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Outline

» This lecture

1. Basic concepts in convex analysis
2. Basic review of linear algebra
> Next lecture

1. Unconstrained convex optimization: the basics
2. Gradient descent methods
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Recommended reading

» Chapter 2 & 3 in S. Boyd, and L. Vandenberghe, Convex Optimization,
Cambridge Univ. Press, 2009.

> Appendices A & B in D. Bertsekas, Nonlinear Programming, Athena Scientific,
1999.

> Matrix computations, G.H. Golub, C.F. Van Loan, JHU Press, 2012.
Linear algebra and its applications, G. Strang, Thomson, Brooks/Cole, 2006.

» KC Border, Quick Review of Matrix and Real Linear Algebra
http://www.hss.caltech.edu/~kcb/Notes/LinearAlgebra.pdf, 2013.

v

. |
IENYEEINHl  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 51 (¢ ﬂ.


http://www.hss.caltech.edu/~kcb/Notes/LinearAlgebra.pdf

Motivation

Motivation

> The first part of this lecture introduces basic notions in convex analysis.

> The second part reviews some concepts in linear algebra.
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Challenges for an iterative optimization algorithm

Problem

Find the minimum x* of f(x), given starting point z° based on only local information.

> Fog of war
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Challenges for an iterative optimization algorithm

Problem

Find the minimum x* of f(x), given starting point z° based on only local information.

> Fog of war, non-differentiability, discontinuities, local minima, stationary points...

f(z)
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Challenges for an iterative optimization algorithm

Problem

Find the minimum x* of f(x), given starting point z° based on only local information.

> Fog of war, non-differentiability, discontinuities, local minima, stationary points...

f(z)

We need a key structure on the function local minima: Convexity.
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Basics of functions

Definition (Function)
A function f with domain @ C RP and codomain U C R is denoted as:
f:Q—=U.

The domain Q represents the set of values in RP on which f is defined and is denoted
as dom(f) = Q = {x: —o0 < f(x) < +o0}. The codomain I/ is the set of function
values of f for any input in O.

L]
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Continuity in functions

Definition (Continuity)

Let f: Q@ — R where @ C RP. Then, f is a continuous function over its domain Q if
and only if

lim f(x) = f(y), Vy€Q,

X—y

i.e., the limit of f—as x approaches y—exists and is equal to f(y).

Definition (Class of continuous functions)

We denote the class of continuous functions f over the domain Q as f € C(Q).
Definition (Lipschitz continuity)

Let f: Q — R where Q CRP. Then, f is called Lipschitz continuous if there exists a
constant value K > 0 such that:

If(y) = fX)| < Klly —x[l2, Vx, y€Q.

> "Small" changes in the input result into "small" changes in the function values.
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Continuity in functions

fx)
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Lower semi-continuity

Definition
A function f:R™ — RU {+oo} is lower semi-continuous (I.s.c.) if

liminf f(x) > f(y), for any y € dom(f).

X—Yy

Unless stated otherwise, we only consider |.s.c. functions.
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Lower semi-continuity

Definition
A function f : R™ — R U {+o0} is lower semi-continuous (I.s.c.) if

liminf f(x) > f(y), for any y € dom(f).
XYy

> Intuition: A lower semi-continuous function only jumps down.

4 f(z)

€1 T2 x
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Differentiability in functions

> We use V f(x) to denote the gradient of f
at x € R? such that:
» Example: f(x) = ||b — Ax||3
: T
of o _ [ﬁ . ﬁ} Vi(x) = —2A7 (b — Ax).

e; ..
ox; oz’ ’ Oxp

Vix) =
i=1
Definition (Differentiability)

Let f € C(Q) where Q C RP. Then, f is a k-times continuously differentiable on Q if
its partial derivatives up to k-th order exist and are continuous Vx € Q.

Definition (Class of differentiable functions)

We denote the class of k-times continuously differentiable functions f on Q as

feckQ).

> In the special case of k = 2, we dub V2 f(x) the Hessian of f(x), where
(V27005 = 5ods-

> We have C7(Q) C C*(Q) where ¢ < k. For example, a twice differentiable
function is also once differentiable.

> For the case of complex-valued matrices, we refer to the Matrix Cookbook online.

LG
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Differentiability in functions

> Some examples:

f(=)

f(x) =22 -sin(1/z), >0

Figure: (Left panel) co-times continuously differentiable function in R. (Right panel)
Non-differentiable f(z) = |z| in R.
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Stationary points of differentiable functions

Definition (Stationary point)

A point X is called a stationary point of a twice differentiable function f(x) if

V(%) = 0.

Definition (Local minima, maxima, and saddle points)

Let X be a stationary point of a twice differentiable function f(x).
> If V2f(X) = 0, then the point X is called a local minimum.
> If V2f(X) < 0, then the point X is called a local maximum.

> If V2f(X) = 0, then the point X can be a saddle point depending on the sign
change.
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Stationary points of smooth functions contd.

Intuition

Recall Taylor's theorem for the function f around X for all y that satisfy ||y — X||2 < r
in a local region with radius 7 as follows

F&) = FR) + (VIR - %) + 5 (v - DT V(@) - ),

where z is a point between x and y. When r — 0, the second-order term becomes
2f(z) — V2f(X). Since Vf(X) = 0, Taylor's theorem leads to
> f(y) > f(X) when V2 f(X) = 0. Hence, the point X is a local minimum.
> f(y) < f(X) when V2 f(X) < 0. Hence, the point X is a local maximum.

> f(y) 2 f(X) when V2 f(X) = 0. Hence, the point X can be a saddle point (i.e., f(x) = :c
at £ = 0), a local minima (i.e., f(z) = ot at T = 0) or a local maxima (i.e., f(a:) —z?
at z = 0).

3 |
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Convexity
Definition
A function f: Q@ -+ RU {+o0} is called convex on its domain Q if, for any

x1, x2 € Q and a € [0, 1], we have:

flaxi + (1 —a)x2) < af(x1) + (1 — a)f(x2).

> If —f(x) is convex, then f(x) is called concave.

f(z)

af(a)+(1-a)f(r2)

O i flar1 + (1 - a)az)

Figure: (Left) Non-convex (Middle) Convex (Right) Concave

(L]
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Convexity

Definition
A function f: Q@ -+ RU {+o0} is called convex on its domain Q if, for any
x1, X2 € Q and a € [0, 1], we have:

flaxi + (1 —a)x2) < af(x1) + (1 — a)f(x2).

> Additional terms that you will encounter in the literature

Definition (Proper)

A convex function f is called proper if its domain satisfies dom(f) # 0 and,
f(x) > —oo, Vz € dom(f).

Definition (Extended real-valued convex functions)

We define the extended real-valued convex functions f as

f(x):{ f(x) if x € dom(f)

400 if otherwise
To denote this concept, we use f : dom(f) — RU {+oco}. (Note how l.s.c. might be
useful)

o
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Convexity

Definition

A function f: Q@ -+ RU {+o0} is called convex on its domain Q if, for any

x1, X2 € Q and a € [0, 1], we have:

flaxi + (1 —a)x2) < af(x1) + (1 — a)f(x2).

Example
Function Example Attributes
£, vector norms, p > 1 [1x2, 11, ||%]| oo convex
£, matrix norms, p > 1 [1X]|« = E;a:l(x) o; convex
Square root function VT concave, nondecreasing
Maximum of functions max{Zi,...,Tn} convex, nondecreasing
Minimum of functions min{zy,...,Tn} concave, nondecreasing
Sum of convex functions ijl fi, fi convex convex
Logarithmic functions log (det(X)) concave, assumes X > 0
Affine/linear functions Z:Zl Xii both convex and concave
Eigenvalue functions Amagz (X) convex, assumes X = X 7T
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Strict convexity

Definition
A function f: Q — R U {+oo} is called strictly convex on its domain Q if and only if
for any x1, x2 € Q and « € [0, 1] we have:

Flaxy + (1 — a)x2) < af(x1) + (1 — ) f(x2).

f(x) F(2)
Set of minima af(e) + (1 a)f(a2)
/ ------ ; f(x2)

[y ; ; ¥(x2) s fams 1 o))

T T2 T2 x
azy + (1 — o)z

Figure: (Left panel) Convex function. (Right panel) Strictly convex function.

(L]
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Revisiting: Alternative definitions of function convexity Il

Definition
A function f € C1(Q) is called convex on its domain if for any x, y € Q:

fx) > f(y) +(VI(y), x—¥).

the function lies above all

/ of ite tangents

y ) (V) x—y) X

Definition
A function f € C1(Q) is called convex on its domain if for any x, y € O:

(VFf(y) = Vf(x), y —x)>0.

*That is, if its gradient is a monotone operator.

. |
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Revisiting: Alternative definitions of function convexity 11l

Definition

A function f € C2(RP) is called convex on its domain if for any x, y € RP:

V2f(x) = 0.

» Geometrical interpretation: the graph of f has zero or positive (upward)
curvature.

> However, this does not exclude flatness of f.
> V2f(x) = 0 is a sufficient condition for strict convexity.

f()

\ Upward curvafumy/
—— 7

<
Flatness

T
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Stationary points and convexity

Lemma

Let f be a smooth convex function, i.e., f € F'. Then, any stationary point of f is
also a global minimum.

Proof.

Let x* be a stationary point, i.e., Vf(x*) = 0. By convexity, we have:

Vf(x:*):()

f(x) > f(x*)+ (Vf(x), x—x*) f(x*) for all x € RP.

. V
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Is convexity of f enough for an iterative optimization algorithm?

y f(@)

—

Constraints

3 V
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Convexity over sets
Definition

> Q CRPis a convex set if x1, x2 € @ =Va €[0,1], ax; + (1 —a)x2 € Q.

> Q C RP is a strictly convex set if
X1, X2 € Q@ = Va € (0,1), axi + (1 — a)xa € interior(Q).

Figure: (Left) Strictly convex (Middle) Convex (Right) Non-convex

3 |
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Convexity over sets
Definition

> Q CRPis a convex set if x1, x2 € @ =Va €[0,1], ax; + (1 —a)x2 € Q.

> Q C RP is a strictly convex set if
X1, X2 € Q@ = Va € (0,1), axi + (1 — a)xa € interior(Q).

€2

3

Figure: A linear set of equations b = Ax defines an affine (thus convex) set.
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Convexity over sets
Definition

> Q CRPis a convex set if x1, x2 € @ =Va €[0,1], ax; + (1 —a)x2 € Q.

> Q C RP is a strictly convex set if
X1, x2 € Q@ = Va € (0,1), axi + (1 — a)xz € interior(Q).

Why is this also important/useful?

> convex sets <> convex optimization constraints

SPOILER
ALERT!

minimize  fo(x)

subject to  constraints

3 V
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Some basic notions on sets

Definition (Closed set)

A set is called closed if it contains all its limit points.

Definition (Closure of a set)

Let @ C RP be a given open set, i.e., the limit points on the boundaries of Q do not
belong into Q. Then, the closure of Q, denoted as cl(Q), is the smallest set in RP
that includes Q with its boundary points.

Figure: (Left panel) Closed set Q. (Middle panel) Open set Q and its closure cI(Q) (Right
panel).
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Convex hull

Definition (Convex hull)

Let V C R? be a set. The convex hull of V, i.e., conv(V), is the smallest convex set
that contains V.

Definition (Convex hull of points)

Let V C RP be a finite set of points with cardinality |V|. The convex hull of V is the
set of all convex combinations of its points, i.e.,

V| V|
conv(V) = Zaixi g Zai =1, a; >0,Vi, x; €V
i=1 i=1
°
°
°
o o
° °
° Q
i °

Figure: (Left) Discrete set of points V. (Right) Convex hull conv(V).
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Revisiting: Alternative definitions of function convexity IV

Definition
The epigraph of a function f: Q — R, Q C RP is the subset of RPT! given by:

epi(f) = {(x,w) : x € Q,w €R, f(x) <w}.

Lemma

A function f : @ — R is convex if and only if its epigraph, i.e, the region above its
graph, is a convex set.

f(x)

Figure: Epigraph — the region in green above graph f(-).

L]
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Notation

> Scalars are denoted by lowercase letters (e.g. k)

> Vectors by lowercase boldface letters (e.g., x)

> Matrices by uppercase boldface letters (e.g. A)

> Component of a vector x, matrix A as x;, a;j & A; ; 1,... respectively.

» Sets by uppercase calligraphic letters (e.g. S) .
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Vector norms

Definition (Vector norm)

A norm of a vector in RP is a function || - || : RP — R such that for all vectors
X,y € RP and scalar A € R

(a) ||x|| > 0 for all x € R? nonnegativity

(b) [|x|| = 0if and only if x =0 definitiveness

(e) 1A = [AlIxl homogeniety

() lx+yl < Ix + lly triangle inequality

> There is a family of £;-norms parameterized by g € [1, oo];

1
> For x € RP, the {4-norm is defined as ||x||q := ( ?:1 |:1:2-|‘1) /e

Example
(1)  L2-norm:  ||x]|2 := Ef:l z2  (Euclidean norm)
(2) Li-norm:  ||x]||1 := Zle |24 (Manhattan norm)
(3) foo-norm: ||x||oc := max |z;| (Chebyshev norm)
I=1lg000000
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Vector norms contd.

Definition (Quasi-norm)

A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is
replaced by ||x + y|| < ¢ (||x]| + ||y|l]) for a constant ¢ > 1.

Definition (Semi(pseudo)-norm)

A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example

> The £4-norm is in fact a quasi norm when g € (0, 1), with ¢ = 2l/a — 1.
> The total variation norm (TV-norm) defined (in 1D):
|||y :== Ef:_ll |zit+1 — x;] is a semi-norm since it fails to satisfy (b);
e.g. any x = ¢(1,1,...,1)T for ¢ # 0 will have ||x||Tv = 0 even though x # 0.

Definition (£p-"norm”)
Ixllo = limg—ollxIg = [{i : @; # 0}|

The £p-norm counts the non-zero components of x. It is not a norm — it does not
satisfy the property (c) = it is also neither a quasi- nor a semi-norm.

. V
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Vector norms contd.

Problem (s-sparse approximation)

Find argmin ||[x —yl||2 subject to: |[|x]jo < s.
XERP

V
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Vector norms contd.

Problem (s-sparse approximation)

Find argmin ||[x —yl||2 subject to: |[|x]jo < s.
XERP

Solution

Define y € argmin [x—y[2 and let S= supp (3’\)
x€ERP:||x[lo<s

We now consider an optimization over sets
~ . 9
S € argmin|lys — y/l3-
S:|S|<s

€ argmax { [lyl3 — llys — ¥}
S:|S|<s

€ argmax {||y5||%} = argmaXZ llyill> (= modular approximation problem).
S:|S|<s S:|S|<s ies

Thus, the best s-sparse approximation of a vector is a vector with the s largest
components of the vector in magnitude.

. V
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Vector norms contd.

Norm balls
Radius r ball in £4-norm: Bg(r) ={x €RP : ||x||qg < r}

\XHO <2 5-quasi norm ball £1-norm ball

£2-norm ball {so-norm ball

Table: Example norm balls in R3

ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 51

(L]




Inner products

Definition (Inner product)

The inner product of any two vectors x,y € RP (denoted by (,-)) is defined as
(x,y) =xTy = Ef TiYi-

The inner product satisfies the following properties:

1. (x,y) = (y,%x),Vx,y € RP symmetry
2. ((ax + By),z) = (ax,z) + (By,z),Va, 8 € R,VX,y,z € RP linearity
3. (x,x) > 0,Vx € RP positive definiteness

Important relations involving the inner product:
> Hélder's inequality: |(x,y)| < |x|lq|l¥|l~, where r > 1 and % +1=1

» Cauchy-Schwarz is a special case of Holder's inequality (¢ = r = 2)

Definition (Inner product space)

An inner product space is a vector space endowed with an inner product.

L]
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Vector norms contd.

Definition (Dual norm)

Let || - || be a norm in RP, then the dual norm denoted by || - ||* is defined:
Ix|I* = sup xTy, forallx,y €RP
llyll<t
» The dual of the dual norm is the original (primal) norm, i.e., [|x|** = ||x]||.
> Hélder's inequality = || - || is a dual norm of || - ||, when % + % =1
Example 1
i) |- |l2 is dual of || - ||2 (i.e. || - ||2 is self-dual): sup{zTx | ||x|]2 < 1} = ||z||2.
ii) || - |l is dual of || - ||co, (and vice versa): sup{zTx | ||x|lcc <1} = ||z|1.
Example 2

What is the dual norm of || - |4 for ¢ =1+ 1/log(p)?

3 |
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Vector norms contd.

Definition (Dual norm)
Let || - || be a norm in RP, then the dual norm denoted by || - ||* is defined:

Ix|* = sup xTy, forall x,y € RP
lyll<1

» The dual of the dual norm is the original (primal) norm, i.e., [|x|** = ||x]||.
> Hélder's inequality = || - || is a dual norm of || - ||, when é + % =1
Example 1
i) |- |l2 is dual of || - ||2 (i.e. || - ||2 is self-dual): sup{zTx | ||x|]2 < 1} = ||z||2.
ii) || - |l is dual of || - ||co, (and vice versa): sup{zTx | ||x|lcc <1} = ||z|1.
Example 2
What is the dual norm of || - |4 for ¢ =1+ 1/log(p)?
Solution
By Hélder's inequality, || - || is the dual norm of || - ||4 if % + % = 1. Therefore,

r =1+ log(p) for g =1+ 1/log(p).

.
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Metrics

> A metric on a set is a function that satisfies the minimal properties of a distance.

Definition (Metric)
Let X be a set, then a function d(-,-) : X x X — R is a metric if Vx,y € X :

(a) d(x,y) >0 forall x and y (nonnegativity)

(b) d(x,y) =0 if and only if x =y (definiteness)
(©) d(x,y) = d(y,x)  (symmetry)

(d) d(x,y) < d(x,z) + d(z,y) (triangle inequality)

> A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b)
> A metric space (X,d) is a set X with a metric d defined on X’

> Norms induce metrics while pseudo-norms induce pseudo-metrics

Example

» Euclidean distance: dg(x,y) = ||x — y|2

> Bregman distance: dg(-,-) ...more on this later!
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Basic matrix definitions

Definition (Nullspace of a matrix)

The nullspace of a matrix, A € R"*P, (denoted by null(A)) is defined as
null(A) = {x e R | Ax = 0}

> null(A) is the set of vectors mapped to zero by A.
> null(A) is the set of vectors orthogonal to the rows of A.

Definition (Range of a matrix)
The range of a matrix, A € R"*P, (denoted by range(A)) is defined as

range(A) = {Ax | x e RP} CR"
» range(A) is the span of the columns (or the column space) of A.

Definition (Rank of a matrix)
The rank of a matrix, A € R"*P, (denoted by rank(A)) is defined as

rank(A) = dim (range(A))
> rank(A) is the maximum number of independent columns (or rows) of A,
= rank(A) < min(n, p).
> rank(A) = rank(AT); and rank(A) + dim (null(A)) = n.

i
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Matrix definitions contd.

Definition (Eigenvalues & Eigenvectors)

The non-zero vector x is an eigenvector of a square matrix A € R™"*" if Ax = Ax
where X € R is called an eigenvalue of A.

> A scales its eigenvectors by it eigenvalues.

Definition (Singular values & singular vectors)
For A € R"*P and unit vectors u € R"™ and v € R? if
Av=0ou and ATu=ov
then o €R (o > 0) is a singular value of A; v and u are the right singular vector
and the left singular vector respectively of A.
Definition (Symmetric matrix)
A matrix A € R"*" is symmetric if A = AT

Lemma

The eigenvalues of a symmetric A are real.

Proof.
Assume Ax = \x, x € CP,x # 0, then XL Ax = X7 (Ax) = X7 (Ax) = A E?:l |z;]?
but X7 Ax = (Ax)Tx = ()\x)Tx = Xz:;l lz;|2 = A=) ie. AER m]

. V
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Matrix definitions contd.

Definition (Positive semidefinite & positive definite matrices)
A symmetric matrix A € R™*"™ is positive semidefinite (denoted A > 0) if
xT Ax > 0 for all x # 0; while it is positive definite (denoted A > 0) if xT Ax > 0
> A > 0iff all its eigenvalues are nonnegative i.e. Apin(A) > 0.
> Similarly, A > 0 iff all its eigenvalues are positive i.e. Apin(A) > 0.
> A is negative semidefinite if —A > 0; while A is negative definite if —A > 0.
» Semidefinite ordering of two symmetric matrices, A and B: A > Bif A—B > 0.

Example (Matrix inequalities)

.IfA>0and B> 0,then A+B >0
.IfA>BandC>=D,then A+ C>B+D
. fB<0then A+ B <A

If A>0and >0, then ®A >0

. If A= 0, then A% =0

. If A >0, then A= >0

. V
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Matrix decompositions

Definition (Eigenvalue decomposition)
The eigenvalue decomposition of a square matrix, A € R?»X™ is given by:
A =XAX!
> the columns of X € R"*" i.e. x;, are eigenvectors of A

> A =diag (A1, A2,...,A\n) where \; (also denoted \;(A)) are eigenvalues of A

> A matrix that admits this decomposition is therefore called diagonalizable matrix

Eigendecomposition of symmetric matrices

If A € R"*" is symmetric, the decomposition becomes A = UAUT
where U € R™"*™ is unitary (or orthonormal), i.e. UTU =1 and )\; are real

If we order A1 > Ao > -+ > Ay, Ai(A) becomes the ith largest eigenvalue of A.

Definition (Determinant of a matrix)

The determinant of a square matrix A € RPXP, denoted by det(A), is given by:
det(A) = ITP_, ),

where \; are eigenvalues of A.

.
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Matrix decompositions contd

Definition (Singular value decomposition)

The singular value decomposition (SVD) of a matrix, A € R™*P, is given by:
T
A=UsVT =) o]
i=1

h

» rank(A) = r < min(n,p) and o is the ith singular value of A

> u; and v; are the ith left and right singular vectors of A respectively
> U € R"X" and V € RPX" are unitary matrices (i.e. UTU =1)

» ¥ =diag(01,02,...,0.) Where g1 > 02> ... >0, >0
> v; are eigenvectors of ATA; o; = /X (ATA) (and \; (ATA) =0fori>r)
since  ATA = (U=V?)" (UnVT) = (VE2VT)

> u; are eigenvectors of AAT; o; = /)i (AAT) (and )\; (AAT) =0fori>r)
since  AAT = (U=V?) (UsvT)’ = (US?UT)

. V
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Matrix decompositions contd

Definition (LU)
The LU factorization of a nonsingular square matrix, A € RPXP is given by:
A =PLU

where P is a permutation matrix!, L is lower triangular and U is upper triangular.

Definition (QR)
The QR factorization of any matrix, A € R"*P, is given by:
A =QR

where Q € R™*™ is an orthonormal matrix, i.e. QTQ =1, and R € R”*? is upper
triangular.

Definition (Cholesky)

The Cholesky factorization of a positive definite and symmetric matrix, A € RPXP s

given by:
A =LLT
where L is a lower triangular matrix with positive entries on the diagonal.
L A matrix P € RPXP is permutation if it has only one 1 in each row and each column.
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Complexity of matrix operations

Definition (floating-point operation)

A floating-point operation (flop) is one addition, subtraction, multiplication, or
division of two floating-point numbers.

Table: Complexity examples: vector are in RP, matrices in R™*P, RP*™ or RP*P [2]

Operation Complexity Remarks
vector addition p flops
vector inner product 2p — 1 flops or = 2p for p large

matrix-vector product

n(2p — 1) flops

or = 2np for p large
2m if A is sparse with m nonzeros

matrix-matrix product

mn(2p — 1) flops

or = 2mnyp for p large

much less if A is sparse!

LU decomposition

%p3 + 2p? flops

or %p3 for p large

much less if A is sparsel

Cholesky decomposition

%p3 + 2p? flops

or %p:‘ for p large

much less if A is sparsel

SVD

C1n?p + Cap® flops

C1 =4, C2 = 22 for R-SVD algo.

Determinant

complexity of SVD

1 Complexity depends on p, no. of nonzeros in A and the sparsity pattern.
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Computing eigenvalues and eigenvectors

> There are various algorithms to compute eigenpairs of matrices [3].

> One can choose an algorithm depending on the setting (computational
complexity, number of eigenvalues/eigenvectors needed etc.)

Power Method

k
Starting with an initial vector x0, x*t1 = ”:%” converges to the leading
2
. - - . k xF* AxF
eigenvector of the matrix A under certain conditions. Moreover, \* = ek

converges to the leading eigenvalue.

» Useful when A is a large matrix with sparse entries as it does not require matrix
decomposition, but only matrix-vector multiplications and normalizations.

> Used by PageRank algorithm of Google.

3 |
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Linear operators

> Matrices are often given in an implicit form.

> It is convenient to think of them as linear operators.

Proposition (Linear operators & matrices)

Any linear operator in finite dimensional spaces can be represented as a matrix.

Example

Given matrices A, B and X with compatible dimensions and the linear operator
M : R P — R™P, 3 linear operator can define the following implicit mapping

M(X) = (BT ® A) vec(X) = vec(AXB),

where ® is the Kronecker product and vec : R"*P — R™P is yet another linear
operator that vectorizes its entries.
Note: Clearly, it is more efficient to compute vec(AXB) than to perform the matrix

multiplication (BT ® A) vec(X).

.
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Matrix norms contd.

Definition (Operator norm)
The operator norm between ¢, and ¢, (1 < g,r < c0) of a matrix A is defined as

[Allg—r = sup [lAx]|

lIxllq <1
Problem
Show that ||A|l2—2 = ||A]| i.e., 2 to ¢2 operator norm is the spectral norm.
Solution

|All22 = sup ||Ax|l2 = sup |[[UEVTx|2 (using SVD of A)

lIxll2<1 lIxll2<1

= sup [|ZVTx|2 (rotational invariance of || - ||2)
lIxll2<1

= sup ||Zz|2 (letting VIx = z)

llzll2<1
min(n,p)
= swp 4| S 0222 = omax = [IA] o
<1
Izll2< —

. V
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Matrix norms contd.

Other examples

> The ||A]lco—soo (norm induced by £oc-norm) also denoted ||A ||, is the
max-row-sum norm:

p
| Allso—oo = sup{llAxlleo | lxlloo <1} = max " ai|.
=1,...,n
j=1

> The ||A|l1—1 (norm induced by £1-norm) also denoted ||A||1, is the
max-column-sum norm:

n
AT = sup{llAxdls | Il <1} = max 3 lai].

=1

. V
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Matrix norms contd.

Useful relation for operator norms

The following identity holds

= (AT2,x) =t [|AT ||

(z, Ax) = max
lIxllg <12l =1

IAflgosr = max
llz|l»<1,[|x[[q=1

whenever 1/g+1/¢' =1=1/r+1/r'.

Example

1. ||A||OO~>1 = ||AT||1~>oo-
2. |All2—1 = [|AT]|2- 0.
3. |Allcm2 = [AT [12.

L]
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*Matrix norms contd.

Computation of operator norms

> The computation of some operator norms is NP-hard [1]; these include:

1 |Alloo—1
2. [|All2—1
3. [[A]loo—2

> But some of them are approximable [4]; these include

1. ||Allco—»1  (via Gronthendieck factorization)
2. ||Allcc2  (via Pietzs factorization)
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Matrix norms

Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)

A norm of an n X p matrix is a map || - || : R”*? — R such that for all matrices
A,B € R"%P and scalar A € R

(a) ||A]| > 0 for all A € R**P nonnegativity

(b) [JA|| =0 if and only if A =0  definitiveness

(c) IIMAIl = IAI[All homogeniety

(d) JA+BJ| <|A] +|B] triangle inequality

Definition (Matrix inner product)

Matrix inner product is defined as follows

(A,B) = trace (ABT) .

L]
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Matrix norms contd.

> Similar to vector £,-norms, we have Schatten g-norms for matrices.
Definition (Schatten g-norms)

|A]lq := ( 1:21 (U(A)i)q)l/q, where o(A); is the 3" singular value of A.

Example (with » = min{n, p} and o; = 0(A);)

Al =[All. = = trace ( V ATA> (Nuclear/trace)
n_ p
Az =[Allr = = ZZ |ai;|2  (Frobenius)
i=1 j=1
A
[Alloo = [|A]l = = max 1A (Spectral /matrix)
x#0  ||x]|

3 )|
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Matrix norms contd.

Problem (Rank-r approximation)

Find argmin [|X — Y| subject to: rank(X) < 7.
X

3 V
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Matrix norms contd.

Problem (Rank-r approximation)

Find argmin || X —Y||r subject to: rank(X) <r.
X

Solution (Eckart—Young—Mirsky Theorem)

argmin || X - Y| argmin  [|X — USyVT|r, (SVD)
X:rank(X)<r X:rank(X)<r

= argmin ||[UTXV - Sv|r, (unit. invar. of || - ||)
X:rank(X)<r

18) argmin  ||X — Sy ||r | VT, (sparse approx.)
X:rank(X)<r

= UH, (Zv) V7T, (r-sparse approx. of the diagonal entries)
Singular value hard thresholding operator H, performs the best rank-r approximation

of a matrix via sparse approximation: We keep the r largest singular values of the
matrix and set the rest to zero.

3 |
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Matrix norms contd.
Matrix & vector norm analogy

Vectors ‘

xfla | x|

lIx[los

Matrices | [[X[[« |

Definition (Dual of a matrix)

The dual norm of A € R"*? is defined as

[[A[* = sup {trace (ATX) | [ X[ <1}.

Matrix & vector dual norm analogy

IXIle T X

Vector primal norm ‘ [1x]|1 ‘ [1x]|2 ‘ lIxl oo
Vector dual norm [ B [|x]]2 [ Il 1
Matrix primal norm [1X]] X7 11X]]
Matrix dual norm [1X] X|| ¢ 11X«
lions@epfl
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Matrix norms contd.

Definition (Nuclear norm computation)
[[Allx :=||le(A)|l1 where o(A) is a vector of singular values of A

1
= min Ul||lr||V]rF = min = (U] + || V]2
s MOV = min o (101 V)

)

Additional useful properties are below:

> Nuclear vs. Frobenius: ||A||lr < JAllx < y/rank(A) - ||A|lF
> Holder for matrices:  [(A,B)| < ||Al[,||B|

> We have
1 HAH%~>2 < |Allr
2. [|AllG 5o < Al 1llAllco— oo
3. |Al2,5 < ||A|l1—1 when A is self-adjoint.

1,1 _
q whenp+q_1
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