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Outline

I This lecture
1. Basic concepts in convex analysis
2. Basic review of linear algebra

I Next lecture
1. Unconstrained convex optimization: the basics
2. Gradient descent methods

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 51



Recommended reading

I Chapter 2 & 3 in S. Boyd, and L. Vandenberghe, Convex Optimization,
Cambridge Univ. Press, 2009.

I Appendices A & B in D. Bertsekas, Nonlinear Programming, Athena Scientific,
1999.

I Matrix computations, G.H. Golub, C.F. Van Loan, JHU Press, 2012.
I Linear algebra and its applications, G. Strang, Thomson, Brooks/Cole, 2006.
I KC Border, Quick Review of Matrix and Real Linear Algebra

http://www.hss.caltech.edu/~kcb/Notes/LinearAlgebra.pdf, 2013.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 51

http://www.hss.caltech.edu/~kcb/Notes/LinearAlgebra.pdf


Motivation

Motivation

I The first part of this lecture introduces basic notions in convex analysis.
I The second part reviews some concepts in linear algebra.
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x? of f(x), given starting point x0 based on only local information.

I Fog of war

x

f(x)

x0
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x? of f(x), given starting point x0 based on only local information.

I Fog of war, non-differentiability, discontinuities, local minima, stationary points...

x

f(x)

x?x0
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x? of f(x), given starting point x0 based on only local information.

I Fog of war, non-differentiability, discontinuities, local minima, stationary points...

x

f(x)

x?x0

We need a key structure on the function local minima: Convexity.
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Basics of functions

Definition (Function)
A function f with domain Q ⊆ Rp and codomain U ⊆ R is denoted as:

f : Q → U .

The domain Q represents the set of values in Rp on which f is defined and is denoted
as dom(f) ≡ Q = {x : −∞ < f(x) < +∞}. The codomain U is the set of function
values of f for any input in Q.
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Continuity in functions

Definition (Continuity)
Let f : Q → R where Q ⊆ Rp. Then, f is a continuous function over its domain Q if
and only if

lim
x→y

f(x) = f(y), ∀y ∈ Q,

i.e., the limit of f—as x approaches y—exists and is equal to f(y).

Definition (Class of continuous functions)
We denote the class of continuous functions f over the domain Q as f ∈ C(Q).

Definition (Lipschitz continuity)
Let f : Q → R where Q ⊆ Rp. Then, f is called Lipschitz continuous if there exists a
constant value K ≥ 0 such that:

|f(y)− f(x)| ≤ K‖y− x‖2, ∀x, y ∈ Q.

I "Small" changes in the input result into "small" changes in the function values.
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Continuity in functions
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Lower semi-continuity

Definition
A function f : Rn → R ∪ {+∞} is lower semi-continuous (l.s.c.) if

lim inf
x→y

f(x) ≥ f(y), for any y ∈ dom(f).

f(x) =
{

e−x, if x < 0
+∞, if x ≥ 0 f(x) =

{
e−x, if x ≤ 0
+∞, if x > 0

Unless stated otherwise, we only consider l.s.c. functions.
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Lower semi-continuity

Definition
A function f : Rn → R ∪ {+∞} is lower semi-continuous (l.s.c.) if

lim inf
x→y

f(x) ≥ f(y), for any y ∈ dom(f).

I Intuition: A lower semi-continuous function only jumps down.

f(x)

xx1 x2

l.s.c
not l.s.c

Monday, June 2, 14
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Differentiability in functions
I We use ∇f(x) to denote the gradient of f
at x ∈ Rp such that:

∇f(x) =
p∑

i=1

∂f

∂xi
ei =

[
∂f

∂x1
, · · · ,

∂f

∂xp

]T
Example: f(x) = ‖b−Ax‖2

2

∇f(x) = −2AT (b−Ax).

Definition (Differentiability)
Let f ∈ C(Q) where Q ⊆ Rp. Then, f is a k-times continuously differentiable on Q if
its partial derivatives up to k-th order exist and are continuous ∀x ∈ Q.

Definition (Class of differentiable functions)
We denote the class of k-times continuously differentiable functions f on Q as
f ∈ Ck(Q).

I In the special case of k = 2, we dub ∇2f(x) the Hessian of f(x), where
[∇2f(x)]i,j = ∂2f

∂xi∂xj
.

I We have Cq(Q) ⊆ Ck(Q) where q ≤ k. For example, a twice differentiable
function is also once differentiable.

I For the case of complex-valued matrices, we refer to the Matrix Cookbook online.
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Differentiability in functions

I Some examples:

f(x) = x2 · sin(1/x), x � 0

f(x)

x

Thursday, May 22, 14

x

f(x)

f(x) = |x|

Wednesday, June 18, 14

Figure: (Left panel) ∞-times continuously differentiable function in R. (Right panel)
Non-differentiable f(x) = |x| in R.
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Stationary points of differentiable functions

Definition (Stationary point)
A point x̄ is called a stationary point of a twice differentiable function f(x) if

∇f(x̄) = 0.

Definition (Local minima, maxima, and saddle points)
Let x̄ be a stationary point of a twice differentiable function f(x).
I If ∇2f(x̄) � 0, then the point x̄ is called a local minimum.
I If ∇2f(x̄) ≺ 0, then the point x̄ is called a local maximum.
I If ∇2f(x̄) = 0, then the point x̄ can be a saddle point depending on the sign
change.
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Stationary points of smooth functions contd.

Intuition
Recall Taylor’s theorem for the function f around x̄ for all y that satisfy ‖y− x̄‖2 ≤ r
in a local region with radius r as follows

f(y) = f(x̄) + 〈∇f(x̄),y− x̄〉+
1
2

(y− x̄)T∇2f(z)(y− x̄),

where z is a point between x̄ and y. When r → 0, the second-order term becomes
∇2f(z)→ ∇2f(x̄). Since ∇f(x̄) = 0, Taylor’s theorem leads to
I f(y) > f(x̄) when ∇2f(x̄) � 0. Hence, the point x̄ is a local minimum.
I f(y) < f(x̄) when ∇2f(x̄) ≺ 0. Hence, the point x̄ is a local maximum.
I f(y) ≷ f(x̄) when ∇2f(x̄) = 0. Hence, the point x̄ can be a saddle point (i.e., f(x) = x3

at x̄ = 0), a local minima (i.e., f(x) = x4 at x̄ = 0) or a local maxima (i.e., f(x) = −x4

at x̄ = 0).

f(x)

x
local minimum

local maximum

saddle point

saddle point x̄
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Convexity

Definition
A function f : Q → R ∪ {+∞} is called convex on its domain Q if, for any
x1, x2 ∈ Q and α ∈ [0, 1], we have:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

I If −f(x) is convex, then f(x) is called concave.

x

f(x)

x1 x2

f(x2)

f(x1)

Monday, May 26, 14

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

Thursday, May 29, 14

x

f(x)

x1 x2

f(x2)

f(x1)

Monday, May 26, 14

Figure: (Left) Non-convex (Middle) Convex (Right) Concave
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Convexity

Definition
A function f : Q → R ∪ {+∞} is called convex on its domain Q if, for any
x1, x2 ∈ Q and α ∈ [0, 1], we have:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

I Additional terms that you will encounter in the literature

Definition (Proper)
A convex function f is called proper if its domain satisfies dom(f) , ∅ and,
f(x) > −∞, ∀x ∈ dom(f).

Definition (Extended real-valued convex functions)
We define the extended real-valued convex functions f as

f(x) =
{

f(x) if x ∈ dom(f)
+∞ if otherwise

To denote this concept, we use f : dom(f)→ R ∪ {+∞}. (Note how l.s.c. might be
useful)
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Convexity

Definition
A function f : Q → R ∪ {+∞} is called convex on its domain Q if, for any
x1, x2 ∈ Q and α ∈ [0, 1], we have:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

Example
Function Example Attributes

`p vector norms, p ≥ 1 ‖x‖2, ‖x‖1, ‖x‖∞ convex

`p matrix norms, p ≥ 1 ‖X‖∗ =
∑rank(X)

i=1
σi convex

Square root function
√
x concave, nondecreasing

Maximum of functions max{x1, . . . , xn} convex, nondecreasing
Minimum of functions min{x1, . . . , xn} concave, nondecreasing

Sum of convex functions
∑n

i=1
fi, fi convex convex

Logarithmic functions log (det(X)) concave, assumes X � 0
Affine/linear functions

∑n

i=1
Xii both convex and concave

Eigenvalue functions λmax(X) convex, assumes X = XT
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Strict convexity

Definition
A function f : Q → R ∪ {+∞} is called strictly convex on its domain Q if and only if
for any x1, x2 ∈ Q and α ∈ [0, 1] we have:

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2).

x

f(x)

x1 x2

f(x2)f(x1)

Set of minima

Monday, June 16, 14

x

f(x)

x1 x2

f(x2)

f(x1)

↵x1 + (1 � ↵)x2

f(↵x1 + (1 � ↵)x2)

↵f(x1) + (1 � ↵)f(x2)

Thursday, May 29, 14

Figure: (Left panel) Convex function. (Right panel) Strictly convex function.
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Revisiting: Alternative definitions of function convexity II

Definition
A function f ∈ C1(Q) is called convex on its domain if for any x, y ∈ Q:

f(x) ≥ f(y) + 〈∇f(y), x− y〉.

f(x)

x

f(y)

y

the function lies above all 
of its tangents

f(y) + hrf(y),x � yi

Definition
A function f ∈ C1(Q) is called convex on its domain if for any x, y ∈ Q:

〈∇f(y)−∇f(x), y− x〉 ≥ 0.

?That is, if its gradient is a monotone operator.
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Revisiting: Alternative definitions of function convexity III

Definition
A function f ∈ C2(Rp) is called convex on its domain if for any x, y ∈ Rp:

∇2f(x) � 0.

I Geometrical interpretation: the graph of f has zero or positive (upward)
curvature.

I However, this does not exclude flatness of f .
I ∇2f(x) � 0 is a sufficient condition for strict convexity.

x

f(x)

Flatness

Upward curvature

Wednesday, June 18, 14
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Stationary points and convexity

Lemma
Let f be a smooth convex function, i.e., f ∈ F1. Then, any stationary point of f is
also a global minimum.

Proof.
Let x? be a stationary point, i.e., ∇f(x?) = 0. By convexity, we have:

f(x) ≥ f(x?) + 〈∇f(x?), x− x?〉
∇f(x?)=0

= f(x?) for all x ∈ Rp.

�
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Is convexity of f enough for an iterative optimization algorithm?

x

f(x)

Constraints

Wednesday, July 2, 14
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Convexity over sets

Definition
I Q ⊆ Rp is a convex set if x1, x2 ∈ Q ⇒ ∀α ∈ [0, 1], αx1 + (1− α)x2 ∈ Q.
I Q ⊆ Rp is a strictly convex set if

x1, x2 ∈ Q =⇒ ∀α ∈ (0, 1), αx1 + (1− α)x2 ∈ interior(Q).

x1

x2

↵x
1
+

(1
� ↵

)x
2

Monday, May 26, 14

x1

x2

↵x
1 +

(1�
↵)x

2

Monday, May 26, 14

x1

x2

↵x
1
+

(1
� ↵

)x
2

Monday, May 26, 14

Figure: (Left) Strictly convex (Middle) Convex (Right) Non-convex
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Convexity over sets

Definition
I Q ⊆ Rp is a convex set if x1, x2 ∈ Q ⇒ ∀α ∈ [0, 1], αx1 + (1− α)x2 ∈ Q.
I Q ⊆ Rp is a strictly convex set if

x1, x2 ∈ Q =⇒ ∀α ∈ (0, 1), αx1 + (1− α)x2 ∈ interior(Q).

b = Ax
x1

x2

x3

Thursday, June 19, 14

Figure: A linear set of equations b = Ax defines an affine (thus convex) set.
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Convexity over sets

Definition
I Q ⊆ Rp is a convex set if x1, x2 ∈ Q ⇒ ∀α ∈ [0, 1], αx1 + (1− α)x2 ∈ Q.
I Q ⊆ Rp is a strictly convex set if

x1, x2 ∈ Q =⇒ ∀α ∈ (0, 1), αx1 + (1− α)x2 ∈ interior(Q).

Why is this also important/useful?
I convex sets <> convex optimization constraints

minimize
x

f0(x)

subject to constraints
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Some basic notions on sets

Definition (Closed set)
A set is called closed if it contains all its limit points.

Definition (Closure of a set)
Let Q ⊆ Rp be a given open set, i.e., the limit points on the boundaries of Q do not
belong into Q. Then, the closure of Q, denoted as cl(Q), is the smallest set in Rp

that includes Q with its boundary points.

Q

Friday, June 27, 14

Q

Friday, June 27, 14

Q

Friday, June 27, 14

Figure: (Left panel) Closed set Q. (Middle panel) Open set Q and its closure cl(Q) (Right
panel).
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Convex hull
Definition (Convex hull)
Let V ⊆ Rp be a set. The convex hull of V, i.e., conv(V), is the smallest convex set
that contains V.

Definition (Convex hull of points)
Let V ⊆ Rp be a finite set of points with cardinality |V|. The convex hull of V is the
set of all convex combinations of its points, i.e.,

conv(V) =

{ |V|∑
i=1

αixi :
|V|∑
i=1

αi = 1, αi ≥ 0, ∀i, xi ∈ V

}
.

Q

Tuesday, June 17, 14

conv(Q)

Tuesday, June 17, 14

Figure: (Left) Discrete set of points V. (Right) Convex hull conv(V).
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Revisiting: Alternative definitions of function convexity IV

Definition
The epigraph of a function f : Q → R,Q ⊆ Rp is the subset of Rp+1 given by:

epi(f) = {(x, w) : x ∈ Q, w ∈ R, f(x) ≤ w} .

Lemma
A function f : Q → R is convex if and only if its epigraph, i.e, the region above its
graph, is a convex set.

x

f(x)

epi(f)

Monday, May 26, 14

Figure: Epigraph — the region in green above graph f(·).
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Notation

I Scalars are denoted by lowercase letters (e.g. k)
I Vectors by lowercase boldface letters (e.g., x)
I Matrices by uppercase boldface letters (e.g. A)
I Component of a vector x, matrix A as xi, aij & Ai,j,k,... respectively.
I Sets by uppercase calligraphic letters (e.g. S) .
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Vector norms

Definition (Vector norm)
A norm of a vector in Rp is a function ‖ · ‖ : Rp → R such that for all vectors
x,y ∈ Rp and scalar λ ∈ R
(a) ‖x‖ ≥ 0 for all x ∈ Rp nonnegativity
(b) ‖x‖ = 0 if and only if x = 0 definitiveness
(c) ‖λx‖ = |λ|‖x‖ homogeniety
(d) ‖x + y‖ ≤ ‖x‖+ ‖y‖ triangle inequality

I There is a family of `q-norms parameterized by q ∈ [1,∞];

I For x ∈ Rp, the `q-norm is defined as ‖x‖q :=
(∑p

i=1 |xi|q
)1/q .

Example

(1) `2-norm: ‖x‖2 :=
√∑p

i=1 x
2
i (Euclidean norm)

(2) `1-norm: ‖x‖1 :=
∑p

i=1 |xi| (Manhattan norm)

(3) `∞-norm: ‖x‖∞ := max
i=1,...,p

|xi| (Chebyshev norm)
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Vector norms contd.

Definition (Quasi-norm)
A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is
replaced by ‖x + y‖ ≤ c (‖x‖+ ‖y‖) for a constant c ≥ 1.

Definition (Semi(pseudo)-norm)
A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example
I The `q-norm is in fact a quasi norm when q ∈ (0, 1), with c = 21/q − 1.
I The total variation norm (TV-norm) defined (in 1D):
‖x‖TV :=

∑p−1
i=1 |xi+1 − xi| is a semi-norm since it fails to satisfy (b);

e.g. any x = c(1, 1, . . . , 1)T for c , 0 will have ‖x‖TV = 0 even though x , 0.

Definition (`0-“norm”)
‖x‖0 = limq→0‖x‖q

q = |{i : xi , 0}|

The `0-norm counts the non-zero components of x. It is not a norm – it does not
satisfy the property (c) ⇒ it is also neither a quasi- nor a semi-norm.
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Vector norms contd.
Problem (s-sparse approximation)
Find arg min

x∈Rp
‖x− y‖2 subject to: ‖x‖0 ≤ s.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 51



Vector norms contd.
Problem (s-sparse approximation)
Find arg min

x∈Rp
‖x− y‖2 subject to: ‖x‖0 ≤ s.

Solution
Define ŷ ∈ arg min

x∈Rp:‖x‖0≤s

‖x− y‖2
2 and let Ŝ = supp

(
ŷ
)
.

We now consider an optimization over sets

Ŝ ∈ arg min
S:|S|≤s

‖yS − y‖2
2.

∈ arg max
S:|S|≤s

{
‖y‖2

2 − ‖yS − y‖2
2
}

∈ arg max
S:|S|≤s

{
‖yS‖2

2
}

= arg max
S:|S|≤s

∑
i∈S

‖yi‖2 (≡ modular approximation problem).

Thus, the best s-sparse approximation of a vector is a vector with the s largest
components of the vector in magnitude.
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Vector norms contd.

Norm balls
Radius r ball in `q-norm: Bq(r) = {x ∈ Rp : ‖x‖q ≤ r}

‖x‖0 ≤ 2 `0.5-quasi norm ball `1-norm ball

`2-norm ball `∞-norm ball

Table: Example norm balls in R3
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Inner products

Definition (Inner product)
The inner product of any two vectors x,y ∈ Rp (denoted by 〈·, ·〉) is defined as
〈x,y〉 = xT y =

∑p

i
xiyi.

The inner product satisfies the following properties:
1. 〈x,y〉 = 〈y,x〉,∀x,y ∈ Rp symmetry
2. 〈(αx + βy), z〉 = 〈αx, z〉+ 〈βy, z〉,∀α, β ∈ R, ∀x,y, z ∈ Rp linearity
3. 〈x,x〉 ≥ 0,∀x ∈ Rp positive definiteness

Important relations involving the inner product:
I Hölder’s inequality: |〈x,y〉| ≤ ‖x‖q‖y‖r, where r > 1 and 1

q
+ 1

r
= 1

I Cauchy-Schwarz is a special case of Hölder’s inequality (q = r = 2)

Definition (Inner product space)
An inner product space is a vector space endowed with an inner product.
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Vector norms contd.

Definition (Dual norm)
Let ‖ · ‖ be a norm in Rp, then the dual norm denoted by ‖ · ‖∗ is defined:

‖x‖∗ = sup
‖y‖≤1

xT y, for all x,y ∈ Rp

I The dual of the dual norm is the original (primal) norm, i.e., ‖x‖∗∗ = ‖x‖.
I Hölder’s inequality ⇒ ‖ · ‖q is a dual norm of ‖ · ‖r when 1

q
+ 1

r
= 1.

Example 1
i) ‖ · ‖2 is dual of ‖ · ‖2 (i.e. ‖ · ‖2 is self-dual): sup{zT x | ‖x‖2 ≤ 1} = ‖z‖2.
ii) ‖ · ‖1 is dual of ‖ · ‖∞, (and vice versa): sup{zT x | ‖x‖∞ ≤ 1} = ‖z‖1.

Example 2
What is the dual norm of ‖ · ‖q for q = 1 + 1/ log(p)?

Solution
By Hölder’s inequality, ‖ · ‖r is the dual norm of ‖ · ‖q if 1

q
+ 1

r
= 1. Therefore,

r = 1 + log(p) for q = 1 + 1/ log(p).
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Vector norms contd.

Definition (Dual norm)
Let ‖ · ‖ be a norm in Rp, then the dual norm denoted by ‖ · ‖∗ is defined:

‖x‖∗ = sup
‖y‖≤1

xT y, for all x,y ∈ Rp

I The dual of the dual norm is the original (primal) norm, i.e., ‖x‖∗∗ = ‖x‖.
I Hölder’s inequality ⇒ ‖ · ‖q is a dual norm of ‖ · ‖r when 1

q
+ 1

r
= 1.
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Metrics

I A metric on a set is a function that satisfies the minimal properties of a distance.

Definition (Metric)
Let X be a set, then a function d(·, ·) : X × X → R is a metric if ∀x,y ∈ X :

(a) d(x,y) ≥ 0 for all x and y (nonnegativity)
(b) d(x,y) = 0 if and only if x = y (definiteness)
(c) d(x,y) = d(y,x) (symmetry)
(d) d(x,y) ≤ d(x, z) + d(z,y) (triangle inequality)

I A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b)
I A metric space (X , d) is a set X with a metric d defined on X
I Norms induce metrics while pseudo-norms induce pseudo-metrics

Example

I Euclidean distance: dE(x,y) = ‖x− y‖2
I Bregman distance: dB(·, ·) ...more on this later!
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Basic matrix definitions

Definition (Nullspace of a matrix)
The nullspace of a matrix, A ∈ Rn×p, (denoted by null(A)) is defined as

null(A) = {x ∈ Rp | Ax = 0}

I null(A) is the set of vectors mapped to zero by A.
I null(A) is the set of vectors orthogonal to the rows of A.

Definition (Range of a matrix)
The range of a matrix, A ∈ Rn×p, (denoted by range(A)) is defined as

range(A) = {Ax | x ∈ Rp} ⊆ Rn

I range(A) is the span of the columns (or the column space) of A.

Definition (Rank of a matrix)
The rank of a matrix, A ∈ Rn×p, (denoted by rank(A)) is defined as

rank(A) = dim (range(A))

I rank(A) is the maximum number of independent columns (or rows) of A,
⇒ rank(A) ≤ min(n, p).

I rank(A) = rank(AT ); and rank(A) + dim (null(A)) = n.
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Matrix definitions contd.

Definition (Eigenvalues & Eigenvectors)
The non-zero vector x is an eigenvector of a square matrix A ∈ Rn×n if Ax = λx
where λ ∈ R is called an eigenvalue of A.
I A scales its eigenvectors by it eigenvalues.

Definition (Singular values & singular vectors)
For A ∈ Rn×p and unit vectors u ∈ Rn and v ∈ Rp if

Av = σu and AT u = σv
then σ ∈ R (σ ≥ 0) is a singular value of A; v and u are the right singular vector
and the left singular vector respectively of A.

Definition (Symmetric matrix)
A matrix A ∈ Rn×n is symmetric if A = AT .

Lemma
The eigenvalues of a symmetric A are real.

Proof.
Assume Ax = λx, x ∈ Cp,x , 0, then xT Ax = xT (Ax) = xT (λx) = λ

∑n

i=1 |xi|2

but xT Ax = (Ax)
T

x = (λx)
T

x = λ
∑n

i=1 |xi|2 ⇒ λ = λ i.e. λ ∈ R �
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Matrix definitions contd.

Definition (Positive semidefinite & positive definite matrices)
A symmetric matrix A ∈ Rn×n is positive semidefinite (denoted A � 0) if
xT Ax ≥ 0 for all x , 0; while it is positive definite (denoted A � 0) if xT Ax > 0

I A � 0 iff all its eigenvalues are nonnegative i.e. λmin(A) ≥ 0.
I Similarly, A � 0 iff all its eigenvalues are positive i.e. λmin(A) > 0.
I A is negative semidefinite if −A � 0; while A is negative definite if −A � 0.
I Semidefinite ordering of two symmetric matrices, A and B: A � B if A−B � 0.

Example (Matrix inequalities)
1. If A � 0 and B � 0, then A + B � 0
2. If A � B and C � D, then A + C � B + D
3. If B � 0 then A + B � A
4. If A � 0 and α ≥ 0, then αA � 0
5. If A � 0, then A2 � 0
6. If A � 0, then A−1 � 0
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Matrix decompositions

Definition (Eigenvalue decomposition)
The eigenvalue decomposition of a square matrix, A ∈ Rn×n, is given by:

A = XΛX−1

I the columns of X ∈ Rn×n, i.e. xi, are eigenvectors of A
I Λ = diag (λ1, λ2, . . . , λn) where λi (also denoted λi(A)) are eigenvalues of A
I A matrix that admits this decomposition is therefore called diagonalizable matrix

Eigendecomposition of symmetric matrices
If A ∈ Rn×n is symmetric, the decomposition becomes A = UΛUT

where U ∈ Rn×n is unitary (or orthonormal), i.e. UT U = I and λi are real

If we order λ1 ≥ λ2 ≥ · · · ≥ λn, λi(A) becomes the ith largest eigenvalue of A.

Definition (Determinant of a matrix)
The determinant of a square matrix A ∈ Rp×p, denoted by det(A), is given by:

det(A) = Πp
i=1λi

where λi are eigenvalues of A.
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Matrix decompositions contd

Definition (Singular value decomposition)
The singular value decomposition (SVD) of a matrix, A ∈ Rn×p, is given by:

A = UΣVT =
r∑

i=1

σiuivT
i

I rank(A) = r ≤ min(n, p) and σi is the ith singular value of A
I ui and vi are the ith left and right singular vectors of A respectively
I U ∈ Rn×r and V ∈ Rp×r are unitary matrices (i.e. UT U = I)
I Σ = diag (σ1, σ2, . . . , σr) where σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0

I vi are eigenvectors of AT A; σi =
√
λi (AT A) (and λi

(
AT A

)
= 0 for i > r)

since AT A =
(
UΣVT

)T (
UΣVT

)
=
(
VΣ2VT

)
I ui are eigenvectors of AAT ; σi =

√
λi (AAT ) (and λi

(
AAT

)
= 0 for i > r)

since AAT =
(
UΣVT

) (
UΣVT

)T
=
(
UΣ2UT

)
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Matrix decompositions contd

Definition (LU)
The LU factorization of a nonsingular square matrix, A ∈ Rp×p, is given by:

A = PLU

where P is a permutation matrix1, L is lower triangular and U is upper triangular.

Definition (QR)
The QR factorization of any matrix, A ∈ Rn×p, is given by:

A = QR

where Q ∈ Rn×n is an orthonormal matrix, i.e. QT Q = I, and R ∈ Rn×p is upper
triangular.

Definition (Cholesky)
The Cholesky factorization of a positive definite and symmetric matrix, A ∈ Rp×p, is
given by:

A = LLT

where L is a lower triangular matrix with positive entries on the diagonal.

1 A matrix P ∈ Rp×p is permutation if it has only one 1 in each row and each column.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 38/ 51



Complexity of matrix operations

Definition (floating-point operation)
A floating-point operation (flop) is one addition, subtraction, multiplication, or
division of two floating-point numbers.

Table: Complexity examples: vector are in Rp, matrices in Rn×p, Rp×m or Rp×p [2]

Operation Complexity Remarks
vector addition p flops
vector inner product 2p− 1 flops or ≈ 2p for p large
matrix-vector product n(2p− 1) flops or ≈ 2np for p large

2m if A is sparse with m nonzeros
matrix-matrix product mn(2p− 1) flops or ≈ 2mnp for p large

much less if A is sparse1

LU decomposition 2
3p

3 + 2p2 flops or 2
3p

3 for p large
much less if A is sparse1

Cholesky decomposition 1
3p

3 + 2p2 flops or 1
3p

3 for p large
much less if A is sparse1

SVD C1n2p+ C2p3 flops C1 = 4, C2 = 22 for R-SVD algo.
Determinant complexity of SVD

1 Complexity depends on p, no. of nonzeros in A and the sparsity pattern.
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Computing eigenvalues and eigenvectors

I There are various algorithms to compute eigenpairs of matrices [3].
I One can choose an algorithm depending on the setting (computational
complexity, number of eigenvalues/eigenvectors needed etc.)

Power Method
Starting with an initial vector x0, xk+1 = Axk

‖Axk‖2
converges to the leading

eigenvector of the matrix A under certain conditions. Moreover, λk = xk∗Axk

xk∗xk

converges to the leading eigenvalue.

I Useful when A is a large matrix with sparse entries as it does not require matrix
decomposition, but only matrix-vector multiplications and normalizations.

I Used by PageRank algorithm of Google.
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Linear operators

I Matrices are often given in an implicit form.
I It is convenient to think of them as linear operators.

Proposition (Linear operators & matrices)
Any linear operator in finite dimensional spaces can be represented as a matrix.

Example
Given matrices A,B and X with compatible dimensions and the linear operator
M : Rn×p → Rnp, a linear operator can define the following implicit mapping

M(X) B
(
BT ⊗A

)
vec(X) = vec(AXB),

where ⊗ is the Kronecker product and vec : Rn×p → Rnp is yet another linear
operator that vectorizes its entries.
Note: Clearly, it is more efficient to compute vec(AXB) than to perform the matrix
multiplication

(
BT ⊗A

)
vec(X).
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Matrix norms contd.
Definition (Operator norm)
The operator norm between `q and `r (1 ≤ q, r ≤ ∞) of a matrix A is defined as

‖A‖q→r = sup
‖x‖q≤1

‖Ax‖r

Problem
Show that ‖A‖2→2 = ‖A‖ i.e., `2 to `2 operator norm is the spectral norm.

Solution

‖A‖2→2 = sup
‖x‖2≤1

‖Ax‖2 = sup
‖x‖2≤1

‖UΣVT x‖2 (using SVD of A)

= sup
‖x‖2≤1

‖ΣVT x‖2 (rotational invariance of ‖ · ‖2)

= sup
‖z‖2≤1

‖Σz‖2 (letting VT x = z)

= sup
‖z‖2≤1

√√√√min(n,p)∑
i=1

σ2
i z

2
i = σmax = ‖A‖ �
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Matrix norms contd.

Other examples

I The ‖A‖∞→∞ (norm induced by `∞-norm) also denoted ‖A‖∞, is the
max-row-sum norm:

‖A‖∞→∞ := sup{‖Ax‖∞ | ‖x‖∞ ≤ 1} = max
i=1,...,n

p∑
j=1

|aij |.

I The ‖A‖1→1 (norm induced by `1-norm) also denoted ‖A‖1, is the
max-column-sum norm:

‖A‖1→1 := sup{‖Ax‖1 | ‖x‖1 ≤ 1} = max
j=1,...,p

n∑
i=1

|aij |.
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Matrix norms contd.

Useful relation for operator norms
The following identity holds

‖A‖q→r := max
‖z‖r≤1,‖x‖q=1

〈z,Ax〉 = max
‖x‖q′≤1,‖z‖r′=1

〈AT z,x〉 =: ‖AT ‖q′→r′

whenever 1/q + 1/q′ = 1 = 1/r + 1/r′.

Example

1. ‖A‖∞→1 = ‖AT ‖1→∞.
2. ‖A‖2→1 = ‖AT ‖2→∞.
3. ‖A‖∞→2 = ‖AT ‖1→2.
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?Matrix norms contd.

Computation of operator norms
I The computation of some operator norms is NP-hard [1]; these include:

1. ‖A‖∞→1
2. ‖A‖2→1
3. ‖A‖∞→2

I But some of them are approximable [4]; these include
1. ‖A‖∞→1 (via Gronthendieck factorization)
2. ‖A‖∞→2 (via Pietzs factorization)
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Matrix norms

Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)
A norm of an n× p matrix is a map ‖ · ‖ : Rn×p → R such that for all matrices
A,B ∈ Rn×p and scalar λ ∈ R
(a) ‖A‖ ≥ 0 for all A ∈ Rn×p nonnegativity
(b) ‖A‖ = 0 if and only if A = 0 definitiveness
(c) ‖λA‖ = |λ|‖A‖ homogeniety
(d) ‖A + B‖ ≤ ‖A‖+ ‖B‖ triangle inequality

Definition (Matrix inner product)
Matrix inner product is defined as follows

〈A,B〉 = trace
(
ABT

)
.
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Matrix norms contd.

I Similar to vector `p-norms, we have Schatten q-norms for matrices.

Definition (Schatten q-norms)
‖A‖q :=

(∑p

i=1 (σ(A)i)q
)1/q , where σ(A)i is the ith singular value of A.

Example (with r = min{n, p} and σi = σ(A)i)

‖A‖1 = ‖A‖∗ :=
r∑

i=1

σi ≡ trace
(√

AT A
)

(Nuclear/trace)

‖A‖2 = ‖A‖F :=

√√√√ r∑
i=1

(σi)2 ≡

√√√√ n∑
i=1

p∑
j=1

|aij |2 (Frobenius)

‖A‖∞ = ‖A‖ := max
i=1,...,r

{σi} ≡ max
x,0

‖Ax‖
‖x‖

(Spectral/matrix)
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Matrix norms contd.

Problem (Rank-r approximation)
Find arg min

X
‖X−Y‖F subject to: rank(X) ≤ r.

Solution (Eckart–Young–Mirsky Theorem)

arg min
X:rank(X)≤r

‖X−Y‖F = arg min
X:rank(X)≤r

‖X−UΣYVT ‖F , (SVD)

= arg min
X:rank(X)≤r

‖UT XV−ΣY‖F , (unit. invar. of ‖ · ‖F )

= U

(
arg min

X:rank(X)≤r

‖X−ΣY‖F

)
VT , (sparse approx.)

= UHr (ΣY) VT , (r-sparse approx. of the diagonal entries)

Singular value hard thresholding operator Hr performs the best rank-r approximation
of a matrix via sparse approximation: We keep the r largest singular values of the
matrix and set the rest to zero.
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Matrix norms contd.

Matrix & vector norm analogy

Vectors ‖x‖1 ‖x‖2 ‖x‖∞
Matrices ‖X‖∗ ‖X‖F ‖X‖

Definition (Dual of a matrix)
The dual norm of A ∈ Rn×p is defined as

‖A‖∗ = sup
{

trace
(
AT X

)
| ‖X‖ ≤ 1

}
.

Matrix & vector dual norm analogy

Vector primal norm ‖x‖1 ‖x‖2 ‖x‖∞
Vector dual norm ‖x‖∞ ‖x‖2 ‖x‖1

Matrix primal norm ‖X‖∗ ‖X‖F ‖X‖
Matrix dual norm ‖X‖ ‖X‖F ‖X‖∗
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Matrix norms contd.

Definition (Nuclear norm computation)

‖A‖∗ := ‖σ(A)‖1 where σ(A) is a vector of singular values of A

= min
U,V:A=UVH

‖U‖F ‖V‖F = min
U,V:A=UVH

1
2
(
‖U‖2

F + ‖V‖2
F

)
Additional useful properties are below:
I Nuclear vs. Frobenius: ‖A‖F ≤ ‖A‖∗ ≤

√
rank(A) · ‖A‖F

I Hölder for matrices: |〈A,B〉| ≤ ‖A‖p‖B‖q , when 1
p

+ 1
q

= 1
I We have

1. ‖A‖2→2 ≤ ‖A‖F

2. ‖A‖2
2→2 ≤ ‖A‖1→1‖A‖∞→∞

3. ‖A‖2
2→2 ≤ ‖A‖1→1 when A is self-adjoint.
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