Barrier Smoothing for Nonsmooth Convex Minimization

Quoc Tran-Dinh
<u>Yen-Huan Li</u>
Volkan Cevher

Laboratory for Information and Inference Systems-**LIONS**École Polytechnique Fédérale de Lausanne (EPFL)
{quoc.trandinh, yen-huan.li, volkan.cevher}@epfl.ch

ICASSP 2014

Florence, May 04-09

Outline

Prologue

Theory of barrier smoothing

Numerical examples

Conclusions and future work

PROLOGUE

A Stylized Example

Basis Pursuit:

$$\max_{y \in \mathbb{R}^n} \left\{ - \|y\|_1 : \Phi y = v, y \in \mathcal{Y} \right\}$$
 \mathcal{Y} a given convex closed set

Equivalent formulation:

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) := \max_{y \in \mathcal{Y}} \left\{ \left\langle \Phi^T x, y \right\rangle - \|y\|_1 \right\} - \left\langle v, x \right\rangle \right\}$$

Formal Problem Formulation

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) := \max_{y \in \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) \right\} + \langle c, x \rangle \right\}$$
 G a convex function

[Nesterov'2005]

Recall the basis pursuit:

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) := \max_{y \in \mathcal{Y}} \left\{ \left\langle \Phi^T x, y \right\rangle - \|y\|_1 \right\} - \left\langle v, x \right\rangle \right\}$$

Y. Nesterov, "Smooth minimization of non-smooth functions," Math. Program., Ser. A, 2005

Main Idea of Smoothing

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\lambda}(x) := \max_{y \in \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \frac{\lambda h(y)}{\lambda} \right\} + \langle c, x \rangle \right\}$$

$$\lambda$$
 small enough $\implies \min f_{\lambda} \leq (1 + \varepsilon_{\lambda}) \min f$

$$y_{\lambda}^*(x)$$
 unique \Longrightarrow $\nabla f_{\lambda}(x) = A^T y_{\lambda}^*(x) + c$ exists

$$y_{\lambda}^{*}(x) = \arg\max_{y \in \mathcal{Y}} \{\langle Ax, y \rangle - G(y) - \lambda h(y)\}$$

Smoothing by *Proximity Functions*

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\tau}(x) := \max_{y \in \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \frac{\tau p_{\mathcal{Y}}(y)}{\tau} \right\} + \langle c, x \rangle \right\}$$

$$\|\nabla f_{\tau}(y) - \nabla f_{\tau}(x)\| \le L \|y - x\|$$

First-order methods

Y. Nesterov, "Smooth minimization of non-smooth functions," Math. Program., Ser. A, 2005

Smoothing by Self-Concordant Barriers

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\tau}(x) := \max_{y \in \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \frac{\tau p_{\mathcal{Y}}(y)}{\tau} \right\} + \langle c, x \rangle \right\}$$

 $p_{\mathcal{Y}}$ strongly convex $\qquad \qquad \qquad \nabla f_{ au}$ exists and $\nabla f_{ au}$ Lipschitz

Smoothing by proximity-functions

Smoothing by self-concordant barriers

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\sigma}(x) := \max_{y \in \text{int } \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \frac{\sigma b_{\mathcal{Y}}(y)}{\sigma b_{\mathcal{Y}}(y)} \right\} + \langle c, x \rangle \right\}$$

$$b_{\mathcal{Y}}$$
 self-concordant barrier

 $b_{\mathcal{Y}} \stackrel{\mathsf{self-concordant}}{\mathsf{barrier}} \quad \Box \quad \nabla f_{\sigma} \text{ exists and } \nabla f_{\sigma} \text{ Lipschitz-like}$

Our Contribution

The framework of barrier smoothing

A gradient method with performance guarantee

Benefits of Our Contribution

- The framework of barrier smoothing
 - Calculating ∇f_{σ} is *easier*, compared with smoothing by proximity functions.

- A gradient method with performance guarantee
 - Analytic, optimal adaptive step-size

The Barrier Smoothing Framework

WHY IS CALCULATING THE GRADIENT EASIER?

Self-Concordant Barriers: Definition

 b_Ω is a u-self-concordant barrier for the set Ω if

$$|\phi'''(t)| \leq 2 \left[\phi''(t)\right]^{3/2}$$
 (self-concordance)
$$|\phi'(t)| \leq \sqrt{\nu} \left[\phi''(t)\right]^{1/2}$$
 (barrier property)
$$b_{\Omega}(x) \to \infty \text{ as } x \to \partial \Omega$$

$$\phi(t) := b_{\Omega}(x + tv)$$

$$\forall t \in \mathbb{R}, x + tv \in \text{dom } b_{\Omega}$$

Y. Nesterov and A. Nemirovskii, *Interior-Point Polynomial Algorithm in Convex Programming*, 1994

Self-Concordant Barriers: Examples

$$\Omega = [\ell, u] \qquad b_{\Omega}(x) = -\log(x - \ell) - \log(u - x)$$

$$\Omega = \mathbb{R}_{+} \qquad b_{\Omega}(x) = -\log(x)$$

 $b_{\Omega}(X) = -\log(\det X)$

 $\Omega = \mathcal{S}_+$

Calculating the Gradient Becomes Easy!

 b_Ω is a u-self-concordant barrier for the set $\,\Omega$ if... $b_\Omega(x) o \infty \,\, ext{as} \,\, x o \partial \Omega$

$$b_{\Omega}(x) \to \infty \text{ as } x \to \partial \Omega$$

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\sigma}(x) := \max_{y \in \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \sigma b_{\mathcal{Y}}(y) \right\} + \langle c, x \rangle \right\}$$

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\sigma}(x) := \max_{y \in \text{int } \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \sigma b_{\mathcal{Y}}(y) \right\} + \langle c, x \rangle \right\}$$

Calculating the Gradient Becomes Easy! (2/3)

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\sigma}(x) := \max_{y \in \text{int } \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \sigma b_{\mathcal{Y}}(y) \right\} + \langle c, x \rangle \right\}$$

$$\nabla f_{\sigma}(x) = A^{T} y_{\sigma}^{*}(x) + c$$

$$y_{\sigma}^*(x) := \arg \max_{y \in \text{int } \mathcal{Y}} \{ \langle Ax, y \rangle - G(y) - \sigma b_{\mathcal{Y}}(y) \}$$

$$y_{\sigma}^*(x)$$
 s.t. $Ax - \nabla G(y_{\sigma}^*(x)) - \sigma \nabla b_{\mathcal{Y}}(y_{\sigma}^*(x)) = 0$

Recall: Smoothing by *Proximity Functions*

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\tau}(x) := \max_{y \in \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \frac{\tau p_{\mathcal{Y}}(y)}{\tau p_{\mathcal{Y}}(y)} \right\} + \langle c, x \rangle \right\}$$

$$\nabla f_{\tau}(x) = A^T y_{\tau}^*(x) + c$$

$$y_{\tau}^{*}(x) := \arg \max_{y \in \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \tau p_{\mathcal{Y}}(y) \right\}$$

Another constrained convex optimization problem!

Y. Nesterov, "Smooth minimization of non-smooth functions," Math. Program., Ser. A, 2005

Calculating the Gradient Becomes Easy! (3/3)

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\sigma}(x) := \max_{y \in \text{int } \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \sigma b_{\mathcal{Y}}(y) \right\} + \langle c, x \rangle \right\}$$
$$y_{\sigma}^*(x) \text{ s.t. } Ax - \nabla G(y_{\sigma}^*(x)) - \sigma \nabla b_{\mathcal{Y}}(y_{\sigma}^*(x)) = 0$$

Smoothing by self-concordant barriers

Smoothing by proximity functions

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\tau}(x) := \max_{y \in \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \tau p_{\mathcal{Y}}(y) \right\} + \langle c, x \rangle \right\}$$

$$y_{\tau}^*(x)$$
 s.t. $\langle Ax - \nabla G(y_{\tau}^*(x)) - \sigma \nabla b_{\mathcal{Y}}(y_{\tau}^*(x)), y - y_{\sigma}^*(x) \rangle \le 0$
 $\forall y \in \mathcal{Y}$

A Gradient Method

HOW TO GET THE ANALYTIC, OPTIMAL ADAPTIVE STEP-SIZE?

Overview of the Algorithm

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\sigma}(x) := \max_{y \in \text{int } \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \sigma b_{\mathcal{Y}}(y) \right\} + \langle c, x \rangle \right\}$$

1. Find $y_{\sigma}^*(x^k)$ such that

$$Ax^{k} - \nabla G(y_{\sigma}^{*}(x^{k})) - \sigma \nabla b_{\mathcal{Y}}(y_{\sigma}^{*}(x^{k})) = 0$$

- 2. Compute $\nabla f_{\sigma}(x^k) = A^T y_{\sigma}^*(x^k) + c$
- 3. Update $x^{k+1} = x^k \alpha_k \nabla f_{\sigma}(x^k)$

Recall: Smoothing by Proximity Functions

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\boldsymbol{\tau}}(x) := \max_{y \in \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \frac{\tau p_{\mathcal{Y}}(y)}{\tau p_{\mathcal{Y}}(y)} \right\} + \langle c, x \rangle \right\}$$

$$\nabla f_{\boldsymbol{\tau}} \text{ exists and } \nabla f_{\boldsymbol{\tau}} \text{ Lipschitz}$$

$$\|\nabla f_{\tau}(y) - \nabla f_{\tau}(x)\| \le L \|y - x\|$$

$$f_{\tau}(y) \le f_{\tau}(x) + \langle \nabla f_{\tau}(x), y - x \rangle + \frac{1}{2L} \|y - x\|^{2} := \text{bound}(y; x)$$

$$x^{k+1} = x^{k} - \frac{1}{L} \nabla f_{\tau}(x^{k}) = \arg\min_{y} \left\{ \text{bound}(y; x^{k}) \right\}$$

Analytic, optimal, non-adaptive!

Y. Nesterov, "Smooth minimization of non-smooth functions," Math. Program., Ser. A, 2005

Smoothing by Barrier Functions

$$\min_{x \in \mathbb{R}^n} \left\{ f_{\sigma}(x) := \max_{y \in \text{int } \mathcal{Y}} \left\{ \langle Ax, y \rangle - G(y) - \frac{\sigma b_{\mathcal{Y}}(y)}{\sigma b_{\mathcal{Y}}(y)} \right\} + \langle c, x \rangle \right\}$$

 $abla f_{\sigma}$ exists and $abla f_{\sigma}$ Lipschitz-like

$$c_A^k := c_A(x^k), \quad c_A := c_A(x) := \|A^T \nabla^2 b_{\mathcal{Y}}(y_{\sigma}^*(\mathbf{x}))^{-1} A\|^{1/2}$$

Q. Tran-Dinh, Sequential convex programming and decomposition approaches for nonlinear 21 optimization, 2012

Performance Guarantee

With the optimal analytic adaptive step-size:

$$f_{\sigma}^* = f_{\sigma}(x_{\sigma}^*) = \min_{x \in \mathbb{R}^n} \{ f_{\sigma}(x) \}, \quad \overline{c_A} := \sup_{x \in \text{dom } f_{\sigma}} \{ c_A(x) \}$$

$$f_{\sigma}(x^k) - f_{\sigma}^* \le \frac{4\overline{c_A}^2 \left\| x^0 - x_{\sigma}^* \right\|^2}{\sigma k}$$

Performance Guarantee

With the optimal analytic adaptive/nonadaptive step-size:

$$f_{\sigma}^* = f_{\sigma}(x_{\sigma}^*) = \min_{x \in \mathbb{R}^n} \left\{ f_{\sigma}(x) \right\}, \quad \overline{c_A} := \sup_{x \in \text{dom } f_{\sigma}} \left\{ c_A(x) \right\}$$
$$f_{\sigma}(x^k) - f_{\sigma}^* \le \frac{4\overline{c_A}^2 \left\| x^0 - x_{\sigma}^* \right\|^2}{\sigma k}$$

Smoothing by self-concordant barriers

Smoothing by proximity functions

$$f_{\tau}^* = f_{\tau}(x_{\tau}^*) = \min_{x \in \mathbb{R}^n} \{ f_{\tau}(x) \}, \quad \| \nabla f_{\tau}(y) - \nabla f_{\tau}(x) \| \le L \| y - x \|$$

$$f_{\tau}(x^k) - f_{\tau}^* \le \frac{2L \|x^0 - x_{\sigma}^*\|^2}{k+4}$$

NUMERICAL RESULTS

Examples 1/2: Basis Pursuit

Original problem:

$$\max_{y \in \mathbb{R}^n} \{ -\|y\|_1 : \Phi y = b, y \in \mathcal{Y} \}$$

$$\mathcal{Y} := [-1/2, 1/2]^n$$

Equivalent dual formulation:

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) := \max_{y \in \mathcal{Y}} \left\{ \left\langle \Phi^T x, y \right\rangle - \|y\|_1 \right\} - \left\langle b, x \right\rangle \right\}$$

Examples 1/2: Basis Pursuit

$$f^* := \min_{x \in \mathbb{R}^n} \left\{ f(x) := \max_{y \in \mathcal{Y}} \left\{ \left\langle \Phi^T x, y \right\rangle - \|y\|_1 \right\} - \left\langle b, x \right\rangle \right\}$$

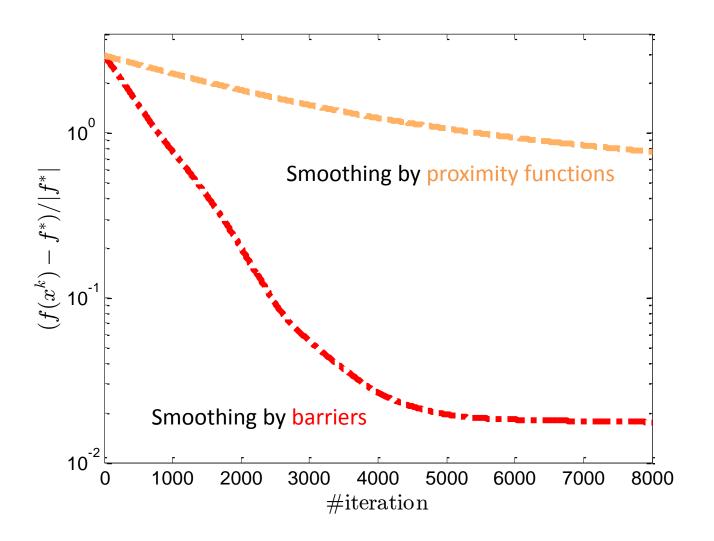
$$\mathcal{Y} := [-1/2, 1/2]^n$$

Smoothing by barrier
$$b_{\mathcal{Y}}(y) = -\sum_{i=1}^m \left[\log(y_i - \ell_i) + \log(u_i - y_i)\right]$$

Smoothing by proximity functions

$$p_{\mathcal{Y}}(y) = \frac{1}{2} \|y\|^2$$

Examples 1/2: Basis Pursuit



Examples 2/2: Quadratically Constrained Quadratic Programming (QCQP)

Original problem:

$$\min_{y \in \mathbb{R}^m} \left\{ \langle y, Qy \rangle + \langle b, y \rangle : \langle By, y \rangle \le 1, A^T y + c = 0 \right\}$$

$$Q \ge 0, B > 0, B = B^T$$

Equivalent dual formulation:

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) := \max_{y \in \mathbb{R}^m : \langle By, y \rangle \le 1} \left\{ \langle Ax - b, y \rangle - \frac{1}{2} \left\langle Qy, y \right\rangle \right\} + \langle c, x \rangle \right\}$$

$$Q$$
 singular \Longrightarrow f nonsmooth

Examples 2/2: Quadratically Constrained Quadratic Programming (QCQP)

$$f^* := \min_{x \in \mathbb{R}^n} \left\{ f(x) := \max_{\langle \boldsymbol{B}\boldsymbol{y}, \boldsymbol{y} \rangle \leq 1} \left\{ \langle Ax - b, \boldsymbol{y} \rangle - \frac{1}{2} \langle Qy, \boldsymbol{y} \rangle \right\} + \langle c, \boldsymbol{x} \rangle \right\}$$

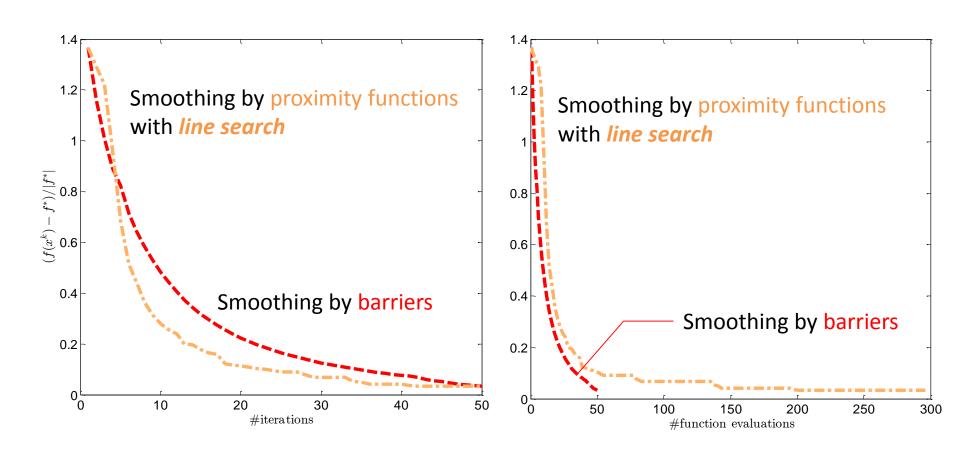
Smoothing by barrier

$$b_{\mathcal{Y}}(y) = -\log(1 - \langle y, By \rangle)$$

Smoothing by proximity functions

$$p_{\mathcal{Y}}(y) = \frac{1}{2} \langle y, By \rangle$$

Examples 2/2: Quadratically Constrained Quadratic Programming (QCQP)



Observation

Better empirical convergence behavior!

Recall the analytic optimal adaptive step-size

$$x^{k+1} = x^k - \frac{\sigma}{c_A^k \left(c_A^k + r_k\right)} \nabla f_\tau(x^k) = \arg\min_x \left\{ \text{bound}(x) \right\}$$

$$c_A^k := c_A(x^k) := \|A^T \nabla^2 b_{\mathcal{Y}}(y_{\sigma}^*(\mathbf{x}^k))^{-1} A\|^{1/2}$$

CONCLUSIONS & FUTURE WORK

Comparison

[Nesterov'2005]

	Barrier function	Proximity function
Convergence Behavior	$O\left(\frac{1}{k}\right)$	$O\left(\frac{1}{k}\right)$
Complexity-per- iteration	Solving a nonlinear equation	Solving a constrained convex minimization problem

Y. Nesterov, "Smooth minimization of non-smooth functions," Math. Program., Ser. A, 2005

Our Contribution

The framework of barrier smoothing

A gradient method with performance guarantee

Benefits of Our Contribution

- The framework of barrier smoothing
 - Calculating ∇f_{σ} is *easier*, compared with smoothing by proximity functions.

- A gradient method with performance guarantee
 - Analytic, optimal adaptive step-size
 - Better empirical convergence behavior

Future Work

Accelerated gradient method

Nonsmooth Composite Minimization

THANKS FOR YOUR ATTENTION!