that $\mathbf{x}^{\star}_{\epsilon}$ is ϵ -optimal in **sequence** if, for some norm $\|\cdot\|$,

$$\|\mathbf{x}_{\epsilon}^{\star} - \mathbf{x}^{\star}\| \leq \epsilon$$
,

▶ The latter approximation guarantee is considered stronger.

Definition

We say that $\mathbf{x}_{\text{loc}}^{\star}$ is a local minimizer if for some $\delta > 0$,

$$f(\mathbf{x}_{\text{loc}}^{\star}) \leq f(\mathbf{x})$$
 for all \mathbf{x} such that $\|\mathbf{x} - \mathbf{x}_{\text{loc}}^{\star}\| \leq \delta$

Necessary/Sufficient optimality conditions

Lemma (First-order necessary local optimality condition)

Let \mathbf{x}_{loc}^{\star} be a local minimizer of a differentiable convex function f. It holds that

$$\nabla f(\mathbf{x}_{loc}^{\star}) = \mathbf{0}.$$

Lemma (sufficient optimality condition for convex functions)

Let f be a convex function. It holds that

 \mathbf{x}_{loc}^{\star} is a local minimizer $\Rightarrow \mathbf{x}_{loc}^{\star}$ is a global minimizer

A gradient method

Gradient method

Choose a starting point x^0 and iterate

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k)$$

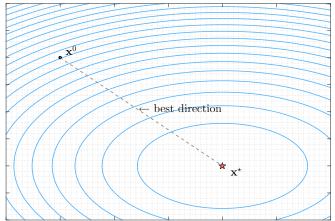
where α_k is a step-size to be chosen so that \mathbf{x}^k converges to some \mathbf{x}_{loc}^{\star} .

Fixed-point characterization

Given that $\nabla f(\mathbf{x}_{\text{loc}}^{\star}) = 0$, the following fixed point condition holds

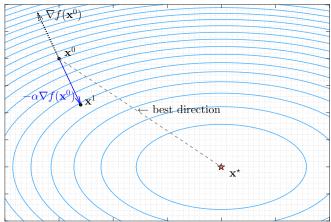
$$\mathbf{x}_{\mathsf{loc}}^{\star} = \mathbf{x}_{\mathsf{loc}}^{\star} - \alpha \nabla f(\mathbf{x}_{\mathsf{loc}}^{\star}) \qquad \text{for all } \alpha \in \mathbb{R}$$

A simple example



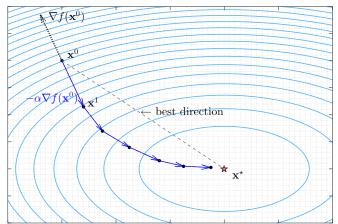
• Choose initial point: x^0 , and a step size $\alpha > 0$.

A simple example



- Choose initial point: x^0 , and a step size $\alpha > 0$.
- \blacktriangleright Take a step in the negative gradient direction: $x^{k+1} = x^k \alpha \nabla f(x^k)$

A simple example



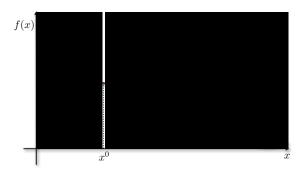
- Choose initial point: x^0 , and a step size $\alpha > 0$.
- ▶ Take a step in the negative gradient direction: $x^{k+1} = x^k \alpha \nabla f(x^k)$
- ightharpoonup Repeat this procedure until x^k is accurate enough.

Challenges for an iterative optimization algorithm

Problem

Find the minimizer x^{\star} of f(x), given starting point x^{0} based on only local information.

► Fog of war

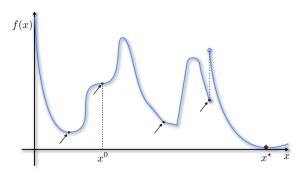


Challenges for an iterative optimization algorithm

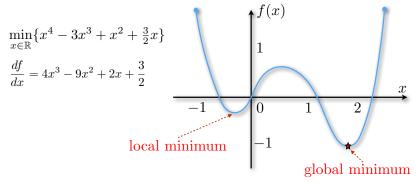
Problem

Find the minimizer x^{\star} of f(x), given starting point x^0 based on only local information.

Fog of war, non-differentiability, discontinuities, local minimizers, stationary points...



Local minimizers



Choose
$$x^0=0$$
 and $\alpha=\frac{1}{6}$
$$x^1=x^0-\alpha\frac{df}{dx}\big|_{x=x^0}=0-\frac{1}{6}\frac{3}{2}=-\frac{1}{4}$$

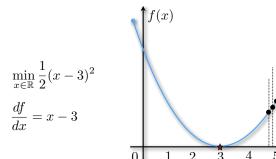
$$x^2=-\frac{5}{16}$$

 $x = -\frac{1}{1}$

. . .

 x^k is converging to **local minimizer!**

Effect of very small step-size $\alpha...$



Choose
$$x^0=5$$
 and $\alpha=\frac{1}{10}$
$$x^1=x^0-\alpha\frac{df}{dx}\big|_{x=x^0}=5-\frac{1}{10}2=4.8$$

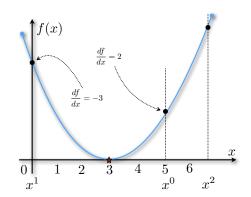
$$x^2=x^1-\alpha\frac{df}{dx}\big|_{x=x^1}=4.8-\frac{1}{10}1.8=4.62$$

 x^k converges **very slowly**.

. . .

Effect of very large step-size $\alpha...$

$$\frac{df}{dx} = x - 3$$



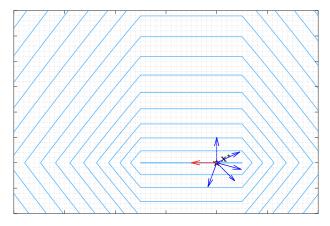
Choose
$$x^0 = 5$$
 and $\alpha = \frac{5}{2}$
$$x^1 = x^0 - \alpha \frac{df}{dx}\big|_{x=x^0} = 5 - \frac{5}{2}2 = 0$$

$$x^2 = x^1 - \alpha \frac{df}{dx}\big|_{x=x^1} = 0 - \frac{5}{2}(-3) = \frac{15}{2}$$

 x^k diverges.

. . .

Nonsmooth optimization

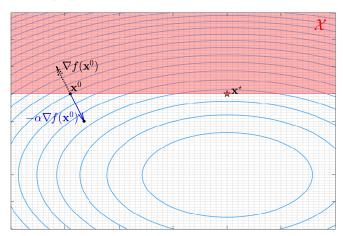


For nonsmooth optimization, the first order optimality condition

$$\nabla f(\mathbf{x}^{\star}) = \mathbf{0}$$

does not hold for every descent direction.

Constrained optimization



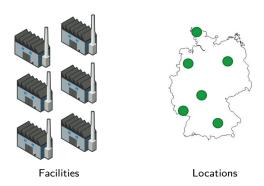
In many practical problems,

we need to minimize the cost under some constraints.

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{X} \right\}$$

Example: Facility Location Problem

Assign facilities to locations to minimize the total assignment cost.

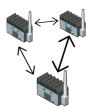


Example: Facility Location Problem

- Goal: To minimize the costs
- Inputs:

Distance between locations: $A = \begin{bmatrix} 0 & a_{12} & \dots & a_{1n} \\ a_{21} & \ddots & & & \\ \vdots & & \ddots & & \\ a_{n1} & & & & 0 \end{bmatrix}$

Flow between facilities:
$$B = \begin{bmatrix} 0 & b_{12} & \dots & b_{1n} \\ b_{21} & \ddots & & & \\ \vdots & & \ddots & & \\ b_{n1} & & & 0 \end{bmatrix}$$

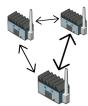


Example: Facility Location Problem

- Goal: To minimize the costs
- Inputs:

Distance between locations:
$$A = \begin{bmatrix} 0 & a_{12} & \dots & a_{1n} \\ \vdots & & \ddots & \\ a_{n1} & & & 0 \end{bmatrix}$$

Flow between facilities:
$$B = \begin{bmatrix} 0 & b_{12} & \dots & b_{1n} \\ b_{21} & \ddots & & & \\ \vdots & & \ddots & & \\ b_{n1} & & & 0 \end{bmatrix}$$



Output:

An assignment matrix $X \in \Pi_n$

Example: Quadratic Assignment Problem

Quadratic assignment problem, QAP, in the trace formulation

$$\mu^* := \min_{X \in \Pi_n} \operatorname{Tr} \left(AXBX^\top \right)$$

 Π_n : set of $n \times n$ permutation matrices

A and $B: n \times n$ real symmetric matrices

- Non-convex, quadratic objective over the (discrete) set of permutation matrices
- Convex relaxations exist

QAP example: Traveling Salesman Problem

Find a path passing from all vertices (e.g., cities) once to minimize the total trip time

- $A=rac{1}{2}D$, D: Matrix of edge weights such that $D_{ij}=D_{ji}\geq 0~(i
 eq j)$
- B=C C: The adjacency matrix of the cities

$$TSP_{opt} := \min_{X \in \Pi_n} \operatorname{Tr} \left(\frac{1}{2} DXCX^{\top} \right)$$

Implications of convexity

If f is convex,

- any local minimizer is also a global minimizer,
- we have a principled step-size selection,
- we can handle **non-smooth** problems like **constraints**.

Unfortunately, convexity does not imply tractability...

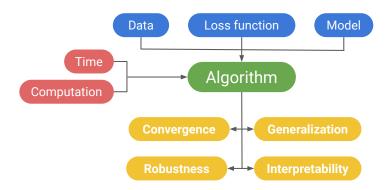
Implications of non-convexity

If f is not convex,

- ► Gradient descent converges only to **first order stationary points** ,
- ► Sometimes, they are **global minimizers**
- In certain applications, local minimizers can be good enough

Fortunately, non-convexity does not imply intractability or uselessness

Overview of mathematics of data



Do not forget!

- Lecture on Monday and recitation on Friday
 - Lecture: Basic probability theory and statistics.
 - Recitation: Terminology of optimization theory, gradient descent for logistic regression.

References

[1] Yu. Nesterov.

Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston, MA, 2004.