Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 3: Convex analysis and Linear Algebra

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2018)

License Information for Mathematics of Data Slides

- This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

lions@epfl

Outline

- This lecture
 - 1. Basic concepts in convex analysis
 - 2. Basic review of linear algebra
- Next lecture
 - 1. Unconstrained convex optimization: the basics
 - 2. Gradient descent methods

Recommended reading

- Chapter 2 & 3 in S. Boyd, and L. Vandenberghe, *Convex Optimization*, Cambridge Univ. Press, 2009.
- Appendices A & B in D. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.
- Matrix computations, G.H. Golub, C.F. Van Loan, JHU Press, 2012.
- Linear algebra and its applications, G. Strang, Thomson, Brooks/Cole, 2006.
- KC Border, Quick Review of Matrix and Real Linear Algebra http://www.hss.caltech.edu/~kcb/Notes/LinearAlgebra.pdf, 2013.

Motivation

Motivation

- The first part of this lecture introduces basic notions in convex analysis.
- The second part reviews some concepts in linear algebra.

Challenges for an iterative optimization algorithm

Problem

Find the minimum x^* of f(x), given starting point x^0 based on only local information.

► Fog of war

Challenges for an iterative optimization algorithm

Problem

Find the minimum x^* of f(x), given starting point x^0 based on only local information.

Fog of war, non-differentiability, discontinuities, local minima, stationary points...

Challenges for an iterative optimization algorithm

Problem

Find the minimum x^* of f(x), given starting point x^0 based on only local information.

Fog of war, non-differentiability, discontinuities, local minima, stationary points...

We need a key structure on the function local minima: Convexity.

Basics of functions

Definition (Function)

A function f with domain $\mathcal{Q} \subseteq \mathbb{R}^p$ and codomain $\mathcal{U} \subseteq \mathbb{R}$ is denoted as:

 $f : \mathcal{Q} \to \mathcal{U}.$

The domain Q represents the set of values in \mathbb{R}^p on which f is defined and is denoted as dom $(f) \equiv Q = \{\mathbf{x} : -\infty < f(\mathbf{x}) < +\infty\}$. The codomain \mathcal{U} is the set of function values of f for any input in Q.

Continuity in functions

Definition (Continuity)

Let $f: \mathcal{Q} \to \mathbb{R}$ where $\mathcal{Q} \subseteq \mathbb{R}^p$. Then, f is a continuous function over its domain \mathcal{Q} if and only if

$$\lim_{\mathbf{x}\to\mathbf{y}}f(\mathbf{x})=f(\mathbf{y}),\quad\forall\mathbf{y}\in\mathcal{Q},$$

i.e., the limit of f—as x approaches y—exists and is equal to f(y).

Definition (Class of continuous functions)

We denote the class of continuous functions f over the domain Q as $f \in C(Q)$.

Definition (Lipschitz continuity)

Let $f: \mathcal{Q} \to \mathbb{R}$ where $\mathcal{Q} \subseteq \mathbb{R}^p$. Then, f is called Lipschitz continuous if there exists a constant value $K \ge 0$ such that:

$$|f(\mathbf{y}) - f(\mathbf{x})| \le K \|\mathbf{y} - \mathbf{x}\|_2, \quad \forall \mathbf{x}, \ \mathbf{y} \in \mathcal{Q}.$$

"Small" changes in the input result into "small" changes in the function values.

Continuity in functions

Lower semi-continuity

Definition

A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is lower semi-continuous (l.s.c.) if

$$\liminf_{\mathbf{x} \to \mathbf{y}} f(\mathbf{x}) \ge f(\mathbf{y}), \text{ for any } \mathbf{y} \in \mathsf{dom}(f).$$

Unless stated otherwise, we only consider l.s.c. functions.

Lower semi-continuity

Definition

A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is lower semi-continuous (l.s.c.) if

$$\liminf_{\mathbf{x} \to \mathbf{y}} f(\mathbf{x}) \ge f(\mathbf{y}), \text{ for any } \mathbf{y} \in \mathsf{dom}(f).$$

Intuition: A lower semi-continuous function only jumps down.

Differentiability in functions

• We use $\nabla f(\mathbf{x})$ to denote the *gradient* of f at $\mathbf{x} \in \mathbb{R}^p$ such that:

$$\nabla f(\mathbf{x}) = \sum_{i=1}^{p} \frac{\partial f}{\partial x_i} \mathbf{e}_i = \begin{bmatrix} \frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_p} \end{bmatrix}^T \quad \frac{\text{Example: } f(\mathbf{x}) = \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2}{\nabla f(\mathbf{x}) = -2\mathbf{A}^T (\mathbf{b} - \mathbf{A}\mathbf{x}).}$$

Definition (Differentiability)

Let $f \in \mathcal{C}(\mathcal{Q})$ where $\mathcal{Q} \subseteq \mathbb{R}^p$. Then, f is a k-times continuously differentiable on \mathcal{Q} if its partial derivatives up to k-th order exist and are continuous $\forall \mathbf{x} \in \mathcal{Q}$.

Definition (Class of differentiable functions)

We denote the class of k-times continuously differentiable functions f on Q as $f \in C^k(Q)$.

- ▶ In the special case of k = 2, we dub $\nabla^2 f(\mathbf{x})$ the Hessian of $f(\mathbf{x})$, where $[\nabla^2 f(\mathbf{x})]_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$.
- ▶ We have $C^q(Q) \subseteq C^k(Q)$ where $q \leq k$. For example, a twice differentiable function is also once differentiable.
- > For the case of complex-valued matrices, we refer to the Matrix Cookbook online.

Differentiability in functions

Figure: (Left panel) ∞ -times continuously differentiable function in \mathbb{R} . (Right panel) Non-differentiable f(x) = |x| in \mathbb{R} .

Stationary points of differentiable functions

Definition (Stationary point)

A point $\bar{\mathbf{x}}$ is called a stationary point of a twice differentiable function $f(\mathbf{x})$ if

 $\nabla f(\bar{\mathbf{x}}) = \mathbf{0}.$

Definition (Local minima, maxima, and saddle points)

Let $\bar{\mathbf{x}}$ be a stationary point of a twice differentiable function $f(\mathbf{x})$.

- If $\nabla^2 f(\bar{\mathbf{x}}) \succ 0$, then the point $\bar{\mathbf{x}}$ is called a local minimum.
- If $\nabla^2 f(\bar{\mathbf{x}}) \prec 0$, then the point $\bar{\mathbf{x}}$ is called a local maximum.
- If $\nabla^2 f(\bar{\mathbf{x}})=0,$ then the point $\bar{\mathbf{x}}$ can be a saddle point depending on the sign change.

Stationary points of smooth functions contd.

Intuition

Recall Taylor's theorem for the function f around $\bar{\mathbf{x}}$ for all \mathbf{y} that satisfy $\|\mathbf{y} - \bar{\mathbf{x}}\|_2 \leq r$ in a local region with radius r as follows

$$f(\mathbf{y}) = f(\bar{\mathbf{x}}) + \langle \nabla f(\bar{\mathbf{x}}), \mathbf{y} - \bar{\mathbf{x}} \rangle + \frac{1}{2} (\mathbf{y} - \bar{\mathbf{x}})^T \nabla^2 f(\mathbf{z}) (\mathbf{y} - \bar{\mathbf{x}})$$

where z is a point between $\bar{\mathbf{x}}$ and y. When $r \to 0$, the second-order term becomes $\nabla^2 f(\mathbf{z}) \to \nabla^2 f(\bar{\mathbf{x}})$. Since $\nabla f(\bar{\mathbf{x}}) = 0$, Taylor's theorem leads to

- $f(\mathbf{y}) > f(\bar{\mathbf{x}})$ when $\nabla^2 f(\bar{\mathbf{x}}) \succ 0$. Hence, the point $\bar{\mathbf{x}}$ is a local minimum.
- $f(\mathbf{y}) < f(\bar{\mathbf{x}})$ when $\nabla^2 f(\bar{\mathbf{x}}) \prec 0$. Hence, the point $\bar{\mathbf{x}}$ is a local maximum.
- $f(\mathbf{y}) \ge f(\bar{\mathbf{x}})$ when $\nabla^2 f(\bar{\mathbf{x}}) = 0$. Hence, the point $\bar{\mathbf{x}}$ can be a saddle point (i.e., $f(x) = x^3$ at $\bar{x} = 0$), a local minima (i.e., $f(x) = x^4$ at $\bar{x} = 0$) or a local maxima (i.e., $f(x) = -x^4$ at $\bar{x} = 0$).

Convexity

Definition

A function $f: \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$ is called convex on its domain \mathcal{Q} if, for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{Q}$ and $\alpha \in [0, 1]$, we have:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2).$$

• If $-f(\mathbf{x})$ is convex, then $f(\mathbf{x})$ is called concave.

Figure: (Left) Non-convex (Middle) Convex (Right) Concave

Convexity

Definition

A function $f: \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$ is called convex on its domain \mathcal{Q} if, for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{Q}$ and $\alpha \in [0, 1]$, we have:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2).$$

Additional terms that you will encounter in the literature

Definition (Proper)

A convex function f is called proper if its domain satisfies dom $(f) \neq \emptyset$ and, $f(\mathbf{x}) > -\infty, \ \forall x \in \text{dom}(f).$

Definition (Extended real-valued convex functions)

We define the extended real-valued convex functions \boldsymbol{f} as

$$f(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{if } \mathbf{x} \in \mathsf{dom}(f) \\ +\infty & \text{if otherwise} \end{cases}$$

To denote this concept, we use $f: \mathrm{dom}(f) \to \mathbb{R} \cup \{+\infty\}.$ (Note how I.s.c. might be useful)

Convexity

Definition

A function $f: \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$ is called convex on its domain \mathcal{Q} if, for any $\mathbf{x}_1, \ \mathbf{x}_2 \in \mathcal{Q}$ and $\alpha \in [0, 1]$, we have:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2).$$

Example

Function	Example	Attributes
ℓ_p vector norms, $p\geq 1$	${\ {\bf x}\ _2, \ {\bf x}\ _1, \ {\bf x}\ _\infty}$	convex
ℓ_p matrix norms, $p\geq 1$	$\ \mathbf{X}\ _* = \sum_{i=1}^{rank(\mathbf{X})} \sigma_i$	convex
Square root function	\sqrt{x}	concave, nondecreasing
Maximum of functions	$\max\{x_1,\ldots,x_n\}$	convex, nondecreasing
Minimum of functions	$\min\{x_1,\ldots,x_n\}$	concave, nondecreasing
Sum of convex functions	$\sum_{i=1}^{n} f_i, f_i$ convex	convex
Logarithmic functions	$\log\left(det(\mathbf{X})\right)$	concave, assumes $\mathbf{X} \succ 0$
Affine/linear functions	$\sum_{i=1}^{n} X_{ii}$	both convex and concave
Eigenvalue functions	$\lambda_{max}(\mathbf{X})$	convex, assumes $\mathbf{X} = \mathbf{X}^T$

Strict convexity

Definition

A function $f: \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$ is called *strictly convex* on its domain \mathcal{Q} if and only if for any $\mathbf{x}_1, \ \mathbf{x}_2 \in \mathcal{Q}$ and $\alpha \in [0, 1]$ we have:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) < \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2).$$

Figure: (Left panel) Convex function. (Right panel) Strictly convex function.

Revisiting: Alternative definitions of function convexity II

Definition

A function $f \in C^1(Q)$ is called convex on its domain if for any $\mathbf{x}, \mathbf{y} \in Q$:

$$f(\mathbf{x}) \ge f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \ \mathbf{x} - \mathbf{y} \rangle.$$

Definition

A function $f \in C^1(Q)$ is called convex on its domain if for any $\mathbf{x}, \mathbf{y} \in Q$:

$$\langle \nabla f(\mathbf{y}) - \nabla f(\mathbf{x}), \ \mathbf{y} - \mathbf{x} \rangle \ge 0.$$

*That is, if its gradient is a monotone operator.

lions@epfl

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Revisiting: Alternative definitions of function convexity III

Definition

A function $f \in C^2(\mathbb{R}^p)$ is called convex on its domain if for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$:

 $\nabla^2 f(\mathbf{x}) \succeq 0.$

- ▶ Geometrical interpretation: the graph of *f* has zero or positive (upward) curvature.
- ▶ However, this does not exclude flatness of *f*.
- $\nabla^2 f(\mathbf{x}) \succ 0$ is a sufficient condition for *strict* convexity.

Stationary points and convexity

Lemma

Let f be a smooth convex function, i.e., $f \in \mathcal{F}^1$. Then, any stationary point of f is also a global minimum.

Proof.

Let \mathbf{x}^{\star} be a stationary point, i.e., $\nabla f(\mathbf{x}^{\star}) = 0$. By convexity, we have:

$$f(\mathbf{x}) \ge f(\mathbf{x}^{\star}) + \langle \nabla f(\mathbf{x}^{\star}), \ \mathbf{x} - \mathbf{x}^{\star} \rangle \stackrel{\nabla f(\mathbf{x}^{\star}) = 0}{=} f(\mathbf{x}^{\star}) \quad \text{for all } \mathbf{x} \in \mathbb{R}^{p}$$

lions@epfl

Is convexity of f enough for an iterative optimization algorithm?

Slide 20/ 51

Convexity over sets

Definition

- $\mathcal{Q} \subseteq \mathbb{R}^p$ is a convex set if $\mathbf{x}_1, \ \mathbf{x}_2 \in \mathcal{Q} \Rightarrow \forall \alpha \in [0, 1], \ \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2 \in \mathcal{Q}.$
- $\mathcal{Q} \subseteq \mathbb{R}^p \text{ is a strictly convex set if} \\ \mathbf{x}_1, \ \mathbf{x}_2 \in \mathcal{Q} \Longrightarrow \forall \alpha \in (0, 1), \quad \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2 \in \operatorname{interior}(\mathcal{Q}).$

Figure: (Left) Strictly convex (Middle) Convex (Right) Non-convex

Convexity over sets

Definition

- $\mathcal{Q} \subseteq \mathbb{R}^p$ is a convex set if $\mathbf{x}_1, \ \mathbf{x}_2 \in \mathcal{Q} \Rightarrow \forall \alpha \in [0, 1], \ \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2 \in \mathcal{Q}.$
- $\mathcal{Q} \subseteq \mathbb{R}^p \text{ is a strictly convex set if} \\ \mathbf{x}_1, \ \mathbf{x}_2 \in \mathcal{Q} \Longrightarrow \forall \alpha \in (0, 1), \quad \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2 \in \operatorname{interior}(\mathcal{Q}).$

Figure: A linear set of equations $\mathbf{b} = \mathbf{A}\mathbf{x}$ defines an affine (thus convex) set.

Convexity over sets

Definition

- $\mathcal{Q} \subseteq \mathbb{R}^p$ is a convex set if $\mathbf{x}_1, \ \mathbf{x}_2 \in \mathcal{Q} \Rightarrow \forall \alpha \in [0, 1], \ \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2 \in \mathcal{Q}.$
- $\mathsf{P} \ \mathcal{Q} \subseteq \mathbb{R}^p \text{ is a strictly convex set if } \\ \mathbf{x}_1, \ \mathbf{x}_2 \in \mathcal{Q} \Longrightarrow \forall \alpha \in (0, 1), \quad \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_2 \in \mathsf{interior}(\mathcal{Q}).$

Why is this also important/useful?

convex sets <> convex optimization constraints

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & f_0(\mathbf{x}) \\ \text{subject to} & \text{constraints} \end{array}$

Some basic notions on sets

Definition (Closed set)

A set is called *closed* if it contains all its limit points.

Definition (Closure of a set)

Let $\mathcal{Q} \subseteq \mathbb{R}^p$ be a given open set, i.e., the limit points on the boundaries of \mathcal{Q} do not belong into \mathcal{Q} . Then, the closure of \mathcal{Q} , denoted as $cl(\mathcal{Q})$, is the smallest set in \mathbb{R}^p that includes \mathcal{Q} with its boundary points.

Figure: (Left panel) Closed set Q. (Middle panel) Open set Q and its closure cl(Q) (Right panel).

Convex hull

Definition (Convex hull)

Let $\mathcal{V} \subseteq \mathbb{R}^p$ be a set. The convex hull of \mathcal{V} , i.e., $conv(\mathcal{V})$, is the *smallest* convex set that contains \mathcal{V} .

Definition (Convex hull of points)

Let $\mathcal{V} \subseteq \mathbb{R}^p$ be a finite set of points with cardinality $|\mathcal{V}|$. The convex hull of \mathcal{V} is the set of all convex combinations of its points, i.e.,

$$\operatorname{conv}(\mathcal{V}) = \left\{ \sum_{i=1}^{|\mathcal{V}|} \alpha_i \mathbf{x}_i \ : \ \sum_{i=1}^{|\mathcal{V}|} \alpha_i = 1, \ \alpha_i \ge 0, \forall i, \ \mathbf{x}_i \in \mathcal{V} \right\}.$$

Figure: (Left) Discrete set of points \mathcal{V} . (Right) Convex hull conv(\mathcal{V}).

Revisiting: Alternative definitions of function convexity IV

Definition

The epigraph of a function $f : Q \to \mathbb{R}, Q \subseteq \mathbb{R}^p$ is the subset of \mathbb{R}^{p+1} given by:

$$\mathsf{epi}(f) = \{(\mathbf{x}, w) : \mathbf{x} \in \mathcal{Q}, w \in \mathbb{R}, f(\mathbf{x}) \le w\}.$$

Lemma

A function $f : Q \to \mathbb{R}$ is convex if and only if its epigraph, i.e, the region above its graph, is a convex set.

Figure: Epigraph — the region in green above graph $f(\cdot)$.

Notation

- ▶ Scalars are denoted by lowercase letters (e.g. k)
- Vectors by lowercase boldface letters (e.g., x)
- Matrices by uppercase boldface letters (e.g. A)
- Component of a vector \mathbf{x} , matrix \mathbf{A} as x_i , a_{ij} & $A_{i,j,k,\ldots}$ respectively.
- Sets by uppercase calligraphic letters (e.g. S).

Vector norms

Definition (Vector norm)

A norm of a vector in \mathbb{R}^p is a function $\|\cdot\| : \mathbb{R}^p \to \mathbb{R}$ such that for all vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$ and scalar $\lambda \in \mathbb{R}$ (a) $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^p$ nonnegativity (b) $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$ definitiveness (c) $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$ homogeniety (d) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ triangle inequality

- There is a family of ℓ_q -norms parameterized by $q \in [1, \infty]$;
- For $\mathbf{x} \in \mathbb{R}^p$, the ℓ_q -norm is defined as $\|\mathbf{x}\|_q := \left(\sum_{i=1}^p |x_i|^q\right)^{1/q}$.

Example

- (1) ℓ_2 -norm: $\|\mathbf{x}\|_2 := \sqrt{\sum_{i=1}^p x_i^2}$ (Euclidean norm)
- (2) ℓ_1 -norm: $\|\mathbf{x}\|_1 := \sum_{i=1}^p |x_i|$ (Manhattan norm)
- (3) ℓ_{∞} -norm: $\|\mathbf{x}\|_{\infty} := \max_{i=1,\dots,p} |x_i|$ (Chebyshev norm)

Slide 26/ 51

Vector norms contd.

Definition (Quasi-norm)

A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is replaced by $\|\mathbf{x} + \mathbf{y}\| \le c (\|\mathbf{x}\| + \|\mathbf{y}\|)$ for a constant $c \ge 1$.

Definition (Semi(pseudo)-norm)

A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example

- The ℓ_q -norm is in fact a quasi norm when $q \in (0, 1)$, with $c = 2^{1/q} 1$.
- ▶ The total variation norm (TV-norm) defined (in 1D): $\|\mathbf{x}\|_{TV} := \sum_{i=1}^{p-1} |x_{i+1} - x_i|$ is a semi-norm since it fails to satisfy (b); e.g. any $\mathbf{x} = c(1, 1, ..., 1)^T$ for $c \neq 0$ will have $\|\mathbf{x}\|_{TV} = 0$ even though $\mathbf{x} \neq \mathbf{0}$.

Definition (ℓ_0 -"norm")

$$\|\mathbf{x}\|_0 = \lim_{q \to 0} \|\mathbf{x}\|_q^q = |\{i : x_i \neq 0\}|$$

The ℓ_0 -norm counts the non-zero components of \mathbf{x} . It is not a norm – it does not satisfy the property (c) \Rightarrow it is also neither a **quasi**- nor a **semi-norm**.

Vector norms contd.

Problem (s-sparse approximation)			
Find	$\underset{\mathbf{x}\in\mathbb{R}^{p}}{\arg\min} \ \mathbf{x}-\mathbf{y}\ _{2}$	subject to:	$\ \mathbf{x}\ _0 \le s.$

Vector norms contd.

Problem (*s*-sparse approximation)

Find $\underset{\mathbf{x}\in\mathbb{R}^p}{\arg\min} \ \mathbf{x}-\mathbf{y}\ _2$ subject to: $\ \mathbf{x}\ _0 \leq s$.			
Solution			
$ \text{Define} \widehat{\mathbf{y}} \in \mathop{\arg\min}_{\mathbf{x} \in \mathbb{R}^p: \ \mathbf{x}\ _0 \leq s} \ \mathbf{x} - \mathbf{y}\ _2^2 \text{ and let } \widehat{\mathcal{S}} = supp\left(\widehat{\mathbf{y}}\right). $			
We now consider an optimization over sets			
$\widehat{\mathcal{S}} \in \operatorname*{argmin}_{\mathcal{S}: \mathcal{S} \leq s} \ \mathbf{y}_{\mathcal{S}} - \mathbf{y}\ _2^2.$			
$\in \operatorname*{argmax}_{\mathcal{S}: \mathcal{S} \leq s} \left\{ \ \mathbf{y}\ _2^2 - \ \mathbf{y}_{\mathcal{S}} - \mathbf{y}\ _2^2 \right\}$			
$ \in \underset{\mathcal{S}: \mathcal{S} \leq s}{\arg\max} \left\{ \ \mathbf{y}_{\mathcal{S}}\ _{2}^{2} \right\} = \underset{\mathcal{S}: \mathcal{S} \leq s}{\arg\max} \sum_{i\in\mathcal{S}} \ y_{i}\ ^{2} (\equiv \text{ modular approximation problem}). $			

Thus, the best *s*-sparse approximation of a vector is a vector with the *s* largest components of the vector in *magnitude*.

Vector norms contd.

Norm balls

Radius r ball in ℓ_q -norm:

$$\mathcal{B}_q(r) = \{ \mathbf{x} \in \mathbb{R}^p : \|\mathbf{x}\|_q \le r \}$$

Table: Example norm balls in \mathbb{R}^3

Inner products

Definition (Inner product)

The inner product of any two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$ (denoted by $\langle \cdot, \cdot \rangle$) is defined as $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \sum_i^p x_i y_i$.

The inner product satisfies the following properties:

 1. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$ symmetry

 2. $\langle (\alpha \mathbf{x} + \beta \mathbf{y}), \mathbf{z} \rangle = \langle \alpha \mathbf{x}, \mathbf{z} \rangle + \langle \beta \mathbf{y}, \mathbf{z} \rangle, \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^p$ linearity

 3. $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0, \forall \mathbf{x} \in \mathbb{R}^p$ positive definiteness

Important relations involving the inner product:

- Hölder's inequality: $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}||_q ||\mathbf{y}||_r$, where r > 1 and $\frac{1}{q} + \frac{1}{r} = 1$
- Cauchy-Schwarz is a special case of Hölder's inequality (q = r = 2)

Definition (Inner product space)

An inner product space is a vector space endowed with an inner product.

Vector norms contd.

Definition (Dual norm)

Let $\|\cdot\|$ be a norm in \mathbb{R}^p , then the **dual norm** denoted by $\|\cdot\|^*$ is defined:

$$\|\mathbf{x}\|^* = \sup_{\|\mathbf{y}\| \leq 1} \mathbf{x}^T \mathbf{y}, \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$$

- ▶ The dual of the *dual norm* is the original (primal) norm, i.e., $\|\mathbf{x}\|^{**} = \|\mathbf{x}\|$.
- Hölder's inequality $\Rightarrow \|\cdot\|_q$ is a dual norm of $\|\cdot\|_r$ when $\frac{1}{q} + \frac{1}{r} = 1$.

Example 1

i) $\|\cdot\|_2$ is dual of $\|\cdot\|_2$ (i.e. $\|\cdot\|_2$ is self-dual): $\sup\{\mathbf{z}^T\mathbf{x} \mid \|\mathbf{x}\|_2 \le 1\} = \|\mathbf{z}\|_2$. ii) $\|\cdot\|_1$ is dual of $\|\cdot\|_\infty$, (and vice versa): $\sup\{\mathbf{z}^T\mathbf{x} \mid \|\mathbf{x}\|_\infty \le 1\} = \|\mathbf{z}\|_1$.

Example 2

What is the dual norm of $\|\cdot\|_q$ for $q = 1 + 1/\log(p)$?

Vector norms contd.

Definition (Dual norm)

Let $\|\cdot\|$ be a norm in \mathbb{R}^p , then the **dual norm** denoted by $\|\cdot\|^*$ is defined:

$$\|\mathbf{x}\|^* = \sup_{\|\mathbf{y}\| \leq 1} \mathbf{x}^T \mathbf{y}, \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$$

- ▶ The dual of the *dual norm* is the original (primal) norm, i.e., $\|\mathbf{x}\|^{**} = \|\mathbf{x}\|$.
- Hölder's inequality $\Rightarrow \|\cdot\|_q$ is a dual norm of $\|\cdot\|_r$ when $\frac{1}{q} + \frac{1}{r} = 1$.

Example 1

i) $\|\cdot\|_2$ is dual of $\|\cdot\|_2$ (i.e. $\|\cdot\|_2$ is self-dual): $\sup\{\mathbf{z}^T\mathbf{x} \mid \|\mathbf{x}\|_2 \le 1\} = \|\mathbf{z}\|_2$. ii) $\|\cdot\|_1$ is dual of $\|\cdot\|_\infty$, (and vice versa): $\sup\{\mathbf{z}^T\mathbf{x} \mid \|\mathbf{x}\|_\infty \le 1\} = \|\mathbf{z}\|_1$.

Example 2

What is the **dual norm** of $\|\cdot\|_q$ for $q = 1 + 1/\log(p)$?

Solution By Hölder's inequality, $\|\cdot\|_r$ is the **dual norm** of $\|\cdot\|_q$ if $\frac{1}{q} + \frac{1}{r} = 1$. Therefore, $r = 1 + \log(p)$ for $q = 1 + 1/\log(p)$.

Metrics

A metric on a set is a function that satisfies the minimal properties of a distance.

Definition (Metric)

Let \mathcal{X} be a set, then a function $d(\cdot, \cdot) : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a metric if $\forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$:

- (a) $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all \mathbf{x} and \mathbf{y} (nonnegativity)
- (b) $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$ (definiteness)
- (c) $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ (symmetry)
- (d) $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$ (triangle inequality)
- A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b)
- A metric space (\mathcal{X}, d) is a set \mathcal{X} with a metric d defined on \mathcal{X}
- Norms induce metrics while pseudo-norms induce pseudo-metrics

Example

- Euclidean distance: $d_E(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|_2$
- Bregman distance: $d_B(\cdot, \cdot)$...more on this later!

Basic matrix definitions

Definition (Nullspace of a matrix)

The nullspace of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, (denoted by $\mathrm{null}(\mathbf{A})$) is defined as

$$\operatorname{null}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^p \mid \mathbf{A}\mathbf{x} = \mathbf{0}\}$$

- null(A) is the set of vectors mapped to zero by A.
- $\operatorname{null}(\mathbf{A})$ is the set of vectors orthogonal to the rows of \mathbf{A} .

Definition (Range of a matrix)

The range of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, (denoted by $\operatorname{range}(\mathbf{A})$) is defined as

range(
$$\mathbf{A}$$
) = { $\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^p$ } $\subseteq \mathbb{R}^n$

• range(A) is the span of the columns (or the column space) of A.

Definition (Rank of a matrix)

The rank of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, (denoted by $\operatorname{rank}(\mathbf{A})$) is defined as

$$\operatorname{rank}(\mathbf{A}) = \operatorname{\mathbf{dim}}(\operatorname{range}(\mathbf{A}))$$

- ▶ rank(A) is the maximum number of independent columns (or rows) of A, ⇒ rank(A) $\leq \min(n, p)$.
- ▶ $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^T)$; and $\operatorname{rank}(\mathbf{A}) + \operatorname{dim}(\operatorname{null}(\mathbf{A})) = n$.

Matrix definitions contd.

Definition (Eigenvalues & Eigenvectors)

The non-zero vector \mathbf{x} is an eigenvector of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ if $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ where $\lambda \in \mathbb{R}$ is called an eigenvalue of \mathbf{A} .

• A scales its eigenvectors by it eigenvalues.

Definition (Singular values & singular vectors)

For $\mathbf{A} \in \mathbb{R}^{n \times p}$ and *unit* vectors $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^p$ if

$$\mathbf{A}\mathbf{v} = \sigma\mathbf{u}$$
 and $\mathbf{A}^T\mathbf{u} = \sigma\mathbf{v}$

then $\sigma \in \mathbb{R}$ ($\sigma \ge 0$) is a singular value of \mathbf{A} ; \mathbf{v} and \mathbf{u} are the right singular vector and the left singular vector respectively of \mathbf{A} .

Definition (Symmetric matrix)

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A} = \mathbf{A}^T$.

Lemma

The eigenvalues of a symmetric \mathbf{A} are real.

Proof.

Assume
$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
, $\mathbf{x} \in \mathbb{C}^p$, $\mathbf{x} \neq \mathbf{0}$, then $\overline{\mathbf{x}}^T \mathbf{A}\mathbf{x} = \overline{\mathbf{x}}^T (\mathbf{A}\mathbf{x}) = \overline{\mathbf{x}}^T (\lambda \mathbf{x}) = \lambda \sum_{i=1}^n |x_i|^2$
but $\overline{\mathbf{x}}^T \mathbf{A}\mathbf{x} = \overline{(\mathbf{A}\mathbf{x})}^T \mathbf{x} = \overline{\lambda} \sum_{i=1}^n |x_i|^2 \Rightarrow \lambda = \overline{\lambda}$ i.e. $\lambda \in \mathbb{R}$

Matrix definitions contd.

Definition (Positive semidefinite & positive definite matrices) A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive semidefinite (denoted $\mathbf{A} \succeq 0$) if $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for all $\mathbf{x} \neq \mathbf{0}$; while it is positive definite (denoted $\mathbf{A} \succ 0$) if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$

- $\mathbf{A} \succeq 0$ iff all its eigenvalues are nonnegative i.e. $\lambda_{\min}(\mathbf{A}) \ge 0$.
- Similarly, $\mathbf{A} \succ 0$ iff all its eigenvalues are **positive** i.e. $\lambda_{\min}(\mathbf{A}) > 0$.
- A is negative semidefinite if $-A \succeq 0$; while A is negative definite if $-A \succ 0$.
- Semidefinite ordering of two symmetric matrices, A and B: $A \succeq B$ if $A B \succeq 0$.

Example (Matrix inequalities)

1. If
$$\mathbf{A} \succeq 0$$
 and $\mathbf{B} \succeq 0$, then $\mathbf{A} + \mathbf{B} \succeq 0$

- 2. If $A \succeq B$ and $C \succeq D$, then $A + C \succeq B + D$
- 3. If $\mathbf{B} \leq 0$ then $\mathbf{A} + \mathbf{B} \leq \mathbf{A}$
- 4. If $\mathbf{A} \succeq 0$ and $\alpha \ge 0$, then $\alpha \mathbf{A} \succeq 0$
- 5. If $\mathbf{A} \succ 0$, then $\mathbf{A}^2 \succ 0$
- 6. If $\mathbf{A} \succ 0$, then $\mathbf{A}^{-1} \succ 0$

Matrix decompositions

Definition (Eigenvalue decomposition)

The eigenvalue decomposition of a square matrix, $\mathbf{A} \in \mathbb{R}^{n \times n}$, is given by:

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$$

- the columns of $\mathbf{X} \in \mathbb{R}^{n imes n}$, i.e. \mathbf{x}_i , are eigenvectors of \mathbf{A}
- $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ where λ_i (also denoted $\lambda_i(\mathbf{A})$) are eigenvalues of \mathbf{A}
- A matrix that admits this decomposition is therefore called diagonalizable matrix

Eigendecomposition of symmetric matrices

If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, the decomposition becomes $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$ where $\mathbf{U} \in \mathbb{R}^{n \times n}$ is unitary (or orthonormal), i.e. $\mathbf{U}^T \mathbf{U} = \mathbf{I}$ and λ_i are real

If we order $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, $\lambda_i(\mathbf{A})$ becomes the i^{th} largest eigenvalue of \mathbf{A} .

Definition (Determinant of a matrix)

The determinant of a square matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$, denoted by $det(\mathbf{A})$, is given by:

$$\det(\mathbf{A}) = \prod_{i=1}^{p} \lambda_i$$

where λ_i are *eigenvalues* of **A**.

Matrix decompositions contd

Definition (Singular value decomposition)

The singular value decomposition (SVD) of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, is given by:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$$

- ▶ $\operatorname{rank}(\mathbf{A}) = r \leq \min(n, p)$ and σ_i is the i^{th} singular value of \mathbf{A}
- \mathbf{u}_i and \mathbf{v}_i are the i^{th} left and right singular vectors of \mathbf{A} respectively
- $\mathbf{U} \in \mathbb{R}^{n \times r}$ and $\mathbf{V} \in \mathbb{R}^{p \times r}$ are unitary matrices (i.e. $\mathbf{U}^T \mathbf{U} = \mathbf{I}$)
- $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_r)$ where $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r \ge 0$
- $\begin{array}{l} \mathbf{v}_i \text{ are eigenvectors of } \mathbf{A}^T \mathbf{A}; \ \sigma_i = \sqrt{\lambda_i \left(\mathbf{A}^T \mathbf{A}\right)} \ (\text{and } \lambda_i \left(\mathbf{A}^T \mathbf{A}\right) = 0 \ \text{for } i > r) \\ \text{since} \quad \mathbf{A}^T \mathbf{A} = \left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T\right)^T \left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T\right) = \left(\mathbf{V} \boldsymbol{\Sigma}^2 \mathbf{V}^T\right) \end{array}$

•
$$\mathbf{u}_i$$
 are eigenvectors of $\mathbf{A}\mathbf{A}^T$; $\sigma_i = \sqrt{\lambda_i (\mathbf{A}\mathbf{A}^T)}$ (and $\lambda_i (\mathbf{A}\mathbf{A}^T) = 0$ for $i > r$)
since $\mathbf{A}\mathbf{A}^T = (\mathbf{U}\Sigma\mathbf{V}^T) (\mathbf{U}\Sigma\mathbf{V}^T)^T = (\mathbf{U}\Sigma^2\mathbf{U}^T)$

Matrix decompositions contd

Definition (LU)

The LU factorization of a nonsingular square matrix, $\mathbf{A} \in \mathbb{R}^{p \times p}$, is given by:

 $\mathbf{A}=\mathbf{PLU}$

where P is a permutation matrix¹, L is lower triangular and U is upper triangular.

Definition (QR)

The **QR** factorization of any matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, is given by:

 $\mathbf{A}=\mathbf{Q}\mathbf{R}$

where $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is an orthonormal matrix, i.e. $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$, and $\mathbf{R} \in \mathbb{R}^{n \times p}$ is upper triangular.

Definition (Cholesky)

The **Cholesky factorization** of a positive definite and symmetric matrix, $\mathbf{A} \in \mathbb{R}^{p \times p}$, is given by:

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T$$

where \mathbf{L} is a lower triangular matrix with positive entries on the diagonal.

¹ A matrix $\mathbf{P} \in \mathbb{R}^{p imes p}$ is permutation if it has only one 1 in each row and each column.

Complexity of matrix operations

Definition (floating-point operation)

A **floating-point operation** (flop) is one addition, subtraction, multiplication, or division of two floating-point numbers.

Table: Complexity examples: vector are in \mathbb{R}^p , matrices in $\mathbb{R}^{n \times p}$, $\mathbb{R}^{p \times m}$ or $\mathbb{R}^{p \times p}$ [2]

Operation	Complexity	Remarks		
vector addition	p flops			
vector inner product	2p-1 flops	or $pprox 2p$ for p large		
matrix-vector product	n(2p-1) flops	or $pprox 2np$ for p large		
		$2m$ if \mathbf{A} is sparse with m nonzeros		
matrix-matrix product	mn(2p-1) flops	or $\approx 2mnp$ for p large		
		much less if ${f A}$ is sparse 1		
LU decomposition	$\frac{2}{3}p^{3} + 2p^{2}$ flops	or $\frac{2}{3}p^3$ for p large		
	0	much less if \mathbf{A} is sparse ¹		
Cholesky decomposition	$\frac{1}{3}p^3 + 2p^2$ flops	or $\frac{1}{3}p^3$ for p large		
	0	much less if ${f A}$ is sparse 1		
SVD	$C_1 n^2 p + C_2 p^3$ flops	$C_1 = 4$, $C_2 = 22$ for R-SVD algo.		
Determinant	complexity of SVD			

¹ Complexity depends on p, no. of nonzeros in **A** and the sparsity pattern.

Computing eigenvalues and eigenvectors

- There are various algorithms to compute eigenpairs of matrices [3].
- One can choose an algorithm depending on the setting (computational complexity, number of eigenvalues/eigenvectors needed etc.)

Power Method

Starting with an initial vector \mathbf{x}^0 , $\mathbf{x}^{k+1} = \frac{\mathbf{A} x^k}{\|\mathbf{A} x^k\|_2}$ converges to the leading eigenvector of the matrix \mathbf{A} under certain conditions. Moreover, $\lambda^k = \frac{\mathbf{x}^{k^*} \mathbf{A} \mathbf{x}^k}{\mathbf{x}^{k^*} \mathbf{x}^k}$ converges to the leading eigenvalue.

- Useful when A is a large matrix with sparse entries as it does not require matrix decomposition, but only matrix-vector multiplications and normalizations.
- Used by PageRank algorithm of Google.

Linear operators

- Matrices are often given in an implicit form.
- It is convenient to think of them as linear operators.

Proposition (Linear operators & matrices)

Any linear operator in finite dimensional spaces can be represented as a matrix.

Example

Given matrices \mathbf{A}, \mathbf{B} and \mathbf{X} with compatible dimensions and the *linear operator* $\mathcal{M} : \mathbb{R}^{n \times p} \to \mathbb{R}^{np}$, a linear operator can define the following implicit mapping

$$\mathcal{M}(\mathbf{X}) \coloneqq \left(\mathbf{B}^T \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{X}) = \operatorname{vec}(\mathbf{A}\mathbf{X}\mathbf{B}),$$

where \otimes is the Kronecker product and $\operatorname{vec} : \mathbb{R}^{n \times p} \to \mathbb{R}^{np}$ is yet another linear operator that vectorizes its entries. **Note:** Clearly, it is more efficient to compute $\operatorname{vec}(\mathbf{AXB})$ than to perform the *matrix*

multiplication $\left(\mathbf{B}^T \otimes \mathbf{A}
ight) \operatorname{vec}(\mathbf{X}).$

Definition (Operator norm)

The operator norm between ℓ_q and ℓ_r $(1 \le q, r \le \infty)$ of a matrix ${f A}$ is defined as

$$\|\mathbf{A}\|_{q \to r} = \sup_{\|\mathbf{x}\|_q \le 1} \|\mathbf{A}\mathbf{x}\|_r$$

Problem

Show that $\|\mathbf{A}\|_{2\to 2} = \|\mathbf{A}\|$ i.e., ℓ_2 to ℓ_2 operator norm is the spectral norm.

Solution

Other examples

▶ The $||A||_{\infty\to\infty}$ (norm induced by ℓ_{∞} -norm) also denoted $||A||_{\infty}$, is the max-row-sum norm:

$$\|\mathbf{A}\|_{\infty \to \infty} := \sup\{\|\mathbf{A}\mathbf{x}\|_{\infty} \mid \|\mathbf{x}\|_{\infty} \le 1\} = \max_{i=1,\dots,n} \sum_{j=1}^{\nu} |a_{ij}|.$$

 \blacktriangleright The $\|\mathbf{A}\|_{1\to 1}$ (norm induced by $\ell_1\text{-norm})$ also denoted $\|\mathbf{A}\|_1$, is the max-column-sum norm:

$$\|\mathbf{A}\|_{1\to 1} := \sup\{\|\mathbf{A}\mathbf{x}\|_1 \mid \|\mathbf{x}\|_1 \le 1\} = \max_{j=1,\dots,p} \sum_{i=1}^n |a_{ij}|.$$

Useful relation for operator norms

The following identity holds

$$\|\mathbf{A}\|_{q \to r} := \max_{\|\mathbf{z}\|_r \leq 1, \|\mathbf{x}\|_q = 1} \langle \mathbf{z}, \mathbf{A}\mathbf{x} \rangle = \max_{\|\mathbf{x}\|_{q'} \leq 1, \|\mathbf{z}\|_{r'} = 1} \langle \mathbf{A}^T \mathbf{z}, \mathbf{x} \rangle =: \|\mathbf{A}^T\|_{q' \to r'}$$

whenever 1/q + 1/q' = 1 = 1/r + 1/r'.

Example

- 1. $\|\mathbf{A}\|_{\infty \to 1} = \|\mathbf{A}^T\|_{1 \to \infty}$.
- 2. $\|\mathbf{A}\|_{2 \to 1} = \|\mathbf{A}^T\|_{2 \to \infty}$.
- 3. $\|\mathbf{A}\|_{\infty \to 2} = \|\mathbf{A}^T\|_{1 \to 2}$.

Computation of operator norms

- The computation of some operator norms is NP-hard [1]; these include:
 - **1**. $\|\mathbf{A}\|_{\infty \to 1}$ 2. $\|\mathbf{A}\|_{2\to 1}$
 - 3. $\|\mathbf{A}\|_{\infty \to 2}$

But some of them are approximable [4]; these include

- 1. $\|\mathbf{A}\|_{\infty \to 1}$ (via Gronthendieck factorization)
- 2. $\|\mathbf{A}\|_{\infty \to 2}$ (via Pietzs factorization)

Matrix norms

Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)

 $\begin{array}{ll} \mathsf{A} \text{ norm of an } n \times p \text{ matrix is a map } \| \cdot \| : \mathbb{R}^{n \times p} \to \mathbb{R} \text{ such that for all matrices} \\ \mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times p} \text{ and scalar } \lambda \in \mathbb{R} \\ (a) & \|\mathbf{A}\| \geq 0 \text{ for all } \mathbf{A} \in \mathbb{R}^{n \times p} & \textit{nonnegativity} \\ (b) & \|\mathbf{A}\| = 0 \text{ if and only if } \mathbf{A} = \mathbf{0} & \textit{definitiveness} \\ (c) & \|\lambda\mathbf{A}\| = |\lambda| \|\mathbf{A}\| & \textit{homogeniety} \\ (d) & \|\mathbf{A} + \mathbf{B}\| \leq \|\mathbf{A}\| + \|\mathbf{B}\| & \textit{triangle inequality} \end{array}$

Definition (Matrix inner product)

Matrix inner product is defined as follows

$$\langle \mathbf{A}, \mathbf{B} \rangle = \mathsf{trace} \left(\mathbf{A} \mathbf{B}^T \right)$$
.

• Similar to vector ℓ_p -norms, we have Schatten q-norms for matrices.

Definition (Schatten *q*-norms)

$$\|\mathbf{A}\|_q := \left(\sum_{i=1}^p \left(\sigma(\mathbf{A})_i\right)^q\right)^{1/q}$$
, where $\sigma(\mathbf{A})_i$ is the i^{th} singular value of \mathbf{A} .

Example (with $r = \min\{n, p\}$ and $\sigma_i = \sigma(\mathbf{A})_i$)

$$\begin{aligned} \|\mathbf{A}\|_{1} &= \|\mathbf{A}\|_{*} &:= \sum_{i=1}^{r} \sigma_{i} &\equiv \operatorname{trace}\left(\sqrt{\mathbf{A}^{T}\mathbf{A}}\right) \quad (\operatorname{Nuclear/trace}) \\ \|\mathbf{A}\|_{2} &= \|\mathbf{A}\|_{F} &:= \sqrt{\sum_{i=1}^{r} (\sigma_{i})^{2}} &\equiv \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{p} |a_{ij}|^{2}} \quad (\operatorname{Frobenius}) \\ \|\mathbf{A}\|_{\infty} &= \|\mathbf{A}\| &:= \max_{i=1,\dots,r} \{\sigma_{i}\} &\equiv \max_{\mathbf{x}\neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} \quad (\operatorname{Spectral/matrix}) \end{aligned}$$

Problem (Rank-*r* approximation)

Find $\underset{\mathbf{X}}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{Y}\|_F$ subject to: $\operatorname{rank}(\mathbf{X}) \leq r$.

Problem (Rank-r approximation)

 $\begin{array}{ll} \mathsf{Find} & \mathop{\arg\min}\limits_{\mathbf{X}} \ \|\mathbf{X}-\mathbf{Y}\|_F \ \ \mathsf{subject to:} \ \ \mathrm{rank}(\mathbf{X}) \leq r. \\ \end{array}$

Solution (Eckart-Young-Mirsky Theorem)

$$\begin{aligned} \underset{\mathbf{X}:\operatorname{rank}(\mathbf{X})\leq r}{\arg\min} & \|\mathbf{X} - \mathbf{Y}\|_{F} = \underset{\mathbf{X}:\operatorname{rank}(\mathbf{X})\leq r}{\arg\min} & \|\mathbf{X} - \mathbf{U}\boldsymbol{\Sigma}_{\mathbf{Y}}\mathbf{V}^{T}\|_{F}, \quad (\mathsf{SVD}) \\ &= \underset{\mathbf{X}:\operatorname{rank}(\mathbf{X})\leq r}{\arg\min} & \|\mathbf{U}^{T}\mathbf{X}\mathbf{V} - \boldsymbol{\Sigma}_{\mathbf{Y}}\|_{F}, \quad (\mathsf{unit. invar. of } \|\cdot\|_{F}) \\ &= \mathbf{U}\left(\underset{\mathbf{X}:\operatorname{rank}(\mathbf{X})\leq r}{\arg\min} & \|\mathbf{X} - \boldsymbol{\Sigma}_{\mathbf{Y}}\|_{F}\right)\mathbf{V}^{T}, \quad (\mathsf{sparse approx.}) \\ &= \mathbf{U}H_{r}\left(\mathbf{\Sigma}_{\mathbf{Y}}\right)\mathbf{V}^{T}, \quad (r\text{-sparse approx. of the diagonal entries}) \end{aligned}$$

Singular value hard thresholding operator H_r performs the best rank-r approximation of a matrix via sparse approximation: We keep the r largest singular values of the matrix and set the rest to zero.

Matrix & vector norm analogy							
	Vectors	$\ \mathbf{x}\ _1$		$\ \mathbf{x}\ _2$		$\ \mathbf{x}\ _{\infty}$	
	Matrices	$\ \mathbf{X}\ _{*}$		$\ \mathbf{X}\ _F$		$\ \mathbf{X}\ $	

Definition (Dual of a matrix)

The dual norm of $\mathbf{A} \in \mathbb{R}^{n \times p}$ is defined as

$$\|\mathbf{A}\|^* = \sup \left\{ \operatorname{trace} \left(\mathbf{A}^T \mathbf{X} \right) \mid \|\mathbf{X}\| \leq 1 \right\}.$$

Matrix & vector dual norm analogy

Vector primal norm	$\ \mathbf{x}\ _1$	$\ {\bf x}\ _2$	$\ \ \mathbf{x} \ _{\infty}$
Vector dual norm	$\ \mathbf{x}\ _{\infty}$	$\ \mathbf{x}\ _2$	$\ \mathbf{x}\ _1$
Matrix primal norm	$\ \mathbf{X}\ _{*}$	$\ \mathbf{X}\ _F$	X
Matrix dual norm	$\ \mathbf{X}\ $	$\ \mathbf{X}\ _F$	$\ \mathbf{X}\ _{*}$

Definition (Nuclear norm computation)

 $\|\mathbf{A}\|_* := \|\sigma(\mathbf{A})\|_1$ where $\sigma(\mathbf{A})$ is a vector of singular values of \mathbf{A}

$$= \min_{\mathbf{U}, \mathbf{V}: \mathbf{A} = \mathbf{U}\mathbf{V}^H} \|\mathbf{U}\|_F \|\mathbf{V}\|_F = \min_{\mathbf{U}, \mathbf{V}: \mathbf{A} = \mathbf{U}\mathbf{V}^H} \frac{1}{2} \left(\|\mathbf{U}\|_F^2 + \|\mathbf{V}\|_F^2 \right)$$

Additional useful properties are below:

- ▶ Nuclear vs. Frobenius: $\|\mathbf{A}\|_F \leq \|\mathbf{A}\|_* \leq \sqrt{\mathsf{rank}(\mathbf{A})} \cdot \|\mathbf{A}\|_F$
- Hölder for matrices: $|\langle \mathbf{A}, \mathbf{B} \rangle| \le \|\mathbf{A}\|_p \|\mathbf{B}\|_q$, when $\frac{1}{p} + \frac{1}{q} = 1$
- We have

$$\begin{array}{ll} 1. & \|\mathbf{A}\|_{2 \rightarrow 2} \leq \|\mathbf{A}\|_{F} \\ 2. & \|\mathbf{A}\|_{2 \rightarrow 2}^{2} \leq \|\mathbf{A}\|_{1 \rightarrow 1} \|\mathbf{A}\|_{\infty \rightarrow \infty} \\ 3. & \|\mathbf{A}\|_{2 \rightarrow 2}^{2} \leq \|\mathbf{A}\|_{1 \rightarrow 1} \text{ when } \mathbf{A} \text{ is self-adjoint} \end{array}$$

References |

- Simon Foucart and Holger Rauhut. *A mathematical introduction to compressive sensing*. Springer, 2013.
- [2] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.
- [3] Gilbert Strang. Linear algebra and its applications. Number 04; QA184, S8. 1976.
- [4] Joel A Tropp.

Column subset selection, matrix factorization, and eigenvalue optimization. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 978–986, 2009.

