Tradeoffs in primal-dual optimization

Volkan Cevher

volkan.cevher@epfl.ch

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

Seminaire Parisien d'Optimisation

ENSCP

[April 13, 2015]

Joint work with

Alp Yurtsever and Quoc Tran Dinh @ LIONS

Swiss army knife of convex formulations

A primal problem prototype¹

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathcal{X} \right\},\tag{1}$$

- f is a proper, closed and convex function, and \mathcal{X} is a nonempty, closed convex set.
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^n$ are known.
- An optimal solution \mathbf{x}^* to (1) satisfies $f(\mathbf{x}^*) = f^*$, $\mathbf{A}\mathbf{x}^* = \mathbf{b}$ and $\mathbf{x}^* \in \mathcal{X}$.

¹We can simply replace $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{C}$ for a convex body \mathcal{C} without any fundamental change.

Swiss army knife of convex formulations

A **primal problem** prototype¹

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathcal{X} \right\},\tag{1}$$

- f is a proper, closed and convex function, and \mathcal{X} is a nonempty, closed convex set.
- ▶ $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^n$ are known.
- An optimal solution \mathbf{x}^* to (1) satisfies $f(\mathbf{x}^*) = f^*$, $\mathbf{A}\mathbf{x}^* = \mathbf{b}$ and $\mathbf{x}^* \in \mathcal{X}$.

Example to keep in mind in the sequel

$$\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_1 : \mathbf{A}\mathbf{x} = \mathbf{b}, \|\mathbf{x}\|_{\infty} \leq 1 \right\}$$

¹We can simply replace $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{C}$ for a convex body \mathcal{C} without any fundamental change.

Swiss army knife of convex formulations

A **primal problem** prototype¹

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathcal{X} \right\},\tag{1}$$

- f is a proper, closed and convex function, and \mathcal{X} is a nonempty, closed convex set.
- ▶ $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^n$ are known.
- An optimal solution \mathbf{x}^* to (1) satisfies $f(\mathbf{x}^*) = f^*$, $\mathbf{A}\mathbf{x}^* = \mathbf{b}$ and $\mathbf{x}^* \in \mathcal{X}$.

Example to keep in mind in the sequel

$$\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_1 : \mathbf{A}\mathbf{x} = \mathbf{b}, \|\mathbf{x}\|_{\infty} \le 1 \right\}$$

Broader context for (1):

- Standard convex optimization formulations: linear programming, convex quadratic programming, second order cone programming, semidefinite programming and geometric programming.
- Reformulations of existing unconstrained problems via convex splitting: composite convex minimization, consensus optimization, . . .

¹We can simply replace $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{C}$ for a convex body \mathcal{C} without any fundamental change.

Numerical ϵ -accuracy

Exact vs. approximate solutions

- Computing an exact solution x* to (1) is impracticable unless problem has a closed form solution, which is extremely limited in reality.
- Numerical optimization algorithms result in $\mathbf{x}_{\epsilon}^{\star}$ that approximates \mathbf{x}^{\star} up to a given accuracy ϵ in some sense.
- In the sequel, by ϵ -accurate solutions $\mathbf{x}_{\epsilon}^{\star}$ of (1), we mean the following

Definition (ϵ -accurate solutions)

Given a numerical tolerance $\epsilon \geq 0$, a point $\mathbf{x}^{\star}_{\epsilon} \in \mathbb{R}^p$ is called an ϵ -solution of (1) if

$$\begin{cases} |f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star}| \leq \epsilon & \text{(objective residual),} \\ \|\mathbf{A}\mathbf{x}_{\epsilon}^{\star} - \mathbf{b}\| \leq \epsilon & \text{(feasibility gap),} \\ \mathbf{x}_{\epsilon}^{\star} \in \mathcal{X} & \text{(exact simple set feasibility).}^2 \end{cases}$$

- ▶ When \mathbf{x}^* is unique, we can also obtain $\|\mathbf{x}_{\epsilon}^* \mathbf{x}^*\| \le \epsilon$ (iterate residual).
- ightharpoonup Indeed, ϵ can be different for the objective, feasibility gap, or the iterate residual.

 $^{^2 \}text{Very often, } \mathcal{X} \text{ is a "simple set." Hence, requiring } \mathbf{x}^{\star}_{\epsilon} \in \mathcal{X} \text{ is acceptable in practice.}^*$

^{*} I will absorb ${\mathcal X}$ into the objective f with a so-called indicator function to ease the notation.

Performance of optimization algorithms

Time-to-reach ϵ

time-to-reach ϵ = number of iterations to reach ϵ imes per iteration time

The **speed** of numerical solutions depends on two factors:

- ightharpoonup Convergence rate determines the number of iterations needed to obtain an ϵ -optimal solution.
- Per-iteration time depends on the information oracles, implementation, and the computational platform.

Finding the fastest algorithm is tricky!

We will discuss basic tradeoffs in primal-dual optimization in the sequel.

Outline

The proximal way

The sharp way

Conclusion

The optimal solution set

Before we talk about algorithms, we must first characterize what we are looking for!

Optimality condition

The optimality condition of $\min_{\mathbf{x} \in \mathbb{R}^p} \{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \}$ can be written as

$$\begin{cases} 0 \in \mathbf{A}^T \lambda^* + \partial f(\mathbf{x}^*), \\ 0 = \mathbf{A}\mathbf{x}^* - \mathbf{b}. \end{cases}$$
 (2)

(Subdifferential) $\partial f(\mathbf{x}) := \{ \mathbf{v} \in \mathbb{R}^p : f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{v}^T(\mathbf{y} - \mathbf{x}), \ \forall \mathbf{y} \in \mathbb{R}^p \}.$

- ► This is the well-known KKT (Karush-Kuhn-Tucker) condition.
- Any point $(\mathbf{x}^*, \lambda^*)$ satisfying (2) is called a KKT point.
- $f x^{\star}$ is called a stationary point and λ^{\star} is the corresponding multipliers.

Lagrange function and the minimax formulation

We can naturally interpret the optimality condition via a minimax formulation

$$\max_{\lambda} \min_{\mathbf{x} \in \mathsf{dom}(f)} \mathcal{L}(\mathbf{x}, \lambda),$$

where $\lambda \in \mathbb{R}^n$ is the vector of Lagrange multipliers or dual variables w.r.t. Ax = b associated with the Lagrange function:

$$\mathcal{L}(\mathbf{x}, \lambda) := \mathbf{f}(\mathbf{x}) + \lambda^T (\mathbf{A}\mathbf{x} - \mathbf{b})$$

Finding an optimal solution

A plausible strategy:

To solve the constrained problem (1), we therefore seek the solutions

$$(\mathbf{x}^*, \lambda^*) \in \arg \max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda),$$

which we can naively brake down into two-in general nonsmooth-problems:

$$\textbf{Lagrangian subproblem:} \ \ \mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \{\mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}$$

Dual problem: $\lambda^{\star} \in \arg \max_{\lambda} \left\{ d(\lambda) := \mathcal{L}(\mathbf{x}^{\star}(\lambda), \lambda) \right\}$

- ▶ The function $d(\lambda)$ is called the dual function.
- ▶ The optimal dual objective value is $d^* = d(\lambda^*)$.

The dual function $d(\lambda)$ is concave. Hence, we can attempt the following strategy:

- 1. Find the optimal solution λ^* of the "convex" dual problem.
- 2. Obtain the optimal primal solution $\mathbf{x}^* = \mathbf{x}^*(\lambda^*)$ via the convex primal problem.

Finding an optimal solution

A plausible strategy:

To solve the constrained problem (1), we therefore seek the solutions

$$(\mathbf{x}^{\star}, \lambda^{\star}) \in \arg \max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda),$$

which we can naively brake down into two-in general nonsmooth-problems:

$$\textbf{Lagrangian subproblem:} \quad \mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \{\mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}$$

Dual problem:

$$\lambda^{\star} \in \operatorname{arg\,max}_{\lambda} \left\{ d(\lambda) := \mathcal{L}(\mathbf{x}^{*}(\lambda), \lambda) \right\}$$

- ▶ The function $d(\lambda)$ is called the dual function.
- The optimal dual objective value is $d^* = d(\lambda^*)$.

The dual function $d(\lambda)$ is concave. Hence, we can attempt the following strategy:

- 1. Find the optimal solution λ^{\star} of the "convex" dual problem.
- 2. Obtain the optimal primal solution $\mathbf{x}^{\star} = \mathbf{x}^{*}(\lambda^{\star})$ via the convex primal problem.

Challenges for the plausible strategy above

- 1. Establishing its correctness
- 2. Computational efficiency of finding an $\bar{\epsilon}$ -approximate optimal dual solution $\lambda_{\bar{\epsilon}}^{\star}$
- 3. Mapping $\lambda_{\bar{\epsilon}}^{\star} \to \mathbf{x}_{\epsilon}^{\star}$ (i.e., $\bar{\epsilon}(\epsilon)$), where ϵ is for the original constrained problem (1)

Finding an optimal solution

A plausible strategy:

To solve the constrained problem (1), we therefore seek the solutions

$$(\mathbf{x}^{\star}, \lambda^{\star}) \in \arg \max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda),$$

which we can naively brake down into two-in general nonsmooth-problems:

$$\textbf{Lagrangian subproblem:} \quad \mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \{\mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}$$

Dual problem:

$$\lambda^{\star} \in \operatorname{arg\,max}_{\lambda} \left\{ d(\lambda) := \mathcal{L}(\mathbf{x}^{*}(\lambda), \lambda) \right\}$$

- ▶ The function $d(\lambda)$ is called the dual function.
- ► The optimal dual objective value is $d^* = d(\lambda^*)$.

The dual function $d(\lambda)$ is concave. Hence, we can attempt the following strategy:

- 1. Find the optimal solution λ^* of the "convex" dual problem.
- 2. Obtain the optimal primal solution $\mathbf{x}^{\star} = \mathbf{x}^{*}(\lambda^{\star})$ via the convex primal problem.

Challenges for the plausible strategy above

- 1. Establishing its correctness: Assume $f^\star > -\infty$ and Slater's condition for $f^\star = d^\star$
- 2. Computational efficiency of finding an $\bar{\epsilon}$ -approximate optimal dual solution $\lambda_{\bar{\epsilon}}^{\star}$
- 3. Mapping $\lambda_{\overline{\epsilon}}^{\star} \to \mathbf{x}_{\epsilon}^{\star}$ (i.e., $\overline{\epsilon}(\epsilon)$), where ϵ is for the original constrained problem (1)

Subgradient method

- **1**. Choose $\lambda^0 \in \mathbb{R}^n$.
- 2. For $k = 0, 1, \dots$, perform: $\lambda^{k+1} = \lambda^k + \alpha_k \mathbf{v}^k,$

where $\mathbf{v}^k \in \partial d(\lambda^k)$ and α_k is the step-size.

Subgradient method for the dual

Assume that the following conditions

- 1. $\|\mathbf{v}\|_2 \leq G$ for all $\mathbf{v} \in \partial d(\lambda)$, $\lambda \in \mathbb{R}^n$.
- 2. $\|\lambda^0 \lambda^*\|_2 \le R$

Let the step-size be chosen as $\alpha_k = \frac{R}{G\sqrt{k}}$.

Then, the subgradient method satisfies

$$\min_{0 \le i \le k} d^* - d(\lambda^i) \le \frac{RG}{\sqrt{k}}$$

Subgradient method

- **1**. Choose $\lambda^0 \in \mathbb{R}^n$.
- 2. For $k=0,1,\cdots$, perform: $\lambda^{k+1}=\lambda^k+\alpha_k\mathbf{v}^k,$ where $\mathbf{v}^k\in\partial d(\lambda^k)$ and α_k is the step-size.

Subgradient method for the dual

Assume that the following conditions

- 1. $\|\mathbf{v}\|_2 \leq G$ for all $\mathbf{v} \in \partial d(\lambda)$, $\lambda \in \mathbb{R}^n$.
- 2. $\|\lambda^0 \lambda^*\|_2 \le R$

Let the step-size be chosen as $\alpha_k = \frac{R}{G\sqrt{k}}$.

Then, the subgradient method satisfies

$$\min_{0 \le i \le k} d^{\star} - d(\lambda^{i}) \le \frac{RG}{\sqrt{k}} \le \bar{\epsilon}$$

SGM: $\mathcal{O}\left(\frac{1}{\overline{\epsilon}^2}\right) \times \text{subgradient calculation}$

Gradient method

- 1. Choose $\lambda^0 \in \mathbb{R}^n$.
- **2**. For $k = 0, 1, \dots$, perform: $\lambda^{k+1} = \lambda^k + \frac{1}{7} \nabla d(\lambda^k),$ where L is the Lipschitz constant.

Subgradient method for the dual

Assume that the following conditions

- 1. $\|\mathbf{v}\|_2 < G$ for all $\mathbf{v} \in \partial d(\lambda)$, $\lambda \in \mathbb{R}^n$.
- 2. $\|\lambda^0 \lambda^*\|_2 < R$

Let the step-size be chosen as $\alpha_k = \frac{R}{C\sqrt{k}}$. Then, the subgradient method satisfies

$$\min_{0 \le i \le k} d^{\star} - d(\lambda^{i}) \le \frac{RG}{\sqrt{k}} \le \bar{\epsilon}$$

SGM: $\mathcal{O}\left(\frac{1}{\overline{\epsilon^2}}\right) \times \text{subgradient calculation}$

GM: $\mathcal{O}\left(\frac{1}{\overline{\epsilon}}\right) \times \text{gradient calculation}$

Impact of smoothness

(Lipschitz gradient) $d(\lambda)$ has Lipschitz continuous gradient iff

$$\|\nabla d(\lambda) - \nabla d(\eta)\|_2 \le L\|\lambda - \eta\|_2$$

for all $\lambda, \eta \in dom(d)$ and we indicate this structure as $d(\lambda) \in \mathcal{F}_L$.

For all $d(\lambda) \in \mathcal{F}_L$, the gradient method with step-size 1/L obeys

$$d^{\star} - d(\lambda^k) \le \frac{2LR^2}{k+4} \le \overline{\epsilon}.$$

Gradient method

- **1**. Choose $\lambda^0 \in \mathbb{R}^n$.
- 2. For $k=0,1,\cdots$, perform: $\lambda^{k+1}=\lambda^k+\frac{1}{L}\nabla d(\lambda^k),$ where L is the Lipschitz constant.

Subgradient method for the dual

Assume that the following conditions

- 1. $\|\mathbf{v}\|_2 \leq G$ for all $\mathbf{v} \in \partial d(\lambda)$, $\lambda \in \mathbb{R}^n$.
- 2. $\|\lambda^0 \lambda^*\|_2 \le R$

Let the step-size be chosen as $\alpha_k = \frac{R}{G\sqrt{k}}$. Then, the subgradient method satisfies

$$\min_{0 \le i \le k} d^{\star} - d(\lambda^{i}) \le \frac{RG}{\sqrt{k}} \le \bar{\epsilon}$$

SGM: $\mathcal{O}\left(\frac{1}{\overline{\epsilon}^2}\right) \times \text{subgradient calculation}$

GM: $\mathcal{O}\left(\frac{1}{\overline{\epsilon}}\right) \times \text{gradient calculation}$

Impact of smoothness

(Lipschitz gradient) $d(\lambda)$ has Lipschitz continuous gradient iff

$$\|\nabla d(\lambda) - \nabla d(\eta)\|_2 \le L\|\lambda - \eta\|_2$$

for all $\lambda, \eta \in \text{dom}(d)$ and we indicate this structure as $d(\lambda) \in \mathcal{F}_L$.

For all $d(\lambda) \in \mathcal{F}_L$, the gradient method with step-size 1/L obeys

$$d^{\star} - d(\lambda^k) \le \frac{2LR^2}{k+4} \le \bar{\epsilon}.$$

This is NOT the best we can do.

There exists a complexity lower-bound

$$d^* - d(\lambda^k) \ge \frac{3LR^2}{32(k+1)^2}, \forall d(\lambda) \in \mathcal{F}_L,$$

for any iterative method based only on function and gradient evaluations.

Accelerated gradient method

- 1. Choose $\mathbf{u}^0 = \lambda^0 \in \mathbb{R}^n$.
- 2. For $k=0,1,\cdots$, perform: $\lambda^k = \mathbf{u}^k + \frac{1}{L}\nabla d(\mathbf{u}^k), \\ \mathbf{u}^{k+1} = \lambda^k + \rho_k(\lambda^k \lambda^{k-1}), \\ \text{where } L \text{ is the Lipschitz constant, and } \\ \rho_k \text{ is a momentum parameter.}$

Subgradient method for the dual

Assume that the following conditions

- 1. $\|\mathbf{v}\|_2 \leq G$ for all $\mathbf{v} \in \partial d(\lambda)$, $\lambda \in \mathbb{R}^n$.
- 2. $\|\lambda^0 \lambda^*\|_2 \le R$

Let the step-size be chosen as $\alpha_k = \frac{R}{G\sqrt{k}}$. Then, the subgradient method satisfies

$$\min_{0 \le i \le k} d^{\star} - d(\lambda^{i}) \le \frac{RG}{\sqrt{k}} \le \bar{\epsilon}$$

SGM: $\mathcal{O}\left(\frac{1}{\overline{\epsilon}^2}\right) \times \text{subgradient calculation}$

GM: $\mathcal{O}\left(\frac{1}{\overline{\epsilon}}\right) \times \text{gradient calculation}$

AGM: $\mathcal{O}\left(\frac{1}{\sqrt{\overline{\epsilon}}}\right) \times \text{gradient calculation}$

Impact of smoothness

(Lipschitz gradient) $d(\lambda)$ has Lipschitz continuous gradient iff

$$\|\nabla d(\lambda) - \nabla d(\eta)\|_2 \le L\|\lambda - \eta\|_2$$

for all $\lambda, \eta \in \text{dom}(d)$ and we indicate this structure as $d(\lambda) \in \mathcal{F}_L$.

For all $d(\lambda) \in \mathcal{F}_L$, the accelerated gradient method with momentum $\rho_k = \frac{k+1}{k+3}$ obeys

$$d^{\star} - d(\lambda^k) \le \frac{2LR^2}{(k+2)^2} \le \bar{\epsilon}$$

This is NEARLY the best we can do.

There exists a complexity lower-bound

$$d^{\star} - d(\lambda^k) \ge \frac{3LR^2}{32(k+1)^2}, \forall d(\lambda) \in \mathcal{F}_L,$$

for any iterative method based only on function and gradient evaluations.

Nesterov's smoothing idea: From $\mathcal{O}\left(\frac{1}{\overline{\epsilon}^2}\right)$ to $\mathcal{O}\left(\frac{1}{\overline{\epsilon}}\right)$

When can the dual function have Lipschitz gradient?

When $f(\mathbf{x})$ is γ -strongly convex, the dual function $d(\lambda)$ is $\frac{\|\mathbf{A}\|^2}{\gamma}$ -Lipschitz gradient.

(Strong convexity) $f(\mathbf{x})$ is γ -strongly convex iff $f(\mathbf{x}) - \frac{\gamma}{2} \|\mathbf{x}\|_2^2$ is convex.

$$d(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} \quad \underbrace{f(\mathbf{x}) - \frac{\gamma}{2} \|\mathbf{x}\|_2^2}_{\text{convex \& possibly nonsmooth}} + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \quad \frac{\gamma}{2} \|\mathbf{x}\|_2^2}_{\text{leads to } d \in \mathcal{F}_L}$$

AGM automatically obtains $d^\star - d(\mathbf{x}^k) \leq \bar{\epsilon}$ with $k = \mathcal{O}\left(\frac{1}{\sqrt{\bar{\epsilon}}}\right)$

Nesterov's smoothing idea: From $\mathcal{O}\left(\frac{1}{z^2}\right)$ to $\mathcal{O}\left(\frac{1}{z}\right)$

When can the dual function have Lipschitz gradient?

When $f(\mathbf{x})$ is γ -strongly convex, the dual function $d(\lambda)$ is $\frac{\|\mathbf{A}\|^2}{\gamma}$ -Lipschitz gradient. (Strong convexity) $f(\mathbf{x})$ is γ -strongly convex iff $f(\mathbf{x}) - \frac{\gamma}{2} ||\mathbf{x}||_2^2$ is convex.

$$d(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} \quad \underbrace{f(\mathbf{x}) - \frac{\gamma}{2} \|\mathbf{x}\|_2^2}_{\text{convex \& possibly nonsmooth}} \quad +\langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \quad \underbrace{\frac{\gamma}{2} \|\mathbf{x}\|_2^2}_{\text{leads to } d \in \mathcal{F}_L}$$

Nesterov's smoother [9]

We add a strongly convex term to Lagrange subproblem so that the dual is smooth!

$$d_{\gamma}(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{x} - \mathbf{x}_c\|_2^2, \text{with a center point } \mathbf{x}_c \in \mathcal{X}$$

$$\nabla d_{\gamma}(\lambda) = \mathbf{A} \mathbf{x}_{\gamma}^{*}(\lambda) - \mathbf{b} \left(\mathbf{x}_{\gamma}^{*}(\lambda) \right)$$
: the γ -Lagrangian subproblem solution)

- 1. $d_{\gamma}(\lambda) \gamma \mathcal{D}_{\chi} \leq d(\lambda) \leq d_{\gamma}(\lambda)$, where $\mathcal{D}_{\chi} = \max_{\mathbf{x} \in \mathcal{X}} \frac{1}{2} \|\mathbf{x} \mathbf{x}_c\|_2^2$.
- 2. λ^k of AGM on $d_{\gamma}(\lambda)$ has $d^* d(\lambda^k) \leq \gamma \mathcal{D}_{\mathcal{X}} + d_{\gamma}^* d_{\gamma}(\lambda^k) \leq \gamma \mathcal{D}_{\mathcal{X}} + \frac{2\|\mathbf{A}\|^2 R^2}{\gamma(k+2)^2}$.
- 3. We minimize the upperbound wrt γ and obtain $d^\star d(\lambda^k) \leq \bar{\epsilon}$ with $k = \mathcal{O}\left(\frac{1}{\bar{\epsilon}}\right)$.

Computational efficiency: The key role of the prox-operator

Definition (Prox-operator)

$$\operatorname{prox}_g(\mathbf{x}) := \arg\min_{\mathbf{z} \in \mathbb{R}^p} \{ g(\mathbf{z}) + (1/2) \|\mathbf{z} - \mathbf{x}\|^2 \}.$$

Key properties:

- ► single valued & non-expansive.
- distributes when the primal problem has decomposable structure:

$$f(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i), \quad \text{and} \quad \mathcal{X} := \mathcal{X}_1 \times \cdots \times \mathcal{X}_m.$$

where $m \geq 1$ is the number of components.

• often efficient & has closed form expression. For instance, if $g(\mathbf{z}) = \|\mathbf{z}\|_1$, then the prox-operator performs coordinate-wise soft-thresholding by 1.

Computational efficiency: The key role of the prox-operator

Definition (Prox-operator)

$$\operatorname{prox}_{g}(\mathbf{x}) := \arg\min_{\mathbf{z} \in \mathbb{R}^{p}} \{ g(\mathbf{z}) + (1/2) \|\mathbf{z} - \mathbf{x}\|^{2} \}.$$

Key properties:

- ► single valued & non-expansive.
- distributes when the primal problem has decomposable structure:

$$f(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i), \text{ and } \mathcal{X} := \mathcal{X}_1 \times \cdots \times \mathcal{X}_m.$$

where m > 1 is the number of components.

• often efficient & has closed form expression. For instance, if $g(\mathbf{z}) = \|\mathbf{z}\|_1$, then the prox-operator performs coordinate-wise soft-thresholding by 1.

Smoothed dual:
$$d_{\gamma}(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{x} - \mathbf{x}_c\|_2^2$$

$$\mathbf{x}^*(\lambda) = \operatorname{prox}_{\boldsymbol{f}/\gamma} \left(\mathbf{x}_c - \frac{1}{\gamma} \mathbf{A}^T \lambda \right)$$

Going from the dual $\bar{\epsilon}$ to the primal ϵ -I

Optimality condition (revisted)

Two equivalent ways of viewing the optimality condition of the primal problem (1) mixed variational inequality (MVIP) inclusion

$$\boxed{f(\mathbf{x}) - f(\mathbf{x}^*) + M(\mathbf{z}^*)^T (\mathbf{z} - \mathbf{z}^*) \ge 0, \quad \forall \mathbf{z} \in \mathcal{X} \times \mathbb{R}^n} = \begin{cases} 0 & \in \mathbf{A}^T \lambda^* + \partial f(\mathbf{x}^*), \\ 0 & = \mathbf{A}\mathbf{x}^* - \mathbf{b}. \end{cases}$$

where
$$M(\mathbf{z}) := \begin{bmatrix} \mathbf{A}^T \lambda \\ \mathbf{A}\mathbf{x} - \mathbf{b} \end{bmatrix}$$
 and $\mathbf{z}^\star := (\mathbf{x}^\star, \lambda^\star)$ is a primal-dual solution of (1).

Going from the dual $\bar{\epsilon}$ to the primal ϵ -I

Optimality condition (revisted)

Two equivalent ways of viewing the optimality condition of the primal problem (1) mixed variational inequality (MVIP) inclusion

$$\underbrace{f(\mathbf{x}) - f(\mathbf{x}^*) + M(\mathbf{z}^*)^T(\mathbf{z} - \mathbf{z}^*) \ge 0, \quad \forall \mathbf{z} \in \mathcal{X} \times \mathbb{R}^n}_{ \mathbf{z} \in \mathbf{A}^T \setminus \mathbf{z}^*} = \begin{cases} 0 & \in \mathbf{A}^T \lambda^* + \partial f(\mathbf{x}^*), \\ 0 & = \mathbf{A}\mathbf{x}^* - \mathbf{b}. \end{cases}$$

where
$$M(\mathbf{z}) := \begin{bmatrix} \mathbf{A}^T \lambda \\ \mathbf{A}\mathbf{x} - \mathbf{b} \end{bmatrix}$$
 and $\mathbf{z}^\star := (\mathbf{x}^\star, \lambda^\star)$ is a primal-dual solution of (1).

Measuring progress via the gap function

Acssociated with MVIP, we can define a gap function to measure our progress

$$G(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathcal{X} \times \mathbb{R}^n} \left\{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) \right\}.$$
(3)

Key observations:

$$G(\mathbf{z}) = \max_{\hat{\mathbf{x}} \in \mathbb{R}^n} f(\mathbf{x}) + \langle \hat{\lambda}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle - \min_{\hat{\mathbf{x}} \in \mathcal{X}} f(\hat{\mathbf{x}}) + \langle \lambda, \mathbf{A}\hat{\mathbf{x}} - \mathbf{b} \rangle \ge 0, \forall \mathbf{z} \in \mathcal{X} \times \mathbb{R}^n$$

$$= f(\mathbf{x}) \text{ if } \mathbf{A}\mathbf{x} = \mathbf{b}, \infty \text{ o/w}$$

- $G(\mathbf{z}^*) = 0$ iff $\mathbf{z}^* := (\mathbf{x}^*, \lambda^*)$ is a primal-dual solution of (1).
- ightharpoonup Primal accuracy ϵ and the dual accuracy $\bar{\epsilon}$ can be related via the gap function.

Going from the dual $\bar{\epsilon}$ to the primal ϵ -II

A smoothed gap function measuring the primal-dual gap

We define a smoothed version of the gap function $G_{\gamma\beta}(\mathbf{z})=$

$$\max_{\hat{\boldsymbol{\lambda}} \in \mathbb{R}^n} f(\mathbf{x}) + \langle \hat{\boldsymbol{\lambda}}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle - \frac{\beta}{2} \|\hat{\boldsymbol{\lambda}} - \hat{\boldsymbol{\lambda}}_c\|_2^2 - \underbrace{\sum_{\hat{\mathbf{x}} \in \mathcal{X}}^{\hat{\mathbf{x}}} f(\hat{\mathbf{x}}) + \langle \boldsymbol{\lambda}, \mathbf{A}\hat{\mathbf{x}} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\hat{\mathbf{x}} - \hat{\mathbf{x}}_c\|_2^2}_{\mathbf{x} \in \mathbb{R}^n}$$

$$=f_{\beta}(\mathbf{x})=f(\mathbf{x})+\langle \hat{\lambda}_c, \mathbf{A}\mathbf{x}-\mathbf{b}\rangle + \frac{1}{2\beta} \|\mathbf{A}\mathbf{x}-\mathbf{b}\|_2^2$$

$$=d_{\gamma}(\lambda)$$

where $(\hat{\mathbf{x}}_c, \hat{\lambda}_c) \in \mathcal{X} \times \mathbb{R}^n$ are primal-dual center points. In the sequel, they are 0.

- ▶ The primal accuracy ϵ is related to our primal model estimate $f_{\beta}(\mathbf{x})$
- ▶ The dual accuracy $\bar{\epsilon}$ is related to our smoothed dual function $d_{\gamma}(\lambda)$
- ullet We must relate $G_{\gamma\beta}({f z})$ to $G({f z})$ so that we can tie ϵ to $ar{\epsilon}$

Going from the dual $\bar{\epsilon}$ to the primal ϵ -II

A smoothed gap function measuring the primal-dual gap

We define a smoothed version of the gap function $G_{\gamma\beta}(\mathbf{z})=$

$$\underbrace{\max_{\hat{\lambda} \in \mathbb{R}^n} f(\mathbf{x}) + \langle \hat{\lambda}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle - \frac{\beta}{2} \|\hat{\lambda} - \hat{\lambda}_c\|_2^2}_{=f_{\beta}(\mathbf{x}) = f(\mathbf{x}) + \langle \hat{\lambda}, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{1}{2\beta} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2} - \underbrace{\min_{\hat{\mathbf{x}} \in \mathcal{X}} f(\hat{\mathbf{x}}) + \langle \lambda, \mathbf{A}\hat{\mathbf{x}} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\hat{\mathbf{x}} - \hat{\mathbf{x}}_c\|_2^2}_{=d_{\gamma}(\lambda)}$$

where $(\hat{\mathbf{x}}_c, \hat{\lambda}_c) \in \mathcal{X} \times \mathbb{R}^n$ are primal-dual center points. In the sequel, they are 0.

- ▶ The primal accuracy ϵ is related to our primal model estimate $f_{\beta}(\mathbf{x})$
- ► The dual accuracy $\bar{\epsilon}$ is related to our smoothed dual function $d_{\gamma}(\lambda)$
- We must relate $G_{\gamma\beta}({f z})$ to $G({f z})$ so that we can tie ϵ to $ar{\epsilon}$

Our new technique: Model-based gap reduction MGR (cf., [12])

Let $G_k(\cdot):=G_{\gamma_k\beta_k}(\cdot)$. We generate a sequence $\{\bar{\mathbf{z}}^k,\gamma_k,\beta_k\}_{k\geq 0}$ such that

$$G_{k+1}(\bar{\mathbf{z}}^{k+1}) \le (1 - \tau_k) G_k(\bar{\mathbf{z}}^k) + \psi_k$$
(MGR)

for
$$\psi_k \to 0$$
, rate $\tau_k \in (0,1)$ $(\sum_k \tau_k = \infty)$, $\gamma_k \beta_{k+1} < \gamma_k \beta_k$ so that $G_{\gamma_k \beta_k}(\cdot) \to G(\cdot)$.

► Consequence: $G(\bar{\mathbf{z}}^k) \to 0^+ \Rightarrow \bar{\mathbf{z}}^k \to \mathbf{z}^\star = (\mathbf{x}^\star, \lambda^\star)$ (primal-dual solution).

Going from the dual $\bar{\epsilon}$ to the primal ϵ -III

Key estimates [12, 13]

As a consequence of MGR, we can obtain

$$\left\{ \begin{array}{ccc} -D_{\Lambda^{\star}} \| \mathbf{A} \mathbf{x}^k - \mathbf{b} \| \leq & f(\bar{\mathbf{x}}^k) - f^{\star} & \leq \frac{\gamma_k}{k} D_{\mathcal{X}}, \\ \| \mathbf{A} \mathbf{x}^k - \mathbf{b} \| & \leq 2\frac{\beta_k}{k} D_{\Lambda^{\star}} + \sqrt{2D_{\mathcal{X}}} \| \mathbf{A} \| \tau_k, \end{array} \right.$$

where $D_{\Lambda^*} := \min\{\|\lambda^*\| : \lambda^* \in \Lambda^*\}$ the **norm** of the minimum norm dual solution.

Going from the dual $\bar{\epsilon}$ to the primal ϵ -III

Key estimates [12, 13]

As a consequence of MGR, we can obtain

$$\left\{ \begin{array}{ll} -D_{\Lambda^{\star}} \| \mathbf{A} \mathbf{x}^k - \mathbf{b} \| \leq & f(\bar{\mathbf{x}}^k) - f^{\star} & \leq \gamma_k D_{\mathcal{X}}, \\ \| \mathbf{A} \mathbf{x}^k - \mathbf{b} \| & \leq 2 \beta_k D_{\Lambda^{\star}} + \sqrt{2D_{\mathcal{X}}} \| \mathbf{A} \| \tau_k, \end{array} \right.$$

where $D_{\Lambda^*} := \min\{\|\lambda^*\| : \lambda^* \in \Lambda^*\}$ the **norm** of the minimum norm dual solution.

An uncertainty relation via MGR

The product of the primal and dual convergence rates is lowerbounded by MGR:

$$\gamma_k \beta_k \ge \frac{\tau_k^2}{1 - \tau_k^2} \|\mathbf{A}\|^2$$

Note that $au_k^2 = \Omega\left(\frac{1}{k^2}\right)$ due to Nesterov's lowerbound.

- ► The rate of γ_k controls the primal residual: $|f(\mathbf{x}^k) f^{\star}| \leq \mathcal{O}(\gamma_k)$
- ► The rate of β_k controls the feasibility: $\|\mathbf{A}\mathbf{x}^k \mathbf{b}\|_2 \le \mathcal{O}(\beta_k + \tau_k) = \mathcal{O}(\beta_k)$
- ▶ They cannot be simultaneously $\mathcal{O}\left(\frac{1}{k^2}\right)!$

Convergence guarantee

Recall: Uncertainty relation

The product of the primal and dual convergence rates is lowerbounded by MGR:

$$\gamma_k \beta_k \ge \frac{\tau_k^2}{1 - \tau_k^2} \|\mathbf{A}\|^2$$

Note that $\tau_k^2 = \Omega\left(\frac{1}{k^2}\right)$ due to Nesterov's lowerbound.

Theorem [12, 13]

1. When f is strongly convex with $\mu > 0$, we can take $\gamma_k = \mu$ and $\beta_k = \mathcal{O}\left(\frac{1}{L^2}\right)$:

$$\begin{cases} -D_{\Lambda^{\star}} \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| \leq & f(\mathbf{x}^k) - f^{\star} \leq 0 \\ \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| & \leq \frac{4\|\mathbf{A}\|^2}{(k+2)^2 \mu} D_{\Lambda^{\star}} \\ \|\mathbf{x}^k - \mathbf{x}^{\star}\| & \leq \frac{4\|\mathbf{A}\|}{(k+2)\mu} D_{\Lambda^{\star}} \end{cases}$$

2. When f is non-smooth, the best we can do is $\gamma_k = \mathcal{O}\left(\frac{1}{k}\right)$ and $\beta_k = \mathcal{O}\left(\frac{1}{k}\right)$:

$$\begin{cases} -D_{\Lambda^{\star}} \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| \leq & f(\mathbf{x}^k) - f^{\star} & \leq \frac{2\sqrt{2} \|\mathbf{A}\| D_{\mathcal{X}}}{k+1}, \\ \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| & \leq \frac{2\sqrt{2} \|\mathbf{A}\| (D_{\Lambda^{\star}} + \sqrt{D_{\mathcal{X}}})}{k+1}. \end{cases}$$

Accelerated gradient method (expanded)

The standard scheme ([11])

The accelerated scheme for minimizing $g \in \mathcal{F}_L^{1,1}$ consists of three main steps:

$$\begin{cases}
\hat{\lambda}^k &:= (1 - \tau_k) \lambda^k + \tau_k \lambda_k^* \\
\lambda^{k+1} &:= \hat{\lambda}^k - \frac{1}{L_g} \nabla g(\hat{\lambda}^k) \\
\lambda_{k+1}^* &:= \lambda_k^* - \frac{1}{\tau_k} (\hat{\lambda}^k - \lambda^{k+1}).
\end{cases} \tag{4}$$

Here, L_q is the Lipschitz constant of ∇g and $\tau_k \in (0,1)$ is a given momentum term.

Accelerated gradient scheme for the smoothed dual problem

Recall the smoothed dual function d_{γ} . The AGM for this problem can be written as

$$\begin{cases}
\hat{\lambda}^{k} &:= (1 - \tau_{k}) \lambda^{k} + \tau_{k} \lambda_{k}^{*} \\
\lambda^{k+1} &:= \hat{\lambda}^{k} + \frac{\gamma}{\|\mathbf{A}\|^{2}} (\mathbf{A} \mathbf{x}_{\gamma}^{*} (\hat{\lambda}^{k}) - \mathbf{b}) \\
\lambda_{k+1}^{*} &:= \lambda_{k}^{*} - \frac{1}{\tau_{k}} (\hat{\lambda}^{k} - \lambda^{k+1}).
\end{cases} (5)$$

Here, $L_d:= \frac{\|\mathbf{A}\|^2}{\gamma}$ and $\nabla d_{\gamma}(\hat{\lambda}^k) = \mathbf{A}\mathbf{x}^*_{\gamma}(\hat{\lambda}^k) - \mathbf{b}$.

Our primal-dual scheme

The primal-dual scheme

Our approach is fundamentally the same as the accelerated gradient method:

$$\begin{cases}
\hat{\lambda}^{k} &:= (1 - \tau_{k})\lambda^{k} + \tau_{k}\tilde{\lambda}^{k} \\
\lambda^{k+1} &:= \hat{\lambda}^{k} + \frac{\gamma_{k+1}}{\|\mathbf{A}\|^{2}}(\mathbf{A}\mathbf{x}^{*}_{\gamma_{k+1}}(\hat{\lambda}^{k}) - \mathbf{b}) \\
\bar{\mathbf{x}}^{k+1} &:= (1 - \tau_{k})\bar{\mathbf{x}}^{k} + \tau_{k}\mathbf{x}^{*}_{\gamma_{k+1}}(\hat{\lambda}^{k}) \\
\tilde{\lambda}^{k+1} &:= \frac{1}{\beta_{k+1}}(\mathbf{A}\bar{\mathbf{x}}^{k+1} - \mathbf{b}).
\end{cases} (6)$$

Both smoothing parameters γ and β are updated at each iteration.

The correspondance between (5) and (6)

The last step of (6) (vs. (5)) is split into two steps to save a matrix multiplication:

$$\frac{1}{\beta_{k+1}}(\mathbf{A}\bar{\mathbf{x}}^{k+1}-\mathbf{b}) = \frac{1}{\beta_k}(\mathbf{A}\bar{\mathbf{x}}^k-\mathbf{b}) + \frac{\gamma_{k+1}}{\tau_k\|\mathbf{A}\|^2}(\mathbf{A}\mathbf{x}^*_{\gamma_{k+1}}(\hat{\lambda}^k)-\mathbf{b}).$$

Using $\bar{\mathbf{x}}^{k+1} := (1 - \tau_k)\bar{\mathbf{x}}^k + \tau_k \mathbf{x}^*_{\gamma_{k+1}}(\hat{\lambda}^k)$ we can show that

$$\begin{cases} \beta_{k+1} = (1 - \tau_k) \beta_k \\ \beta_{k+1} \gamma_{k+1} = \tau_k^2 || \mathbf{A} ||^2. \end{cases}$$

The general constraint case

Handling a cone constraint $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}$

Two steps need to be changed:

$$\left\{ \begin{array}{ll} \lambda^{k+1} &:= \operatorname{proj}_{\mathcal{K}^*} \left(\hat{\lambda}^k + \frac{\gamma}{\|\mathbf{A}\|^2} (\mathbf{A} \mathbf{x}_{\gamma}^* (\hat{\lambda}^k) - \mathbf{b}) \right) \\[1ex] \lambda^*_{k+1} &:= \arg \max_{\lambda \in \mathcal{K}^*} \left\{ \langle \mathbf{A} \bar{\mathbf{x}}^{k+1} - \mathbf{b}, \lambda \rangle - \beta_{k+1} p(\lambda) \right\}. \end{array} \right.$$

Here, \mathcal{K}^* is the dual cone of \mathcal{K} , $\operatorname{proj}_{\mathcal{K}^*}$ is the projection onto \mathcal{K}^* , and p is a chosen proximity function.

Augmented Lagrangian idea: From $\mathcal{O}\left(\frac{1}{\bar{\epsilon}^2}\right)$ to $\mathcal{O}\left(\frac{1}{\sqrt{\bar{\epsilon}}}\right)$

When else can the dual function have Lipschitz gradient?

We can render $f(\mathbf{x})$ γ -strongly convex only on $\mathbf{A}\mathbf{x} = \mathbf{b}$ by augmenting it:

Augmented Lagrangian: $d_{\gamma}(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$

Denoting $\mathbf{x}_{\gamma}^*(\lambda)$ as the augmented Lagrangian problem solution, we observe:

- ▶ The dual function $d(\lambda)$ is $\frac{1}{\gamma}$ -Lipschitz gradient.
- ▶ The gradient is $\nabla d_{\gamma}(\lambda) = \mathbf{A}\mathbf{x}_{\gamma}^*(\lambda) \mathbf{b}$.
- The optimal dual objective value does not change: $d^* = d^*_{\gamma}$!!!

Augmented Lagrangian idea: From $\mathcal{O}\left(\frac{1}{\bar{\epsilon}^2}\right)$ to $\mathcal{O}\left(\frac{1}{\sqrt{\bar{\epsilon}}}\right)$

When else can the dual function have Lipschitz gradient?

We can render $f(\mathbf{x})$ γ -strongly convex only on $\mathbf{A}\mathbf{x} = \mathbf{b}$ by augmenting it:

Augmented Lagrangian: $d_{\gamma}(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$

Denoting $\mathbf{x}_{\gamma}^*(\lambda)$ as the augmented Lagrangian problem solution, we observe:

- ▶ The dual function $d(\lambda)$ is $\frac{1}{\gamma}$ -Lipschitz gradient.
- The gradient is $\nabla d_{\gamma}(\lambda) = \mathbf{A} \mathbf{x}_{\gamma}^*(\lambda) \mathbf{b}$.
- The optimal dual objective value does not change: $d^* = d^*_{\gamma}!!!$

Augmented Lagrangian smoother

We augment the Lagrange subproblem so that the dual is smooth!

$$d_{\gamma}(\lambda) = \min_{\mathbf{x}: \mathbf{x} \in \mathcal{X}} f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle + \frac{\gamma}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2},$$

- 1. λ^k of AGD on $d_{\gamma}(\lambda)$ has $d^{\star} d_{\gamma}(\lambda^k) \leq \frac{2R^2}{\gamma(k+2)^2}$.
- 2. We obtain $d^\star d_\gamma(\lambda^k) \leq \bar{\epsilon}$ with $k = \mathcal{O}\left(\frac{R}{\sqrt{\gamma \bar{\epsilon}}}\right)$.

Augmented Lagrangian idea: The tradeoffs

Key estimates

As a consequence of MGR, we can obtain

$$\begin{aligned} -\frac{\gamma}{2}\|\mathbf{A}\mathbf{x}^k - \mathbf{b}\|^2 - \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\|D_{\Lambda^*} &\leq & f(\mathbf{x}^k) - f^* &\leq 0 \\ & \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| &\leq \frac{2D_{\Lambda^*}\beta_k}{1 - \gamma\beta_k}. \end{aligned}$$

where $D_{\Lambda^*} := \min\{\|\lambda^*\| : \lambda^* \in \Lambda^*\}$ the **norm** of the minimum norm dual solution.

An uncertainty relation via MGR

The product of the primal and dual convergence rates is lowerbounded by MGR:

$$\gamma \beta_{k+1} \ge \tau_k^2$$
.

Here, we update β_k as $\beta_{k+1}=(1-\tau_k)\beta_k$. Then $\beta_k=\Omega(\tau_k^2)$. Note that $\tau_k^2=\Omega\left(\frac{1}{k^2}\right)$ due to Nesterov's lowerbound.

- ► The rate of β_k controls the primal residual: $|f(\mathbf{x}^k) f^{\star}| \leq \mathcal{O}(\beta_k)$
- ► The rate of β_k controls the feasibility: $\|\mathbf{A}\mathbf{x}^k \mathbf{b}\|_2 \le \mathcal{O}(\beta_k)$
- ▶ They can be simultaneously $\mathcal{O}\left(\frac{1}{k^2}\right)!$

Augmented Lagrangian idea: The tradeoffs

Our augmented primal-dual scheme

$$\begin{cases}
\hat{\lambda}^{k} & := (1 - \tau_{k})\lambda^{k} + \tau_{k}\tilde{\lambda}^{k} \\
\lambda^{k+1} & := \hat{\lambda}^{k} + \gamma(\mathbf{A}\mathbf{x}_{\gamma}^{*}(\hat{\lambda}^{k}) - \mathbf{b}) \\
\bar{\mathbf{x}}^{k+1} & := (1 - \tau_{k})\bar{\mathbf{x}}^{k} + \tau_{k}\mathbf{x}_{\gamma}^{*}(\hat{\lambda}^{k}) \\
\tilde{\lambda}^{k+1} & := \frac{1}{\beta_{k+1}}(\mathbf{A}\bar{\mathbf{x}}^{k+1} - \mathbf{b}).
\end{cases} (7)$$

The update rule for parameters:

$$\beta_{k+1} := (1-\tau_k)\beta_k \quad \text{and} \quad \tau_{k+1} = 0.5\tau_k \left\lceil \sqrt{\tau_k^2 + 4} - \tau_k \right\rceil.$$

Theorem (convergence guarantee)

The sequence $\{\bar{\mathbf{z}}^k\}$ generated by (7) satisfies:

$$-\frac{\gamma}{2}\|\mathbf{A}\mathbf{x}^k - \mathbf{b}\|^2 - \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\|D_{\Lambda^*} \le f(\mathbf{x}^k) - f^* \le 0$$
$$\|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| \le \frac{8D_{\Lambda^*}}{\gamma(k+1)^2}.$$

The worst-case iteration complexity: $\mathcal{O}\left(\sqrt{\frac{D_{\Lambda^{\star}}}{\gamma\epsilon}}\right)$.

- We can increase γ to obtain faster convergence
- ► However, it becomes more difficult to compute $\mathbf{x}_{\gamma}^*(\hat{\lambda}^k)!$

Tree sparsity [7, 4, 2, 15]

Wavelet coefficients

Wavelet tree

Valid selection of nodes

Invalid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Optimization formulation (TU-relax [5])

$$\min_{\mathbf{x} \in \mathbb{R}^p} \quad f(\mathbf{x}) := \sum_{\mathcal{G}_i \in \mathfrak{G}} \|\mathbf{x}_{\mathcal{G}_i}\|_{\infty} \\
\text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}.$$
(8)

This problem possesses two key structures: decomposability and tractable proximity.

When g=p and $\mathcal{G}_i=\{i\}$, (8) reduces to the well-known basis pursuit (BP):

$$\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}. \tag{9}$$

Tree sparsity [7, 4, 2, 15]

 $f(\mathbf{x})$ -ball

 $\mathfrak{G} = \{\{1,2,3\},\{2\},\{3\}\}$

valid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Optimization formulation (TU-relax [5])

$$\min_{\mathbf{x} \in \mathbb{R}^p} \quad f(\mathbf{x}) := \sum_{\mathcal{G}_i \in \mathfrak{G}} \|\mathbf{x}_{\mathcal{G}_i}\|_{\infty} \\
\text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}.$$
(8)

This problem possesses two key structures: decomposability and tractable proximity.

When g = p and $G_i = \{i\}$, (8) reduces to the well-known basis pursuit (BP):

$$\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}. \tag{9}$$

Tree sparsity [7, 4, 2, 15]

 $\mathfrak{G} = \{\{1,2,3\},\{2\},\{3\}\}$

valid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Optimization formulation (TU-relax [5])

$$\min_{\mathbf{x} \in \mathbb{R}^p} \quad f(\mathbf{x}) := \sum_{\mathcal{G}_i \in \mathfrak{G}} \|\mathbf{x}_{\mathcal{G}_i}\|_{\infty} + \alpha \|\mathbf{\Psi}\mathbf{x}\|_{\mathsf{TV}} \\
\text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}. \tag{8}$$

This problem possesses two key structures: decomposability and tractable proximity.

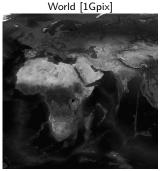
When g = p and $G_i = \{i\}$, (8) reduces to the well-known basis pursuit (BP):

$$\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{x}\|_{1} + \alpha \|\mathbf{\Psi}\mathbf{x}\|_{\mathsf{TV}} \quad \text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}. \tag{9}$$

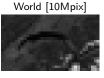
Adding additional regularizers to BP does not pose any difficulty

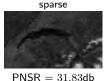
ullet Ψ is the wavelet transform and lpha is a regularization parameter

Tree sparsity example: 1:100-compressive sensing [12, 1]



Lac Léman





 $\mathsf{PNSR} = 32.48\mathsf{db}$

Augmented Lagrangian method

Iterations: 113 PD gap: 1e-8

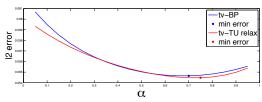
Applications of $(\mathbf{A}, \mathbf{A}^T)$: (684, 570)

 $\mathsf{Time:}\,<4\mathsf{days}$

Tree sparsity example: TV & TU-relax 1:15-compression [12, 1]

Original

Regularization:



Outline

The proximal way

The sharp way

Conclusion:

Revisiting the prox-operator

Prox-operator helps us process nonsmooth terms "efficiently"

$$\operatorname{prox}_g(\mathbf{x}) := \arg\min_{\mathbf{z} \in \mathbb{R}^p} \{ g(\mathbf{z}) + (1/2) \|\mathbf{z} - \mathbf{x}\|^2 \}.$$

Key properties:

- ► single valued & non-expansive.
- distributes when the primal problem has decomposable structure:

$$f(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i), \quad ext{and} \quad \mathcal{X} := \mathcal{X}_1 imes \cdots imes \mathcal{X}_m.$$

where $m \ge 1$ is the number of components.

• often efficient & has closed form expression. For instance, if $g(\mathbf{z}) = \|\mathbf{z}\|_1$, then the prox-operator performs coordinate-wise soft-thresholding by 1.

Revisiting the prox-operator

Prox-operator helps us process nonsmooth terms "efficiently"

$$\operatorname{prox}_g(\mathbf{x}) := \arg\min_{\mathbf{z} \in \mathbb{R}^p} \{ g(\mathbf{z}) + (1/2) \|\mathbf{z} - \mathbf{x}\|^2 \}.$$

Key properties:

- ► single valued & non-expansive.
- distributes when the primal problem has decomposable structure:

$$f(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i), \quad ext{and} \quad \mathcal{X} := \mathcal{X}_1 imes \cdots imes \mathcal{X}_m.$$

where $m \ge 1$ is the number of components.

• often efficient & has closed form expression. For instance, if $g(\mathbf{z}) = \|\mathbf{z}\|_1$, then the prox-operator performs coordinate-wise soft-thresholding by 1.

Not all nonsmooth functions are proximal-friendly!

If $g(\mathbf{z}) = \|\mathbf{z}\|_{\star}$ (i.e., the nuclear norm of \mathbf{z}) then the prox-operator may require a full singular value decomposition.

We will discuss how to avoid the prox-operator whenever it is expensive!

Example: Frank-Wolfe's method

Problem setting

$$f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{10}$$

Assumptions

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^p)$ (i.e., convex with Lipschitz gradient).
- ▶ Note that $Ax b \in \mathcal{K}$ is missing from our prototype problem

Frank-Wolfe's method (see [6] for a review)

Conditional gradient method (CGA)

- 1. Choose $\mathbf{x}^0 \in \mathcal{X}$.
- **2.** For $k = 0, 1, \dots$, perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x}, \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where $\gamma_k := \frac{2}{k+2}$ is a given relaxation parameter.

Example: Frank-Wolfe's method

Problem setting

$$f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{10}$$

Assumptions

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^p)$ (i.e., convex with Lipschitz gradient).
- ▶ Note that $Ax b \in \mathcal{K}$ is missing from our prototype problem

Frank-Wolfe's method (see [6] for a review)

Conditional gradient method (CGA)

- 1. Choose $\mathbf{x}^0 \in \mathcal{X}$.
- **2.** For $k = 0, 1, \dots$, perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x}, (*) \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where $\gamma_k := \frac{2}{k+2}$ is a given relaxation parameter.

When $\mathcal{X} := \{ \mathbf{x} \in \mathbb{R}^{n \times p} : \|\mathbf{x}\|_{\star} \le 1 \}$, (*) corresponds to rank-1 updates!

Towards Fenchel-type operators

Generalized sharp operators [14]

We define the (generalized) sharp operator of a convex function g over $\mathcal X$ as follows

$$[\mathbf{x}]_{\mathcal{X},g}^{\sharp} := \operatorname*{argmax}_{\mathbf{z} \in \mathcal{X}} \{ \langle \mathbf{x}, \mathbf{z} \rangle - g(\mathbf{z}) \}.$$

Important special cases:

- 1. If g = 0, then we obtain the so-called linear minimization oracle.
- 2. If $\mathcal{X} = \text{dom}(g)$, then $[\mathbf{x}]_g^{\sharp} = \nabla g^*(\mathbf{x})$, where g^* is the Fenchel conjugate of g.

Example (Nuclear norm)

Consider $g(\mathbf{x}) := \frac{1}{2} \|\mathbf{x}\|_{\star}^2$ and $\mathcal{X} := \{\mathbf{x} \in \mathbb{R}^{n \times p} : \|\mathbf{x}\|_{\star} \leq 1\}$. Let \mathbf{u} and \mathbf{v} be the left and right principal singular vectors of \mathbf{x} respectively. Then,

$$\mathbf{u}\mathbf{v}^T \in [\mathbf{x}]_{\mathcal{X}}^{\sharp} := [\mathbf{x}]_{\mathcal{X},0}^{\sharp} \;, \qquad \|\mathbf{x}\|\mathbf{u}\mathbf{v}^T \in [\mathbf{x}]_g^{\sharp} := [\mathbf{x}]_{\mathbb{R}^{n \times p},g}^{\sharp}$$

where $\|\cdot\|$ is the spectral norm. The computations are essentially the same.

Revisiting Frank-Wolfe's method

Problem setting

$$f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{11}$$

Assumptions

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_{L}^{1,1}(\mathbb{R}^p)$ (i.e., convex with Lipschitz gradient).
- Note that $\mathbf{A}\mathbf{x} \mathbf{b} \in \mathcal{K}$ is missing from our prototype problem

Frank-Wolfe's method (see [6] for a review)

Conditional gradient method (CGA)

- **1.** Choose $\mathbf{x}^0 \in \mathcal{X}$.
- **2.** For $k = 0, 1, \dots$, perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x} &\equiv \left[\nabla f(\mathbf{x}^k) \right]_{\mathcal{X}}^{\sharp}, \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where $\gamma_k := \frac{2}{k+2}$ is a given relaxation parameter.

Generalized conditional gradient method replaces the indicator function $\delta_{\mathcal{X}}$ with g:

$$\hat{\mathbf{x}}^k := \arg\min\{g(\mathbf{x}) + \nabla f(\mathbf{x}^k)^T \mathbf{x}\} = [\nabla f(\mathbf{x}^k)]_g^{\sharp}.$$

Revisiting Frank-Wolfe's method

Problem setting

$$f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$
 (11)

Assumptions

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^p)$ (i.e., convex with Lipschitz gradient).
- ▶ We will handle $Ax b \in \mathcal{K}$ and nonsmooth f(x) in the sequel!

Frank-Wolfe's method (see [6] for a review)

Conditional gradient method (CGA)

- 1. Choose $\mathbf{x}^0 \in \mathcal{X}$.
- **2.** For $k = 0, 1, \dots$, perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x} &\equiv \left[\nabla f(\mathbf{x}^k) \right]_{\mathcal{X}}^{\sharp}, \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where $\gamma_k := \frac{2}{k+2}$ is a given relaxation parameter.

Generalized conditional gradient method replaces the indicator function $\delta_{\mathcal{X}}$ with g:

$$\hat{\mathbf{x}}^k := \arg\min_{\mathbf{x}} \{ g(\mathbf{x}) + \nabla f(\mathbf{x}^k)^T \mathbf{x} \} = [\nabla f(\mathbf{x}^k)]_g^{\sharp}.$$

Exploring the smoothness of the dual function in depth

Definition (Hölder continuous gradients [8])

Let us consider the following unconstrained setup

$$\min_{\mathbf{x} \in \mathbb{R}^p} g(\mathbf{x}).$$

A convex function g has Hölder continuous subgradients of degree ν if there are nonnegative real constants ν and M_{ν} that satisfy:

$$\|\nabla g(\mathbf{x}) - \nabla g(\mathbf{y})\|_* \le M_{\nu} \|\mathbf{x} - \mathbf{y}\|^{\nu}$$

where $\nabla g(\lambda)$ is a (sub)gradient of g.

Highlights:

- 1. $\nu=1$ is the Lipschitz continuous gradients case where $L=M_{\nu}$.
- 2. $\nu = 0$ is the bounded gradient assumption (recall the subgradient method).
- 3. Iteration lowerbound for the Hölder class: $\mathcal{O}\left(\left(\frac{M_{\nu}\|\mathbf{x}^{0}-\mathbf{x}^{\star}\|^{1+\nu}}{\epsilon}\right)^{\frac{2}{1+3\nu}}\right)$.
- 4. The condition also ensures a basic surrogate

$$g(\mathbf{y}) \le g(\mathbf{x}) + \langle \nabla g(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{M_{\nu}}{1 + \nu} ||\mathbf{x} - \mathbf{y}||^{1 + \nu}$$

for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$.

Nesterov's universal gradient methods

Nesterov's universal gradient methods [10]

In practice, smoothness parameters ν and M_{ν} are usually not known. Nesterov's algorithms adapt to the unknown ν via an appropriate line-search strategy:

$$g(\mathbf{y}) \leq g(\mathbf{x}) + \langle \nabla g(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{M}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{\delta}{2}.$$

where inexactness parameter $\delta > 0$ depends only on the desired final accuracy.

They are universal since they ensure the best possible rate of convergence for each ν .

³PGM in [10] uses the Bregman / prox setup.

Nesterov's universal gradient methods

Nesterov's universal gradient methods [10]

In practice, smoothness parameters ν and M_{ν} are usually not known. Nesterov's algorithms adapt to the unknown ν via an appropriate line-search strategy:

$$g(\mathbf{y}) \leq g(\mathbf{x}) + \langle \nabla g(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{M}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{\delta}{2}.$$

where inexactness parameter $\delta > 0$ depends only on the desired final accuracy.

They are universal since they ensure the best possible rate of convergence for each ν .

Universal primal gradient method (PGM)³

- **1.** Choose $\mathbf{x}^0 \in \mathcal{X}$, $M_{-1} > 0$ and accuracy $\epsilon > 0$.
- **2.** For $k = 0, 1, \dots$, perform:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - M_k^{-1} \nabla g(\mathbf{x}^k)$$

where we use line-search to find $M_k \geq 0.5 M_{k-1}$ that satisfies:

$$g(\mathbf{x}^{k+1}) \leq g(\mathbf{x}^k) + \langle \nabla g(\mathbf{x}^k), \mathbf{x}^{k+1} - \mathbf{x}^k \rangle + \frac{M_k}{2} \|\mathbf{x}^k - \mathbf{x}^{k+1}\|^2 + \frac{\epsilon}{2}$$

³PGM in [10] uses the Bregman / prox setup.

Nesterov's universal gradient methods

Nesterov's universal gradient methods [10]

In practice, smoothness parameters ν and M_{ν} are usually not known. Nesterov's algorithms adapt to the unknown ν via an appropriate line-search strategy:

$$g(\mathbf{y}) \le g(\mathbf{x}) + \langle \nabla g(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{M}{2} ||\mathbf{x} - \mathbf{y}||^2 + \frac{\delta}{2}.$$

where inexactness parameter $\delta > 0$ depends only on the desired final accuracy.

They are universal since they ensure the best possible rate of convergence for each ν .

Universal primal gradient method (PGM)³

- **1.** Choose $\mathbf{x}^0 \in \mathcal{X}$, $M_{-1} > 0$ and accuracy $\epsilon > 0$.
- **2.** For $k = 0, 1, \dots$, perform:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - M_k^{-1} \nabla g(\mathbf{x}^k)$$

where we use line-search to find $M_k \geq 0.5 M_{k-1}$ that satisfies:

$$g(\mathbf{x}^{k+1}) \le g(\mathbf{x}^k) + \langle \nabla g(\mathbf{x}^k), \mathbf{x}^{k+1} - \mathbf{x}^k \rangle + \frac{M_k}{2} \|\mathbf{x}^k - \mathbf{x}^{k+1}\|^2 + \frac{\epsilon}{2}$$

Yes, there is an accelerated version.

³PGM in [10] uses the Bregman / prox setup.

Universal primal-dual decomposition methods

Our strategy: Hölder smoothness in the dual

Instead of smoothing, we assume that the dual function d is Hölder continuous for some $\nu \in [0,1]$:

$$M_{\nu}(d) := \sup_{\lambda \neq \eta} \frac{\left\| \nabla d(\lambda) - \nabla d(\eta) \right\|_{*}}{\left\| \lambda - \eta \right\|^{\nu}}, \quad M_{d}^{*} := \inf_{0 \leq \nu \leq 1} M_{\nu}(d) < +\infty.$$

We will solve the dual problem by a new FISTA version [3] of Nesterov's universal gradient algorithm [10] and develop new primal strategies to approximate x^* .

Is this assumption reasonable?

Consider two special cases:

- if \mathcal{X} is bounded and d is subdifferentiable, then ∇d is also bounded.
- if f is uniformly convex with convexity parameter $\mu_f>0$ and degree $q\geq 2$, i.e.,

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \mu_f \|\mathbf{x} - \mathbf{y}\|^q$$

for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, then ∇d satisfies Hölder condition with $\nu = \frac{1}{q-1}$ and $M_{\nu} = \left(\mu_{\scriptscriptstyle f}^{-1} \|\mathbf{A}\|^2\right)^{\frac{1}{q-1}}$.

Our universal primal-dual decomposition methods: The dual steps

Dual steps ([14])

► The universal dual gradient step:

$$\lambda^{k+1} := \lambda^k + \frac{1}{M_k} \nabla d(\lambda^k) = \lambda_k + \frac{1}{M_k} \left(\mathbf{A} \mathbf{x}^* (\lambda^k) - \mathbf{b} \right),$$

where $\mathbf{x}^*(\lambda^k)$ is computed via the sharp operator:

$$\mathbf{x}^*(\lambda^k) := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) + \langle \mathbf{A}^T \lambda^k, \mathbf{x} \rangle \right\} \equiv \left[-\mathbf{A}^T \lambda^k \right]_f^{\sharp}.$$

► The universal dual accelerated gradient step:

$$\left\{ \begin{array}{ll} t_k & := 0.5 \left(1 + \sqrt{1 + 4 t_{k-1}^2}\right) \\ \hat{\lambda}^k & := \lambda^k + \frac{t_{k-1} - 1}{t_k} \left(\lambda^k - \hat{\lambda}^{k-1}\right) \\ \lambda^{k+1} & := \hat{\lambda}^k + \frac{1}{M_k} \left(\mathbf{A} \mathbf{x}^* (\hat{\lambda}^k) - \mathbf{b}\right). \end{array} \right.$$

Line-search condition

The local smoothness constant M_k is computed via a line-search procedure:

$$d(\lambda^{k+1}) \geq d(\lambda^k) + \langle \nabla d(\lambda^k), \lambda^{k+1} - \lambda^k \rangle - \frac{M_k}{2} \|\lambda^{k+1} - \lambda^k\|^2 - \frac{\delta_k}{2}.$$

- $oldsymbol{\delta}_k = \epsilon$ for our universal dual gradient method
- $\delta_k = \epsilon/t_k$ for our universal dual accelerated gradient method

On the line-search

Number of line-search iterations

- Each line-search step costs one dual function evaluation.
- ► (Acc)UniProx requires (1)2 line-search steps per iteration on the average.
- In many cases, we can avoid the search step and find the step-size in one shot by solving an analytic equation obtained by using a proper bound on $d(\lambda^{k+1})$.

Example (Nuclear norm)

Consider $f:=\frac{1}{2}\|\mathbf{x}\|_{\star}^2$ with the linear constraint $\mathbf{A}(\mathbf{x})=\mathbf{b}$, which leads to the dual function $d(\lambda)=-\frac{1}{2}\|\mathbf{A}^T(\lambda)\|^2-\langle\lambda,\mathbf{b}\rangle$. Using triangular inequality, we get

$$\begin{split} U(M_k) := d(\lambda^k) - \frac{\alpha_k^2}{2} \|\mathbf{A}^T(\nabla d(\lambda^k))\|^2 - \alpha_k \Big[\|\mathbf{A}^T(\nabla d(\lambda^k))\| \|\mathbf{A}^T(\lambda^k)\| + \langle \nabla d(\lambda^k), \mathbf{b} \rangle \Big] \\ & \leq d(\lambda^k + \frac{1}{M_k} \nabla d(\lambda^k)) = d(\lambda^{k+1}). \end{split}$$

We can solve the following second order equation

$$U(M_k) = d(\lambda^k) + \frac{\alpha_k}{2} \left\| \nabla d(\lambda^k) \right\|^2 - \frac{\delta_k}{2}$$

to find the step size $\alpha_k := \frac{1}{M_k}$ which guarantees the line-search condition.

The primal steps and the worst-case complexity

Primal steps - averaging steps

The universal primal gradient step:

(UniProx):
$$\bar{\mathbf{x}}^k := \left(\sum_{i=0}^k \frac{1}{M_i}\right)^{-1} \sum_{i=0}^k \frac{1}{M_i} \mathbf{x}^*(\lambda^i).$$

► The universal primal accelerated gradient step:

(AccUniProx):
$$\bar{\mathbf{x}}^k := \left(\sum_{i=0}^k \frac{t_i}{M_i}\right)^{-1} \sum_{i=0}^k \frac{t_i}{M_i} \mathbf{x}^*(\lambda^i).$$

The worst-case complextity

To achieve $\bar{\mathbf{x}}^k$ such that $|f(\bar{\mathbf{x}}^k) - f^\star| \leq \epsilon$ and $\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| \leq \epsilon$ is:

$$\left\{ \begin{array}{ll} \text{For (UniProx):} & \mathcal{O}\left(D_{\Lambda^{\star}}^{2}\inf_{0\leq\nu\leq1}\left(\frac{M_{\nu}}{\epsilon}\right)^{\frac{2}{1+\nu}}\right), & \text{(optimal for }\nu=0). \\ \\ \text{For (AccUniProx):} & \mathcal{O}\left(D_{\Lambda^{\star}}^{\frac{2+5\nu}{1+3\nu}}\inf_{0\leq\nu\leq1}\left(\frac{M_{\nu}}{\epsilon}\right)^{\frac{2}{1+3\nu}}\right), & \text{(optimal for }\nu=1). \end{array} \right.$$

Summary of the algorithms and convergence guarantees - I

Universal primal-dual gradient method (UniProx)

Initialization: Choose $\lambda^0 \in \mathbb{R}^n$ and $\epsilon > 0$. Estimate a value $M_{-1} < 2M_{\epsilon}$. Iteration: For $k = 0, 1, \cdots$, perform:

- 1. Primal step: $\mathbf{x}^*(\lambda^k) = [-\mathbf{A}^T \lambda^k]_f^{\sharp}$
- 2. Dual gradient: $\nabla d(\lambda^k) = \mathbf{A}^T \mathbf{x}^* (\lambda^k) \mathbf{b}$
- 3. Line-search: Find $M_k \in [0.5M_{k-1}, 2M_e]$ from line-search condition and: $\lambda^{k+1} = \lambda^k + M_{\iota}^{-1} \nabla d(\lambda^k)$
- 4. Primal averaging: $\bar{\mathbf{x}}^k := S_k^{-1} \sum_{j=0}^k M_j^{-1} \mathbf{x}^*(\lambda^j)$ where $S_k = \sum_{j=0}^k M_j^{-1}$.

Theorem [14]

 $ar{\mathbf{x}}^k$ and $ar{\lambda}^k:=S_k^{-1}\sum_{j=0}^k M_j^{-1}\lambda^j$ obtained by **UniProx** satisfy (with $\lambda^0=0$):

$$\begin{cases}
-\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\|D_{\Lambda^*} \leq f(\bar{\mathbf{x}}^k) - f^* & \leq \frac{\epsilon}{2}, \\
\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| & \leq \frac{4M_{\epsilon}D_{\Lambda^*}}{k+1} + \sqrt{\frac{2M_{\epsilon}\epsilon}{k+1}}, \\
d^* - d(\bar{\lambda}^k) & \leq \frac{M_{\epsilon}D_{\Lambda^*}^2}{k+1} + \frac{\epsilon}{2}.
\end{cases}$$

Summary of the algorithms and convergence guarantees - II

Accelerated universal primal-dual gradient method (AccUniProx)

Initialization: Choose $\lambda^0 \in \mathbb{R}^n$, $\epsilon > 0$. Set $t_0 = 1$. Estimate a value $M_{-1} < 2M_{\epsilon}$. **Iteration:** For $k = 0, 1, \dots$, perform:

- 1. Primal step: $\mathbf{x}^*(\hat{\lambda}^k) = [-\mathbf{A}^T \hat{\lambda}^k]_{\mathfrak{t}}^{\sharp}$
- 2. Dual gradient: $\nabla d(\hat{\lambda}^k) = \mathbf{A}^T \mathbf{x}^* (\hat{\lambda}^k) \mathbf{b}$,
- 3. Line-search: Find $M_k \in [M_{k-1}, 2M_{\epsilon}]$ from line-search condition and: $\lambda^{k+1} = \hat{\lambda}^k + M_i^{-1} \nabla d(\hat{\lambda}^k),$
- 4. $t_{k+1} = 0.5[1 + \sqrt{1 + 4t_k^2}],$ 5. $\hat{\lambda}_{k+1} = \lambda_{k+1} + \frac{t_k 1}{t_{k+1}}(\lambda_{k+1} \lambda_k),$
- **6.** Primal averaging: $\bar{\mathbf{x}}^k := S_k^{-1} \sum_{j=0}^k t_j M_j^{-1} \mathbf{x}^* (\lambda^j)$ where $S_k = \sum_{j=0}^k t_j M_j^{-1}$.

Theorem [14]

 $\bar{\mathbf{x}}^k$ and λ^k obtained by **AccUniProx** satisfy (with $\lambda^0 = 0$):

$$\begin{cases} -\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\|D_{\Lambda^\star} \leq & f(\bar{\mathbf{x}}^k) - f^\star & \leq \frac{\epsilon}{2}, \\ & \|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| \leq \frac{16M_\epsilon D_{\Lambda^\star}}{(k+2)\frac{1+3\nu}{1+\nu}} + \sqrt{\frac{8M_\epsilon \epsilon}{k+2}}, \\ & d^\star - d(\lambda^k) & \leq \frac{4M_\epsilon D_{\Lambda^\star}^2}{(k+1)\frac{1+3\nu}{1+\nu}} + \frac{\epsilon M_\epsilon}{M_0}(k+1)^{\frac{1-\nu}{1+\nu}}. \end{cases}$$

The dual may NOT converge!

The general constraint case

Handling to the constraint $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}$

Dual steps need to be changed:

► The universal dual gradient step:

$$\lambda^{k+1} \ := \operatorname{prox}_{M_k^{-1}h} \left(\lambda_k + \frac{1}{M_k} \left(\mathbf{A} \mathbf{x}^* (\lambda^k) - \mathbf{b} \right) \right).$$

► The universal dual accelerated gradient step:

$$\begin{cases} t_k &:= 0.5 \left(1 + \sqrt{1 + 4t_{k-1}^2}\right) \\ \hat{\lambda}^k &:= \bar{\lambda}^k + \frac{t_{k-1} - 1}{t_k} \left(\bar{\lambda}^k - \hat{\lambda}^{k-1}\right) \\ \lambda^{k+1} &:= \operatorname{prox}_{M_k^{-1} h} \left(\hat{\lambda}^k + \frac{1}{M_k} \left(\mathbf{A} \mathbf{x}^* (\hat{\lambda}^k) - \mathbf{b}\right)\right). \end{cases}$$

Here, h is defined by $h(\lambda) := \sup_{\mathbf{r} \in \mathcal{K}} \langle \lambda, \mathbf{r} \rangle$.

Example: Robust matrix completion with $\approx 1:50$ subsampling

Problem formulation

Let $\Omega\subseteq\{1,\cdots,p\} imes\{1,\cdots,q\}$ be a subset of indexes and $\mathbf{M}_\Omega=(\mathbf{M}_{ij})_{(i,j)\in\Omega}$ be the observed entries of a missed matrix \mathbf{M} . \mathcal{P}_Ω is the projection on the subset Ω .

$$f^{\star} := \min_{\mathbf{X} \in \mathbb{R}^{p \times q}} \left\{ f(\mathbf{X}) := \frac{1}{2} \|\mathbf{X}\|_{\star}^{2} : \|\mathcal{P}_{\Omega}(\mathbf{X}) - \mathbf{M}_{\Omega}\|_{1} \le \tau \right\}. \tag{12}$$

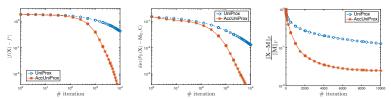


Figure: The performance of UniProx and AccUniProx algorithms for (12).

Setup

- ▶ Synthetic data p = 1000, q = 4000, and rank r = 6
- Number of samples $n := |\Omega| = 9 \cdot 10^4$
- Input parameters $\lambda^0 = \mathbf{0}^n$ and $\epsilon = 2 \cdot 10^{-2}$

Example: Nuclear-norm constrained matrix completion - I

Problem formulation

Let $\Omega\subseteq\{1,\cdots,p\} imes\{1,\cdots,q\}$ be a subset of indexes and $\mathbf{M}_\Omega=(\mathbf{M}_{ij})_{(i,j)\in\Omega}$ be the observed entries of a missed matrix \mathbf{M} . \mathcal{P}_Ω is the projection on the subset Ω .

$$f^{\star} := \min_{\mathbf{X} \in \mathbb{R}^{p \times q}} \left\{ \frac{1}{2} \| \mathcal{P}_{\Omega}(\mathbf{X}) - \mathbf{M}_{\Omega} \|_{F}^{2} : \| \mathbf{X} \|_{\star} \le \varphi^{\star} \right\}$$
(13)

Setup

- Synthetic data of size p=400, q=2000 with rank r=10 .
- Number of samples $n := |\Omega| = 7.5 \cdot 10^4$.
- $\varphi^* = \|\mathbf{M}\|_*$ is assumed to be known.
- Input parameters $\lambda^0 = \mathbf{0}^n$ and $\epsilon = 2 \cdot 10^{-6}$.

Example: Nuclear-norm constrained matrix completion - II

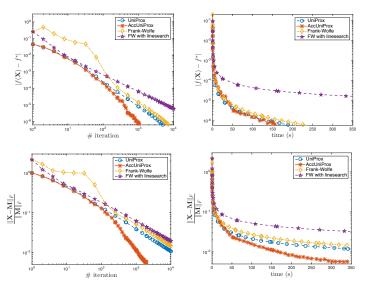


Figure: The performance of (Acc)UniProx and Frank-Wolfe algorithms for (13).

Outline

The proximal way

The sharp way

Conclusions

Conclusions

- Our contributions for the prototype primal problem (1):
 - new proximal primal dual algorithms via the model-based gap reduction technique
 - new universal primal-dual algorithms via sharp operators
 - guarantees on primal optimality and feasibility of the iterates for all
- Uncertainty relations for the proximal way
 - primal optimality of the algorithmic iterates competes with their feasibility
 - clear benefits of the augmented Lagrangian
- The prox-operator vs. the sharp-operator
 - ► tradeoffs abound (also along the Augmented Lagrangian + ADMM / AMA)
 - time-winner is unclear due to modern data processing systems
 - warm-starts / hybrid strategies ?

References |

- Ben Adcock, Anders C. Hansen, Clarice Poon, and Bogdan Roman. Breaking the coherence barrier: A new theory for compressed sensing. http://arxiv.org/abs/1302.0561, Feb. 2013.
- [2] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde. Model-based compressive sensing. Information Theory, IEEE Transactions on, 56(4):1982–2001, 2010.
- [3] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.
- [4] Marco F. Duarte, Dharmpal Davenport, Mark A. adn Takhar, Jason N. Laska, Ting Sun, Kevin F. Kelly, and Richard G. Baraniuk. Single-pixel imaging via compressive sampling. *IEEE Sig. Process. Mag.*, 25(2):83–91, March 2008.
- [5] M. El Halabi and V. Cevher.
 A totally unimodular view of structured sparsity.
 In Int. Conf. on Artificial Intelligence and Statistics (AISTATS), 2015.
- [6] M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. JMLR W&CP, 28(1):427–435, 2013.

References II

- [7] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. Journal of Machine Learning Reasearch, 12:2297–2334, 2011.
- [8] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley, New York, 1983.
- [9] Yu. Nesterov.Smooth minimization of non-smooth functions.Math. Program., Ser. A, 103:127–152, 2005.
- [10] Yu. Nesterov. Universal gradient methods for convex optimization problems. Math. Program., pages 1–24, 2014.
- [11] Yurii Nesterov.
 A method of solving a convex programming problem with convergence rate o (1/k2).
 - In Soviet Mathematics Doklady, volume 27, pages 372-376, 1983.
- [12] Quoc Tran-Dinh and Volkan Cevher. Constrained convex minimization via model-based excessive gap. In Conference of Neural Information Processing Systems (NIPS), 2014.

References III

- [13] Quoc Tran-Dinh and Volkan Cevher.
 - A primal-dual algorithmic framework for constrained convex minimization. Technical report, EPFL, 2014.
- [14] Alp Yurtsever, Quoc Tran-Dinh, and Volkan Cevher. Universal primal-dual proximal-gradient methods. Technical report, EPFL, 2015.
- [15] Peng Zhao, Guilherme Rocha, and Bin Yu. Grouped and hierarchical model selection through composite absolute penalties. Department of Statistics, UC Berkeley, Tech. Rep., 703, 2006.

