DECOPT is a MATLAB software package for solving the following generic constrained convex optimization problem:

\[
\min_{x \in \mathbb{R}^p, r \in \mathbb{R}^n} \left\{ f(x) + g(r) : Ax - r = b, \; l \leq x \leq u \right\}, \quad (CP)
\]

where \(f \) and \(g \) are two proper, closed and convex functions, \(A \in \mathbb{R}^{n \times p}, b \in \mathbb{R}^n \) and \(l, u \in \mathbb{R}^p \) are the lower and upper bounds of \(x \). Here, we assume that \(f \) and \(g \) are proximally tractable. By proximal tractability, we mean that the proximal operator \(\text{prox}_\varphi \) of a given proper, closed and convex function \(\varphi \):

\[
\text{prox}_\varphi(x) := \arg \min_{y \in \mathbb{R}^p} \{ \varphi(y) + (1/2)\|y - x\|_2^2 \}
\]

is efficient to compute (e.g., by a closed form solution or by polynomial time algorithms).

DECOPT is implemented by Quoc Tran-Dinh at the Laboratory for Information and Inference Systems (LIONS), EPFL, Lausanne, Switzerland. This is a joint work with Volkan Cevher at LIONS, EPFL.

DECOPT aims at solving (CP) for any convex functions \(f \) and \(g \), where their proximal operator is provided. The following special cases have been customized in DECOPT:

- **Basis pursuit:**
 \[
 \min_x \{ \|x\|_1 : Ax = b, l \leq x \leq u \}.
 \]

- **\(\ell_1/\ell_2 \)-unconstrained LASSO problem:**
 \[
 \min_x \frac{1}{2}\|Ax - b\|_2^2 + \lambda\|x\|_1.
 \]

- **\(\ell_1/\ell_1 \)-convex problem:**
 \[
 \min_x \|Ax - b\|_1 + \lambda\|x\|_1.
 \]

- **Square-root \(\ell_1/\ell_2 \) LASSO problem:**
 \[
 \min_x \|Ax - b\|_2 + \lambda\|x\|_1.
 \]

- **\(\ell_1/\ell_2 \) - the basis denosing (BPDN) problem:**
 \[
 \min_x \{ \|x\|_1 : \|Ax - b\|_2 \leq \delta \}.
 \]

- **\(\ell_2/\ell_1 \) - the \(\ell_1 \)-constrained LASSO problem:**
 \[
 \min_x \{ (1/2)\|Ax - b\|_2^2 : \|x\|_1 \leq \delta \}.
 \]

Here, \(\lambda > 0 \) is a penalty parameter, \(\delta > 0 \) is a given level parameter.