# A totally unimodular view of structured sparsity

## Volkan Cevher volkan.cevher@epfl.ch

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

DISCML (NIPS)

[December 13, 2014]

Joint work with

Marwa El Halabi, Luca Baldassarre and Baran Gözcü @ LIONS Anastasios Kyrillidis and Bubacarr Bah @ UT Austin Nirav Bhan @ MIT











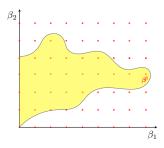
#### Outline

#### Total unimodularity in discrete optimization



## Discrete optimization

Search for an optimum object within a finite collection of objects.



#### Discrete optimization

Search for an optimum object within a finite collection of objects.

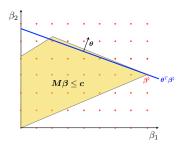
## Integer linear program

Many important discrete optimization problems can be formulated as an integer linear program

$$\beta^{\natural} \in \arg\max_{\beta \in \mathbb{Z}^m} \{ \boldsymbol{\theta}^T \beta : \boldsymbol{M}\beta \leq \boldsymbol{c}, \beta \geq 0 \} \ \ \text{(ILP)}$$

#### NP-Hard (in general)

vertex cover, set packing, maximum flow, traveling salesman, boolean satisfiability.



## Polyhedra & Polytopes

$$\mathcal{P} = \{ \boldsymbol{\beta} | \boldsymbol{M} \boldsymbol{\beta} \le \boldsymbol{c}, \boldsymbol{\beta} \ge 0 \}$$

$$(oldsymbol{eta} \in \mathbb{R}^m, oldsymbol{c} \in \mathbb{R}^m)$$

Polytope: A bounded polyhedron



#### Discrete optimization

Search for an optimum object within a finite collection of objects.

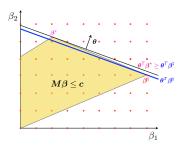
#### Integer linear program

Many important discrete optimization problems can be formulated as an integer linear program

$$\beta^{\natural} \in \arg\max_{\beta \in \mathbb{Z}^m} \{ \boldsymbol{\theta}^T \beta : \boldsymbol{M}\beta \leq \boldsymbol{c}, \beta \geq 0 \} \ \ \text{(ILP)}$$

#### NP-Hard (in general)

vertex cover, set packing, maximum flow, traveling salesman, boolean satisfiability.



#### A general approach

Attempt the following convex relaxation

$$oldsymbol{eta}^{\star} \in \arg\max_{oldsymbol{eta} \in \mathbb{R}^m} \{oldsymbol{ heta}^Toldsymbol{eta} : oldsymbol{M}oldsymbol{eta} \leq oldsymbol{c}, oldsymbol{eta} \geq 0\}$$
 (LP)

Obtains an upperbound

## Polyhedra & Polytopes

$$\mathcal{P} = \{\beta | M\beta \le c, \beta \ge 0\}$$
$$(\beta \in \mathbb{R}^m, c \in \mathbb{R}^m)$$

Polytope: A bounded polyhedron

#### Discrete optimization

Search for an optimum object within a finite collection of objects.

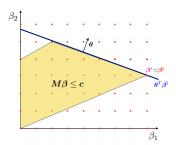
#### Integer linear program

Many important discrete optimization problems can be formulated as an integer linear program

$$\beta^{\natural} \in \arg\max_{\beta \in \mathbb{Z}^m} \{ \boldsymbol{\theta}^T \beta : \boldsymbol{M}\beta \leq \boldsymbol{c}, \beta \geq 0 \} \ \ \text{(ILP)}$$

#### NP-Hard (in general)

vertex cover, set packing, maximum flow, traveling salesman, boolean satisfiability.



#### A general approach

Attempt the following convex relaxation

$$oldsymbol{eta}^{\star} \in \arg\max_{oldsymbol{eta} \in \mathbb{R}^{m}} \{oldsymbol{ heta}^{T}oldsymbol{eta} : oldsymbol{M}oldsymbol{eta} \leq oldsymbol{c}, oldsymbol{eta} \geq 0\}$$
 (LP)

Obtains an upperbound

#### Polyhedra & Polytopes

$$\mathcal{P} = \{ \boldsymbol{\beta} | \boldsymbol{M} \boldsymbol{\beta} \le \boldsymbol{c}, \boldsymbol{\beta} \ge 0 \}$$

#### Observation:

When every vertex of  $\mathcal{P}$  is integer,

LP is a "correct" relaxation.

#### A sufficient condition

Polyhedra  $\mathcal{P} = \{ M\beta \le c, \beta \ge 0 \}$  has integer vertices when M is TU and c is integer

## Definition (Total unimodularity)

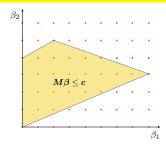
A matrix  $M \in \mathbb{R}^{l \times m}$  is totally unimodular (TU) iff the determinant of every square submatrix of M is 0, or  $\pm 1$ .

#### Correctness of LP [23]

When M is TU and c is integer, then the LP

$$\max_{\boldsymbol{\beta} \in \mathbb{R}^m} \{ \boldsymbol{\theta}^T \boldsymbol{\beta} : \boldsymbol{M} \boldsymbol{\beta} \leq \boldsymbol{c}, \boldsymbol{\beta} \geq 0 \}$$

has integer optimal solutions (i.e.,  $ILP \subseteq LP$ ).



Verifying if a matrix is TU is in P [31]

#### TU matrices are not rare!

- Regular matroids have TU representations [29]
- Network flow problems & interval constraints involve TU matrices [23]
- Incidence matrices of undirected bipartite graphs are TU [23]

#### A sufficient condition

Polyhedra  $\mathcal{P}=\{Meta\leq c, eta\geq 0\}$  has integer vertices when M is TU and c is integer

## Definition (Total unimodularity)

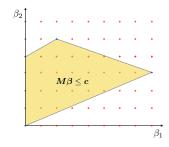
A matrix  $M \in \mathbb{R}^{l \times m}$  is totally unimodular (TU) iff the determinant of every square submatrix of M is 0, or  $\pm 1$ .

#### Correctness of LP [23]

When M is TU and c is integer, then the LP

$$\max_{\boldsymbol{\beta} \in \mathbb{R}^m} \{ \boldsymbol{\theta}^T \boldsymbol{\beta} : \boldsymbol{M} \boldsymbol{\beta} \leq \boldsymbol{c}, \boldsymbol{\beta} \geq 0 \}$$

has integer optimal solutions (i.e., ILP  $\subseteq$  LP).



Verifying if a matrix is TU is in P [31]

## Computational complexity of LP

- lacktriangle Polynomial time in l (i.e., number of constraints) and m (i.e., ambient dimension)
- ▶ IPM performs  $\mathcal{O}\left(\sqrt{l}\log\frac{l}{\epsilon}\right)$  iterations (l>m) with up to  $\mathcal{O}(m^2l)$  operations, where  $\epsilon$  is the absolute solution accuracy

#### A sufficient condition

Polyhedra  $\mathcal{P} = \{M\beta \leq c, \beta \geq 0\}$  has integer vertices when M is TU and c is integer

## Definition (Total unimodularity)

A matrix  $M \in \mathbb{R}^{l \times m}$  is totally unimodular (TU) iff the determinant of every square submatrix of M is 0, or  $\pm 1$ .

#### Correctness of LP [23]

When M is TU and c is integer, then the LP

$$\max_{\boldsymbol{\beta} \in \mathbb{R}^m} \{ \boldsymbol{\theta}^T \boldsymbol{\beta} : \boldsymbol{M} \boldsymbol{\beta} \leq \boldsymbol{c}, \boldsymbol{\beta} \geq 0 \}$$

has integer optimal solutions (i.e.,  $ILP \subseteq LP$ ).



Verifying if a matrix is TU is in P [31]

## Computational complexity of LP

- Polynomial time in l (i.e., number of constraints) and m (i.e., ambient dimension)
- What if l is exponentially large?

#### A weaker sufficient condition

#### Submodularity & submodular polyhedron [15]

 $F: 2^{\mathcal{V}} \to \mathbb{R}$  is submodular iff it has the following diminishing returns property:

$$F(S \cup \{e\}) - F(S) \ge F(T \cup \{e\}) - F(T),$$

 $\forall S \subseteq T \subseteq V, \forall e \in V \setminus T$ . The submodular polyhedron is defined as

$$\mathcal{P}(F) := \{ \boldsymbol{\beta} \in \mathbb{R}^m \mid \forall \mathcal{S} \subseteq \mathcal{V}, \boldsymbol{\beta}^T \mathbb{1}_{\mathcal{S}} \leq F(\mathcal{S}) \}$$

where  $\mathbb{1}_{\mathcal{S}}$  is the support indicator vector, i.e.,  $(\mathbb{1}_{\mathcal{S}})_i = 1$  if  $i \in \mathcal{S}$ , 0 otherwise.

- We cannot verify submodularity in polynomial time [28].
- Submodular polyhedron is TDI: LP is a "correct" relaxation of ILP.

#### Total dual integrality (TDI) [17]

A system  $Meta \leq c$  is called TDI when primal objective is finite and the dual problem

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^l} \left\{ \boldsymbol{\alpha}^T \boldsymbol{c} : \boldsymbol{\alpha} \ge 0, \boldsymbol{\alpha}^T \boldsymbol{M} = \boldsymbol{\theta}^T \right\}$$

has integer optimum solutions for all rational M and c, and for each integer heta.

A polynomial time (in l and m) algorithm can verify if  $M\beta \leq c$  is TDI [12].

#### A weaker sufficient condition

## Submodularity & submodular polyhedron [15]

 $F: 2^{\mathcal{V}} \to \mathbb{R}$  is submodular iff it has the following diminishing returns property:

$$F(S \cup \{e\}) - F(S) \ge F(T \cup \{e\}) - F(T),$$

 $\forall S \subseteq T \subseteq V, \forall e \in V \setminus T$ . The submodular polyhedron is defined as

$$\mathcal{P}(F) := \{ \boldsymbol{\beta} \in \mathbb{R}^m \mid \forall \mathcal{S} \subseteq \mathcal{V}, \boldsymbol{\beta}^T \mathbb{1}_{\mathcal{S}} \leq F(\mathcal{S}) \}$$

where  $\mathbb{1}_{\mathcal{S}}$  is the support indicator vector, i.e.,  $(\mathbb{1}_{\mathcal{S}})_i = 1$  if  $i \in \mathcal{S}$ , 0 otherwise.

- ▶ We cannot verify submodularity in polynomial time [28].
- Submodular polyhedron is TDI: LP is a "correct" relaxation of ILP.

#### Total dual integrality (TDI) [17]

A system  $Meta \leq c$  is called TDI when primal objective is finite and the dual problem

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^l} \left\{ \boldsymbol{\alpha}^T \boldsymbol{c} : \boldsymbol{\alpha} \geq 0, \boldsymbol{\alpha}^T \boldsymbol{M} = \boldsymbol{\theta}^T \right\}$$

has integer optimum solutions for all rational M and c, and for each integer heta.

• A polynomial time (in l and m) algorithm can verify if  $M\beta \leq c$  is TDI [12].

**Structure matters!** LP is *efficiently* solvable on the submodular polyhedra  $\mathcal{P}(F)$ .

#### In the rest of the talk...

We can use these concepts in obtaining

- ▶ tight convex relaxations
- efficient nonconvex projections

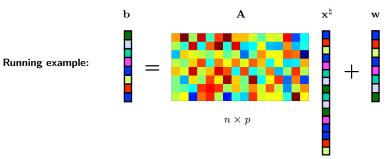
for supervised learning and inverse problems

#### In the rest of the talk...

We can use these concepts in obtaining

- tight convex relaxations
- efficient nonconvex projections

for supervised learning and inverse problems



Applications: Machine learning, signal processing, theoretical computer science...

#### In the rest of the talk...

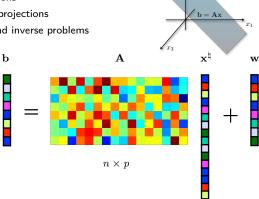
We can use these concepts in obtaining

tight convex relaxations

Running example:

efficient nonconvex projections

for supervised learning and inverse problems



#### A difficult estimation challenge when n < p:

Nullspace (null) of A:  $\mathbf{x}^{\natural} + \delta \rightarrow \mathbf{b}$ ,  $\forall \delta \in \text{null}(\mathbf{A})$ 

▶ Needle in a haystack: We need additional information on x<sup>‡</sup>!

#### Outline

From sparsity to structured sparsity

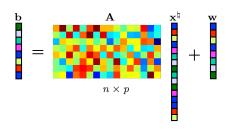


## Three key insights

1. Sparse or compressible  $x^{\natural}$ not sufficient alone

2. Recovery tractable & stable

3. Projection A information preserving



#### Typical goals:

- 1. Find  $\mathbf{x}^*$  to minimize  $\|\mathbf{x}^* \mathbf{x}^{\natural}\|$
- 2. Find  $\mathbf{x}^*$  to minimize  $\mathcal{L}\left(\mathbf{x}^*(\mathbf{a}), \mathbf{x}^{\natural}(\mathbf{a}) + \mathbf{w}\right)$

## Swiss army knife of signal models

#### Definition (s-sparse vector)

A vector  $\mathbf{x} \in \mathbb{R}^p$  is s-sparse, i.e.,  $\mathbf{x} \in \Sigma_s$ , if it has at most s non-zero entries.

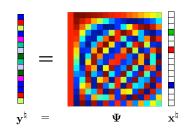


#### Sparse representations:

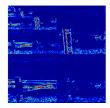
 $\mathbf{y}^{\natural}$  has *sparse* transform coefficients  $\mathbf{x}^{\natural}$ 

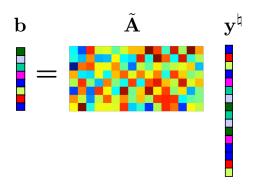
- Basis representations  $\Psi \in \mathbb{R}^{p \times p}$ 
  - ► Wavelets, DCT, ...
- Frame representations  $\Psi \in \mathbb{R}^{m \times p}$ , m > p
  - ► Gabor, curvelets, shearlets, ...
- Other dictionary representations...

$$\left|\left|\mathbf{x}^{\natural}\right|\right|_{0}:=\left|\left\{i:x_{i}^{\natural}\neq0\right\}\right|=s$$

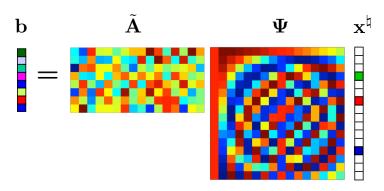




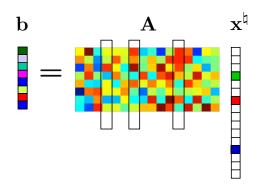




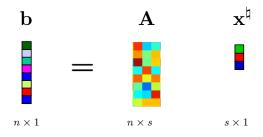
 $\mathbf{b} \in \mathbb{R}^n$ ,  $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}$ , and n < p



- $\mathbf{b} \in \mathbb{R}^n$ ,  $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}$ , and n < p
- $oldsymbol{\Psi} \in \mathbb{R}^{p imes p}$ ,  $\mathbf{x}^
  atural} \in \Sigma_s$ , and s < n < p



 $\mathbf{b} \in \mathbb{R}^n$ ,  $\mathbf{A} \in \mathbb{R}^{n \times p}$ ,  $\mathbf{x}^{\natural} \in \Sigma_s$ , and s < n < p



 $\mathbf{b} \in \mathbb{R}^n$ ,  $\mathbf{A} \in \mathbb{R}^{n \times p}$ ,  $\mathbf{x}^{\natural} \in \Sigma_s$ , and s < n < p

Impact: Support restricted columns of A leads to an overcomplete system.

## A combinatorial approach for estimating $\mathbf{x}^{\sharp}$ from $\mathbf{b} = \mathbf{A}\mathbf{x}^{\sharp} + \mathbf{w}$

We may consider the estimator with the least number of non-zero entries. That is,

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \|\mathbf{x}\|_{0} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2} \le \kappa \right\}$$
 ( $\mathcal{P}_{0}$ )

with some  $\kappa \geq 0$ . If  $\kappa = \|\mathbf{w}\|_2$ , then  $\mathbf{x}^{\natural}$  is a feasible solution.

## A combinatorial approach for estimating $x^{\dagger}$ from $b = Ax^{\dagger} + w$

We may consider the estimator with the least number of non-zero entries. That is,

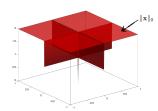
$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \|\mathbf{x}\|_{0} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2} \le \kappa \right\}$$
 (P<sub>0</sub>)

with some  $\kappa \geq 0$ . If  $\kappa = \|\mathbf{w}\|_2$ , then  $\mathbf{x}^{\natural}$  is a feasible solution.

#### $\mathcal{P}_0$ has the following characteristics:

- ▶ sample complexity: O(s)
- computational effort: NP-Hard
- stability: No

 $\|\mathbf{x}\|_0$  over the unit  $\ell_{\infty}$ -ball



## A combinatorial approach for estimating $x^{\dagger}$ from $b = Ax^{\dagger} + w$

We may consider the estimator with the least number of non-zero entries. That is,

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_0 : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \kappa \right\}$$
 (P0)

with some  $\kappa \geq 0$ . If  $\kappa = \|\mathbf{w}\|_2$ , then  $\mathbf{x}^{\natural}$  is a feasible solution.

#### $\mathcal{P}_0$ has the following characteristics:

- ▶ sample complexity: O(s)
- computational effort: NP-Hard
- stability: No

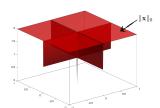
#### Tightest convex relaxation:

 $\|\mathbf{x}\|_0^{**}$  is the biconjugate (Fenchel conjugate of Fenchel conjugate)

#### Fenchel conjugate:

$$f^*(\mathbf{y}) := \sup_{\mathbf{x}: dom(f)} \mathbf{x}^T \mathbf{y} - f(\mathbf{x}).$$

 $\|\mathbf{x}\|_0$  over the unit  $\ell_{\infty}$ -ball



**A technicality:** Restrict  $\mathbf{x}^{\natural} \in [-1, 1]^p$ .

## A combinatorial approach for estimating $\mathbf{x}^{\natural}$ from $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$

We may consider the estimator with the least number of non-zero entries. That is,

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \|\mathbf{x}\|_{0} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2} \le \kappa \right\}$$
 ( $\mathcal{P}_{0}$ )

with some  $\kappa \geq 0$ . If  $\kappa = \|\mathbf{w}\|_2$ , then  $\mathbf{x}^{\natural}$  is a feasible solution.

#### $\mathcal{P}_0$ has the following characteristics:

- sample complexity:  $\mathcal{O}(s)$
- computational effort: NP-Hard
- ▶ stability: No

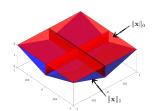
#### **Tightest convex relaxation:**

 $\|\mathbf{x}\|_0^{**}$  is the biconjugate (Fenchel conjugate of Fenchel conjugate)

#### Fenchel conjugate:

$$f^*(\mathbf{y}) := \sup_{\mathbf{x}: \mathsf{dom}(f)} \mathbf{x}^T \mathbf{y} - f(\mathbf{x}).$$

## $\|\mathbf{x}\|_1$ is the convex envelope of $\|\mathbf{x}\|_0$



A technicality: Restrict  $\mathbf{x}^{\natural} \in [-1, 1]^p$ .

## The role of convexity: Tractable & stable recovery

## A convex candidate solution for $\mathbf{b} = \mathbf{A}\mathbf{x}^{\dagger} + \mathbf{w}$

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \|\mathbf{x}\|_{1} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2} \le \|\mathbf{w}\|_{2}, \|\mathbf{x}\|_{\infty} \le 1 \right\}. \tag{SOCP}$$

## Theorem (A **model** recovery guarantee [27])

Let  $\mathbf{A} \in \mathbb{R}^{n \times p}$  be a matrix of i.i.d. Gaussian random variables with zero mean and variances 1/n. For any t>0 with probability at least  $1-6\exp\left(-t^2/26\right)$ , we have

$$\left\|\mathbf{x}^{\star}-\mathbf{x}^{\natural}\right\|_{2} \leq \left[\frac{2\sqrt{2s\log(\frac{p}{s})+\frac{5}{4}s}}{\sqrt{n}-\sqrt{2s\log(\frac{p}{s})+\frac{5}{4}s}-t}\right]\|\mathbf{w}\|_{2} \coloneqq \mathbf{\varepsilon}, \quad \textit{when } \|\mathbf{x}^{\natural}\|_{0} \leq s.$$

#### Observations:

- ▶ perfect recovery (i.e.,  $\varepsilon = 0$ ) with  $n \ge 2s \log(\frac{p}{s}) + \frac{5}{4}s$  whp when  $\mathbf{w} = 0$ .
- $\epsilon$ -accurate solution in  $k = \mathcal{O}\left(\sqrt{2p+1}\log(\frac{1}{\epsilon})\right)$  iterations via IPM<sup>1</sup> with each iteration requiring the solution of a structured  $n \times 2p$  linear system.<sup>2</sup>
- robust to noise.

<sup>&</sup>lt;sup>2</sup>When  $\mathbf{w} = 0$ , the IPM complexity (# of iterations × cost per iteration) amounts to  $\mathcal{O}(n^2 p^{1.5} \log(\frac{1}{2}))$ .



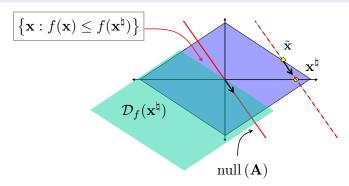


<sup>&</sup>lt;sup>1</sup>For a rigorous primal-dual algorithm for this class of problems, see my NIPS 2014 paper [30].

## The role of the matrix A: Preserving information

#### Proposition (Condition for exact recovery in the noiseless case)

We have successful recovery with  $\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \{ f(\mathbf{x}) : \mathbf{b} = \mathbf{A}\mathbf{x}, \|\mathbf{x}\|_{\infty} \leq 1 \}$ , i.e.,  $\delta := \mathbf{x}^{\star} - \mathbf{x}^{\natural} = 0$ , if and only if  $\operatorname{null}(\mathbf{A}) \cap \mathcal{D}_f(\mathbf{x}^{\natural}) = \{0\}$ .



Assume that the constraint  $\|\mathbf{x}\|_{\infty} \leq 1$  is inactive.

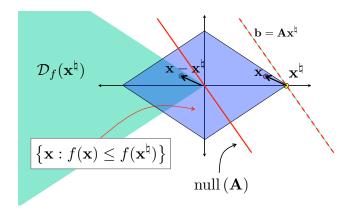
 $\underline{\mathsf{Descent cone:}} \qquad \mathcal{D}_f(\mathbf{x}^\natural) := \mathrm{cone}\left(\left\{\mathbf{x}: f(\mathbf{x}^\natural + \mathbf{x}) \leq f(\mathbf{x}^\natural)\right\}\right).$ 



## The role of the matrix A: Preserving information

## Proposition (Condition for exact recovery in the noiseless case)

We have successful recovery with  $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \{ f(\mathbf{x}) : \mathbf{b} = \mathbf{A}\mathbf{x}, \|\mathbf{x}\|_{\infty} \le 1 \}$ , i.e.,  $\delta := \mathbf{x}^* - \mathbf{x}^{\natural} = 0$ , if and only if  $\operatorname{null}(\mathbf{A}) \cap \mathcal{D}_f(\mathbf{x}^{\natural}) = \{0\}$ .



## The role of the matrix A: Preserving information

$$\left| \mathbb{P}\left\{ \mathbf{x}^{\star} = \mathbf{x}^{\natural} \right\} = \mathbb{P}\left\{ \text{null}(\mathbf{A}) \cap \mathcal{D}_{f}(\mathbf{x}^{\natural}) = \{0\} \right\} \right|$$

## Definition (Statistical dimension [2]<sup>3</sup>)

Let  $\mathcal{C} \subseteq \mathbb{R}^p$  be a closed convex cone. The statistical dimension of  $\mathcal{C}$  is defined as

$$d(\mathcal{C}) := \mathbb{E}\left[\|\operatorname{proj}_{\mathcal{C}}(\mathbf{g})\|_{2}^{2}\right].$$

#### Theorem (Approximate kinematic formula [2])

Let  $A \in \mathbb{R}^{n \times p}$ , n < p, be a matrix of i.i.d. standard Gaussian random variables, and let  $\mathcal{C} \subseteq \mathbb{R}^p$  be a closed convex cone. Let  $\eta \in (0,1)$ , then we have

$$n \ge d(\mathcal{C}) + c_{\eta} \sqrt{p} \implies \mathbb{P} \{ \text{null}(\mathbf{A}) \cap \mathcal{C} = \{0\} \} \ge 1 - \eta;$$
  
 $n \le d(\mathcal{C}) - c_{\eta} \sqrt{p} \implies \mathbb{P} \{ \text{null}(\mathbf{A}) \cap \mathcal{C} = \{0\} \} \le \eta,$ 

where  $c_{\eta} := \sqrt{8 \log(4/\eta)}$ .

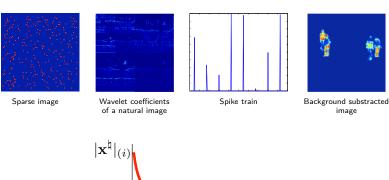
We can compute 
$$d(\mathcal{C}) \lesssim 2s \log(\frac{p}{s}) + \frac{5}{4}s$$
 for  $\mathcal{C} = \mathcal{D}_{\|\cdot\|_1}(\mathbf{x}^{\natural})$  when  $\mathbf{x}^{\natural} \in \Sigma_s$ .

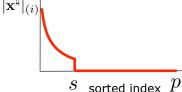
<sup>&</sup>lt;sup>3</sup>The statistical dimension is closely related to the Gaussian complexity [7], Gaussian width [10], mean width [32], and Gaussian squared complexity [9].



#### Beyond sparsity towards model-based or *structured* sparsity

▶ The following signals can look the **same** from a **sparsity** perspective!





#### Beyond sparsity towards model-based or structured sparsity

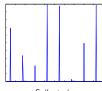
▶ The following signals can look the same from a sparsity perspective!



 ${\sf Sparse \ image}$ 



Wavelet coefficients of a natural image



Spike train



Background substracted image

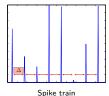
In reality, these signals have additional structures beyond the simple sparsity



Sparse image



Wavelet coefficients of a natural image



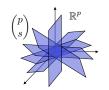
Spike train

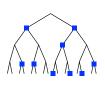


Background substracted image

#### Beyond sparsity towards model-based or *structured* sparsity

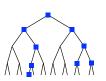
Sparsity model: Union of all s-dimensional canonical subspaces.





Structured sparsity model: A particular union of  $m_s$  s-dimensional canonical subspaces.





#### Model-based or *structured* sparsity

Structured sparsity models are discrete structures describing the interdependency between the non-zero coefficients of a vector.

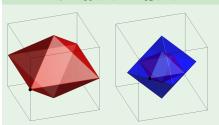
#### Three upshots of structured sparsity

#### Key properties of the statistical dimension [2]

- ► The statistical dimension is invariant under unitary transformations (rotations).
- ▶ Let  $C_1$  and  $C_2$  be closed convex cones. If  $C_1 \subseteq C_2$ , then  $d(C_1) \leq d(C_2)$ .

#### 1. The smaller the statistical dimension is, the less we need to sample

Example (If  $\mathcal{D}_{f_1}(\mathbf{x}^{\natural}) \subseteq \mathcal{D}_{f_2}(\mathbf{x}^{\natural}) \subseteq \mathbb{R}^n$ , then  $d(\mathcal{D}_{f_1}(\mathbf{x}^{\natural})) \leq d(\mathcal{D}_{f_2}(\mathbf{x}^{\natural}))$ .)



$$f_1(\mathbf{x}) := \max\{|x_1|, |x_2|\} + |x_3|$$

$$f_2(\mathbf{x}) := \|\mathbf{x}\|_1$$

$$\mathbf{x}^{\natural} = [1, -1, 0]^T$$

#### Observations:

- 1.  $n_1 < n_2$  for  $\mathbf{x}^{\natural}$
- 2.  $n_1 > n_2$  for  $\mathbf{z}^{\natural} = [0, 0, 1]^T$

Reduced sample complexity: phase transition at the statistical dimension

#### Three upshots of structured sparsity

#### Key properties of the statistical dimension [2]

- ► The statistical dimension is invariant under unitary transformations (rotations).
- Let  $C_1$  and  $C_2$  be closed convex cones. If  $C_1 \subseteq C_2$ , then  $d(C_1) \le d(C_2)$ .

#### 2. The smaller the statistical dimension is, the better we can denoise

- ► Reduced sample complexity: *phase transition* at the statistical dimension
- ▶ Better noise robustness: denoising capabilities depend on the statistical dimension

$$\max_{\sigma>0} \frac{\mathbb{E}\left[\|\mathsf{prox}_f(\mathbf{x}^{\natural} + \sigma\mathbf{w}, \sigma\lambda) - \mathbf{x}^{\natural}\|^2\right]}{\sigma^2} \leq d(\lambda \mathcal{D}_f(\mathbf{x}^{\natural}))$$

Minimize a bound to the minimax risk via the regularization parameter  $\lambda$  [27]

#### Three upshots of structured sparsity

#### Key properties of the statistical dimension [2]

- ► The statistical dimension is invariant under unitary transformations (rotations).
- ▶ Let  $C_1$  and  $C_2$  be closed convex cones. If  $C_1 \subseteq C_2$ , then  $d(C_1) \leq d(C_2)$ .

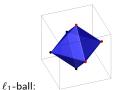
#### 3. The smaller the statistical dimension is, the better we can enforce structure

- ▶ Reduced sample complexity: *phase transition* at the statistical dimension
- ▶ Better noise robustness: denoising capabilities depend on the statistical dimension

$$\max_{\sigma>0} \frac{\mathbb{E}\left[\|\mathsf{prox}_f(\mathbf{x}^{\natural} + \sigma\mathbf{w}, \sigma\lambda) - \mathbf{x}^{\natural}\|^2\right]}{\sigma^2} \leq d(\lambda \mathcal{D}_f(\mathbf{x}^{\natural}))$$

Minimize a bound to the minimax risk via the regularization parameter  $\lambda$  [27]

▶ Better interpretability: geometry can enhance interpretability







Influence the recovered support via customized convex geometry

#### Outline

Convex relaxations for structured sparse recovery



#### A simple template for linear inverse problems

Find the "sparsest" x subject to structure and data.

#### Sparsity

We can generalize this desideratum to other notions of simplicity

#### Structure

We only allow certain sparsity patterns

#### Data fidelity

We have many choices of convex constraints & losses to represent data; e.g.,

$$\|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \kappa$$



## A convex proto-problem for structured sparsity

# A combinatorial approach for estimating $x^{\dagger}$ from $b = Ax^{\dagger} + w$

We may consider the sparsest estimator or its surrogate with a valid sparsity pattern:

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \left\| \mathbf{x} \right\|_{s} : \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|_{2} \le \kappa, \left\| \mathbf{x} \right\|_{\infty} \le 1 \right\} \tag{$\mathcal{P}_{s}$}$$

with some  $\kappa \geq 0$ . If  $\kappa = \|\mathbf{w}\|_2$ , then the structured sparse  $\mathbf{x}^{\natural}$  is a feasible solution.

## Sparsity and structure together [14]

Given some weights  $d \in \mathbb{R}^d$ ,  $e \in \mathbb{R}^p$  and an integer input  $c \in \mathbb{Z}^l$ , we define

$$\|\mathbf{x}\|_s := \min_{oldsymbol{\omega}} \{oldsymbol{d}^T oldsymbol{\omega} + oldsymbol{e}^T s : oldsymbol{M} egin{bmatrix} oldsymbol{\omega} \ s \end{bmatrix} \leq oldsymbol{c}, \mathbb{1}_{ ext{supp}(\mathbf{x})} = s, oldsymbol{\omega} \in \{0,1\}^d \}$$

for all feasible x,  $\infty$  otherwise. The parameter  $\omega$  is useful for latent modeling.

## A convex proto-problem for structured sparsity

# A combinatorial approach for estimating $x^{\dagger}$ from $b = Ax^{\dagger} + w$

We may consider the sparsest estimator or its surrogate with a valid sparsity pattern:

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \|\mathbf{x}\|_{s} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2} \le \kappa, \|\mathbf{x}\|_{\infty} \le 1 \right\}$$
 ( $\mathcal{P}_{s}$ )

with some  $\kappa \geq 0$ . If  $\kappa = \|\mathbf{w}\|_2$ , then the structured sparse  $\mathbf{x}^{\natural}$  is a feasible solution.

#### Sparsity and structure together [14]

Given some weights  $d \in \mathbb{R}^d$ ,  $e \in \mathbb{R}^p$  and an integer input  $c \in \mathbb{Z}^l$ , we define

$$\|\mathbf{x}\|_s := \min_{\boldsymbol{\omega}} \{ oldsymbol{d}^T oldsymbol{\omega} + oldsymbol{e}^T s : oldsymbol{M} egin{bmatrix} oldsymbol{\omega} \\ s \end{bmatrix} \leq oldsymbol{c}, \mathbb{1}_{\mathrm{supp}(\mathbf{x})} = s, oldsymbol{\omega} \in \{0,1\}^d \}$$

for all feasible x,  $\infty$  otherwise. The parameter  $\omega$  is useful for latent modeling.

#### A convex candidate solution for $\mathbf{b} = \mathbf{A}\mathbf{x}^{\dagger} + \mathbf{w}$

We use the convex estimator based on the tightest convex relaxation of  $\|\mathbf{x}\|_s$ :

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \text{dom}(\|\cdot\|_{s})} \left\{ \|\mathbf{x}\|_{s}^{**} : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2} \le \kappa \right\}$$

with some  $\kappa \geq 0$ ,  $dom(\|\cdot\|_{\mathfrak{s}}) := \{\mathbf{x} : \|\mathbf{x}\|_{\mathfrak{s}} < \infty\}.$ 

#### Tractability & tightness of biconjugation

# Proposition (Hardness of conjugation)

Let  $F(s): 2^{\mathfrak{P}} \to \mathbb{R} \cup \{+\infty\}$  be a set function defined on the support  $s = \operatorname{supp}(\mathbf{x})$ . Conjugate of F over the unit infinity ball  $\|\mathbf{x}\|_{\infty} \leq 1$  is given by

$$g^*(\mathbf{y}) = \sup_{\mathbf{s} \in \{0,1\}^p} |\mathbf{y}|^T \mathbf{s} - F(\mathbf{s}).$$

#### Observations:

 $m{\digamma}(s)$  is general set function

Computation: NP-Hard

 $F(s) = \|\mathbf{x}\|_s$ 

Computation: ILP in general. However, if

- ► M is TU
- ▶ (M, c) is TDI

then tight convex relaxations with an LP ("usually" tractable)

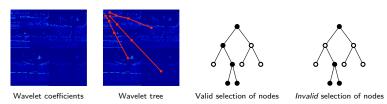
Otherwise, relax to LP anyway!

ightharpoonup F(s) is submodular

Computation: Polynomial-time



## Tree sparsity [21, 13, 6, 33]



**Structure:** We seek the sparsest signal with a rooted connected subtree support.

**Linear description:** A valid support satisfy  $s_{\mathsf{parent}} \geq s_{\mathsf{child}}$  over tree  $\mathcal{T}$ 

$$T\mathbb{1}_{\mathrm{supp}(\mathbf{x})} := Ts \ge 0$$

where T is the directed edge-node incidence matrix, which is TU.

## Tree sparsity [21, 13, 6, 33]









Wavelet coefficients

Wavelet tree

Valid selection of nodes

Invalid selection of nodes

**Structure:** We seek the sparsest signal with a rooted connected subtree support.

**Linear description:** A valid support satisfy  $s_{\mathsf{parent}} \geq s_{\mathsf{child}}$  over tree  $\mathcal{T}$ 

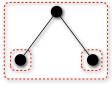
$$T\mathbb{1}_{\mathrm{supp}(\mathbf{x})} := Ts \ge 0$$

where T is the directed edge-node incidence matrix, which is TU.

**Biconjugate:**  $\|\mathbf{x}\|_{s}^{**} = \min_{s \in [0,1]^{p}} \{ \mathbb{1}^{T} s : Ts \ge 0, |\mathbf{x}| \le s \}$ for  $\mathbf{x} \in [-1,1]^p$ ,  $\infty$  otherwise.

# Tree sparsity [21, 13, 6, 33]







 $\mathfrak{G}_H = \{\{1,2,3\},\{2\},\{3\}\}\}$ 

valid selection of nodes

**Structure:** We seek the sparsest signal with a rooted connected subtree support.

**Linear description:** A valid support satisfy  $s_{\mathsf{parent}} \geq s_{\mathsf{child}}$  over tree  $\mathcal{T}$ 

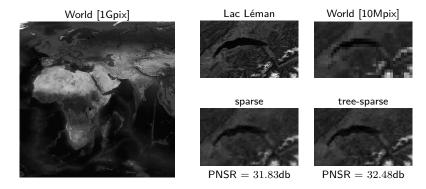
$$T1_{\text{supp}(\mathbf{x})} := Ts \ge 0$$

where T is the directed edge-node incidence matrix, which is TU.

Biconjugate:  $\|\mathbf{x}\|_s^{**} = \min_{s \in [0,1]^p} \{\mathbb{1}^T s : Ts \ge 0, |\mathbf{x}| \le s\} \stackrel{\star}{=} \sum_{G \in \mathfrak{G}_{s,r}} \|x_G\|_{\infty}$ for  $\mathbf{x} \in [-1,1]^p$ ,  $\infty$  otherwise.

The set  $G \in \mathfrak{G}_H$  are defined as each node and all its descendants.

# Tree sparsity example: 1:100-compressive sensing [30, 1]



## Tree sparsity example: TV & TU-relax 1:15-compression [30, 1]







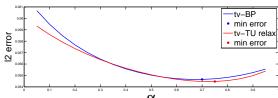




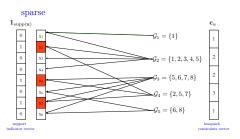




Regularization:



#### Group knapsack sparsity [35, 18, 16]



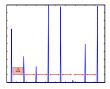
**Structure:** We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over 65

$$m{B}^T s \leq m{c}_u$$

where B is the biadjacency matrix of  $\mathfrak{G}$ , i.e.,  $B_{ij}=1$  iff i-th coefficient is in  $\mathcal{G}_j$ . When B is an interval matrix or  $\mathfrak{G}$  has a *loopless* group intersection graph, it is TU. Remark: We can also budget a lowerbound  $c_\ell \leq B^T s \leq c_u$ .

## Group knapsack sparsity [35, 18, 16]



$$\boldsymbol{B}^T = \begin{bmatrix} \begin{smallmatrix} 1 & 1 & \cdots & 1 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 1 & 1 & 0 & \cdots & 0 \\ & & & & \ddots & & \\ & & & & \ddots & & \\ 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}_{(p-\Delta+1)\times p}$$

**Structure:** We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over 6

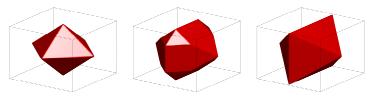
$$m{B}^T m{s} \leq m{c}_u$$

where B is the biadjacency matrix of  $\mathfrak{G}$ , i.e.,  $B_{ij} = 1$  iff i-th coefficient is in  $\mathcal{G}_i$ . When B is an interval matrix or  $\mathfrak{G}$  has a *loopless* group intersection graph, it is TU. <u>Remark:</u> We can also budget a lowerbound  $c_{\ell} \leq B^T s \leq c_u$ .

$$\begin{array}{ll} \textbf{Biconjugate:} \ \|\mathbf{x}\|_s^{**} = \begin{cases} \|\mathbf{x}\|_1 & \text{if } \mathbf{x} \in [-1,1]^p, \pmb{B}^T |\mathbf{x}| \leq c_u, \\ \infty & \text{otherwise} \\ \end{cases}$$

For the neuronal spike example, we have  $c_u = 1$ .

# Group knapsack sparsity [35, 18, 16]



**Structure:** We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over 6

$$m{B}^T m{s} \leq m{c}_u$$

where B is the biadjacency matrix of  $\mathfrak{G}$ , i.e.,  $B_{ij}=1$  iff i-th coefficient is in  $\mathcal{G}_j$ . When B is an interval matrix or  $\mathfrak{G}$  has a *loopless* group intersection graph, it is TU. Remark: We can also budget a lowerbound  $c_\ell \leq B^T s \leq c_u$ .

Biconjugate: 
$$\|\mathbf{x}\|_{s}^{**} = \begin{cases} \|\mathbf{x}\|_{1} & \text{if } \mathbf{x} \in [-1,1]^{p}, B^{T}|\mathbf{x}| \leq c_{u}, \\ \infty & \text{otherwise} \end{cases}$$

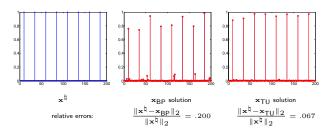
For the neuronal spike example, we have  $c_u = 1$ .

# Group knapsack sparsity example: A stylized spike train

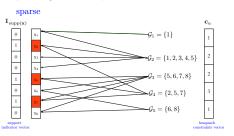
- ▶ Basis pursuit (BP): ||x||<sub>1</sub>
- TU-relax (TU):

TU-relax (TU): 
$$\|\mathbf{x}\|_{s}^{**} = \begin{cases} \|\mathbf{x}\|_{1} & \text{if } \mathbf{x} \in [-1,1]^{p}, B^{T}|\mathbf{x}| \leq c_{u}, & \frac{1}{24} \\ \infty & \text{otherwise} \end{cases}$$

Figure: Recovery for n = 0.18p.



## Group knapsack sparsity: A simple variation



**Structure:** We seek the signal with the minimal overall group allocation.

$$\begin{array}{ll} \text{Objective: } 1\!\!1^Ts \to \|\mathbf{x}\|_{\pmb{\omega}} = \begin{cases} \min_{\pmb{\omega} \in \mathbb{Z}_{++}} \pmb{\omega} & \text{if } \mathbf{x} \in [-1,1]^p, \pmb{B}^T |\mathbf{x}| \leq \pmb{\omega} \pmb{1}, \\ \infty & \text{otherwise} \end{cases}$$

Linear description: A valid support obeys budget constraints over 6

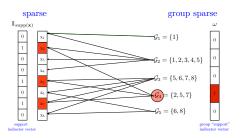
$$m{B}^T s \leq \omega \mathbb{1}$$

where B is the biadjacency matrix of  $\mathfrak{G}$ , i.e.,  $B_{ij} = 1$  iff i-th coefficient is in  $\mathcal{G}_i$ .

When B is an interval matrix or  $\mathfrak{G}$  has a *loopless* group intersection graph, it is TU.

$$\begin{array}{ll} \textbf{Biconjugate:} \ \|\mathbf{x}\|_{s}^{**} = \begin{cases} \max_{\mathcal{G} \in \mathfrak{G}} \|\mathbf{x}_{\mathcal{G}}\|_{1} & \text{if } \mathbf{x} \in [-1,1]^{p}, \\ \infty & \text{otherwise} \end{cases} \end{array}$$

Remark: The regularizer is known as exclusive Lasso [35, 26].



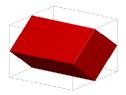
**Structure:** We seek the signal covered by a minimal number of groups.

Objective: 
$$1\!\!1^T s o d^T \omega$$

Linear description: At least one group containing a sparse coefficient is selected

$$B\omega \geq s$$

where B is the biadjacency matrix of  $\mathfrak{G}$ , i.e.,  $B_{ij}=1$  iff i-th coefficient is in  $\mathcal{G}_j$ . When B is an interval matrix, or  $\mathfrak{G}$  has a *loopless* group intersection graph it is TU.



 $\mathfrak{G} = \{\{1, 2\}, \{2, 3\}\}\$ , unit group weights d = 1.

**Structure:** We seek the signal covered by a minimal number of groups.

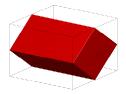
Objective: 
$$1\!\!1^T s o d^T \omega$$

Linear description: At least one group containing a sparse coefficient is selected

$$B\omega \geq s$$

where B is the biadjacency matrix of  $\mathfrak{G}$ , i.e.,  $B_{ij}=1$  iff i-th coefficient is in  $\mathcal{G}_j$ . When B is an interval matrix, or  $\mathfrak{G}$  has a *loopless* group intersection graph it is TU.

Biconjugate:  $\|\mathbf{x}\|_{\omega}^{**} = \min_{\omega \in [0,1]^M} \{d^T\omega : B\omega \ge |\mathbf{x}|\}$  for  $\mathbf{x} \in [-1,1]^p, \infty$  otherwise



 $\mathfrak{G} = \{\{1, 2\}, \{2, 3\}\}\$ , unit group weights d = 1.

**Structure:** We seek the signal covered by a minimal number of groups.

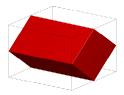
Objective: 
$$1\!\!1^T s o d^T \omega$$

Linear description: At least one group containing a sparse coefficient is selected

$$B\omega \geq s$$

where B is the biadjacency matrix of  $\mathfrak{G}$ , i.e.,  $B_{ij}=1$  iff i-th coefficient is in  $\mathcal{G}_{j}$ . When B is an interval matrix, or 6 has a loopless group intersection graph it is TU.

**Biconjugate:**  $\|\mathbf{x}\|_{\boldsymbol{\omega}}^{**} = \min_{\boldsymbol{\omega} \in [0,1]^M} \{ \boldsymbol{d}^T \boldsymbol{\omega} : \boldsymbol{B} \boldsymbol{\omega} \ge |\mathbf{x}| \}$  for  $\mathbf{x} \in [-1,1]^p, \infty$  otherwise  $\stackrel{\star}{=} \min_{\mathbf{v}_i \in \mathbb{R}^p} \{ \sum_{i=1}^M d_i \| \mathbf{v}_i \|_{\infty} : \mathbf{x} = \sum_{i=1}^M \mathbf{v}_i, \forall \text{supp}(\mathbf{v}_i) \subseteq \mathcal{G}_i \},$ 



 $\mathfrak{G} = \{\{1, 2\}, \{2, 3\}\}\$ , unit group weights d = 1.

**Structure:** We seek the signal covered by a minimal number of groups.

Objective: 
$$1\!\!1^T s o d^T \omega$$

Linear description: At least one group containing a sparse coefficient is selected

$$B\omega \geq s$$

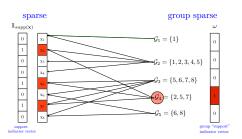
where B is the biadjacency matrix of  $\mathfrak{G}$ , i.e.,  $B_{ij}=1$  iff i-th coefficient is in  $\mathcal{G}_{j}$ . When B is an interval matrix, or 6 has a loopless group intersection graph it is TU.

**Biconjugate:**  $\|\mathbf{x}\|_{\boldsymbol{\omega}}^{**} = \min_{\boldsymbol{\omega} \in [0,1]^M} \{ \boldsymbol{d}^T \boldsymbol{\omega} : \boldsymbol{B} \boldsymbol{\omega} \ge |\mathbf{x}| \}$  for  $\mathbf{x} \in [-1,1]^p, \infty$  otherwise

$$\stackrel{\star}{=} \min_{\mathbf{v}_i \in \mathbb{R}^p} \{ \sum_{i=1}^M d_i \| \mathbf{v}_i \|_{\infty} : \mathbf{x} = \sum_{i=1}^M \mathbf{v}_i, \forall \text{supp}(\mathbf{v}_i) \subseteq \mathcal{G}_i \},$$

*Remark:* Weights d can depend on the sparsity within each groups (not TU) [14].

## **Budgeted** group cover sparsity



**Structure:** We seek the sparsest signal covered by G groups.

Objective: 
$$oldsymbol{d}^T oldsymbol{\omega} o \mathbb{1}^T s$$

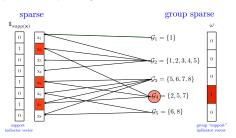
**Linear description:** At least one of the G selected groups cover each sparse coefficient.

$$oldsymbol{B}oldsymbol{\omega} \geq oldsymbol{s}, \mathbb{1}^{T}oldsymbol{\omega} \leq G$$

where B is the biadjacency matrix of  $\mathfrak{G}$ , i.e.,  $B_{ij}=1$  iff i-th coefficient is in  $\mathcal{G}_{j}$ .

When  $\begin{bmatrix} B \\ \mathbb{1} \end{bmatrix}$  is an interval matrix, it is TU.

## **Budgeted** group cover sparsity



**Structure:** We seek the sparsest signal covered by G groups.

Objective: 
$$oldsymbol{d}^T oldsymbol{\omega} o \mathbb{1}^{T} oldsymbol{s}$$

**Linear description:** At least one of the G selected groups cover each sparse coefficient.

$$m{B}m{\omega} \geq s, \mathbb{1}^{\,T}m{\omega} \leq G$$

where B is the biadjacency matrix of  $\mathfrak{G}$ , i.e.,  $B_{ij}=1$  iff i-th coefficient is in  $\mathcal{G}_{j}$ .

When  $\begin{vmatrix} B \\ 1 \end{vmatrix}$  is an interval matrix, it is TU.

**Biconjugate:**  $\|\mathbf{x}\|_{\omega}^{**} = \min_{\omega \in [0,1]^M} \{ \|\mathbf{x}\|_1 : B\omega \ge |\mathbf{x}|, \mathbb{1}^T \omega \le G \}$ for  $\mathbf{x} \in [-1,1]^p, \infty$  otherwise.

# Budgeted group cover example: Interval overlapping groups

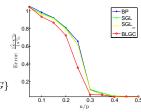
- ▶ Basis pursuit (BP): ||x||<sub>1</sub>
- Sparse group Lasso (SGL<sub>q</sub>):

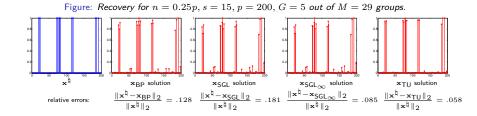
$$(1-\alpha)\sum_{\mathcal{G}\in\mathfrak{G}}\sqrt{|\mathcal{G}|}\|\mathbf{x}_{\mathcal{G}}\|_{q}+\alpha\|\mathbf{x}_{\mathcal{G}}\|_{1}$$

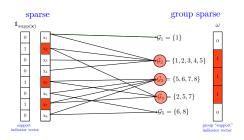
► TU-relax (TU):

$$\|\mathbf{x}\|_{\boldsymbol{\omega}}^{**} = \min_{\boldsymbol{\omega} \in [0,1]^M} \{ \|\mathbf{x}\|_1 : B\boldsymbol{\omega} \ge |\mathbf{x}|, \mathbf{1}^T \boldsymbol{\omega} \le G \}$$

for  $\mathbf{x} \in [-1,1]^p, \infty$  otherwise.







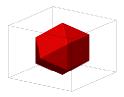
**Structure:** We seek the signal intersecting with minimal number of groups.

Objective: 
$$1\!\!1^T s o d^T \omega$$

Linear description: All groups containing a sparse coefficient are selected

$$oldsymbol{H}_k oldsymbol{s} \leq oldsymbol{\omega}, orall k \in \mathfrak{P}$$

$$\text{where} \ \ \boldsymbol{H}_k(i,j) = \begin{cases} 1 & \text{if } j=k, j \in \mathcal{G}_i \\ 0 & \text{otherwise} \end{cases} \text{, which is TU}.$$



$$\mathfrak{G} = \{\{1,2\},\{2,3\}\}$$
, unit group weights  $d=1$  (left) intersection (right) cover.

**Structure:** We seek the signal intersecting with minimal number of groups.

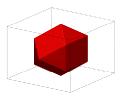
Objective: 
$$1\!\!1^T s o d^T \omega$$

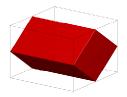
Linear description: All groups containing a sparse coefficient are selected

$$oldsymbol{H}_k oldsymbol{s} \leq oldsymbol{\omega}, orall k \in \mathfrak{P}$$

$$\text{where} \ \ \boldsymbol{H}_k(i,j) = \begin{cases} 1 & \text{if } j=k, j \in \mathcal{G}_i \\ 0 & \text{otherwise} \end{cases} \text{, which is TU}.$$

for  $\mathbf{x} \in [-1,1]^p, \infty$  otherwise.





**Structure:** We seek the signal intersecting with minimal number of groups.

Objective: 
$$\mathbb{1}^T s \to d^T \omega$$
 (submodular)

Linear description: All groups containing a sparse coefficient are selected

$$oldsymbol{H}_k oldsymbol{s} \leq oldsymbol{\omega}, orall k \in \mathfrak{P}$$

where 
$$H_k(i,j) = egin{cases} 1 & \text{if } j=k, j \in \mathcal{G}_i \\ 0 & \text{otherwise} \end{cases}$$
 , which is TU.

Biconjugate:  $\|\mathbf{x}\|_{\omega}^{**} = \min_{\omega \in [0,1]^M} \{ d^T \omega : H_k | \mathbf{x} | \leq \omega, \forall k \in \mathfrak{P} \} \stackrel{\star}{=} \sum_{\mathcal{G} \in \mathfrak{G}} \|x_{\mathcal{G}}\|_{\infty}$ for  $\mathbf{x} \in [-1,1]^p, \infty$  otherwise.



 $\mathfrak{G} = \{\{1, 2, 3\}, \{2\}, \{3\}\}, \text{ unit group weights } d = 1.$ 

**Structure:** We seek the signal intersecting with minimal number of groups.

Objective: 
$$\mathbb{1}^T s o d^T \omega$$
 (submodular)

Linear description: All groups containing a sparse coefficient are selected

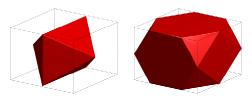
$$oldsymbol{H}_k oldsymbol{s} \leq oldsymbol{\omega}, orall k \in \mathfrak{P}$$

$$\text{where} \ \ \boldsymbol{H}_k(i,j) = \begin{cases} 1 & \text{if } j=k, j \in \mathcal{G}_i \\ 0 & \text{otherwise} \end{cases} \text{, which is TU}.$$

 $\textbf{Biconjugate:} \ \|\mathbf{x}\|_{\pmb{\omega}}^{**} = \min_{\pmb{\omega} \in [0,1]^M} \{ \pmb{d}^T \pmb{\omega} : \pmb{H}_k | \mathbf{x} | \leq \pmb{\omega}, \forall k \in \mathfrak{P} \} \stackrel{\star}{=} \sum_{\mathcal{G} \in \mathfrak{G}} \|x_{\mathcal{G}}\|_{\infty}$ for  $\mathbf{x} \in [-1,1]^p, \infty$  otherwise.

<u>Remark:</u> For hierarchical  $\mathfrak{G}_H$ , group intersection and tree sparsity models coincide.

#### Beyond linear costs: Graph dispersiveness



(left) 
$$\|\mathbf{x}\|_s^{**} = 0$$
 (right)  $\|\mathbf{x}\|_s^{**} \le 1$  for  $\mathcal{E} = \{\{1,2\},\{2,3\}\}$  (chain graph)

**Structure:** We seek a signal dispersive over a given graph  $\mathcal{G}(\mathfrak{P},\mathcal{E})$ 

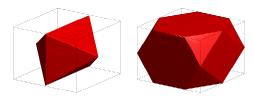
Objective: 
$$\mathbb{1}^{T}s o \sum_{(i,j) \in \mathcal{E}} s_i s_j$$
 (non-linear, supermodular function)

#### Linearization:

$$\|\mathbf{x}\|_s = \min_{\mathbf{z} \in \{0,1\}^{|\mathcal{E}|}} \{ \sum_{(i,j) \in \mathcal{E}} z_{ij} : z_{ij} \ge s_i + s_j - 1 \}$$

When edge-node incidence matrix of  $\mathcal{G}(\mathfrak{P},\mathcal{E})$  is TU (e.g., bipartite graphs), it is TU.

#### Beyond linear costs: Graph dispersiveness



(left) 
$$\|\mathbf{x}\|_s^{**} = 0$$
 (right)  $\|\mathbf{x}\|_s^{**} \le 1$  for  $\mathcal{E} = \{\{1,2\},\{2,3\}\}$  (chain graph)

**Structure:** We seek a signal dispersive over a given graph  $\mathcal{G}(\mathfrak{P},\mathcal{E})$ 

Objective:  $\mathbb{1}^T s \to \sum_{(i,j) \in \mathcal{E}} s_i s_j$  (non-linear, supermodular function)

#### Linearization:

$$\|\mathbf{x}\|_s = \min_{\mathbf{z} \in \{0,1\}^{|\mathcal{E}|}} \{ \sum_{(i,j) \in \mathcal{E}} z_{ij} : z_{ij} \ge s_i + s_j - 1 \}$$

When edge-node incidence matrix of  $\mathcal{G}(\mathfrak{P},\mathcal{E})$  is TU (e.g., bipartite graphs), it is TU.

**Biconjugate:**  $\|\mathbf{x}\|_s^{**} = \sum_{(i,j)\in\mathcal{E}} (|x_i| + |x_j| - 1)_+$  for  $\mathbf{x} \in [-1,1]^p, \infty$  otherwise.

#### Outline

Enter nonconvexity



#### An important alternative

# Problem (Projection)

Define 
$$\mathcal{M}_{s,G} := \{\mathbf{x} : e^T s \leq s, d^T \omega \leq G, M \begin{bmatrix} \omega \\ s \end{bmatrix} \leq c, \ s = \mathbb{1}_{\mathrm{supp}(\mathbf{x})} \}.$$

The projection of  $\mathbf x$  onto  $\mathcal M_{s,G}$  in  $\ell_q$ -norm is defined as  $\mathcal P_{q,\mathcal M_{s,G}}(\mathbf x):\mathbb R^p\to\mathbb R^p$ ,

$$\mathcal{P}_{q,\mathcal{M}_{s,G}}(\mathbf{x}) \in \operatorname*{arg\,min}_{\mathbf{u} \in \mathbb{R}^p} \{ \|\mathbf{x} - \mathbf{u}\|_q^q : \mathbf{u} \in \mathcal{M}_{s,G} \}$$

- $\hat{\mathbf{x}} = \mathcal{P}_{M_{k-G}}(\mathbf{x})$  is the best model-based approximation of  $\mathbf{x}$ .
- ▶ The interesting cases are q = 1, 2.

#### Observation: Model-based approximation corresponds to an ILP

- ▶ NP-Hard in general (weighted max cover formulation [5])
- ► TU structures play a major role
- Pseudo-polynomial time solutions via dynamic programming

#### An important alternative

## Problem (Projection)

Define 
$$\mathcal{M}_{s,G} := \{\mathbf{x}: e^T s \leq s, d^T \omega \leq G, M egin{bmatrix} \omega \\ s \end{bmatrix} \leq c, \ s = \mathbb{1}_{\mathrm{supp}(\mathbf{x})} \}.$$

The projection of  $\mathbf x$  onto  $\mathcal M_{s,G}$  in  $\ell_q$ -norm is defined as  $\mathcal P_{q,\mathcal M_{s,G}}(\mathbf x):\mathbb R^p\to\mathbb R^p$ ,

$$\mathcal{P}_{q,\mathcal{M}_{s,G}}(\mathbf{x}) \in \operatorname*{arg\,min}_{\mathbf{u} \in \mathbb{R}^p} \{ \|\mathbf{x} - \mathbf{u}\|_q^q : \mathbf{u} \in \mathcal{M}_{s,G} \}$$

- $\hat{\mathbf{x}} = \mathcal{P}_{M_{k,G}}(\mathbf{x})$  is the best model-based approximation of  $\mathbf{x}$ .
- The interesting cases are q = 1, 2.

#### Observation: Model-based approximation corresponds to an ILP

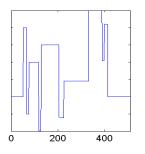
- ▶ NP-Hard in general (weighted max cover formulation [5])
- TU structures play a major role
- Pseudo-polynomial time solutions via dynamic programming

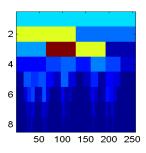
**Model-based CS [6, 22]:**  $n = \mathcal{O}(\log |\mathcal{M}_{s,G}|)$  with *iid* Gaussian (dense)

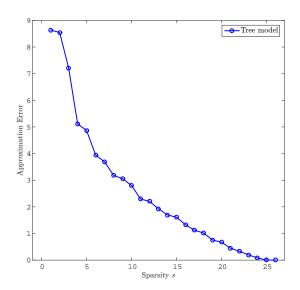
- $n = \mathcal{O}(s)$  for tree structure
- $oldsymbol{ iny}$  iterative projected gradient descent  $oldsymbol{\mathbf{x}}^{k+1} \in \mathcal{P}_{2,\mathcal{M}_{s,G}}\left(oldsymbol{\mathbf{x}}^k + oldsymbol{\mathbf{A}}^T(oldsymbol{\mathbf{b}} oldsymbol{\mathbf{A}}oldsymbol{\mathbf{x}}^k)
  ight)$

**Model-based sketching [4]:**  $n = o(s \log(p/s))$  with expanders (sparse)

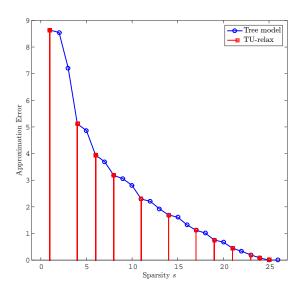
- $n = \mathcal{O}(s \log(p/s) / \log \log(p))$  for tree structure (empirical:  $n = \mathcal{O}(s)$ )
- iterative projected median descent  $\mathbf{x}^{k+1} \in \mathcal{P}_{1,\mathcal{M}_{\mathbf{c},G}}(\mathbf{x}^k + \mathfrak{M}(\mathbf{b} \mathbf{A}\mathbf{x}^k))$



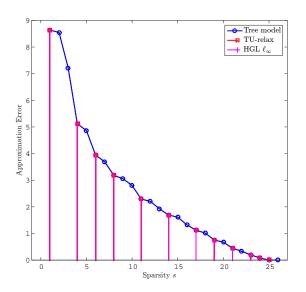




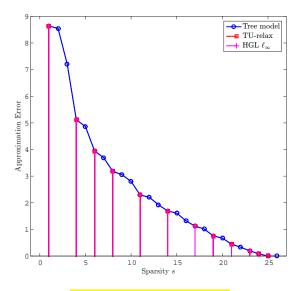




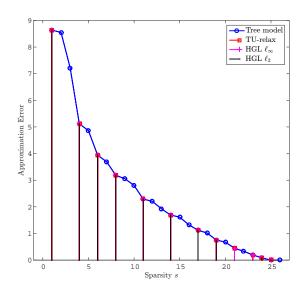




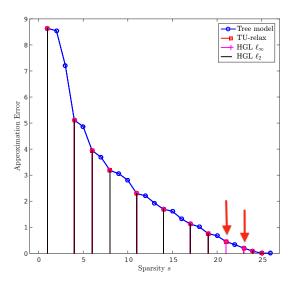




Just kidding, they are the same.

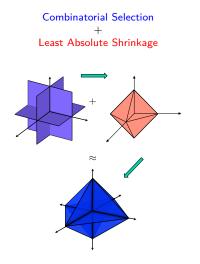








# **CLASH [22]**





**CLASH** set:



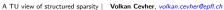
Model-CLASH set:



combinatorial origami

ILP and matroid structured models...





#### Outline

Conclusions



#### Conclusions

Our work: TU modeling framework & convex template & non-convex algorithms

- Many more convex programs (not necessarily norms)
- ► TU models: tight convexifications, non-submodular examples
- Easy to design and "usually" efficient via an LP
- London calling...

#### Alternatives:

- 1. Atomic norms [11, 10]
  - ▶ Given a set A, use the biconjugation of  $g(\mathbf{x}) = \inf_{0 < t < c} t + \iota_{tA}(\mathbf{x})$ , for c > 0
  - Reverse engineer the set to obtain structured sparsity
  - "Usually" tractable since the norm is reverse engineered
- 2. Monotone submodular penalties and extensions [3]
  - Tight convexification via Lovász extension
  - Reverse engineer the submodular set function (not always possible)
- 3.  $\ell_q$ -regularized combinatorial functions [24]
  - ► Tight convexification (also explains latent group lasso like norms)
  - Not always efficiently computable
  - Reverse engineered and may loose structure, e.g., group knapsack model



#### References |

- Ben Adcock, Anders C. Hansen, Clarice Poon, and Bogdan Roman. Breaking the coherence barrier: A new theory for compressed sensing. http://arxiv.org/abs/1302.0561, Feb. 2013.
- [2] Dennis Amelunxen, Martin Lotz, Michael B. McCoy, and Joel A. Tropp. Living on the edge: Phase transitions in convex programs with random data. *Information and Inference*, 3:224–294, 2014. arXiv:1303.6672v2 [cs.IT].
- [3] Francis Bach. Structured sparsity-inducing norms through submodular functions. Adv. Neur. Inf. Proc. Sys. (NIPS), pages 118–126, 2010.
- [4] B. Bah, L. Baldassarre, and V. Cevher.
   Model-based sketching and recovery with expanders.
   In Proc. ACM-SIAM Symp. Disc. Alg., number EPFL-CONF-187484, 2014.
- [5] L. Baldassarre, N. Bhan, V. Cevher, and A. Kyrillidis. Group-sparse model selection: Hardness and relaxations. arXiv preprint arXiv:1303.3207, 2013.
- [6] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde. Model-based compressive sensing. *IEEE Trans. Inf. Theory*, 56(4):1982–2001, April 2010.



#### References II

- [7] Peter L. Barlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. J. Mach. Learn. Res., 3, 2002.
- [8] N. Bhan, L. Baldassarre, and V. Cevher. Tractability of interpretability via selection of group-sparse models. In *IEEE Int. Symp. Inf. Theory*, 2013.
- [9] Venkat Chandrasekaran and Michael I. Jordan. Computational and statistical tradeoffs via convex relaxation. Proc. Nat. Acad. Sci., 110(13):E1181–E1190, 2013.
- [10] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex geometry of linear inverse problems. Found. Comp. Math., 12:805–849, 2012.
- [11] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comp., 20(1):33–61, 1998.
- [12] William Cook, László Lovász, and Alexander Schrijver.
  A polynomial-time test for total dual integrality in fixed dimension.
  In Mathematical programming at Oberwolfach II., pages 64–69. Springer, 1984.

#### References III

[13] Marco F. Duarte, Dharmpal Davenport, Mark A. adn Takhar, Jason N. Laska, Ting Sun, Kevin F. Kelly, and Richard G. Baraniuk. Single-pixel imaging via compressive sampling. *IEEE Sig. Proc. Mag.*, 25(2):83–91, March 2008.

[14] Marwa El Halabi and Volkan Cevher.

A totally unimodular view of structured sparsity.

preprint, 2014. arXiv:1411.1990v1 [cs.LG].

[15] S. Fujishige.

Submodular functions and optimization, volume 58. Elsevier Science, 2005.

[16] W Gerstner and W. Kistler.

Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press, 2002.

[17] FR Giles and William R Pulleyblank.

Total dual integrality and integer polyhedra.

Linear algebra and its applications, 25:191-196, 1979.



#### References IV

- [18] C. Hegde, M. Duarte, and V. Cevher. Compressive sensing recovery of spike trains using a structured sparsity model. In Sig. Proc. with Adapative Sparse Struct. Rep. (SPARS), 2009.
- [19] J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. J. Mach. Learn. Res., 12:3371–3412, 2011.
- [20] R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, F. Bach, and B. Thirion. Multi-scale mining of fmri data with hierarchical structured sparsity. In Pattern Recognition in NeuroImaging (PRNI), 2011.
- [21] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. J. Mach. Learn. Res., 12:2297–2334, 2011.
- [22] A. Kyrillidis and V. Cevher. Combinatorial selection and least absolute shrinkage via the CLASH algorithm. In *IEEE Int. Symp. Inf. Theory*, pages 2216–2220. leee, 2012.
- [23] George L Nemhauser and Laurence A Wolsey. Integer and combinatorial optimization, volume 18. Wiley New York, 1999.

#### References V

[24] G. Obozinski and F. Bach.

Convex relaxation for combinatorial penalties. arXiv preprint arXiv:1205.1240. 2012.

[25] G. Obozinski, L. Jacob, and J.P. Vert.

Group lasso with overlaps: The latent group lasso approach. arXiv preprint arXiv:1110.0413, 2011.

[26] G. Obozinski, B. Taskar, and M.I. Jordan.

Joint covariate selection and joint subspace selection for multiple classification problems.

Statistics and Computing, 20(2):231–252, 2010.

[27] Samet Oymak, Christos Thrampoulidis, and Babak Hassibi.

Simple bounds for noisy linear inverse problems with exact side information. 2013

arXiv:1312.0641v2 [cs.IT].

[28] C Seshadhri and Jan Vondrák.

Is submodularity testable?

Algorithmica, 69(1):1-25, 2014.



#### References VI

[29] Paul D Seymour.

Decomposition of regular matroids.

Journal of combinatorial theory, Series B, 28(3):305-359, 1980.

[30] Quoc Tran-Dinh and Volkan Cevher.

Constrained convex minimization via model-based excessive gap. In Adv. Neur. Inf. Proc. Sys. (NIPS), 2014.

[31] Klaus Truemper.

Alpha-balanced graphs and matrices and GF(3)-representability of matroids.

J. Comb. Theory Ser. B, 32(2):112-139, 1982.

[32] Roman Vershynin.

Estimation in high dimensions: a geometric perspective.

http://arxiv.org/abs/1405.5103, May 2014.

[33] Peng Zhao, Guilherme Rocha, and Bin Yu.

Grouped and hierarchical model selection through composite absolute penalties.

Department of Statistics, UC Berkeley, Tech. Rep, 703, 2006.

[34] Peng Zhao and Bin Yu.

On model selection consistency of Lasso.

J. Mach. Learn. Res., 7:2541-2563, 2006.



#### References VII

[35] H. Zhou, M.E. Sehl, J.S. Sinsheimer, and K. Lange. Association screening of common and rare genetic variants by penalized regression.

Bioinformatics, 26(19):2375, 2010.