# Tradeoffs in primal-dual optimization

#### Volkan Cevher

volkan.cevher@epfl.ch

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

Seminaire Parisien d'Optimisation

**ENSCP** 

[April 13, 2015]

Joint work with

Alp Yurtsever and Quoc Tran Dinh @ LIONS









#### Swiss army knife of convex formulations

## A primal problem prototype<sup>1</sup>

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathcal{X} \right\},\tag{1}$$

- f is a proper, closed and convex function, and  $\mathcal{X}$  is a nonempty, closed convex set.
- $\mathbf{A} \in \mathbb{R}^{n \times p}$  and  $\mathbf{b} \in \mathbb{R}^n$  are known.
- An optimal solution  $\mathbf{x}^*$  to (1) satisfies  $f(\mathbf{x}^*) = f^*$ ,  $\mathbf{A}\mathbf{x}^* = \mathbf{b}$  and  $\mathbf{x}^* \in \mathcal{X}$ .

<sup>&</sup>lt;sup>1</sup>We can simply replace  $\mathbf{A}\mathbf{x} = \mathbf{b}$  with  $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{C}$  for a convex body  $\mathcal{C}$  without any fundamental change.





#### Swiss army knife of convex formulations

# A **primal problem** prototype<sup>1</sup>

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathcal{X} \right\},\tag{1}$$

- f is a proper, closed and convex function, and  $\mathcal{X}$  is a nonempty, closed convex set.
- ▶  $\mathbf{A} \in \mathbb{R}^{n \times p}$  and  $\mathbf{b} \in \mathbb{R}^n$  are known.
- An optimal solution  $\mathbf{x}^*$  to (1) satisfies  $f(\mathbf{x}^*) = f^*$ ,  $\mathbf{A}\mathbf{x}^* = \mathbf{b}$  and  $\mathbf{x}^* \in \mathcal{X}$ .

#### Example to keep in mind in the sequel

$$\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_1 : \mathbf{A}\mathbf{x} = \mathbf{b}, \|\mathbf{x}\|_{\infty} \leq 1 \right\}$$

<sup>&</sup>lt;sup>1</sup>We can simply replace  $\mathbf{A}\mathbf{x} = \mathbf{b}$  with  $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{C}$  for a convex body  $\mathcal{C}$  without any fundamental change.





#### Swiss army knife of convex formulations

## A **primal problem** prototype<sup>1</sup>

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathcal{X} \right\},\tag{1}$$

- f is a proper, closed and convex function, and  $\mathcal{X}$  is a nonempty, closed convex set.
- ▶  $\mathbf{A} \in \mathbb{R}^{n \times p}$  and  $\mathbf{b} \in \mathbb{R}^n$  are known.
- An optimal solution  $\mathbf{x}^*$  to (1) satisfies  $f(\mathbf{x}^*) = f^*$ ,  $\mathbf{A}\mathbf{x}^* = \mathbf{b}$  and  $\mathbf{x}^* \in \mathcal{X}$ .

#### Example to keep in mind in the sequel

$$\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_1 : \mathbf{A}\mathbf{x} = \mathbf{b}, \|\mathbf{x}\|_{\infty} \le 1 \right\}$$

#### Broader context for (1):

- Standard convex optimization formulations: linear programming, convex quadratic programming, second order cone programming, semidefinite programming and geometric programming.
- Reformulations of existing unconstrained problems via convex splitting: composite convex minimization, consensus optimization, . . .

<sup>&</sup>lt;sup>1</sup>We can simply replace  $\mathbf{A}\mathbf{x} = \mathbf{b}$  with  $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{C}$  for a convex body  $\mathcal{C}$  without any fundamental change.



#### Numerical $\epsilon$ -accuracy

#### Exact vs. approximate solutions

- Computing an exact solution x\* to (1) is impracticable unless problem has a closed form solution, which is extremely limited in reality.
- Numerical optimization algorithms result in  $\mathbf{x}_{\epsilon}^{\star}$  that approximates  $\mathbf{x}^{\star}$  up to a given accuracy  $\epsilon$  in some sense.
- In the sequel, by  $\epsilon$ -accurate solutions  $\mathbf{x}_{\epsilon}^{\star}$  of (1), we mean the following

#### Definition ( $\epsilon$ -accurate solutions)

Given a numerical tolerance  $\epsilon \geq 0$ , a point  $\mathbf{x}^{\star}_{\epsilon} \in \mathbb{R}^p$  is called an  $\epsilon$ -solution of (1) if

$$\begin{cases} |f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star}| \leq \epsilon & \text{(objective residual),} \\ \|\mathbf{A}\mathbf{x}_{\epsilon}^{\star} - \mathbf{b}\| \leq \epsilon & \text{(feasibility gap),} \\ \mathbf{x}_{\epsilon}^{\star} \in \mathcal{X} & \text{(exact simple set feasibility).}^2 \end{cases}$$

- ▶ When  $\mathbf{x}^*$  is unique, we can also obtain  $\|\mathbf{x}_{\epsilon}^* \mathbf{x}^*\| \le \epsilon$  (iterate residual).
- ightharpoonup Indeed,  $\epsilon$  can be different for the objective, feasibility gap, or the iterate residual.



 $<sup>^2 \</sup>text{Very often, } \mathcal{X} \text{ is a "simple set." Hence, requiring } \mathbf{x}^{\star}_{\epsilon} \in \mathcal{X} \text{ is acceptable in practice.}^*$ 

<sup>\*</sup> I will absorb  ${\mathcal X}$  into the objective f with a so-called indicator function to ease the notation.

#### Performance of optimization algorithms

#### Time-to-reach $\epsilon$

time-to-reach  $\epsilon$  = number of iterations to reach  $\epsilon$  imes per iteration time

The **speed** of numerical solutions depends on two factors:

- ightharpoonup Convergence rate determines the number of iterations needed to obtain an  $\epsilon$ -optimal solution.
- Per-iteration time depends on the information oracles, implementation, and the computational platform.

Finding the fastest algorithm is tricky!

We will discuss basic tradeoffs in primal-dual optimization in the sequel.





#### Outline

The proximal way

The sharp way

Conclusion



#### The optimal solution set

Before we talk about algorithms, we must first characterize what we are looking for!

#### Optimality condition

The optimality condition of  $\min_{\mathbf{x} \in \mathbb{R}^p} \{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \}$  can be written as

$$\begin{cases} 0 \in \mathbf{A}^T \lambda^* + \partial f(\mathbf{x}^*), \\ 0 = \mathbf{A}\mathbf{x}^* - \mathbf{b}. \end{cases}$$
 (2)

(Subdifferential)  $\partial f(\mathbf{x}) := \{ \mathbf{v} \in \mathbb{R}^p : f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{v}^T(\mathbf{y} - \mathbf{x}), \ \forall \mathbf{y} \in \mathbb{R}^p \}.$ 

- ► This is the well-known KKT (Karush-Kuhn-Tucker) condition.
- Any point  $(\mathbf{x}^*, \lambda^*)$  satisfying (2) is called a KKT point.
- $f x^{\star}$  is called a stationary point and  $\lambda^{\star}$  is the corresponding multipliers.

#### Lagrange function and the minimax formulation

We can naturally interpret the optimality condition via a minimax formulation

$$\max_{\lambda} \min_{\mathbf{x} \in \mathsf{dom}(f)} \mathcal{L}(\mathbf{x}, \lambda),$$

where  $\lambda \in \mathbb{R}^n$  is the vector of Lagrange multipliers or dual variables w.r.t. Ax = b associated with the Lagrange function:

$$\mathcal{L}(\mathbf{x}, \lambda) := \mathbf{f}(\mathbf{x}) + \lambda^T (\mathbf{A}\mathbf{x} - \mathbf{b})$$



#### Finding an optimal solution

#### A plausible strategy:

To solve the constrained problem (1), we therefore seek the solutions

$$(\mathbf{x}^*, \lambda^*) \in \arg \max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda),$$

which we can naively brake down into two-in general nonsmooth-problems:

$$\textbf{Lagrangian subproblem:} \ \ \mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \{\mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}$$

**Dual problem**:  $\lambda^{\star} \in \arg \max_{\lambda} \left\{ d(\lambda) := \mathcal{L}(\mathbf{x}^{\star}(\lambda), \lambda) \right\}$ 

- ▶ The function  $d(\lambda)$  is called the dual function.
- ▶ The optimal dual objective value is  $d^* = d(\lambda^*)$ .

The dual function  $d(\lambda)$  is concave. Hence, we can attempt the following strategy:

- 1. Find the optimal solution  $\lambda^*$  of the "convex" dual problem.
- 2. Obtain the optimal primal solution  $\mathbf{x}^* = \mathbf{x}^*(\lambda^*)$  via the convex primal problem.

#### Finding an optimal solution

#### A plausible strategy:

To solve the constrained problem (1), we therefore seek the solutions

$$(\mathbf{x}^{\star}, \lambda^{\star}) \in \arg \max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda),$$

which we can naively brake down into two-in general nonsmooth-problems:

$$\textbf{Lagrangian subproblem:} \quad \mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \{\mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}$$

Dual problem:

$$\lambda^{\star} \in \operatorname{arg\,max}_{\lambda} \left\{ d(\lambda) := \mathcal{L}(\mathbf{x}^{*}(\lambda), \lambda) \right\}$$

- ▶ The function  $d(\lambda)$  is called the dual function.
- The optimal dual objective value is  $d^* = d(\lambda^*)$ .

The dual function  $d(\lambda)$  is concave. Hence, we can attempt the following strategy:

- 1. Find the optimal solution  $\lambda^{\star}$  of the "convex" dual problem.
- 2. Obtain the optimal primal solution  $\mathbf{x}^{\star} = \mathbf{x}^{*}(\lambda^{\star})$  via the convex primal problem.

## Challenges for the plausible strategy above

- 1. Establishing its correctness
- 2. Computational efficiency of finding an  $\bar{\epsilon}$ -approximate optimal dual solution  $\lambda_{\bar{\epsilon}}^{\star}$
- 3. Mapping  $\lambda_{\bar{\epsilon}}^{\star} \to \mathbf{x}_{\epsilon}^{\star}$  (i.e.,  $\bar{\epsilon}(\epsilon)$ ), where  $\epsilon$  is for the original constrained problem (1)

#### Finding an optimal solution

#### A plausible strategy:

To solve the constrained problem (1), we therefore seek the solutions

$$(\mathbf{x}^{\star}, \lambda^{\star}) \in \arg \max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda),$$

which we can naively brake down into two-in general nonsmooth-problems:

$$\textbf{Lagrangian subproblem:} \quad \mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \{\mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}$$

Dual problem:

$$\lambda^{\star} \in \operatorname{arg\,max}_{\lambda} \left\{ d(\lambda) := \mathcal{L}(\mathbf{x}^{*}(\lambda), \lambda) \right\}$$

- ▶ The function  $d(\lambda)$  is called the dual function.
- ► The optimal dual objective value is  $d^* = d(\lambda^*)$ .

The dual function  $d(\lambda)$  is concave. Hence, we can attempt the following strategy:

- 1. Find the optimal solution  $\lambda^*$  of the "convex" dual problem.
- 2. Obtain the optimal primal solution  $\mathbf{x}^{\star} = \mathbf{x}^{*}(\lambda^{\star})$  via the convex primal problem.

## Challenges for the plausible strategy above

- 1. Establishing its correctness: Assume  $f^\star > -\infty$  and Slater's condition for  $f^\star = d^\star$
- 2. Computational efficiency of finding an  $\bar{\epsilon}$ -approximate optimal dual solution  $\lambda_{\bar{\epsilon}}^{\star}$
- 3. Mapping  $\lambda_{\overline{\epsilon}}^{\star} \to \mathbf{x}_{\epsilon}^{\star}$  (i.e.,  $\overline{\epsilon}(\epsilon)$ ), where  $\epsilon$  is for the original constrained problem (1)



#### Subgradient method

- **1**. Choose  $\lambda^0 \in \mathbb{R}^n$ .
- 2. For  $k = 0, 1, \dots$ , perform:  $\lambda^{k+1} = \lambda^k + \alpha_k \mathbf{v}^k,$

where  $\mathbf{v}^k \in \partial d(\lambda^k)$  and  $\alpha_k$  is the step-size.

## Subgradient method for the dual

Assume that the following conditions

- 1.  $\|\mathbf{v}\|_2 \leq G$  for all  $\mathbf{v} \in \partial d(\lambda)$ ,  $\lambda \in \mathbb{R}^n$ .
- 2.  $\|\lambda^0 \lambda^*\|_2 \le R$

Let the step-size be chosen as  $\alpha_k = \frac{R}{G\sqrt{k}}$ .

Then, the subgradient method satisfies

$$\min_{0 \le i \le k} d^* - d(\lambda^i) \le \frac{RG}{\sqrt{k}}$$

#### Subgradient method

- **1**. Choose  $\lambda^0 \in \mathbb{R}^n$ .
- 2. For  $k=0,1,\cdots$ , perform:  $\lambda^{k+1}=\lambda^k+\alpha_k\mathbf{v}^k,$  where  $\mathbf{v}^k\in\partial d(\lambda^k)$  and  $\alpha_k$  is the step-size.

### Subgradient method for the dual

Assume that the following conditions

- 1.  $\|\mathbf{v}\|_2 \leq G$  for all  $\mathbf{v} \in \partial d(\lambda)$ ,  $\lambda \in \mathbb{R}^n$ .
- 2.  $\|\lambda^0 \lambda^*\|_2 \le R$

Let the step-size be chosen as  $\alpha_k = \frac{R}{G\sqrt{k}}$ .

Then, the subgradient method satisfies

$$\min_{0 \le i \le k} d^{\star} - d(\lambda^{i}) \le \frac{RG}{\sqrt{k}} \le \bar{\epsilon}$$

**SGM:**  $\mathcal{O}\left(\frac{1}{\overline{\epsilon}^2}\right) \times \text{subgradient calculation}$ 



#### Gradient method

- 1. Choose  $\lambda^0 \in \mathbb{R}^n$ .
- **2**. For  $k = 0, 1, \dots$ , perform:  $\lambda^{k+1} = \lambda^k + \frac{1}{7} \nabla d(\lambda^k),$ where L is the Lipschitz constant.

# Subgradient method for the dual

Assume that the following conditions

- 1.  $\|\mathbf{v}\|_2 < G$  for all  $\mathbf{v} \in \partial d(\lambda)$ ,  $\lambda \in \mathbb{R}^n$ .
- 2.  $\|\lambda^0 \lambda^*\|_2 < R$

Let the step-size be chosen as  $\alpha_k = \frac{R}{C\sqrt{k}}$ . Then, the subgradient method satisfies

$$\min_{0 \le i \le k} d^{\star} - d(\lambda^{i}) \le \frac{RG}{\sqrt{k}} \le \bar{\epsilon}$$

**SGM:**  $\mathcal{O}\left(\frac{1}{\overline{\epsilon^2}}\right) \times \text{subgradient calculation}$ 

**GM:**  $\mathcal{O}\left(\frac{1}{\overline{\epsilon}}\right) \times \text{gradient calculation}$ 

# Impact of smoothness

(Lipschitz gradient)  $d(\lambda)$  has Lipschitz continuous gradient iff

$$\|\nabla d(\lambda) - \nabla d(\eta)\|_2 \le L\|\lambda - \eta\|_2$$

for all  $\lambda, \eta \in dom(d)$  and we indicate this structure as  $d(\lambda) \in \mathcal{F}_L$ .

For all  $d(\lambda) \in \mathcal{F}_L$ , the gradient method with step-size 1/L obeys

$$d^{\star} - d(\lambda^k) \le \frac{2LR^2}{k+4} \le \overline{\epsilon}.$$



#### Gradient method

- **1**. Choose  $\lambda^0 \in \mathbb{R}^n$ .
- 2. For  $k=0,1,\cdots$ , perform:  $\lambda^{k+1}=\lambda^k+\frac{1}{L}\nabla d(\lambda^k),$  where L is the Lipschitz constant.

# Subgradient method for the dual

Assume that the following conditions

- 1.  $\|\mathbf{v}\|_2 \leq G$  for all  $\mathbf{v} \in \partial d(\lambda)$ ,  $\lambda \in \mathbb{R}^n$ .
- 2.  $\|\lambda^0 \lambda^*\|_2 \le R$

Let the step-size be chosen as  $\alpha_k = \frac{R}{G\sqrt{k}}$ . Then, the subgradient method satisfies

$$\min_{0 \le i \le k} d^{\star} - d(\lambda^{i}) \le \frac{RG}{\sqrt{k}} \le \bar{\epsilon}$$

**SGM:**  $\mathcal{O}\left(\frac{1}{\overline{\epsilon}^2}\right) \times \text{subgradient calculation}$ 

**GM**:  $\mathcal{O}\left(\frac{1}{\overline{\epsilon}}\right) \times \text{gradient calculation}$ 

# Impact of smoothness

(Lipschitz gradient)  $d(\lambda)$  has Lipschitz continuous gradient iff

$$\|\nabla d(\lambda) - \nabla d(\eta)\|_2 \le L\|\lambda - \eta\|_2$$

for all  $\lambda, \eta \in \text{dom}(d)$  and we indicate this structure as  $d(\lambda) \in \mathcal{F}_L$ .

For all  $d(\lambda) \in \mathcal{F}_L$ , the gradient method with step-size 1/L obeys

$$d^{\star} - d(\lambda^k) \le \frac{2LR^2}{k+4} \le \bar{\epsilon}.$$

This is NOT the best we can do.

There exists a complexity lower-bound

$$d^* - d(\lambda^k) \ge \frac{3LR^2}{32(k+1)^2}, \forall d(\lambda) \in \mathcal{F}_L,$$

for any iterative method based only on function and gradient evaluations.



#### Accelerated gradient method

- 1. Choose  $\mathbf{u}^0 = \lambda^0 \in \mathbb{R}^n$ .
- 2. For  $k=0,1,\cdots$ , perform:  $\lambda^k = \mathbf{u}^k + \frac{1}{L}\nabla d(\mathbf{u}^k), \\ \mathbf{u}^{k+1} = \lambda^k + \rho_k(\lambda^k \lambda^{k-1}), \\ \text{where } L \text{ is the Lipschitz constant, and } \\ \rho_k \text{ is a momentum parameter.}$

## Subgradient method for the dual

Assume that the following conditions

- 1.  $\|\mathbf{v}\|_2 \leq G$  for all  $\mathbf{v} \in \partial d(\lambda)$ ,  $\lambda \in \mathbb{R}^n$ .
- 2.  $\|\lambda^0 \lambda^*\|_2 \le R$

Let the step-size be chosen as  $\alpha_k = \frac{R}{G\sqrt{k}}$ . Then, the subgradient method satisfies

$$\min_{0 \le i \le k} d^{\star} - d(\lambda^{i}) \le \frac{RG}{\sqrt{k}} \le \bar{\epsilon}$$

**SGM:**  $\mathcal{O}\left(\frac{1}{\overline{\epsilon}^2}\right) \times \text{subgradient calculation}$ 

**GM:**  $\mathcal{O}\left(\frac{1}{\overline{\epsilon}}\right) \times \text{gradient calculation}$ 

**AGM:**  $\mathcal{O}\left(\frac{1}{\sqrt{\overline{\epsilon}}}\right) \times \text{gradient calculation}$ 

#### Impact of smoothness

(Lipschitz gradient)  $d(\lambda)$  has Lipschitz continuous gradient iff

$$\|\nabla d(\lambda) - \nabla d(\eta)\|_2 \le L\|\lambda - \eta\|_2$$

for all  $\lambda, \eta \in \text{dom}(d)$  and we indicate this structure as  $d(\lambda) \in \mathcal{F}_L$ .

For all  $d(\lambda) \in \mathcal{F}_L$ , the accelerated gradient method with momentum  $\rho_k = \frac{k+1}{k+3}$  obeys

$$d^{\star} - d(\lambda^k) \le \frac{2LR^2}{(k+2)^2} \le \bar{\epsilon}$$

This is NEARLY the best we can do.

There exists a complexity lower-bound

$$d^{\star} - d(\lambda^k) \ge \frac{3LR^2}{32(k+1)^2}, \forall d(\lambda) \in \mathcal{F}_L,$$

for any iterative method based only on function and gradient evaluations.





# Nesterov's smoothing idea: From $\mathcal{O}\left(\frac{1}{\overline{\epsilon}^2}\right)$ to $\mathcal{O}\left(\frac{1}{\overline{\epsilon}}\right)$

# When can the dual function have Lipschitz gradient?

When  $f(\mathbf{x})$  is  $\gamma$ -strongly convex, the dual function  $d(\lambda)$  is  $\frac{\|\mathbf{A}\|^2}{\gamma}$ -Lipschitz gradient.

(Strong convexity)  $f(\mathbf{x})$  is  $\gamma$ -strongly convex iff  $f(\mathbf{x}) - \frac{\gamma}{2} \|\mathbf{x}\|_2^2$  is convex.

$$d(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} \quad \underbrace{f(\mathbf{x}) - \frac{\gamma}{2} \|\mathbf{x}\|_2^2}_{\text{convex \& possibly nonsmooth}} + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \quad \frac{\gamma}{2} \|\mathbf{x}\|_2^2}_{\text{leads to } d \in \mathcal{F}_L}$$

AGM automatically obtains  $d^\star - d(\mathbf{x}^k) \leq \bar{\epsilon}$  with  $k = \mathcal{O}\left(\frac{1}{\sqrt{\bar{\epsilon}}}\right)$ 

# Nesterov's smoothing idea: From $\mathcal{O}\left(\frac{1}{z^2}\right)$ to $\mathcal{O}\left(\frac{1}{z}\right)$

#### When can the dual function have Lipschitz gradient?

When  $f(\mathbf{x})$  is  $\gamma$ -strongly convex, the dual function  $d(\lambda)$  is  $\frac{\|\mathbf{A}\|^2}{\gamma}$ -Lipschitz gradient. (Strong convexity)  $f(\mathbf{x})$  is  $\gamma$ -strongly convex iff  $f(\mathbf{x}) - \frac{\gamma}{2} ||\mathbf{x}||_2^2$  is convex.

$$d(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} \quad \underbrace{f(\mathbf{x}) - \frac{\gamma}{2} \|\mathbf{x}\|_2^2}_{\text{convex \& possibly nonsmooth}} \quad +\langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \quad \underbrace{\frac{\gamma}{2} \|\mathbf{x}\|_2^2}_{\text{leads to } d \in \mathcal{F}_L}$$

#### Nesterov's smoother [9]

We add a strongly convex term to Lagrange subproblem so that the dual is smooth!

$$d_{\gamma}(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{x} - \mathbf{x}_c\|_2^2, \text{with a center point } \mathbf{x}_c \in \mathcal{X}$$

$$\nabla d_{\gamma}(\lambda) = \mathbf{A} \mathbf{x}_{\gamma}^{*}(\lambda) - \mathbf{b} \left( \mathbf{x}_{\gamma}^{*}(\lambda) \right)$$
: the  $\gamma$ -Lagrangian subproblem solution)

- 1.  $d_{\gamma}(\lambda) \gamma \mathcal{D}_{\chi} \leq d(\lambda) \leq d_{\gamma}(\lambda)$ , where  $\mathcal{D}_{\chi} = \max_{\mathbf{x} \in \mathcal{X}} \frac{1}{2} \|\mathbf{x} \mathbf{x}_c\|_2^2$ .
- 2.  $\lambda^k$  of AGM on  $d_{\gamma}(\lambda)$  has  $d^* d(\lambda^k) \leq \gamma \mathcal{D}_{\mathcal{X}} + d_{\gamma}^* d_{\gamma}(\lambda^k) \leq \gamma \mathcal{D}_{\mathcal{X}} + \frac{2\|\mathbf{A}\|^2 R^2}{\gamma(k+2)^2}$ .
- 3. We minimize the upperbound wrt  $\gamma$  and obtain  $d^\star d(\lambda^k) \leq \bar{\epsilon}$  with  $k = \mathcal{O}\left(\frac{1}{\bar{\epsilon}}\right)$ .

## Computational efficiency: The key role of the prox-operator

#### Definition (Prox-operator)

$$\operatorname{prox}_g(\mathbf{x}) := \arg\min_{\mathbf{z} \in \mathbb{R}^p} \{ g(\mathbf{z}) + (1/2) \|\mathbf{z} - \mathbf{x}\|^2 \}.$$

#### Key properties:

- ► single valued & non-expansive.
- distributes when the primal problem has decomposable structure:

$$f(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i), \quad \text{and} \quad \mathcal{X} := \mathcal{X}_1 \times \cdots \times \mathcal{X}_m.$$

where  $m \geq 1$  is the number of components.

• often efficient & has closed form expression. For instance, if  $g(\mathbf{z}) = \|\mathbf{z}\|_1$ , then the prox-operator performs coordinate-wise soft-thresholding by 1.



## Computational efficiency: The key role of the prox-operator

## Definition (Prox-operator)

$$\operatorname{prox}_{g}(\mathbf{x}) := \arg\min_{\mathbf{z} \in \mathbb{R}^{p}} \{ g(\mathbf{z}) + (1/2) \|\mathbf{z} - \mathbf{x}\|^{2} \}.$$

#### Key properties:

- ► single valued & non-expansive.
- distributes when the primal problem has decomposable structure:

$$f(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i), \text{ and } \mathcal{X} := \mathcal{X}_1 \times \cdots \times \mathcal{X}_m.$$

where m > 1 is the number of components.

• often efficient & has closed form expression. For instance, if  $g(\mathbf{z}) = \|\mathbf{z}\|_1$ , then the prox-operator performs coordinate-wise soft-thresholding by 1.

Smoothed dual: 
$$d_{\gamma}(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{x} - \mathbf{x}_c\|_2^2$$

$$\mathbf{x}^*(\lambda) = \operatorname{prox}_{\boldsymbol{f}/\gamma} \left( \mathbf{x}_c - \frac{1}{\gamma} \mathbf{A}^T \lambda \right)$$





## Going from the dual $\bar{\epsilon}$ to the primal $\epsilon$ -I

#### Optimality condition (revisted)

Two equivalent ways of viewing the optimality condition of the primal problem (1) mixed variational inequality (MVIP) inclusion

$$\boxed{f(\mathbf{x}) - f(\mathbf{x}^*) + M(\mathbf{z}^*)^T (\mathbf{z} - \mathbf{z}^*) \ge 0, \quad \forall \mathbf{z} \in \mathcal{X} \times \mathbb{R}^n} = \begin{cases} 0 & \in \mathbf{A}^T \lambda^* + \partial f(\mathbf{x}^*), \\ 0 & = \mathbf{A}\mathbf{x}^* - \mathbf{b}. \end{cases}$$

where 
$$M(\mathbf{z}) := \begin{bmatrix} \mathbf{A}^T \lambda \\ \mathbf{A}\mathbf{x} - \mathbf{b} \end{bmatrix}$$
 and  $\mathbf{z}^\star := (\mathbf{x}^\star, \lambda^\star)$  is a primal-dual solution of (1).

#### Going from the dual $\bar{\epsilon}$ to the primal $\epsilon$ -I

#### Optimality condition (revisted)

Two equivalent ways of viewing the optimality condition of the primal problem (1) mixed variational inequality (MVIP) inclusion

$$\underbrace{f(\mathbf{x}) - f(\mathbf{x}^*) + M(\mathbf{z}^*)^T(\mathbf{z} - \mathbf{z}^*) \ge 0, \quad \forall \mathbf{z} \in \mathcal{X} \times \mathbb{R}^n}_{ \mathbf{z} \in \mathbf{A}^T \setminus \mathbf{z}^*} = \begin{cases} 0 & \in \mathbf{A}^T \lambda^* + \partial f(\mathbf{x}^*), \\ 0 & = \mathbf{A}\mathbf{x}^* - \mathbf{b}. \end{cases}$$

where 
$$M(\mathbf{z}) := \begin{bmatrix} \mathbf{A}^T \lambda \\ \mathbf{A}\mathbf{x} - \mathbf{b} \end{bmatrix}$$
 and  $\mathbf{z}^\star := (\mathbf{x}^\star, \lambda^\star)$  is a primal-dual solution of (1).

#### Measuring progress via the gap function

Acssociated with MVIP, we can define a gap function to measure our progress

$$G(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathcal{X} \times \mathbb{R}^n} \left\{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) \right\}.$$
(3)

#### Key observations:

$$G(\mathbf{z}) = \max_{\hat{\mathbf{x}} \in \mathbb{R}^n} f(\mathbf{x}) + \langle \hat{\lambda}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle - \min_{\hat{\mathbf{x}} \in \mathcal{X}} f(\hat{\mathbf{x}}) + \langle \lambda, \mathbf{A}\hat{\mathbf{x}} - \mathbf{b} \rangle \ge 0, \forall \mathbf{z} \in \mathcal{X} \times \mathbb{R}^n$$

$$= f(\mathbf{x}) \text{ if } \mathbf{A}\mathbf{x} = \mathbf{b}, \infty \text{ o/w}$$

- $G(\mathbf{z}^*) = 0$  iff  $\mathbf{z}^* := (\mathbf{x}^*, \lambda^*)$  is a primal-dual solution of (1).
- ightharpoonup Primal accuracy  $\epsilon$  and the dual accuracy  $\bar{\epsilon}$  can be related via the gap function.



#### Going from the dual $\bar{\epsilon}$ to the primal $\epsilon$ -II

#### A smoothed gap function measuring the primal-dual gap

We define a smoothed version of the gap function  $G_{\gamma\beta}(\mathbf{z})=$ 

$$\max_{\hat{\boldsymbol{\lambda}} \in \mathbb{R}^n} f(\mathbf{x}) + \langle \hat{\boldsymbol{\lambda}}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle - \frac{\beta}{2} \|\hat{\boldsymbol{\lambda}} - \hat{\boldsymbol{\lambda}}_c\|_2^2 - \underbrace{\sum_{\hat{\mathbf{x}} \in \mathcal{X}}^{\hat{\mathbf{x}}} f(\hat{\mathbf{x}}) + \langle \boldsymbol{\lambda}, \mathbf{A}\hat{\mathbf{x}} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\hat{\mathbf{x}} - \hat{\mathbf{x}}_c\|_2^2}_{\mathbf{x} \in \mathbb{R}^n}$$

$$=f_{\beta}(\mathbf{x})=f(\mathbf{x})+\langle \hat{\lambda}_c, \mathbf{A}\mathbf{x}-\mathbf{b}\rangle + \frac{1}{2\beta} \|\mathbf{A}\mathbf{x}-\mathbf{b}\|_2^2$$

$$=d_{\gamma}(\lambda)$$

where  $(\hat{\mathbf{x}}_c, \hat{\lambda}_c) \in \mathcal{X} \times \mathbb{R}^n$  are primal-dual center points. In the sequel, they are 0.

- ▶ The primal accuracy  $\epsilon$  is related to our primal model estimate  $f_{\beta}(\mathbf{x})$
- ▶ The dual accuracy  $\bar{\epsilon}$  is related to our smoothed dual function  $d_{\gamma}(\lambda)$
- ullet We must relate  $G_{\gamma\beta}({f z})$  to  $G({f z})$  so that we can tie  $\epsilon$  to  $ar{\epsilon}$



## Going from the dual $\bar{\epsilon}$ to the primal $\epsilon$ -II

#### A smoothed gap function measuring the primal-dual gap

We define a smoothed version of the gap function  $G_{\gamma\beta}(\mathbf{z})=$ 

$$\underbrace{\max_{\hat{\lambda} \in \mathbb{R}^n} f(\mathbf{x}) + \langle \hat{\lambda}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle - \frac{\beta}{2} \|\hat{\lambda} - \hat{\lambda}_c\|_2^2}_{=f_{\beta}(\mathbf{x}) = f(\mathbf{x}) + \langle \hat{\lambda}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{1}{2\beta} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2} - \underbrace{\min_{\hat{\mathbf{x}} \in \mathcal{X}} f(\hat{\mathbf{x}}) + \langle \lambda, \mathbf{A}\hat{\mathbf{x}} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\hat{\mathbf{x}} - \hat{\mathbf{x}}_c\|_2^2}_{=d_{\gamma}(\lambda)}$$

where  $(\hat{\mathbf{x}}_c, \hat{\lambda}_c) \in \mathcal{X} \times \mathbb{R}^n$  are primal-dual center points. In the sequel, they are 0.

- ▶ The primal accuracy  $\epsilon$  is related to our primal model estimate  $f_{\beta}(\mathbf{x})$
- ► The dual accuracy  $\bar{\epsilon}$  is related to our smoothed dual function  $d_{\gamma}(\lambda)$
- We must relate  $G_{\gamma\beta}({f z})$  to  $G({f z})$  so that we can tie  $\epsilon$  to  $ar{\epsilon}$

## Our new technique: Model-based gap reduction MGR (cf., [12])

Let  $G_k(\cdot):=G_{\gamma_k\beta_k}(\cdot)$ . We generate a sequence  $\{\bar{\mathbf{z}}^k,\gamma_k,\beta_k\}_{k\geq 0}$  such that

$$G_{k+1}(\bar{\mathbf{z}}^{k+1}) \le (1 - \tau_k) G_k(\bar{\mathbf{z}}^k) + \psi_k$$
(MGR)

for 
$$\psi_k \to 0$$
, rate  $\tau_k \in (0,1)$   $(\sum_k \tau_k = \infty)$ ,  $\gamma_k \beta_{k+1} < \gamma_k \beta_k$  so that  $G_{\gamma_k \beta_k}(\cdot) \to G(\cdot)$ .

► Consequence:  $G(\bar{\mathbf{z}}^k) \to 0^+ \Rightarrow \bar{\mathbf{z}}^k \to \mathbf{z}^\star = (\mathbf{x}^\star, \lambda^\star)$  (primal-dual solution).

#### Going from the dual $\bar{\epsilon}$ to the primal $\epsilon$ -III

#### Key estimates [12, 13]

As a consequence of MGR, we can obtain

$$\left\{ \begin{array}{ccc} -D_{\Lambda^{\star}} \| \mathbf{A} \mathbf{x}^k - \mathbf{b} \| \leq & f(\bar{\mathbf{x}}^k) - f^{\star} & \leq \frac{\gamma_k}{k} D_{\mathcal{X}}, \\ \| \mathbf{A} \mathbf{x}^k - \mathbf{b} \| & \leq 2\frac{\beta_k}{k} D_{\Lambda^{\star}} + \sqrt{2D_{\mathcal{X}}} \| \mathbf{A} \| \tau_k, \end{array} \right.$$

where  $D_{\Lambda^*} := \min\{\|\lambda^*\| : \lambda^* \in \Lambda^*\}$  the **norm** of the minimum norm dual solution.



#### Going from the dual $\bar{\epsilon}$ to the primal $\epsilon$ -III

## Key estimates [12, 13]

As a consequence of MGR, we can obtain

$$\left\{ \begin{array}{ll} -D_{\Lambda^{\star}} \| \mathbf{A} \mathbf{x}^k - \mathbf{b} \| \leq & f(\bar{\mathbf{x}}^k) - f^{\star} & \leq \gamma_k D_{\mathcal{X}}, \\ \| \mathbf{A} \mathbf{x}^k - \mathbf{b} \| & \leq 2 \beta_k D_{\Lambda^{\star}} + \sqrt{2D_{\mathcal{X}}} \| \mathbf{A} \| \tau_k, \end{array} \right.$$

where  $D_{\Lambda^*} := \min\{\|\lambda^*\| : \lambda^* \in \Lambda^*\}$  the **norm** of the minimum norm dual solution.

#### An uncertainty relation via MGR

The product of the primal and dual convergence rates is lowerbounded by MGR:

$$\gamma_k \beta_k \ge \frac{\tau_k^2}{1 - \tau_k^2} \|\mathbf{A}\|^2$$

Note that  $au_k^2 = \Omega\left(\frac{1}{k^2}\right)$  due to Nesterov's lowerbound.

- ► The rate of  $\gamma_k$  controls the primal residual:  $|f(\mathbf{x}^k) f^{\star}| \leq \mathcal{O}(\gamma_k)$
- ► The rate of  $\beta_k$  controls the feasibility:  $\|\mathbf{A}\mathbf{x}^k \mathbf{b}\|_2 \le \mathcal{O}(\beta_k + \tau_k) = \mathcal{O}(\beta_k)$
- ▶ They cannot be simultaneously  $\mathcal{O}\left(\frac{1}{k^2}\right)!$

#### Convergence guarantee

#### **Recall:** Uncertainty relation

The product of the primal and dual convergence rates is lowerbounded by MGR:

$$\gamma_k \beta_k \ge \frac{\tau_k^2}{1 - \tau_k^2} \|\mathbf{A}\|^2$$

Note that  $\tau_k^2 = \Omega\left(\frac{1}{k^2}\right)$  due to Nesterov's lowerbound.

## Theorem [12, 13]

1. When f is strongly convex with  $\mu > 0$ , we can take  $\gamma_k = \mu$  and  $\beta_k = \mathcal{O}\left(\frac{1}{L^2}\right)$ :

$$\begin{cases} -D_{\Lambda^{\star}} \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| \leq & f(\mathbf{x}^k) - f^{\star} \leq 0 \\ \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| & \leq \frac{4\|\mathbf{A}\|^2}{(k+2)^2 \mu} D_{\Lambda^{\star}} \\ \|\mathbf{x}^k - \mathbf{x}^{\star}\| & \leq \frac{4\|\mathbf{A}\|}{(k+2)\mu} D_{\Lambda^{\star}} \end{cases}$$

2. When f is non-smooth, the best we can do is  $\gamma_k = \mathcal{O}\left(\frac{1}{k}\right)$  and  $\beta_k = \mathcal{O}\left(\frac{1}{k}\right)$ :

$$\begin{cases} -D_{\Lambda^{\star}} \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| \leq & f(\mathbf{x}^k) - f^{\star} & \leq \frac{2\sqrt{2} \|\mathbf{A}\| D_{\mathcal{X}}}{k+1}, \\ \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| & \leq \frac{2\sqrt{2} \|\mathbf{A}\| (D_{\Lambda^{\star}} + \sqrt{D_{\mathcal{X}}})}{k+1}. \end{cases}$$

## Accelerated gradient method (expanded)

#### The standard scheme ([11])

The accelerated scheme for minimizing  $g \in \mathcal{F}_L^{1,1}$  consists of three main steps:

$$\begin{cases}
\hat{\lambda}^k &:= (1 - \tau_k) \lambda^k + \tau_k \lambda_k^* \\
\lambda^{k+1} &:= \hat{\lambda}^k - \frac{1}{L_g} \nabla g(\hat{\lambda}^k) \\
\lambda_{k+1}^* &:= \lambda_k^* - \frac{1}{\tau_k} (\hat{\lambda}^k - \lambda^{k+1}).
\end{cases} \tag{4}$$

Here,  $L_q$  is the Lipschitz constant of  $\nabla g$  and  $\tau_k \in (0,1)$  is a given momentum term.

#### Accelerated gradient scheme for the smoothed dual problem

Recall the smoothed dual function  $d_{\gamma}$ . The AGM for this problem can be written as

$$\begin{cases}
\hat{\lambda}^{k} &:= (1 - \tau_{k}) \lambda^{k} + \tau_{k} \lambda_{k}^{*} \\
\lambda^{k+1} &:= \hat{\lambda}^{k} + \frac{\gamma}{\|\mathbf{A}\|^{2}} (\mathbf{A} \mathbf{x}_{\gamma}^{*} (\hat{\lambda}^{k}) - \mathbf{b}) \\
\lambda_{k+1}^{*} &:= \lambda_{k}^{*} - \frac{1}{\tau_{k}} (\hat{\lambda}^{k} - \lambda^{k+1}).
\end{cases} (5)$$

Here,  $L_d:= \frac{\|\mathbf{A}\|^2}{\gamma}$  and  $\nabla d_{\gamma}(\hat{\lambda}^k) = \mathbf{A}\mathbf{x}^*_{\gamma}(\hat{\lambda}^k) - \mathbf{b}$ .



#### Our primal-dual scheme

#### The primal-dual scheme

Our approach is fundamentally the same as the accelerated gradient method:

$$\begin{cases}
\hat{\lambda}^{k} &:= (1 - \tau_{k})\lambda^{k} + \tau_{k}\tilde{\lambda}^{k} \\
\lambda^{k+1} &:= \hat{\lambda}^{k} + \frac{\gamma_{k+1}}{\|\mathbf{A}\|^{2}}(\mathbf{A}\mathbf{x}^{*}_{\gamma_{k+1}}(\hat{\lambda}^{k}) - \mathbf{b}) \\
\bar{\mathbf{x}}^{k+1} &:= (1 - \tau_{k})\bar{\mathbf{x}}^{k} + \tau_{k}\mathbf{x}^{*}_{\gamma_{k+1}}(\hat{\lambda}^{k}) \\
\tilde{\lambda}^{k+1} &:= \frac{1}{\beta_{k+1}}(\mathbf{A}\bar{\mathbf{x}}^{k+1} - \mathbf{b}).
\end{cases} (6)$$

Both smoothing parameters  $\gamma$  and  $\beta$  are updated at each iteration.

## The correspondance between (5) and (6)

The last step of (6) (vs. (5)) is split into two steps to save a matrix multiplication:

$$\frac{1}{\beta_{k+1}}(\mathbf{A}\bar{\mathbf{x}}^{k+1}-\mathbf{b}) = \frac{1}{\beta_k}(\mathbf{A}\bar{\mathbf{x}}^k-\mathbf{b}) + \frac{\gamma_{k+1}}{\tau_k\|\mathbf{A}\|^2}(\mathbf{A}\mathbf{x}^*_{\gamma_{k+1}}(\hat{\lambda}^k)-\mathbf{b}).$$

Using  $\bar{\mathbf{x}}^{k+1} := (1 - \tau_k)\bar{\mathbf{x}}^k + \tau_k \mathbf{x}^*_{\gamma_{k+1}}(\hat{\lambda}^k)$  we can show that

$$\begin{cases} \beta_{k+1} = (1 - \tau_k) \beta_k \\ \beta_{k+1} \gamma_{k+1} = \tau_k^2 || \mathbf{A} ||^2. \end{cases}$$



#### The general constraint case

#### Handling a cone constraint $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}$

Two steps need to be changed:

$$\left\{ \begin{array}{ll} \lambda^{k+1} &:= \operatorname{proj}_{\mathcal{K}^*} \left( \hat{\lambda}^k + \frac{\gamma}{\|\mathbf{A}\|^2} (\mathbf{A} \mathbf{x}_{\gamma}^* (\hat{\lambda}^k) - \mathbf{b}) \right) \\[1ex] \lambda^*_{k+1} &:= \arg \max_{\lambda \in \mathcal{K}^*} \left\{ \langle \mathbf{A} \bar{\mathbf{x}}^{k+1} - \mathbf{b}, \lambda \rangle - \beta_{k+1} p(\lambda) \right\}. \end{array} \right.$$

Here,  $\mathcal{K}^*$  is the dual cone of  $\mathcal{K}$ ,  $\operatorname{proj}_{\mathcal{K}^*}$  is the projection onto  $\mathcal{K}^*$ , and p is a chosen proximity function.



# Augmented Lagrangian idea: From $\mathcal{O}\left(\frac{1}{\bar{\epsilon}^2}\right)$ to $\mathcal{O}\left(\frac{1}{\sqrt{\bar{\epsilon}}}\right)$

## When else can the dual function have Lipschitz gradient?

We can render  $f(\mathbf{x})$   $\gamma$ -strongly convex only on  $\mathbf{A}\mathbf{x} = \mathbf{b}$  by augmenting it:

Augmented Lagrangian:  $d_{\gamma}(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ 

Denoting  $\mathbf{x}_{\gamma}^*(\lambda)$  as the augmented Lagrangian problem solution, we observe:

- ▶ The dual function  $d(\lambda)$  is  $\frac{1}{\gamma}$ -Lipschitz gradient.
- ▶ The gradient is  $\nabla d_{\gamma}(\lambda) = \mathbf{A}\mathbf{x}_{\gamma}^*(\lambda) \mathbf{b}$ .
- The optimal dual objective value does not change:  $d^* = d^*_{\gamma}$ !!!

# Augmented Lagrangian idea: From $\mathcal{O}\left(\frac{1}{\bar{\epsilon}^2}\right)$ to $\mathcal{O}\left(\frac{1}{\sqrt{\bar{\epsilon}}}\right)$

## When else can the dual function have Lipschitz gradient?

We can render  $f(\mathbf{x})$   $\gamma$ -strongly convex only on  $\mathbf{A}\mathbf{x} = \mathbf{b}$  by augmenting it:

Augmented Lagrangian:  $d_{\gamma}(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ 

Denoting  $\mathbf{x}_{\gamma}^*(\lambda)$  as the augmented Lagrangian problem solution, we observe:

- ▶ The dual function  $d(\lambda)$  is  $\frac{1}{\gamma}$ -Lipschitz gradient.
- The gradient is  $\nabla d_{\gamma}(\lambda) = \mathbf{A} \mathbf{x}_{\gamma}^*(\lambda) \mathbf{b}$ .
- The optimal dual objective value does not change:  $d^* = d^*_{\gamma}!!!$

#### Augmented Lagrangian smoother

We augment the Lagrange subproblem so that the dual is smooth!

$$d_{\gamma}(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2},$$

- 1.  $\lambda^k$  of AGD on  $d_{\gamma}(\lambda)$  has  $d^{\star} d_{\gamma}(\lambda^k) \leq \frac{2R^2}{\gamma(k+2)^2}$ .
- 2. We obtain  $d^\star d_\gamma(\lambda^k) \leq \bar{\epsilon}$  with  $k = \mathcal{O}\left(\frac{R}{\sqrt{\gamma \bar{\epsilon}}}\right)$ .



## Augmented Lagrangian idea: The tradeoffs

#### Key estimates

As a consequence of MGR, we can obtain

$$\begin{aligned} -\frac{\gamma}{2}\|\mathbf{A}\mathbf{x}^k - \mathbf{b}\|^2 - \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\|D_{\Lambda^*} &\leq & f(\mathbf{x}^k) - f^* &\leq 0 \\ & \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| &\leq \frac{2D_{\Lambda^*}\beta_k}{1 - \gamma\beta_k}. \end{aligned}$$

where  $D_{\Lambda^*} := \min\{\|\lambda^*\| : \lambda^* \in \Lambda^*\}$  the **norm** of the minimum norm dual solution.

#### An uncertainty relation via MGR

The product of the primal and dual convergence rates is lowerbounded by MGR:

$$\gamma \beta_{k+1} \ge \tau_k^2$$
.

Here, we update  $\beta_k$  as  $\beta_{k+1}=(1-\tau_k)\beta_k$ . Then  $\beta_k=\Omega(\tau_k^2)$ . Note that  $\tau_k^2=\Omega\left(\frac{1}{k^2}\right)$  due to Nesterov's lowerbound.

- ► The rate of  $\beta_k$  controls the primal residual:  $|f(\mathbf{x}^k) f^{\star}| \leq \mathcal{O}(\beta_k)$
- ► The rate of  $\beta_k$  controls the feasibility:  $\|\mathbf{A}\mathbf{x}^k \mathbf{b}\|_2 \le \mathcal{O}(\beta_k)$
- ▶ They can be simultaneously  $\mathcal{O}\left(\frac{1}{k^2}\right)!$

## Augmented Lagrangian idea: The tradeoffs

#### Our augmented primal-dual scheme

$$\begin{cases}
\hat{\lambda}^{k} & := (1 - \tau_{k})\lambda^{k} + \tau_{k}\tilde{\lambda}^{k} \\
\lambda^{k+1} & := \hat{\lambda}^{k} + \gamma(\mathbf{A}\mathbf{x}_{\gamma}^{*}(\hat{\lambda}^{k}) - \mathbf{b}) \\
\bar{\mathbf{x}}^{k+1} & := (1 - \tau_{k})\bar{\mathbf{x}}^{k} + \tau_{k}\mathbf{x}_{\gamma}^{*}(\hat{\lambda}^{k}) \\
\tilde{\lambda}^{k+1} & := \frac{1}{\beta_{k+1}}(\mathbf{A}\bar{\mathbf{x}}^{k+1} - \mathbf{b}).
\end{cases} (7)$$

The update rule for parameters:

$$\beta_{k+1} := (1-\tau_k)\beta_k \quad \text{and} \quad \tau_{k+1} = 0.5\tau_k \left\lceil \sqrt{\tau_k^2 + 4} - \tau_k \right\rceil.$$

#### Theorem (convergence guarantee)

The sequence  $\{\bar{\mathbf{z}}^k\}$  generated by (7) satisfies:

$$-\frac{\gamma}{2}\|\mathbf{A}\mathbf{x}^k - \mathbf{b}\|^2 - \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\|D_{\Lambda^*} \le f(\mathbf{x}^k) - f^* \le 0$$
$$\|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| \le \frac{8D_{\Lambda^*}}{\gamma(k+1)^2}.$$

The worst-case iteration complexity:  $\mathcal{O}\left(\sqrt{\frac{D_{\Lambda^{\star}}}{\gamma\epsilon}}\right)$ .

- We can increase  $\gamma$  to obtain faster convergence
- ► However, it becomes more difficult to compute  $\mathbf{x}_{\gamma}^*(\hat{\lambda}^k)!$



## Tree sparsity [7, 4, 2, 15]









Wavelet coefficients

Wavelet tree

Valid selection of nodes

Invalid selection of nodes

**Structure:** We seek the sparsest signal with a rooted connected subtree support.

#### Optimization formulation (TU-relax [5])

$$\min_{\mathbf{x} \in \mathbb{R}^p} \quad f(\mathbf{x}) := \sum_{\mathcal{G}_i \in \mathfrak{G}} \|\mathbf{x}_{\mathcal{G}_i}\|_{\infty} \\
\text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}.$$
(8)

This problem possesses two key structures: decomposability and tractable proximity.

When g=p and  $\mathcal{G}_i=\{i\}$ , (8) reduces to the well-known basis pursuit (BP):

$$\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}. \tag{9}$$



# Tree sparsity [7, 4, 2, 15]







 $f(\mathbf{x})$ -ball

 $\mathfrak{G} = \{\{1,2,3\},\{2\},\{3\}\}$ 

valid selection of nodes

**Structure:** We seek the sparsest signal with a rooted connected subtree support.

#### Optimization formulation (TU-relax [5])

$$\min_{\mathbf{x} \in \mathbb{R}^p} \quad f(\mathbf{x}) := \sum_{\mathcal{G}_i \in \mathfrak{G}} \|\mathbf{x}_{\mathcal{G}_i}\|_{\infty} \\
\text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}.$$
(8)

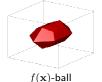
This problem possesses two key structures: decomposability and tractable proximity.

When g = p and  $G_i = \{i\}$ , (8) reduces to the well-known basis pursuit (BP):

$$\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}. \tag{9}$$



# Tree sparsity [7, 4, 2, 15]







 $\mathfrak{G} = \{\{1,2,3\},\{2\},\{3\}\}$ 

valid selection of nodes

**Structure:** We seek the sparsest signal with a rooted connected subtree support.

## Optimization formulation (TU-relax [5])

$$\min_{\mathbf{x} \in \mathbb{R}^p} \quad f(\mathbf{x}) := \sum_{\mathcal{G}_i \in \mathfrak{G}} \|\mathbf{x}_{\mathcal{G}_i}\|_{\infty} + \alpha \|\mathbf{\Psi}\mathbf{x}\|_{\mathsf{TV}} \\
\text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}. \tag{8}$$

This problem possesses two key structures: decomposability and tractable proximity.

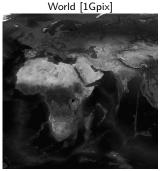
When g = p and  $G_i = \{i\}$ , (8) reduces to the well-known basis pursuit (BP):

$$\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{x}\|_{1} + \alpha \|\mathbf{\Psi}\mathbf{x}\|_{\mathsf{TV}} \quad \text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}. \tag{9}$$

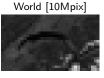
Adding additional regularizers to BP does not pose any difficulty

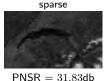
ullet  $\Psi$  is the wavelet transform and lpha is a regularization parameter

# Tree sparsity example: 1:100-compressive sensing [12, 1]



Lac Léman







 $\mathsf{PNSR} = 32.48\mathsf{db}$ 

### Augmented Lagrangian method

Iterations: 113 PD gap: 1e-8

Applications of  $(\mathbf{A}, \mathbf{A}^T)$ : (684, 570)

 $\mathsf{Time:}\,<4\mathsf{days}$ 



# Tree sparsity example: TV & TU-relax 1:15-compression [12, 1]



Original



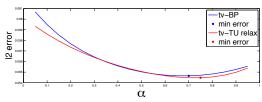








Regularization:



## Outline

The proximal way

The sharp way

Conclusion:





## Revisiting the prox-operator

# Prox-operator helps us process nonsmooth terms "efficiently"

$$\operatorname{prox}_g(\mathbf{x}) := \arg\min_{\mathbf{z} \in \mathbb{R}^p} \{ g(\mathbf{z}) + (1/2) \|\mathbf{z} - \mathbf{x}\|^2 \}.$$

### Key properties:

- ► single valued & non-expansive.
- distributes when the primal problem has decomposable structure:

$$f(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i), \quad ext{and} \quad \mathcal{X} := \mathcal{X}_1 imes \cdots imes \mathcal{X}_m.$$

where  $m \ge 1$  is the number of components.

• often efficient & has closed form expression. For instance, if  $g(\mathbf{z}) = \|\mathbf{z}\|_1$ , then the prox-operator performs coordinate-wise soft-thresholding by 1.



## Revisiting the prox-operator

# Prox-operator helps us process nonsmooth terms "efficiently"

$$\operatorname{prox}_g(\mathbf{x}) := \arg\min_{\mathbf{z} \in \mathbb{R}^p} \{ g(\mathbf{z}) + (1/2) \|\mathbf{z} - \mathbf{x}\|^2 \}.$$

#### Key properties:

- ► single valued & non-expansive.
- distributes when the primal problem has decomposable structure:

$$f(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i), \quad ext{and} \quad \mathcal{X} := \mathcal{X}_1 imes \cdots imes \mathcal{X}_m.$$

where  $m \ge 1$  is the number of components.

• often efficient & has closed form expression. For instance, if  $g(\mathbf{z}) = \|\mathbf{z}\|_1$ , then the prox-operator performs coordinate-wise soft-thresholding by 1.

## Not all nonsmooth functions are proximal-friendly!

If  $g(\mathbf{z}) = \|\mathbf{z}\|_{\star}$  (i.e., the nuclear norm of  $\mathbf{z}$ ) then the prox-operator may require a full singular value decomposition.

We will discuss how to avoid the prox-operator whenever it is expensive!





## Example: Frank-Wolfe's method

## Problem setting

$$f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{10}$$

### **Assumptions**

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^p)$  (i.e., convex with Lipschitz gradient).
- ▶ Note that  $Ax b \in \mathcal{K}$  is missing from our prototype problem

## Frank-Wolfe's method (see [6] for a review)

### Conditional gradient method (CGA)

- 1. Choose  $\mathbf{x}^0 \in \mathcal{X}$ .
- **2.** For  $k = 0, 1, \dots$ , perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x}, \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where  $\gamma_k := \frac{2}{k+2}$  is a given relaxation parameter.





## Example: Frank-Wolfe's method

## Problem setting

$$f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{10}$$

### **Assumptions**

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^p)$  (i.e., convex with Lipschitz gradient).
- ▶ Note that  $Ax b \in \mathcal{K}$  is missing from our prototype problem

## Frank-Wolfe's method (see [6] for a review)

### Conditional gradient method (CGA)

- 1. Choose  $\mathbf{x}^0 \in \mathcal{X}$ .
- **2.** For  $k = 0, 1, \dots$ , perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x}, (*) \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where  $\gamma_k := \frac{2}{k+2}$  is a given relaxation parameter.

When  $\mathcal{X} := \{ \mathbf{x} \in \mathbb{R}^{n \times p} : \|\mathbf{x}\|_{\star} \le 1 \}$ , (\*) corresponds to rank-1 updates!



## **Towards Fenchel-type operators**

## Generalized sharp operators [14]

We define the (generalized) sharp operator of a convex function g over  $\mathcal X$  as follows

$$[\mathbf{x}]_{\mathcal{X},g}^{\sharp} := \operatorname*{argmax}_{\mathbf{z} \in \mathcal{X}} \{ \langle \mathbf{x}, \mathbf{z} \rangle - g(\mathbf{z}) \}.$$

Important special cases:

- 1. If g = 0, then we obtain the so-called linear minimization oracle.
- 2. If  $\mathcal{X} = \text{dom}(g)$ , then  $[\mathbf{x}]_g^{\sharp} = \nabla g^*(\mathbf{x})$ , where  $g^*$  is the Fenchel conjugate of g.

# Example (Nuclear norm)

Consider  $g(\mathbf{x}) := \frac{1}{2} \|\mathbf{x}\|_{\star}^2$  and  $\mathcal{X} := \{\mathbf{x} \in \mathbb{R}^{n \times p} : \|\mathbf{x}\|_{\star} \leq 1\}$ . Let  $\mathbf{u}$  and  $\mathbf{v}$  be the left and right principal singular vectors of  $\mathbf{x}$  respectively. Then,

$$\mathbf{u}\mathbf{v}^T \in [\mathbf{x}]_{\mathcal{X}}^{\sharp} := [\mathbf{x}]_{\mathcal{X},0}^{\sharp} \;, \qquad \|\mathbf{x}\|\mathbf{u}\mathbf{v}^T \in [\mathbf{x}]_g^{\sharp} := [\mathbf{x}]_{\mathbb{R}^{n \times p},g}^{\sharp}$$

where  $\|\cdot\|$  is the spectral norm. The computations are essentially the same.





## Revisiting Frank-Wolfe's method

## Problem setting

$$f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{11}$$

### **Assumptions**

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_{L}^{1,1}(\mathbb{R}^p)$  (i.e., convex with Lipschitz gradient).
- Note that  $\mathbf{A}\mathbf{x} \mathbf{b} \in \mathcal{K}$  is missing from our prototype problem

## Frank-Wolfe's method (see [6] for a review)

### Conditional gradient method (CGA)

- **1.** Choose  $\mathbf{x}^0 \in \mathcal{X}$ .
- **2.** For  $k = 0, 1, \dots$ , perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x} &\equiv \left[ \nabla f(\mathbf{x}^k) \right]_{\mathcal{X}}^{\sharp}, \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where  $\gamma_k := \frac{2}{k+2}$  is a given relaxation parameter.

Generalized conditional gradient method replaces the indicator function  $\delta_{\mathcal{X}}$  with g:

$$\hat{\mathbf{x}}^k := \arg\min\{g(\mathbf{x}) + \nabla f(\mathbf{x}^k)^T \mathbf{x}\} = [\nabla f(\mathbf{x}^k)]_g^{\sharp}.$$



## Revisiting Frank-Wolfe's method

## Problem setting

$$f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$
 (11)

#### **Assumptions**

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^p)$  (i.e., convex with Lipschitz gradient).
- ▶ We will handle  $Ax b \in \mathcal{K}$  and nonsmooth f(x) in the sequel!

## Frank-Wolfe's method (see [6] for a review)

### Conditional gradient method (CGA)

- 1. Choose  $\mathbf{x}^0 \in \mathcal{X}$ .
- **2.** For  $k = 0, 1, \dots$ , perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x} &\equiv \left[ \nabla f(\mathbf{x}^k) \right]_{\mathcal{X}}^{\sharp}, \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where  $\gamma_k := \frac{2}{k+2}$  is a given relaxation parameter.

Generalized conditional gradient method replaces the indicator function  $\delta_{\mathcal{X}}$  with g:

$$\hat{\mathbf{x}}^k := \arg\min_{\mathbf{x}} \{ g(\mathbf{x}) + \nabla f(\mathbf{x}^k)^T \mathbf{x} \} = [\nabla f(\mathbf{x}^k)]_g^{\sharp}.$$



## Exploring the smoothness of the dual function in depth

# Definition (Hölder continuous gradients [8])

Let us consider the following unconstrained setup

$$\min_{\mathbf{x} \in \mathbb{R}^p} g(\mathbf{x}).$$

A convex function g has Hölder continuous subgradients of degree  $\nu$  if there are nonnegative real constants  $\nu$  and  $M_{\nu}$  that satisfy:

$$\|\nabla g(\mathbf{x}) - \nabla g(\mathbf{y})\|_* \le M_{\nu} \|\mathbf{x} - \mathbf{y}\|^{\nu}$$

where  $\nabla g(\lambda)$  is a (sub)gradient of g.

### Highlights:

- 1.  $\nu=1$  is the Lipschitz continuous gradients case where  $L=M_{\nu}$ .
- 2.  $\nu = 0$  is the bounded gradient assumption (recall the subgradient method).
- 3. Iteration lowerbound for the Hölder class:  $\mathcal{O}\left(\left(\frac{M_{\nu}\|\mathbf{x}^{0}-\mathbf{x}^{\star}\|^{1+\nu}}{\epsilon}\right)^{\frac{2}{1+3\nu}}\right)$ .
- 4. The condition also ensures a basic surrogate

$$g(\mathbf{y}) \le g(\mathbf{x}) + \langle \nabla g(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{M_{\nu}}{1 + \nu} ||\mathbf{x} - \mathbf{y}||^{1 + \nu}$$

for any  $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ .



## Nesterov's universal gradient methods

# Nesterov's universal gradient methods [10]

In practice, smoothness parameters  $\nu$  and  $M_{\nu}$  are usually not known. Nesterov's algorithms adapt to the unknown  $\nu$  via an appropriate line-search strategy:

$$g(\mathbf{y}) \leq g(\mathbf{x}) + \langle \nabla g(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{M}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{\delta}{2}.$$

where inexactness parameter  $\delta > 0$  depends only on the desired final accuracy.

They are universal since they ensure the best possible rate of convergence for each  $\nu$ .

<sup>&</sup>lt;sup>3</sup>PGM in [10] uses the Bregman / prox setup.





## Nesterov's universal gradient methods

## Nesterov's universal gradient methods [10]

In practice, smoothness parameters  $\nu$  and  $M_{\nu}$  are usually not known. Nesterov's algorithms adapt to the unknown  $\nu$  via an appropriate line-search strategy:

$$g(\mathbf{y}) \leq g(\mathbf{x}) + \langle \nabla g(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{M}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{\delta}{2}.$$

where inexactness parameter  $\delta > 0$  depends only on the desired final accuracy.

They are universal since they ensure the best possible rate of convergence for each  $\nu$ .

### Universal primal gradient method (PGM)<sup>3</sup>

- **1.** Choose  $\mathbf{x}^0 \in \mathcal{X}$ ,  $M_{-1} > 0$  and accuracy  $\epsilon > 0$ .
- **2.** For  $k = 0, 1, \dots$ , perform:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - M_k^{-1} \nabla g(\mathbf{x}^k)$$

where we use line-search to find  $M_k \geq 0.5 M_{k-1}$  that satisfies:

$$g(\mathbf{x}^{k+1}) \leq g(\mathbf{x}^k) + \langle \nabla g(\mathbf{x}^k), \mathbf{x}^{k+1} - \mathbf{x}^k \rangle + \frac{M_k}{2} \|\mathbf{x}^k - \mathbf{x}^{k+1}\|^2 + \frac{\epsilon}{2}$$



<sup>&</sup>lt;sup>3</sup>PGM in [10] uses the Bregman / prox setup.

## Nesterov's universal gradient methods

## Nesterov's universal gradient methods [10]

In practice, smoothness parameters  $\nu$  and  $M_{\nu}$  are usually not known. Nesterov's algorithms adapt to the unknown  $\nu$  via an appropriate line-search strategy:

$$g(\mathbf{y}) \le g(\mathbf{x}) + \langle \nabla g(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{M}{2} ||\mathbf{x} - \mathbf{y}||^2 + \frac{\delta}{2}.$$

where inexactness parameter  $\delta > 0$  depends only on the desired final accuracy.

They are universal since they ensure the best possible rate of convergence for each  $\nu$ .

### Universal primal gradient method (PGM)<sup>3</sup>

- **1.** Choose  $\mathbf{x}^0 \in \mathcal{X}$ ,  $M_{-1} > 0$  and accuracy  $\epsilon > 0$ .
- **2.** For  $k = 0, 1, \dots$ , perform:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - M_k^{-1} \nabla g(\mathbf{x}^k)$$

where we use line-search to find  $M_k \geq 0.5 M_{k-1}$  that satisfies:

$$g(\mathbf{x}^{k+1}) \le g(\mathbf{x}^k) + \langle \nabla g(\mathbf{x}^k), \mathbf{x}^{k+1} - \mathbf{x}^k \rangle + \frac{M_k}{2} \|\mathbf{x}^k - \mathbf{x}^{k+1}\|^2 + \frac{\epsilon}{2}$$

Yes, there is an accelerated version.

<sup>&</sup>lt;sup>3</sup>PGM in [10] uses the Bregman / prox setup.



## Universal primal-dual decomposition methods

## Our strategy: Hölder smoothness in the dual

Instead of smoothing, we assume that the dual function d is Hölder continuous for some  $\nu \in [0,1]$ :

$$M_{\nu}(d) := \sup_{\lambda \neq \eta} \frac{\left\| \nabla d(\lambda) - \nabla d(\eta) \right\|_{*}}{\left\| \lambda - \eta \right\|^{\nu}}, \quad M_{d}^{*} := \inf_{0 \leq \nu \leq 1} M_{\nu}(d) < +\infty.$$

We will solve the dual problem by a new FISTA version [3] of Nesterov's universal gradient algorithm [10] and develop new primal strategies to approximate  $x^*$ .

### Is this assumption reasonable?

Consider two special cases:

- if  $\mathcal{X}$  is bounded and d is subdifferentiable, then  $\nabla d$  is also bounded.
- if f is uniformly convex with convexity parameter  $\mu_f>0$  and degree  $q\geq 2$ , i.e.,

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \mu_f \|\mathbf{x} - \mathbf{y}\|^q$$

for any  $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ , then  $\nabla d$  satisfies Hölder condition with  $\nu = \frac{1}{q-1}$  and  $M_{\nu} = \left(\mu_{\scriptscriptstyle f}^{-1} \|\mathbf{A}\|^2\right)^{\frac{1}{q-1}}$ .



# Our universal primal-dual decomposition methods: The dual steps

# Dual steps ([14])

► The universal dual gradient step:

$$\lambda^{k+1} := \lambda^k + \frac{1}{M_k} \nabla d(\lambda^k) = \lambda_k + \frac{1}{M_k} \left( \mathbf{A} \mathbf{x}^* (\lambda^k) - \mathbf{b} \right),$$

where  $\mathbf{x}^*(\lambda^k)$  is computed via the sharp operator:

$$\mathbf{x}^*(\lambda^k) := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) + \langle \mathbf{A}^T \lambda^k, \mathbf{x} \rangle \right\} \equiv \left[ -\mathbf{A}^T \lambda^k \right]_f^{\sharp}.$$

► The universal dual accelerated gradient step:

$$\left\{ \begin{array}{ll} t_k & := 0.5 \left(1 + \sqrt{1 + 4 t_{k-1}^2}\right) \\ \hat{\lambda}^k & := \lambda^k + \frac{t_{k-1} - 1}{t_k} \left(\lambda^k - \hat{\lambda}^{k-1}\right) \\ \lambda^{k+1} & := \hat{\lambda}^k + \frac{1}{M_k} \left(\mathbf{A} \mathbf{x}^* (\hat{\lambda}^k) - \mathbf{b}\right). \end{array} \right.$$

## Line-search condition

The local smoothness constant  $M_k$  is computed via a line-search procedure:

$$d(\lambda^{k+1}) \geq d(\lambda^k) + \langle \nabla d(\lambda^k), \lambda^{k+1} - \lambda^k \rangle - \frac{M_k}{2} \|\lambda^{k+1} - \lambda^k\|^2 - \frac{\delta_k}{2}.$$

- $oldsymbol{\delta}_k = \epsilon$  for our universal dual gradient method
- $\delta_k = \epsilon/t_k$  for our universal dual accelerated gradient method

### On the line-search

### Number of line-search iterations

- Each line-search step costs one dual function evaluation.
- ► (Acc)UniProx requires (1)2 line-search steps per iteration on the average.
- In many cases, we can avoid the search step and find the step-size in one shot by solving an analytic equation obtained by using a proper bound on  $d(\lambda^{k+1})$ .

# Example (Nuclear norm)

Consider  $f:=\frac{1}{2}\|\mathbf{x}\|_{\star}^2$  with the linear constraint  $\mathbf{A}(\mathbf{x})=\mathbf{b}$ , which leads to the dual function  $d(\lambda)=-\frac{1}{2}\|\mathbf{A}^T(\lambda)\|^2-\langle\lambda,\mathbf{b}\rangle$ . Using triangular inequality, we get

$$\begin{split} U(M_k) := d(\lambda^k) - \frac{\alpha_k^2}{2} \|\mathbf{A}^T(\nabla d(\lambda^k))\|^2 - \alpha_k \Big[ \|\mathbf{A}^T(\nabla d(\lambda^k))\| \|\mathbf{A}^T(\lambda^k)\| + \langle \nabla d(\lambda^k), \mathbf{b} \rangle \Big] \\ & \leq d(\lambda^k + \frac{1}{M_k} \nabla d(\lambda^k)) = d(\lambda^{k+1}). \end{split}$$

We can solve the following second order equation

$$U(M_k) = d(\lambda^k) + \frac{\alpha_k}{2} \left\| \nabla d(\lambda^k) \right\|^2 - \frac{\delta_k}{2}$$

to find the step size  $\alpha_k := \frac{1}{M_k}$  which guarantees the line-search condition.



## The primal steps and the worst-case complexity

## Primal steps - averaging steps

The universal primal gradient step:

(UniProx): 
$$\bar{\mathbf{x}}^k := \left(\sum_{i=0}^k \frac{1}{M_i}\right)^{-1} \sum_{i=0}^k \frac{1}{M_i} \mathbf{x}^*(\lambda^i).$$

► The universal primal accelerated gradient step:

(AccUniProx): 
$$\bar{\mathbf{x}}^k := \left(\sum_{i=0}^k \frac{t_i}{M_i}\right)^{-1} \sum_{i=0}^k \frac{t_i}{M_i} \mathbf{x}^*(\lambda^i).$$

### The worst-case complextity

To achieve  $\bar{\mathbf{x}}^k$  such that  $|f(\bar{\mathbf{x}}^k) - f^\star| \leq \epsilon$  and  $\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| \leq \epsilon$  is:

$$\left\{ \begin{array}{ll} \text{For (UniProx):} & \mathcal{O}\left(D_{\Lambda^{\star}}^{2}\inf_{0\leq\nu\leq1}\left(\frac{M_{\nu}}{\epsilon}\right)^{\frac{2}{1+\nu}}\right), & \text{(optimal for }\nu=0). \\ \\ \text{For (AccUniProx):} & \mathcal{O}\left(D_{\Lambda^{\star}}^{\frac{2+5\nu}{1+3\nu}}\inf_{0\leq\nu\leq1}\left(\frac{M_{\nu}}{\epsilon}\right)^{\frac{2}{1+3\nu}}\right), & \text{(optimal for }\nu=1). \end{array} \right.$$



# Summary of the algorithms and convergence guarantees - I

### Universal primal-dual gradient method (UniProx)

Initialization: Choose  $\lambda^0 \in \mathbb{R}^n$  and  $\epsilon > 0$ . Estimate a value  $M_{-1} < 2M_{\epsilon}$ . Iteration: For  $k = 0, 1, \cdots$ , perform:

- 1. Primal step:  $\mathbf{x}^*(\lambda^k) = [-\mathbf{A}^T \lambda^k]_f^{\sharp}$
- 2. Dual gradient:  $\nabla d(\lambda^k) = \mathbf{A}^T \mathbf{x}^* (\lambda^k) \mathbf{b}$
- 3. Line-search: Find  $M_k \in [0.5M_{k-1}, 2M_e]$  from line-search condition and:  $\lambda^{k+1} = \lambda^k + M_{\iota}^{-1} \nabla d(\lambda^k)$
- 4. Primal averaging:  $\bar{\mathbf{x}}^k := S_k^{-1} \sum_{j=0}^k M_j^{-1} \mathbf{x}^*(\lambda^j)$  where  $S_k = \sum_{j=0}^k M_j^{-1}$ .

# Theorem [14]

 $ar{\mathbf{x}}^k$  and  $ar{\lambda}^k:=S_k^{-1}\sum_{j=0}^k M_j^{-1}\lambda^j$  obtained by **UniProx** satisfy (with  $\lambda^0=0$ ):

$$\begin{cases}
-\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\|D_{\Lambda^*} \leq f(\bar{\mathbf{x}}^k) - f^* & \leq \frac{\epsilon}{2}, \\
\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| & \leq \frac{4M_{\epsilon}D_{\Lambda^*}}{k+1} + \sqrt{\frac{2M_{\epsilon}\epsilon}{k+1}}, \\
d^* - d(\bar{\lambda}^k) & \leq \frac{M_{\epsilon}D_{\Lambda^*}^2}{k+1} + \frac{\epsilon}{2}.
\end{cases}$$



# Summary of the algorithms and convergence guarantees - II

### Accelerated universal primal-dual gradient method (AccUniProx)

**Initialization:** Choose  $\lambda^0 \in \mathbb{R}^n$ ,  $\epsilon > 0$ . Set  $t_0 = 1$ . Estimate a value  $M_{-1} < 2M_{\epsilon}$ . **Iteration:** For  $k = 0, 1, \dots$ , perform:

- 1. Primal step:  $\mathbf{x}^*(\hat{\lambda}^k) = [-\mathbf{A}^T \hat{\lambda}^k]_{\mathfrak{t}}^{\sharp}$
- 2. Dual gradient:  $\nabla d(\hat{\lambda}^k) = \mathbf{A}^T \mathbf{x}^* (\hat{\lambda}^k) \mathbf{b}$ ,
- 3. Line-search: Find  $M_k \in [M_{k-1}, 2M_{\epsilon}]$  from line-search condition and:  $\lambda^{k+1} = \hat{\lambda}^k + M_i^{-1} \nabla d(\hat{\lambda}^k),$
- 4.  $t_{k+1} = 0.5[1 + \sqrt{1 + 4t_k^2}],$ 5.  $\hat{\lambda}_{k+1} = \lambda_{k+1} + \frac{t_k 1}{t_{k+1}}(\lambda_{k+1} \lambda_k),$
- **6.** Primal averaging:  $\bar{\mathbf{x}}^k := S_k^{-1} \sum_{j=0}^k t_j M_j^{-1} \mathbf{x}^* (\lambda^j)$  where  $S_k = \sum_{j=0}^k t_j M_j^{-1}$ .

# Theorem [14]

 $\bar{\mathbf{x}}^k$  and  $\lambda^k$  obtained by **AccUniProx** satisfy (with  $\lambda^0 = 0$ ):

$$\begin{cases} -\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\|D_{\Lambda^\star} \leq & f(\bar{\mathbf{x}}^k) - f^\star & \leq \frac{\epsilon}{2}, \\ & \|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| \leq \frac{16M_\epsilon D_{\Lambda^\star}}{(k+2)\frac{1+3\nu}{1+\nu}} + \sqrt{\frac{8M_\epsilon \epsilon}{k+2}}, \\ & d^\star - d(\lambda^k) & \leq \frac{4M_\epsilon D_{\Lambda^\star}^2}{(k+1)\frac{1+3\nu}{1+\nu}} + \frac{\epsilon M_\epsilon}{M_0}(k+1)^{\frac{1-\nu}{1+\nu}}. \end{cases}$$

The dual may NOT converge!



## The general constraint case

## Handling to the constraint $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}$

Dual steps need to be changed:

► The universal dual gradient step:

$$\lambda^{k+1} \ := \operatorname{prox}_{M_k^{-1}h} \left( \lambda_k + \frac{1}{M_k} \left( \mathbf{A} \mathbf{x}^* (\lambda^k) - \mathbf{b} \right) \right).$$

► The universal dual accelerated gradient step:

$$\begin{cases} t_k &:= 0.5 \left(1 + \sqrt{1 + 4t_{k-1}^2}\right) \\ \hat{\lambda}^k &:= \bar{\lambda}^k + \frac{t_{k-1} - 1}{t_k} \left(\bar{\lambda}^k - \hat{\lambda}^{k-1}\right) \\ \lambda^{k+1} &:= \operatorname{prox}_{M_k^{-1} h} \left(\hat{\lambda}^k + \frac{1}{M_k} \left(\mathbf{A} \mathbf{x}^* (\hat{\lambda}^k) - \mathbf{b}\right)\right). \end{cases}$$

Here, h is defined by  $h(\lambda) := \sup_{\mathbf{r} \in \mathcal{K}} \langle \lambda, \mathbf{r} \rangle$ .



# Example: Robust matrix completion with $\approx 1:50$ subsampling

### Problem formulation

Let  $\Omega\subseteq\{1,\cdots,p\} imes\{1,\cdots,q\}$  be a subset of indexes and  $\mathbf{M}_\Omega=(\mathbf{M}_{ij})_{(i,j)\in\Omega}$  be the observed entries of a missed matrix  $\mathbf{M}$ .  $\mathcal{P}_\Omega$  is the projection on the subset  $\Omega$ .

$$f^{\star} := \min_{\mathbf{X} \in \mathbb{R}^{p \times q}} \left\{ f(\mathbf{X}) := \frac{1}{2} \|\mathbf{X}\|_{\star}^{2} : \|\mathcal{P}_{\Omega}(\mathbf{X}) - \mathbf{M}_{\Omega}\|_{1} \le \tau \right\}. \tag{12}$$

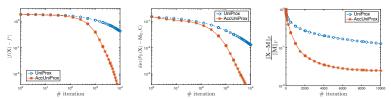


Figure: The performance of UniProx and AccUniProx algorithms for (12).

### Setup

- ▶ Synthetic data p = 1000, q = 4000, and rank r = 6
- Number of samples  $n := |\Omega| = 9 \cdot 10^4$
- Input parameters  $\lambda^0 = \mathbf{0}^n$  and  $\epsilon = 2 \cdot 10^{-2}$



## Example: Nuclear-norm constrained matrix completion - I

### Problem formulation

Let  $\Omega\subseteq\{1,\cdots,p\} imes\{1,\cdots,q\}$  be a subset of indexes and  $\mathbf{M}_\Omega=(\mathbf{M}_{ij})_{(i,j)\in\Omega}$  be the observed entries of a missed matrix  $\mathbf{M}$ .  $\mathcal{P}_\Omega$  is the projection on the subset  $\Omega$ .

$$f^{\star} := \min_{\mathbf{X} \in \mathbb{R}^{p \times q}} \left\{ \frac{1}{2} \| \mathcal{P}_{\Omega}(\mathbf{X}) - \mathbf{M}_{\Omega} \|_{F}^{2} : \| \mathbf{X} \|_{\star} \le \varphi^{\star} \right\}$$
(13)

## Setup

- Synthetic data of size p=400, q=2000 with rank r=10 .
- Number of samples  $n := |\Omega| = 7.5 \cdot 10^4$ .
- $\varphi^* = \|\mathbf{M}\|_*$  is assumed to be known.
- Input parameters  $\lambda^0 = \mathbf{0}^n$  and  $\epsilon = 2 \cdot 10^{-6}$ .





## Example: Nuclear-norm constrained matrix completion - II

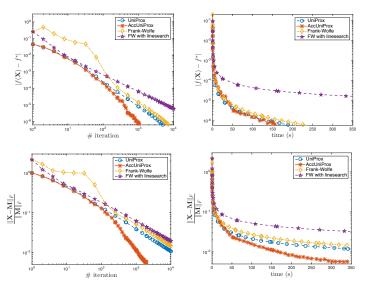


Figure: The performance of (Acc)UniProx and Frank-Wolfe algorithms for (13).

## Outline

The proximal way

The sharp way

Conclusions





### **Conclusions**

- Our contributions for the prototype primal problem (1):
  - new proximal primal dual algorithms via the model-based gap reduction technique
  - new universal primal-dual algorithms via sharp operators
  - guarantees on primal optimality and feasibility of the iterates for all
- Uncertainty relations for the proximal way
  - primal optimality of the algorithmic iterates competes with their feasibility
  - clear benefits of the augmented Lagrangian
- The prox-operator vs. the sharp-operator
  - ► tradeoffs abound (also along the Augmented Lagrangian + ADMM / AMA)
  - time-winner is unclear due to modern data processing systems
  - warm-starts / hybrid strategies ?





#### References |

- Ben Adcock, Anders C. Hansen, Clarice Poon, and Bogdan Roman. Breaking the coherence barrier: A new theory for compressed sensing. http://arxiv.org/abs/1302.0561, Feb. 2013.
- [2] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde. Model-based compressive sensing. Information Theory, IEEE Transactions on, 56(4):1982–2001, 2010.
- [3] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.
- [4] Marco F. Duarte, Dharmpal Davenport, Mark A. adn Takhar, Jason N. Laska, Ting Sun, Kevin F. Kelly, and Richard G. Baraniuk. Single-pixel imaging via compressive sampling. *IEEE Sig. Process. Mag.*, 25(2):83–91, March 2008.
- [5] M. El Halabi and V. Cevher.
   A totally unimodular view of structured sparsity.
   In Int. Conf. on Artificial Intelligence and Statistics (AISTATS), 2015.
- [6] M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. JMLR W&CP, 28(1):427–435, 2013.



#### References II

- [7] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. Journal of Machine Learning Reasearch, 12:2297–2334, 2011.
- [8] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley, New York, 1983.
- [9] Yu. Nesterov.Smooth minimization of non-smooth functions.Math. Program., Ser. A, 103:127–152, 2005.
- [10] Yu. Nesterov. Universal gradient methods for convex optimization problems. Math. Program., pages 1–24, 2014.
- [11] Yurii Nesterov.
  A method of solving a convex programming problem with convergence rate o (1/k2).
  - In Soviet Mathematics Doklady, volume 27, pages 372-376, 1983.
- [12] Quoc Tran-Dinh and Volkan Cevher. Constrained convex minimization via model-based excessive gap. In Conference of Neural Information Processing Systems (NIPS), 2014.





### References III

- [13] Quoc Tran-Dinh and Volkan Cevher.
  - A primal-dual algorithmic framework for constrained convex minimization. Technical report, EPFL, 2014.
- [14] Alp Yurtsever, Quoc Tran-Dinh, and Volkan Cevher. Universal primal-dual proximal-gradient methods. Technical report, EPFL, 2015.
- [15] Peng Zhao, Guilherme Rocha, and Bin Yu. Grouped and hierarchical model selection through composite absolute penalties. Department of Statistics, UC Berkeley, Tech. Rep., 703, 2006.



