Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 3: Convex analysis and Linear Algebra
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2018)
erc

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- This lecture

1. Basic concepts in convex analysis
2. Basic review of linear algebra

- Next lecture

1. Unconstrained convex optimization: the basics
2. Gradient descent methods

Recommended reading

- Chapter 2 \& 3 in S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, 2009.
- Appendices A \& B in D. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.
- Matrix computations, G.H. Golub, C.F. Van Loan, JHU Press, 2012.
- Linear algebra and its applications, G. Strang, Thomson, Brooks/Cole, 2006.
- KC Border, Quick Review of Matrix and Real Linear Algebra http://www.hss.caltech.edu/~kcb/Notes/LinearAlgebra.pdf, 2013.

Motivation

Motivation

- The first part of this lecture introduces basic notions in convex analysis.
- The second part reviews some concepts in linear algebra.

Challenges for an iterative optimization algorithm

Problem

Find the minimum x^{\star} of $f(x)$, given starting point x^{0} based on only local information.

- Fog of war

Challenges for an iterative optimization algorithm

Problem

Find the minimum x^{\star} of $f(x)$, given starting point x^{0} based on only local information.

- Fog of war, non-differentiability, discontinuities, local minima, stationary points...

Challenges for an iterative optimization algorithm

Problem

Find the minimum x^{\star} of $f(x)$, given starting point x^{0} based on only local information.

- Fog of war, non-differentiability, discontinuities, local minima, stationary points...

We need a key structure on the function local minima: Convexity.

Basics of functions

Definition (Function)

A function f with domain $\mathcal{Q} \subseteq \mathbb{R}^{p}$ and codomain $\mathcal{U} \subseteq \mathbb{R}$ is denoted as:

$$
f: \mathcal{Q} \rightarrow \mathcal{U}
$$

The domain \mathcal{Q} represents the set of values in \mathbb{R}^{p} on which f is defined and is denoted as $\operatorname{dom}(f) \equiv \mathcal{Q}=\{\mathbf{x}:-\infty<f(\mathbf{x})<+\infty\}$. The codomain \mathcal{U} is the set of function values of f for any input in \mathcal{Q}.

Continuity in functions

Definition (Continuity)

Let $f: \mathcal{Q} \rightarrow \mathbb{R}$ where $\mathcal{Q} \subseteq \mathbb{R}^{p}$. Then, f is a continuous function over its domain \mathcal{Q} if and only if

$$
\lim _{\mathbf{x} \rightarrow \mathbf{y}} f(\mathbf{x})=f(\mathbf{y}), \quad \forall \mathbf{y} \in \mathcal{Q}
$$

i.e., the limit of f-as \mathbf{x} approaches \mathbf{y}-exists and is equal to $f(\mathbf{y})$.

Definition (Class of continuous functions)

We denote the class of continuous functions f over the domain \mathcal{Q} as $f \in \mathcal{C}(\mathcal{Q})$.

Definition (Lipschitz continuity)

Let $f: \mathcal{Q} \rightarrow \mathbb{R}$ where $\mathcal{Q} \subseteq \mathbb{R}^{p}$. Then, f is called Lipschitz continuous if there exists a constant value $K \geq 0$ such that:

$$
|f(\mathbf{y})-f(\mathbf{x})| \leq K\|\mathbf{y}-\mathbf{x}\|_{2}, \quad \forall \mathbf{x}, \quad \mathbf{y} \in \mathcal{Q}
$$

* "Small" changes in the input result into "small" changes in the function values.

Continuity in functions

Lower semi-continuity

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is lower semi-continuous (I.s.c.) if

$$
\liminf _{\mathbf{x} \rightarrow \mathbf{y}} f(\mathbf{x}) \geq f(\mathbf{y}), \text { for any } \mathbf{y} \in \operatorname{dom}(f)
$$

$$
f(x)= \begin{cases}e^{-x}, & \text { if } x<0 \\ +\infty, & \text { if } x \geq 0\end{cases}
$$

$$
f(x)= \begin{cases}e^{-x}, & \text { if } x \leq 0 \\ +\infty, & \text { if } x>0\end{cases}
$$

Unless stated otherwise, we only consider I.s.c. functions.

Lower semi-continuity

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is lower semi-continuous (I.s.c.) if

$$
\liminf _{\mathbf{x} \rightarrow \mathbf{y}} f(\mathbf{x}) \geq f(\mathbf{y}), \text { for any } \mathbf{y} \in \operatorname{dom}(f)
$$

- Intuition: A lower semi-continuous function only jumps down.

Differentiability in functions

- We use $\nabla f(\mathbf{x})$ to denote the gradient of f at $\mathbf{x} \in \mathbb{R}^{p}$ such that:

$$
\nabla f(\mathbf{x})=\sum_{i=1}^{p} \frac{\partial f}{\partial x_{i}} \mathbf{e}_{i}=\left[\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{p}}\right]^{T} \quad \begin{aligned}
& \text { Example: } f(\mathbf{x})=\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2} \\
& \nabla f(\mathbf{x})=-2 \mathbf{A}^{T}(\mathbf{b}-\mathbf{A} \mathbf{x})
\end{aligned}
$$

Definition (Differentiability)

Let $f \in \mathcal{C}(\mathcal{Q})$ where $\mathcal{Q} \subseteq \mathbb{R}^{p}$. Then, f is a k-times continuously differentiable on \mathcal{Q} if its partial derivatives up to k-th order exist and are continuous $\forall \mathbf{x} \in \mathcal{Q}$.

Definition (Class of differentiable functions)

We denote the class of k-times continuously differentiable functions f on \mathcal{Q} as $f \in \mathcal{C}^{k}(\mathcal{Q})$.

- In the special case of $k=2$, we dub $\nabla^{2} f(\mathbf{x})$ the Hessian of $f(\mathbf{x})$, where $\left[\nabla^{2} f(\mathbf{x})\right]_{i, j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$.
- We have $\mathcal{C}^{q}(\mathcal{Q}) \subseteq \mathcal{C}^{k}(\mathcal{Q})$ where $q \leq k$. For example, a twice differentiable function is also once differentiable.
- For the case of complex-valued matrices, we refer to the Matrix Cookbook online.

Differentiability in functions

- Some examples:

Figure: (Left panel) ∞-times continuously differentiable function in \mathbb{R}. (Right panel) Non-differentiable $f(x)=|x|$ in \mathbb{R}.

Stationary points of differentiable functions

Definition (Stationary point)

A point $\overline{\mathbf{x}}$ is called a stationary point of a twice differentiable function $f(\mathbf{x})$ if

$$
\nabla f(\overline{\mathbf{x}})=\mathbf{0}
$$

Definition (Local minima, maxima, and saddle points)

Let $\overline{\mathbf{x}}$ be a stationary point of a twice differentiable function $f(\mathbf{x})$.

- If $\nabla^{2} f(\overline{\mathbf{x}}) \succ 0$, then the point $\overline{\mathbf{x}}$ is called a local minimum.
- If $\nabla^{2} f(\overline{\mathbf{x}}) \prec 0$, then the point $\overline{\mathbf{x}}$ is called a local maximum.
- If $\nabla^{2} f(\overline{\mathbf{x}})=0$, then the point $\overline{\mathbf{x}}$ can be a saddle point depending on the sign change.

Stationary points of smooth functions contd.

Intuition

Recall Taylor's theorem for the function f around $\overline{\mathbf{x}}$ for all \mathbf{y} that satisfy $\|\mathbf{y}-\overline{\mathbf{x}}\|_{2} \leq r$ in a local region with radius r as follows

$$
f(\mathbf{y})=f(\overline{\mathbf{x}})+\langle\nabla f(\overline{\mathbf{x}}), \mathbf{y}-\overline{\mathbf{x}}\rangle+\frac{1}{2}(\mathbf{y}-\overline{\mathbf{x}})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\overline{\mathbf{x}}),
$$

where \mathbf{z} is a point between $\overline{\mathbf{x}}$ and \mathbf{y}. When $r \rightarrow 0$, the second-order term becomes $\nabla^{2} f(\mathbf{z}) \rightarrow \nabla^{2} f(\overline{\mathbf{x}})$. Since $\nabla f(\overline{\mathbf{x}})=0$, Taylor's theorem leads to

- $f(\mathbf{y})>f(\overline{\mathbf{x}})$ when $\nabla^{2} f(\overline{\mathbf{x}}) \succ 0$. Hence, the point $\overline{\mathbf{x}}$ is a local minimum.
- $f(\mathbf{y})<f(\overline{\mathbf{x}})$ when $\nabla^{2} f(\overline{\mathbf{x}}) \prec 0$. Hence, the point $\overline{\mathbf{x}}$ is a local maximum.
- $f(\mathbf{y}) \gtrless f(\overline{\mathbf{x}})$ when $\nabla^{2} f(\overline{\mathbf{x}})=0$. Hence, the point $\overline{\mathbf{x}}$ can be a saddle point (i.e., $f(x)=x^{3}$ at $\bar{x}=0$), a local minima (i.e., $f(x)=x^{4}$ at $\bar{x}=0$) or a local maxima (i.e., $f(x)=-x^{4}$ at $\bar{x}=0$).

Convexity

Definition

A function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ is called convex on its domain \mathcal{Q} if, for any $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q}$ and $\alpha \in[0,1]$, we have:

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right) .
$$

- If $-f(\mathbf{x})$ is convex, then $f(\mathbf{x})$ is called concave.

Figure: (Left) Non-convex (Middle) Convex (Right) Concave

Convexity

Definition

A function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ is called convex on its domain \mathcal{Q} if, for any $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q}$ and $\alpha \in[0,1]$, we have:

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right) .
$$

- Additional terms that you will encounter in the literature

Definition (Proper)

A convex function f is called proper if its domain satisfies $\operatorname{dom}(f) \neq \emptyset$ and, $f(\mathbf{x})>-\infty, \forall x \in \operatorname{dom}(f)$.

Definition (Extended real-valued convex functions)

We define the extended real-valued convex functions f as

$$
f(\mathbf{x})=\left\{\begin{array}{cl}
f(\mathbf{x}) & \text { if } \mathbf{x} \in \operatorname{dom}(f) \\
+\infty & \text { if otherwise }
\end{array}\right.
$$

To denote this concept, we use $f: \operatorname{dom}(f) \rightarrow \mathbb{R} \cup\{+\infty\}$. (Note how I.s.c. might be useful)

Convexity

Definition

A function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ is called convex on its domain \mathcal{Q} if, for any $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q}$ and $\alpha \in[0,1]$, we have:

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right) .
$$

Example

Function	Example		Attributes						
ℓ_{p} vector norms, $p \geq 1$	$\\|\mathbf{x}\\|_{2},\\|\mathbf{x}\\|_{1},\\|\mathbf{x}\\|_{\infty}$		convex						
ℓ_{p} matrix norms, $p \geq 1$		$\\|\mathbf{X}\\|_{*}=\sum_{i=1}^{\operatorname{rank}(\mathbf{X})} \sigma_{i}$							
Square root function			convex						
Maximum of functions	$\max \left\{x_{1}, \ldots, x_{n}\right\}$		concave, nondecreasing						
Minimum of functions	$\min \left\{x_{1}, \ldots, x_{n}\right\}$		convex, nondecreasing						
concave, nondecreasing									
Sum of convex functions	$\sum_{i=1}^{n} f_{i}, f_{i} \operatorname{convex}$		convex						
Logarithmic functions	$\log (\operatorname{det}(\mathbf{X}))$		concave, assumes $\mathbf{X} \succ 0$						
Affine/linear functions	$\sum_{i=1}^{n} X_{i i}$		both convex and concave						
Eigenvalue functions	$\lambda_{\max }(\mathbf{X})$		convex, assumes $\mathbf{X}=\mathbf{X}^{T}$						

Strict convexity

Definition

A function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ is called strictly convex on its domain \mathcal{Q} if and only if for any $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q}$ and $\alpha \in[0,1]$ we have:

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right)<\alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right) .
$$

Figure: (Left panel) Convex function. (Right panel) Strictly convex function.

Revisiting: Alternative definitions of function convexity II

Definition

A function $f \in \mathcal{C}^{1}(\mathcal{Q})$ is called convex on its domain if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$:

$$
f(\mathbf{x}) \geq f(\mathbf{y})+\langle\nabla f(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle
$$

Definition

A function $f \in \mathcal{C}^{1}(\mathcal{Q})$ is called convex on its domain if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$:

$$
\langle\nabla f(\mathbf{y})-\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \geq 0
$$

*That is, if its gradient is a monotone operator.

Revisiting: Alternative definitions of function convexity III

Definition

A function $f \in \mathcal{C}^{2}\left(\mathbb{R}^{p}\right)$ is called convex on its domain if for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$:

$$
\nabla^{2} f(\mathbf{x}) \succeq 0
$$

- Geometrical interpretation: the graph of f has zero or positive (upward) curvature.
- However, this does not exclude flatness of f.
- $\nabla^{2} f(\mathbf{x}) \succ 0$ is a sufficient condition for strict convexity.

Stationary points and convexity

Lemma

Let f be a smooth convex function, i.e., $f \in \mathcal{F}^{1}$. Then, any stationary point of f is also a global minimum.

Proof.

Let \mathbf{x}^{\star} be a stationary point, i.e., $\nabla f\left(\mathbf{x}^{\star}\right)=0$. By convexity, we have:

$$
f(\mathbf{x}) \geq f\left(\mathbf{x}^{\star}\right)+\left\langle\nabla f\left(\mathbf{x}^{\star}\right), \mathbf{x}-\mathbf{x}^{\star}\right\rangle \stackrel{\nabla f\left(\mathbf{x}^{\star}\right)=0}{=} f\left(\mathbf{x}^{\star}\right) \quad \text { for all } \mathbf{x} \in \mathbb{R}^{p}
$$

Is convexity of f enough for an iterative optimization algorithm?

Convexity over sets

Definition

- $\mathcal{Q} \subseteq \mathbb{R}^{p}$ is a convex set if $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q} \Rightarrow \forall \alpha \in[0,1], \quad \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in \mathcal{Q}$.
- $\mathcal{Q} \subseteq \mathbb{R}^{p}$ is a strictly convex set if $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q} \Longrightarrow \forall \alpha \in(0,1), \quad \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in \operatorname{interior}(\mathcal{Q})$.

Figure: (Left) Strictly convex (Middle) Convex (Right) Non-convex

Convexity over sets

Definition

- $\mathcal{Q} \subseteq \mathbb{R}^{p}$ is a convex set if $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q} \Rightarrow \forall \alpha \in[0,1], \quad \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in \mathcal{Q}$.
- $\mathcal{Q} \subseteq \mathbb{R}^{p}$ is a strictly convex set if $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q} \Longrightarrow \forall \alpha \in(0,1), \quad \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in \operatorname{interior}(\mathcal{Q})$.

Figure: A linear set of equations $\mathbf{b}=\mathbf{A x}$ defines an affine (thus convex) set.

Convexity over sets

Definition

- $\mathcal{Q} \subseteq \mathbb{R}^{p}$ is a convex set if $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q} \Rightarrow \forall \alpha \in[0,1], \quad \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in \mathcal{Q}$.
- $\mathcal{Q} \subseteq \mathbb{R}^{p}$ is a strictly convex set if
$\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q} \Longrightarrow \forall \alpha \in(0,1), \quad \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in \operatorname{interior}(\mathcal{Q})$.

Why is this also important/useful?

- convex sets $<>$ convex optimization constraints

```
minimize }\quad\mp@subsup{f}{0}{}(\mathbf{x}
    x
subject to constraints
```


Some basic notions on sets

Definition (Closed set)

A set is called closed if it contains all its limit points.

Definition (Closure of a set)

Let $\mathcal{Q} \subseteq \mathbb{R}^{p}$ be a given open set, i.e., the limit points on the boundaries of \mathcal{Q} do not belong into \mathcal{Q}. Then, the closure of \mathcal{Q}, denoted as $\operatorname{cl}(\mathcal{Q})$, is the smallest set in \mathbb{R}^{p} that includes \mathcal{Q} with its boundary points.

Figure: (Left panel) Closed set \mathcal{Q}. (Middle panel) Open set \mathcal{Q} and its closure $\mathrm{cl}(\mathcal{Q})$ (Right panel).

Convex hull

Definition (Convex hull)

Let $\mathcal{V} \subseteq \mathbb{R}^{p}$ be a set. The convex hull of \mathcal{V}, i.e., $\operatorname{conv}(\mathcal{V})$, is the smallest convex set that contains \mathcal{V}.

Definition (Convex hull of points)

Let $\mathcal{V} \subseteq \mathbb{R}^{p}$ be a finite set of points with cardinality $|\mathcal{V}|$. The convex hull of \mathcal{V} is the set of all convex combinations of its points, i.e.,

$$
\operatorname{conv}(\mathcal{V})=\left\{\sum_{i=1}^{|\mathcal{V}|} \alpha_{i} \mathbf{x}_{i}: \sum_{i=1}^{|\mathcal{V}|} \alpha_{i}=1, \alpha_{i} \geq 0, \forall i, \mathbf{x}_{i} \in \mathcal{V}\right\}
$$

Figure: (Left) Discrete set of points \mathcal{V}. (Right) Convex hull $\operatorname{conv}(\mathcal{V})$.

Revisiting: Alternative definitions of function convexity IV

Definition

The epigraph of a function $f: \mathcal{Q} \rightarrow \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^{p}$ is the subset of \mathbb{R}^{p+1} given by:

$$
\operatorname{epi}(f)=\{(\mathbf{x}, w): \mathbf{x} \in \mathcal{Q}, w \in \mathbb{R}, f(\mathbf{x}) \leq w\}
$$

Lemma

A function $f: \mathcal{Q} \rightarrow \mathbb{R}$ is convex if and only if its epigraph, i.e, the region above its graph, is a convex set.

Figure: Epigraph - the region in green above graph $f(\cdot)$.

Notation

- Scalars are denoted by lowercase letters (e.g. k)
- Vectors by lowercase boldface letters (e.g., x)
- Matrices by uppercase boldface letters (e.g. A)
- Component of a vector \mathbf{x}, matrix \mathbf{A} as $x_{i}, a_{i j} \& A_{i, j, k, \ldots}$ respectively.
- Sets by uppercase calligraphic letters (e.g. \mathcal{S}) .

Vector norms

Definition (Vector norm)

A norm of a vector in \mathbb{R}^{p} is a function $\|\cdot\|: \mathbb{R}^{p} \rightarrow \mathbb{R}$ such that for all vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$ and scalar $\lambda \in \mathbb{R}$
(a) $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{p} \quad$ nonnegativity
(b) $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=\mathbf{0}$ definitiveness
(c) $\|\lambda \mathbf{x}\|=|\lambda|\|\mathbf{x}\|$
homogeniety
(d) $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$
triangle inequality

- There is a family of ℓ_{q}-norms parameterized by $q \in[1, \infty]$;
- For $\mathbf{x} \in \mathbb{R}^{p}$, the ℓ_{q}-norm is defined as $\|\mathbf{x}\|_{q}:=\left(\sum_{i=1}^{p}\left|x_{i}\right|^{q}\right)^{1 / q}$.

Example

(1) $\quad \ell_{2}$-norm: $\|\mathbf{x}\|_{2}:=\sqrt{\sum_{i=1}^{p} x_{i}^{2}} \quad$ (Euclidean norm)
(2) $\quad \ell_{1}$-norm: $\quad\|\mathbf{x}\|_{1}:=\sum_{i=1}^{p}\left|x_{i}\right| \quad$ (Manhattan norm)
(3) $\quad \ell_{\infty}$-norm: $\quad\|\mathbf{x}\|_{\infty}:=\max _{i=1, \ldots, p}\left|x_{i}\right| \quad$ (Chebyshev norm)

Vector norms contd.

Definition (Quasi-norm)

A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is replaced by $\|\mathbf{x}+\mathbf{y}\| \leq c(\|\mathbf{x}\|+\|\mathbf{y}\|)$ for a constant $c \geq 1$.

Definition (Semi(pseudo)-norm)

A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example

- The ℓ_{q}-norm is in fact a quasi norm when $q \in(0,1)$, with $c=2^{1 / q}-1$.
- The total variation norm (TV-norm) defined (in 1D): $\|\mathbf{x}\|_{\mathrm{TV}}:=\sum_{i=1}^{p-1}\left|x_{i+1}-x_{i}\right|$ is a semi-norm since it fails to satisfy (b);
e.g. any $\mathbf{x}=c(1,1, \ldots, 1)^{T}$ for $c \neq 0$ will have $\|\mathbf{x}\|_{\mathrm{TV}}=0$ even though $\mathbf{x} \neq \mathbf{0}$.

Definition (ℓ_{0}-"norm")
$\|\mathbf{x}\|_{0}=\lim _{q \rightarrow 0}\|\mathbf{x}\|_{q}^{q}=\left|\left\{i: x_{i} \neq 0\right\}\right|$
The ℓ_{0}-norm counts the non-zero components of \mathbf{x}. It is not a norm - it does not satisfy the property (c) \Rightarrow it is also neither a quasi- nor a semi-norm.

Vector norms contd.

Problem (s-sparse approximation)
Find $\quad \arg \min \|\mathbf{x}-\mathbf{y}\|_{2} \quad$ subject to: $\quad\|\mathbf{x}\|_{0} \leq s$. $\mathbf{x} \in \mathbb{R}^{p}$

Vector norms contd.

Problem (s-sparse approximation)

Find $\underset{\mathbf{x} \in \mathbb{R}^{p}}{\arg \min }\|\mathbf{x}-\mathbf{y}\|_{2} \quad$ subject to: $\|\mathbf{x}\|_{0} \leq s$.

Solution

Define $\quad \widehat{\mathbf{y}} \in \underset{\mathbf{x} \in \mathbb{R}^{p}:\|\mathbf{x}\|_{0} \leq s}{\arg \min }\|\mathbf{x}-\mathbf{y}\|_{2}^{2} \quad$ and let $\widehat{\mathcal{S}}=\operatorname{supp}(\widehat{\mathbf{y}})$.
We now consider an optimization over sets

$$
\begin{aligned}
\widehat{\mathcal{S}} & \in \underset{\mathcal{S}:|\mathcal{S}| \leq s}{\arg \min }\|\mathbf{y} \mathcal{S}-\mathbf{y}\|_{2}^{2} \\
& \in \underset{\mathcal{S}:|\mathcal{S}| \leq s}{\arg \max }\left\{\|\mathbf{y}\|_{2}^{2}-\|\mathbf{y} \mathcal{S}-\mathbf{y}\|_{2}^{2}\right\} \\
& \in \underset{\mathcal{S}:|\mathcal{S}| \leq s}{\arg \max }\left\{\left\|\mathbf{y}_{\mathcal{S}}\right\|_{2}^{2}\right\}=\underset{\mathcal{S}:|\mathcal{S}| \leq s}{\arg \max } \sum_{i \in \mathcal{S}}\left\|y_{i}\right\|^{2} \quad \text { (三 modular approximation problem). }
\end{aligned}
$$

Thus, the best s-sparse approximation of a vector is a vector with the s largest components of the vector in magnitude.

Vector norms contd.

Norm balls
Radius r ball in ℓ_{q}-norm: $\quad \mathcal{B}_{q}(r)=\left\{\mathbf{x} \in \mathbb{R}^{p}:\|\mathbf{x}\|_{q} \leq r\right\}$

Table: Example norm balls in \mathbb{R}^{3}

Inner products

Definition (Inner product)

The inner product of any two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$ (denoted by $\langle\cdot, \cdot\rangle$) is defined as $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}=\sum_{i}^{p} x_{i} y_{i}$.

The inner product satisfies the following properties:

1. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$
2. $\langle(\alpha \mathbf{x}+\beta \mathbf{y}), \mathbf{z}\rangle=\langle\alpha \mathbf{x}, \mathbf{z}\rangle+\langle\beta \mathbf{y}, \mathbf{z}\rangle, \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{p}$
linearity
3. $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0, \forall \mathbf{x} \in \mathbb{R}^{p}$

Important relations involving the inner product:

- Hölder's inequality: $|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|_{q}\|\mathbf{y}\|_{r}$, where $r>1$ and $\frac{1}{q}+\frac{1}{r}=1$
- Cauchy-Schwarz is a special case of Hölder's inequality $(q=r=2)$

Definition (Inner product space)

An inner product space is a vector space endowed with an inner product.

Vector norms contd.

Definition (Dual norm)

Let $\|\cdot\|$ be a norm in \mathbb{R}^{p}, then the dual norm denoted by $\|\cdot\|^{*}$ is defined:

$$
\|\mathbf{x}\|^{*}=\sup _{\|\mathbf{y}\| \leq 1} \mathbf{x}^{T} \mathbf{y}, \quad \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}
$$

- The dual of the dual norm is the original (primal) norm, i.e., $\|\mathbf{x}\|^{* *}=\|\mathbf{x}\|$.
- Hölder's inequality $\Rightarrow\|\cdot\|_{q}$ is a dual norm of $\|\cdot\|_{r}$ when $\frac{1}{q}+\frac{1}{r}=1$.

Example 1

i) $\|\cdot\|_{2}$ is dual of $\|\cdot\|_{2}$ (i.e. $\|\cdot\|_{2}$ is self-dual): $\sup \left\{\mathbf{z}^{T} \mathbf{x} \mid\|\mathbf{x}\|_{2} \leq 1\right\}=\|\mathbf{z}\|_{2}$.
ii) $\|\cdot\|_{1}$ is dual of $\|\cdot\|_{\infty}$, (and vice versa): $\sup \left\{\mathbf{z}^{T} \mathbf{x} \mid\|\mathbf{x}\|_{\infty} \leq 1\right\}=\|\mathbf{z}\|_{1}$.

Example 2

What is the dual norm of $\|\cdot\|_{q}$ for $q=1+1 / \log (p)$?

Vector norms contd.

Definition (Dual norm)

Let $\|\cdot\|$ be a norm in \mathbb{R}^{p}, then the dual norm denoted by $\|\cdot\|^{*}$ is defined:

$$
\|\mathbf{x}\|^{*}=\sup _{\|\mathbf{y}\| \leq 1} \mathbf{x}^{T} \mathbf{y}, \quad \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}
$$

- The dual of the dual norm is the original (primal) norm, i.e., $\|\mathbf{x}\|^{* *}=\|\mathbf{x}\|$.
- Hölder's inequality $\Rightarrow\|\cdot\|_{q}$ is a dual norm of $\|\cdot\|_{r}$ when $\frac{1}{q}+\frac{1}{r}=1$.

Example 1

i) $\|\cdot\|_{2}$ is dual of $\|\cdot\|_{2}$ (i.e. $\|\cdot\|_{2}$ is self-dual): $\sup \left\{\mathbf{z}^{T} \mathbf{x} \mid\|\mathbf{x}\|_{2} \leq 1\right\}=\|\mathbf{z}\|_{2}$.
ii) $\|\cdot\|_{1}$ is dual of $\|\cdot\|_{\infty}$, (and vice versa): $\sup \left\{\mathbf{z}^{T} \mathbf{x} \mid\|\mathbf{x}\|_{\infty} \leq 1\right\}=\|\mathbf{z}\|_{1}$.

Example 2

What is the dual norm of $\|\cdot\|_{q}$ for $q=1+1 / \log (p)$?

Solution

By Hölder's inequality, $\|\cdot\|_{r}$ is the dual norm of $\|\cdot\|_{q}$ if $\frac{1}{q}+\frac{1}{r}=1$. Therefore, $r=1+\log (p)$ for $q=1+1 / \log (p)$.

Metrics

- A metric on a set is a function that satisfies the minimal properties of a distance.

Definition (Metric)

Let \mathcal{X} be a set, then a function $d(\cdot, \cdot): \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a metric if $\forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$:
(a) $d(\mathbf{x}, \mathbf{y}) \geq 0$ for all \mathbf{x} and \mathbf{y} (nonnegativity)
(b) $d(\mathbf{x}, \mathbf{y})=0$ if and only if $\mathbf{x}=\mathbf{y}$ (definiteness)
(c) $d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x}) \quad$ (symmetry)
(d) $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z})+d(\mathbf{z}, \mathbf{y}) \quad$ (triangle inequality)

- A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b)
- A metric space (\mathcal{X}, d) is a set \mathcal{X} with a metric d defined on \mathcal{X}
- Norms induce metrics while pseudo-norms induce pseudo-metrics

Example

- Euclidean distance: $d_{E}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|_{2}$
- Bregman distance: $d_{B}(\cdot, \cdot)$...more on this later!

Basic matrix definitions

Definition (Nullspace of a matrix)

The nullspace of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, (denoted by $\operatorname{null}(\mathbf{A})$) is defined as

$$
\operatorname{null}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{R}^{p} \mid \mathbf{A x}=\mathbf{0}\right\}
$$

$-\operatorname{null}(\mathbf{A})$ is the set of vectors mapped to zero by \mathbf{A}.

- $\operatorname{null}(\mathbf{A})$ is the set of vectors orthogonal to the rows of \mathbf{A}.

Definition (Range of a matrix)

The range of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, (denoted by range (\mathbf{A})) is defined as

$$
\operatorname{range}(\mathbf{A})=\left\{\mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{p}\right\} \subseteq \mathbb{R}^{n}
$$

- range (\mathbf{A}) is the span of the columns (or the column space) of \mathbf{A}.

Definition (Rank of a matrix)

The rank of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, (denoted by $\operatorname{rank}(\mathbf{A})$) is defined as

$$
\operatorname{rank}(\mathbf{A})=\operatorname{dim}(\operatorname{range}(\mathbf{A}))
$$

- $\operatorname{rank}(\mathbf{A})$ is the maximum number of independent columns (or rows) of \mathbf{A}, $\Rightarrow \operatorname{rank}(\mathbf{A}) \leq \min (n, p)$.
$-\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{T}\right) ;$ and $\operatorname{rank}(\mathbf{A})+\operatorname{dim}(\operatorname{null}(\mathbf{A}))=n$.

Matrix definitions contd.

Definition (Eigenvalues \& Eigenvectors)

The non-zero vector \mathbf{x} is an eigenvector of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ if $\mathbf{A x}=\lambda \mathbf{x}$ where $\lambda \in \mathbb{R}$ is called an eigenvalue of \mathbf{A}.

- A scales its eigenvectors by it eigenvalues.

Definition (Singular values \& singular vectors)

For $\mathbf{A} \in \mathbb{R}^{n \times p}$ and unit vectors $\mathbf{u} \in \mathbb{R}^{n}$ and $\mathbf{v} \in \mathbb{R}^{p}$ if

$$
\mathbf{A} \mathbf{v}=\sigma \mathbf{u} \quad \text { and } \quad \mathbf{A}^{T} \mathbf{u}=\sigma \mathbf{v}
$$

then $\sigma \in \mathbb{R}(\sigma \geq 0)$ is a singular value of $\mathbf{A} ; \mathbf{v}$ and \mathbf{u} are the right singular vector and the left singular vector respectively of \mathbf{A}.

Definition (Symmetric matrix)

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A}=\mathbf{A}^{T}$.

Lemma

The eigenvalues of a symmetric \mathbf{A} are real.

Proof.

Assume $\mathbf{A x}=\lambda \mathbf{x}, \mathbf{x} \in \mathbb{C}^{p}, \mathbf{x} \neq \mathbf{0}$, then $\overline{\mathbf{x}}^{T} \mathbf{A} \mathbf{x}=\overline{\mathbf{x}}^{T}(\mathbf{A} \mathbf{x})=\overline{\mathbf{x}}^{T}(\lambda \mathbf{x})=\lambda \sum_{i=1}^{n}\left|x_{i}\right|^{2}$ but $\overline{\mathbf{x}}^{T} \mathbf{A} \mathbf{x}=\overline{(\mathbf{A x})}^{T} \mathbf{x}=\overline{(\lambda \mathbf{x})}^{T} \mathbf{x}=\bar{\lambda} \sum_{i=1}^{n}\left|x_{i}\right|^{2} \Rightarrow \lambda=\bar{\lambda}$ i.e. $\lambda \in \mathbb{R}$

Matrix definitions contd.

Definition (Positive semidefinite \& positive definite matrices)

A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive semidefinite (denoted $\mathbf{A} \succeq 0$) if $\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \neq \mathbf{0}$; while it is positive definite (denoted $\mathbf{A} \succ 0$) if $\mathbf{x}^{T} \mathbf{A} \mathbf{x}>0$

- $\mathbf{A} \succeq 0$ iff all its eigenvalues are nonnegative i.e. $\lambda_{\min }(\mathbf{A}) \geq 0$.
- Similarly, $\mathbf{A} \succ 0$ iff all its eigenvalues are positive i.e. $\lambda_{\min }(\mathbf{A})>0$.
- \mathbf{A} is negative semidefinite if $-\mathbf{A} \succeq 0$; while \mathbf{A} is negative definite if $-\mathbf{A} \succ 0$.
- Semidefinite ordering of two symmetric matrices, \mathbf{A} and $\mathbf{B}: \mathbf{A} \succeq \mathbf{B}$ if $\mathbf{A}-\mathbf{B} \succeq 0$.

Example (Matrix inequalities)

1. If $\mathbf{A} \succeq 0$ and $\mathbf{B} \succeq 0$, then $\mathbf{A}+\mathbf{B} \succeq 0$
2. If $\mathbf{A} \succeq \mathbf{B}$ and $\mathbf{C} \succeq \mathbf{D}$, then $\mathbf{A}+\mathbf{C} \succeq \mathbf{B}+\mathbf{D}$
3. If $\mathbf{B} \preceq 0$ then $\mathbf{A}+\mathbf{B} \preceq \mathbf{A}$
4. If $\mathbf{A} \succeq 0$ and $\alpha \geq 0$, then $\alpha \mathbf{A} \succeq 0$
5. If $\mathbf{A} \succ 0$, then $\mathbf{A}^{2} \succ 0$
6. If $\mathbf{A} \succ 0$, then $\mathbf{A}^{-1} \succ 0$

Matrix decompositions

Definition (Eigenvalue decomposition)

The eigenvalue decomposition of a square matrix, $\mathbf{A} \in \mathbb{R}^{n \times n}$, is given by:

$$
\mathbf{A}=\mathbf{X} \boldsymbol{\Lambda} \mathbf{X}^{-1}
$$

- the columns of $\mathbf{X} \in \mathbb{R}^{n \times n}$, i.e. \mathbf{x}_{i}, are eigenvectors of \mathbf{A}
- $\boldsymbol{\Lambda}=\boldsymbol{\operatorname { d i a g }}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ where λ_{i} (also denoted $\lambda_{i}(\mathbf{A})$) are eigenvalues of \mathbf{A}
- A matrix that admits this decomposition is therefore called diagonalizable matrix

Eigendecomposition of symmetric matrices

If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, the decomposition becomes $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}$ where $\mathbf{U} \in \mathbb{R}^{n \times n}$ is unitary (or orthonormal), i.e. $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}$ and λ_{i} are real If we order $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}, \lambda_{i}(\mathbf{A})$ becomes the $i^{\text {th }}$ largest eigenvalue of \mathbf{A}.

Definition (Determinant of a matrix)

The determinant of a square matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$, $\operatorname{denoted}$ by $\operatorname{det}(\mathbf{A})$, is given by:

$$
\operatorname{det}(\mathbf{A})=\Pi_{i=1}^{p} \lambda_{i}
$$

where λ_{i} are eigenvalues of \mathbf{A}.

Matrix decompositions contd

Definition (Singular value decomposition)

The singular value decomposition (SVD) of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, is given by:

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}
$$

- $\operatorname{rank}(\mathbf{A})=r \leq \min (n, p)$ and σ_{i} is the $i^{\text {th }}$ singular value of \mathbf{A}
- \mathbf{u}_{i} and \mathbf{v}_{i} are the $i^{\text {th }}$ left and right singular vectors of \mathbf{A} respectively
- $\mathbf{U} \in \mathbb{R}^{n \times r}$ and $\mathbf{V} \in \mathbb{R}^{p \times r}$ are unitary matrices (i.e. $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}$)
- $\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}\right)$ where $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r} \geq 0$
- \mathbf{v}_{i} are eigenvectors of $\mathbf{A}^{T} \mathbf{A} ; \sigma_{i}=\sqrt{\lambda_{i}\left(\mathbf{A}^{T} \mathbf{A}\right)}$ (and $\lambda_{i}\left(\mathbf{A}^{T} \mathbf{A}\right)=0$ for $i>r$) since $\quad \mathbf{A}^{T} \mathbf{A}=\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)^{T}\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)=\left(\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T}\right)$
- \mathbf{u}_{i} are eigenvectors of $\mathbf{A A}^{T} ; \sigma_{i}=\sqrt{\lambda_{i}\left(\mathbf{A A}^{T}\right)}\left(\right.$ and $\lambda_{i}\left(\mathbf{A A}^{T}\right)=0$ for $\left.i>r\right)$ since $\quad \mathbf{A} \mathbf{A}^{T}=\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)^{T}=\left(\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{T}\right)$

Matrix decompositions contd

Definition (LU)

The LU factorization of a nonsingular square matrix, $\mathbf{A} \in \mathbb{R}^{p \times p}$, is given by:

$$
\mathbf{A}=\mathbf{P L} \mathbf{U}
$$

where \mathbf{P} is a permutation matrix ${ }^{1}, \mathbf{L}$ is lower triangular and \mathbf{U} is upper triangular.

Definition (QR)

The $\mathbf{Q R}$ factorization of any matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, is given by:

$$
\mathbf{A}=\mathbf{Q R}
$$

where $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is an orthonormal matrix, i.e. $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}$, and $\mathbf{R} \in \mathbb{R}^{n \times p}$ is upper triangular.

Definition (Cholesky)

The Cholesky factorization of a positive definite and symmetric matrix, $\mathbf{A} \in \mathbb{R}^{p \times p}$, is given by:

$$
\mathbf{A}=\mathbf{L} \mathbf{L}^{T}
$$

where \mathbf{L} is a lower triangular matrix with positive entries on the diagonal.
${ }^{1}$ A matrix $\mathbf{P} \in \mathbb{R}^{p \times p}$ is permutation if it has only one 1 in each row and each column.

Complexity of matrix operations

Definition (floating-point operation)

A floating-point operation (flop) is one addition, subtraction, multiplication, or division of two floating-point numbers.

Table: Complexity examples: vector are in \mathbb{R}^{p}, matrices in $\mathbb{R}^{n \times p}, \mathbb{R}^{p \times m}$ or $\mathbb{R}^{p \times p}$ [2]

Operation	Complexity	Remarks
vector addition	p flops	
vector inner product	$2 p-1$ flops	or $\approx 2 p$ for p large
matrix-vector product	$n(2 p-1)$ flops	or $\approx 2 n p$ for p large $2 m$ if \mathbf{A} is sparse with m nonzeros
matrix-matrix product	$m n(2 p-1)$ flops	or $\approx 2 m n p$ for p large much less if \mathbf{A} is sparse ${ }^{1}$
LU decomposition	$\frac{2}{3} p^{3}+2 p^{2}$ flops	or $\frac{2}{3} p^{3}$ for p large much less if \mathbf{A} is sparse
Cholesky decomposition	$\frac{1}{3} p^{3}+2 p^{2}$ flops	or $\frac{1}{3} p^{3}$ for p large much less if \mathbf{A} is sparse ${ }^{1}$ SVD Determinant$C_{1} n^{2} p+C_{2} p^{3}$ flops
$C_{1}=4, C_{2}=22$ for R-SVD algo.		

${ }^{1}$ Complexity depends on p, no. of nonzeros in \mathbf{A} and the sparsity pattern.

Computing eigenvalues and eigenvectors

- There are various algorithms to compute eigenpairs of matrices [3].
- One can choose an algorithm depending on the setting (computational complexity, number of eigenvalues/eigenvectors needed etc.)

Power Method

Starting with an initial vector $\mathbf{x}^{0}, \mathbf{x}^{k+1}=\frac{\mathbf{A} x^{k}}{\left\|\mathbf{A} x^{k}\right\|_{2}}$ converges to the leading eigenvector of the matrix \mathbf{A} under certain conditions. Moreover, $\lambda^{k}=\frac{\mathbf{x}^{k *} \mathbf{A} \mathbf{x}^{k}}{\mathbf{x}^{k *} \mathbf{x}^{k}}$ converges to the leading eigenvalue.

- Useful when \mathbf{A} is a large matrix with sparse entries as it does not require matrix decomposition, but only matrix-vector multiplications and normalizations.
- Used by PageRank algorithm of Google.

Linear operators

- Matrices are often given in an implicit form.
- It is convenient to think of them as linear operators.

Proposition (Linear operators \& matrices)

Any linear operator in finite dimensional spaces can be represented as a matrix.

Example

Given matrices \mathbf{A}, \mathbf{B} and \mathbf{X} with compatible dimensions and the linear operator $\mathcal{M}: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}^{n p}$, a linear operator can define the following implicit mapping

$$
\mathcal{M}(\mathbf{X}):=\left(\mathbf{B}^{T} \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{X})=\operatorname{vec}(\mathbf{A} \mathbf{X B})
$$

where \otimes is the Kronecker product and vec : $\mathbb{R}^{n \times p} \rightarrow \mathbb{R}^{n p}$ is yet another linear operator that vectorizes its entries.
Note: Clearly, it is more efficient to compute $\operatorname{vec}(\mathbf{A X B})$ than to perform the matrix multiplication $\left(\mathbf{B}^{T} \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{X})$.

Matrix norms contd.

Definition (Operator norm)

The operator norm between ℓ_{q} and $\ell_{r}(1 \leq q, r \leq \infty)$ of a matrix \mathbf{A} is defined as

$$
\|\mathbf{A}\|_{q \rightarrow r}=\sup _{\|\mathbf{x}\|_{q} \leq 1}\|\mathbf{A} \mathbf{x}\|_{r}
$$

Problem

Show that $\|\mathbf{A}\|_{2 \rightarrow 2}=\|\mathbf{A}\|$ i.e., ℓ_{2} to ℓ_{2} operator norm is the spectral norm.

Solution

$$
\begin{aligned}
\|\mathbf{A}\|_{2 \rightarrow 2}=\sup _{\|\mathbf{x}\|_{2} \leq 1}\|\mathbf{A} \mathbf{x}\|_{2} & =\sup _{\|\mathbf{x}\|_{2} \leq 1}\left\|\mathbf{U} \mathbf{\Sigma}^{T} \mathbf{x}\right\|_{2} \quad(\text { using SVD of } \mathbf{A}) \\
& =\sup _{\|\mathbf{x}\|_{2} \leq 1}\left\|\boldsymbol{\Sigma} \mathbf{V}^{T} \mathbf{x}\right\|_{2} \quad\left(\text { rotational invariance of }\|\cdot\|_{2}\right) \\
& =\sup _{\|\mathbf{z}\|_{2} \leq 1}\|\boldsymbol{\Sigma} \mathbf{z}\|_{2} \quad\left(\text { letting } \mathbf{V}^{T} \mathbf{x}=\mathbf{z}\right) \\
& =\sup _{\|\mathbf{z}\|_{2} \leq 1} \sqrt{\sum_{i=1}^{\min (n, p)} \sigma_{i}^{2} z_{i}^{2}=\sigma_{\max }=\|\mathbf{A}\|}
\end{aligned}
$$

Matrix norms contd.

Other examples

- The $\|\mathbf{A}\|_{\infty \rightarrow \infty}$ (norm induced by ℓ_{∞}-norm) also denoted $\|\mathbf{A}\|_{\infty}$, is the max-row-sum norm:

$$
\|\mathbf{A}\|_{\infty \rightarrow \infty}:=\sup \left\{\|\mathbf{A} \mathbf{x}\|_{\infty} \mid\|\mathbf{x}\|_{\infty} \leq 1\right\}=\max _{i=1, \ldots, n} \sum_{j=1}^{p}\left|a_{i j}\right|
$$

- The $\|\mathbf{A}\|_{1 \rightarrow 1}$ (norm induced by ℓ_{1}-norm) also denoted $\|\mathbf{A}\|_{1}$, is the max-column-sum norm:

$$
\|\mathbf{A}\|_{1 \rightarrow 1}:=\sup \left\{\|\mathbf{A} \mathbf{x}\|_{1} \mid\|\mathbf{x}\|_{1} \leq 1\right\}=\max _{j=1, \ldots, p} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

Matrix norms contd.

Useful relation for operator norms

The following identity holds

$$
\|\mathbf{A}\|_{q \rightarrow r}:=\max _{\|\mathbf{z}\|_{r} \leq 1,\|\mathbf{x}\|_{q}=1}\langle\mathbf{z}, \mathbf{A} \mathbf{x}\rangle=\max _{\|\mathbf{x}\|_{q^{\prime}} \leq 1,\|\mathbf{z}\|_{r^{\prime}}=1}\left\langle\mathbf{A}^{T} \mathbf{z}, \mathbf{x}\right\rangle=:\left\|\mathbf{A}^{T}\right\|_{q^{\prime} \rightarrow r^{\prime}}
$$

whenever $1 / q+1 / q^{\prime}=1=1 / r+1 / r^{\prime}$.

Example

1. $\|\mathbf{A}\|_{\infty \rightarrow 1}=\left\|\mathbf{A}^{T}\right\|_{1 \rightarrow \infty}$.
2. $\|\mathbf{A}\|_{2 \rightarrow 1}=\left\|\mathbf{A}^{T}\right\|_{2 \rightarrow \infty}$.
3. $\|\mathbf{A}\|_{\infty \rightarrow 2}=\left\|\mathbf{A}^{T}\right\|_{1 \rightarrow 2}$.

*Matrix norms contd.

Computation of operator norms

- The computation of some operator norms is NP-hard [1]; these include:

1. $\|\mathbf{A}\|_{\infty \rightarrow 1}$
2. $\|\mathbf{A}\|_{2 \rightarrow 1}$
3. $\|\mathbf{A}\|_{\infty \rightarrow 2}$

- But some of them are approximable [4]; these include

1. $\|\mathbf{A}\| \infty \rightarrow 1$ (via Gronthendieck factorization)
2. $\|\mathbf{A}\|_{\infty \rightarrow 2}$ (via Pietzs factorization)

Matrix norms

Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)

A norm of an $n \times p$ matrix is a map $\|\cdot\|: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}$ such that for all matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times p}$ and scalar $\lambda \in \mathbb{R}$
(a) $\|\mathbf{A}\| \geq 0$ for all $\mathbf{A} \in \mathbb{R}^{n \times p} \quad$ nonnegativity
(b) $\|\mathbf{A}\|=0$ if and only if $\mathbf{A}=\mathbf{0}$ definitiveness
(c) $\|\lambda \mathbf{A}\|=|\lambda|\|\mathbf{A}\|$
homogeniety
(d) $\|\mathbf{A}+\mathbf{B}\| \leq\|\mathbf{A}\|+\|\mathbf{B}\| \quad$ triangle inequality

Definition (Matrix inner product)
Matrix inner product is defined as follows

$$
\langle\mathbf{A}, \mathbf{B}\rangle=\operatorname{trace}\left(\mathbf{A} \mathbf{B}^{T}\right)
$$

Matrix norms contd.

- Similar to vector ℓ_{p}-norms, we have Schatten q-norms for matrices.

Definition (Schatten q-norms)

$\|\mathbf{A}\|_{q}:=\left(\sum_{i=1}^{p}\left(\sigma(\mathbf{A})_{i}\right)^{q}\right)^{1 / q}$, where $\sigma(\mathbf{A})_{i}$ is the $i^{t h}$ singular value of \mathbf{A}.

Example (with $r=\min \{n, p\}$ and $\left.\sigma_{i}=\sigma(\mathbf{A})_{i}\right)$

$$
\begin{array}{llll}
\|\mathbf{A}\|_{1} & =\|\mathbf{A}\|_{*} \quad:=\sum_{i=1}^{r} \sigma_{i} & \equiv \operatorname{trace}\left(\sqrt{\mathbf{A}^{T} \mathbf{A}}\right) \quad \text { (Nuclear/trace) } \\
\|\mathbf{A}\|_{2}=\|\mathbf{A}\|_{F} \quad:=\sqrt{\sum_{i=1}^{r}\left(\sigma_{i}\right)^{2}} \equiv \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{p}\left|a_{i j}\right|^{2}} \quad \text { (Frobenius) } \\
\|\mathbf{A}\|_{\infty}=\|\mathbf{A}\| \quad:=\max _{i=1, \ldots, r}\left\{\sigma_{i}\right\} \quad \equiv \max _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|} \quad \quad \text { (Spectral/matrix) }
\end{array}
$$

Matrix norms contd.

Problem (Rank- r approximation)

Find $\underset{\mathbf{X}}{\arg \min }\|\mathbf{X}-\mathbf{Y}\|_{F} \quad$ subject to: $\quad \operatorname{rank}(\mathbf{X}) \leq r$.

Matrix norms contd.

Problem (Rank-r approximation)

Find $\underset{\mathbf{X}}{\arg \min }\|\mathbf{X}-\mathbf{Y}\|_{F} \quad$ subject to: $\quad \operatorname{rank}(\mathbf{X}) \leq r$.

Solution (Eckart-Young-Mirsky Theorem)

$$
\begin{aligned}
\underset{\mathbf{X}: \operatorname{rank}(\mathbf{X}) \leq r}{\arg \min }\|\mathbf{X}-\mathbf{Y}\|_{F} & =\underset{\mathbf{X}: \operatorname{rank}(\mathbf{X}) \leq r}{\arg \min }\left\|\mathbf{X}-\mathbf{U} \boldsymbol{\Sigma}_{\mathbf{Y}} \mathbf{V}^{T}\right\|_{F}, \quad(\mathrm{SVD}) \\
& =\underset{\mathbf{X}: \operatorname{rank}(\mathbf{X}) \leq r}{\arg \min }\left\|\mathbf{U}^{T} \mathbf{X} \mathbf{V}-\boldsymbol{\Sigma}_{\mathbf{Y}}\right\|_{F}, \quad\left(\text { unit. invar. of }\|\cdot\|_{F}\right) \\
& =\mathbf{U}\left(\underset{\mathbf{X}: \operatorname{rank}(\mathbf{X}) \leq r}{\arg \min }\left\|\mathbf{X}-\boldsymbol{\Sigma}_{\mathbf{Y}}\right\|_{F}\right) \mathbf{V}^{T}, \quad \text { (sparse approx.) } \\
& =\mathbf{U} H_{r}\left(\boldsymbol{\Sigma}_{\mathbf{Y}}\right) \mathbf{V}^{T}, \quad(r \text {-sparse approx. of the diagonal entries) }
\end{aligned}
$$

Singular value hard thresholding operator H_{r} performs the best rank- r approximation of a matrix via sparse approximation: We keep the r largest singular values of the matrix and set the rest to zero.

Matrix norms contd.

Matrix \& vector norm analogy

Vectors	$\\|\mathbf{x}\\|_{1}$	$\\|\mathbf{x}\\|_{2}$	$\\|\mathbf{x}\\|_{\infty}$
Matrices	$\\|\mathbf{X}\\|_{*}$	$\\|\mathbf{X}\\|_{F}$	$\\|\mathbf{X}\\|$

Definition (Dual of a matrix)

The dual norm of $\mathbf{A} \in \mathbb{R}^{n \times p}$ is defined as

$$
\|\mathbf{A}\|^{*}=\sup \left\{\operatorname{trace}\left(\mathbf{A}^{T} \mathbf{X}\right) \mid\|\mathbf{X}\| \leq 1\right\}
$$

Matrix \& vector dual norm analogy

| Vector primal norm | | $\\|\mathbf{x}\\|_{1}$ | $\\|\mathbf{x}\\|_{2}$ | | |
|---|---|---|---|---|---|---|---|---|---|
| $\mathbf{x} \\|_{\infty}$ | | | |
| Vector dual norm | $\\|\mathbf{x}\\|_{\infty}$ | $\\|\mathbf{x}\\|_{2}$ | $\\|\mathbf{x}\\|_{1}$ |
| Matrix primal norm | $\\|\mathbf{X}\\|_{*}$ | $\\|\mathbf{X}\\|_{F}$ | $\\|\mathbf{X}\\|^{\prime}$ |
| Matrix dual norm | $\\|\mathbf{X}\\|$ | $\\|\mathbf{X}\\|_{F}$ | $\\|\mathbf{X}\\|_{*}$ |

Matrix norms contd.

Definition (Nuclear norm computation)

$$
\begin{aligned}
\|\mathbf{A}\|_{*} & :=\|\boldsymbol{\sigma}(\mathbf{A})\|_{1} \quad \text { where } \boldsymbol{\sigma}(\mathbf{A}) \text { is a vector of singular values of } \mathbf{A} \\
& =\min _{\mathbf{U}, \mathbf{V}: \mathbf{A}=\mathbf{U} \mathbf{V}^{H}}\|\mathbf{U}\|_{F}\|\mathbf{V}\|_{F}=\min _{\mathbf{U}, \mathbf{V}: \mathbf{A}=\mathbf{U} \mathbf{V}^{H}} \frac{1}{2}\left(\|\mathbf{U}\|_{F}^{2}+\|\mathbf{V}\|_{F}^{2}\right)
\end{aligned}
$$

Additional useful properties are below:

- Nuclear vs. Frobenius: $\quad\|\mathbf{A}\|_{F} \leq\|\mathbf{A}\|_{*} \leq \sqrt{\operatorname{rank}(\mathbf{A})} \cdot\|\mathbf{A}\|_{F}$
- Hölder for matrices: $\quad|\langle\mathbf{A}, \mathbf{B}\rangle| \leq\|\mathbf{A}\|_{p}\|\mathbf{B}\|_{q}$, when $\frac{1}{p}+\frac{1}{q}=1$
- We have

1. $\|\mathbf{A}\|_{2 \rightarrow 2} \leq\|\mathbf{A}\|_{F}$
2. $\|\mathbf{A}\|_{2 \rightarrow 2}^{2} \leq\|\mathbf{A}\|_{1 \rightarrow 1}\|\mathbf{A}\|_{\infty \rightarrow \infty}$
3. $\|\mathbf{A}\|_{2 \rightarrow 2}^{2} \leq\|\mathbf{A}\|_{1 \rightarrow 1}$ when \mathbf{A} is self-adjoint.

References I

[1] Simon Foucart and Holger Rauhut.
A mathematical introduction to compressive sensing.
Springer, 2013.
[2] Gene H Golub and Charles F Van Loan.
Matrix computations, volume 3.
JHU Press, 2012.
[3] Gilbert Strang.
Linear algebra and its applications.
Number 04; QA184, S8. 1976.
[4] Joel A Tropp.
Column subset selection, matrix factorization, and eigenvalue optimization.
In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 978-986, 2009.

