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Outline

This lecture:

1. The probably approximately correct (PAC) learning framework.
2. Empirical risk minimization (ERM).
3. Approximation and estimation errors.
4. Structural risk minimization (SRM).
5. Convex surrogate functions.
6. Stability and generalization.
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Recommended reading materials

1. Chapters 2–4 in S. Shalev-Shwartz and S. Ben-David, Understanding Machine
Learning, Cambridge Univ. Press, 2014.

2. S. Boucheron et al., “Theory of classification: A survey of some recent
advances,” ESIAM: Probab. Stat., 2005.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 42



The PAC Learning Framework
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The standard statistical learning model

I Training Data: Dn := {Zi : 1 ≤ i ≤ n} ∼ i.i.d. unknown P on Z

I Hypothesis Class: H a set of hypotheses h

I Loss Function: f : H×Z → R

I Risk: F(h) := EPf (h,Z), where Z ∼ P is independent of Dn

I Goal: Find a “good hypothesis” ĥn ∈ H based on Dn such that F(ĥn) is
“small.”

Observation
Statistical learning corresponds to solving the optimization problem

h? ∈ arg min
h∈H

F(h).

However, the optimization problem is not explicitly formulated, because P is unknown.
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Example: Binary classification

I Training Data: Dn = {Zi = (Xi ,Yi) : 1 ≤ i ≤ n}
I Xi ∈ Rp are images.
I Each Yi ∈ {0, 1} labels whether there is a cat in the image Xi or not.

I Hypothesis Class: H a set of classifiers h : X → {0, 1}
I H can be a set of linear classifiers, a reproducing kernel Hilbert space, or all possible
realizations of a deep network.

I Loss Function: Binary loss f (h,Z) := 1{Yi,h(Xi)}, where Z ∼ P is independent
of Dn

I Risk: F(h) := EPf (h,Z), which is the probability of false classification

Observation
The classifier that minimizes the risk is the Bayes classifier,

h(x) = 1{P(Y=1|X=x)≥1/2},

which is unfortunately intractable, since P is unknown.
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Standard statistics approach: Logistic regression

1. Consider the class of linear classifiers H := {1{〈·,θ〉≤0} : θ ∈ Θ} for some
parameter space Θ ⊆ Rp.

2. Assume the statistical model (canonical generalized linear model [15])

P (Yi = 1|Xi = xi) = 1− P (Yi = 0|Xi = xi) =
1

1 + exp(−〈xi , θ\〉)
,

for some θ\ ∈ Θ. (See [9] for a Bayesian interpretation.)

3. Compute the maximum-likelihood estimator

θ̂n ∈ arg min
θ∈Θ

Ln(θ),

where Ln is the negative log-likelihood function.

4. Output the classifier ĥn(·) = 1{〈·,θ̂n〉≤0}.

Question
Why should we assume this specific statistical model?
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Possibly approximately correct (PAC) learnability

Definition (PAC learnability [20])
Assume that Yi = g(Xi) for some deterministic function g, and that g ∈ H. (Hence
zero risk is possible.)

A hypothesis class H is PAC learnable, if there exist an algorithm AH : Zn →H and
a function nH(ε, δ), such that for every probability distribution P and every
ε, δ ∈ (0, 1), if n ≥ nH(ε, δ), we have

F(A(Dn)) ≤ ε, (approximately correct)

with probability at least 1− δ (probably).

I The original definition also requires AH to be polynomial time, which we omit
here for simplicity.

I The quantity nH(ε, δ) is called the sample complexity.

Questions

1. What if g is not contained in H?
2. What if Yi is a general random variable?
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Agnotic PAC learnability

Definition (Agnostic PAC learnability [7])
A hypothesis class H is agnostic PAC learnable, if there exist an algorithm
AH : Zn →H and a function nH(ε, δ), such that for every probability distribution P
and every ε, δ ∈ (0, 1), if n ≥ nH(ε, δ), we have

F(A(Dn))− inf
h∈H

F(h) ≤ ε,

with probability at least 1− δ.

A distribution-dependent and localized formulation [2, 3, 10, 11]
Given an algorithm AH : Zn →H, show that for every probability distribution P and
every δ ∈ (0, 1), we have

F(A(Dn))− inf
h∈H

F(h) ≤ εn(P, h?;H, δ)→ 0,

with probability at least 1− δ, where h? = arg minh∈H F(h) (assuming uniqueness).

I The quantity F(A(Dn))− infh∈H F(h) is called the excess risk.
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Other examples

Linear regression

I Training data: Zi = (Xi ,Yi) ∈ Z = Rp × R
I Hypothesis class: H = {hθ(·) = 〈·, θ〉 : θ ∈ Θ} for some Θ ⊆ Rp

I Loss function: Square error f (hθ, z) = (y − 〈x, θ〉)2

Density estimation

I Training data: Zi ∈ R
I Hypothesis class: A class of probability densities P
I Loss function: Negative log-likelihood f (p, z) = − log p(z)

K -means clustering/Vector quantization

I Training data: Zi ∈ Rp

I Hypothesis class: A class of subsets of Rp of cardinality K
I Loss function: f (h, z) = minc∈h ‖c − z‖2

2

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 42



Empirical Risk Minimization
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Empirical risk minimization (ERM)

Recall that since P is assumed unknown, we cannot directly solve the risk minimization
problem

h? ∈ arg min
h∈H

F(h) := E f (h,Z).

However, we can consider the empirical risk minimization problem as an approximate,

ĥn ∈ arg min
h∈H

F̂n(h) :=
1
n

∑
i≤n

f (h,Zi).

This is called the ERM principle, due to Vapnik and Chervonenkis.

Observation
By the strong law of large numbers (LLN), we know that F̂n(h)→ F(h) almost surely
for every h ∈ H.

Question
Is the strong LLN argument enough to conclude that the ERM principle allows
learnability?
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Two notions of convergence

Definition (Convergence implied by the strong LLN)
For every h ∈ H and every probability distribution P, there exists a function
nH(ε, δ; h, P), such that for every ε, δ ∈ (0, 1), if n ≥ nH(ε, δ; h, P), we have

|F̂n(h)− F(h)| ≤ ε,

with probability at least 1− δ.

Definition (Uniform convergence)
A hypothesis class H has the uniform convergence property, if there exists a function
nH(ε, δ), such that for every ε, δ ∈ (0, 1) and any probability distribution P, if
n ≥ nH(ε, δ), we have

sup
h∈H
|F̂n(h)− F(h)| ≤ ε,

with probability at least 1− δ.

I Such an H with the uniform convergence property is called a uniformly
Glivenko-Cantelli class.
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Uniform convergence implies learnability

Proposition
For any ε > 0, if

sup
h∈H
|F̂n(h)− F(h)| ≤ ε,

then for any h? ∈ arg minh∈H F(h), we have

F(ĥn)− F(h?) ≤ 2ε.

Proof.

F(ĥn)− F(h?) = F(ĥn)− F̂n(ĥn) + F̂n(ĥn)− F̂n(h?) + F̂n(h?)− F(h?)

≤ 2 sup
h∈H
|F̂n(h)− F(h)|.

�

Observation
Uniform convergence property is sufficient for learnability.
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? Learnability, ERM, and uniform convergence

Theorem (See, e.g., [17])
Assume that the hypothesis class H consists of only {0, 1}-valued functions, and f is
the 0− 1 loss. The following statements are equivalent.

1. The hypothesis class is agnostic PAC learnable.
2. The ERM is a good PAC learner.
3. The hypothesis class has the uniform convergence property.

Fact
Unfortunately, computing the corresponding ERM is in general NP-hard [8].

Fact
In general, uniform convergence may not be necessary for learnability [18].
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Uniform convergence property of a finite bounded hypothesis class

Proposition
Assume that the hypothesis class H consists of a finite number of functions taking
values in [0, 1]. Then H satisfies the uniform convergence property with

nH(ε, δ) =
log(2|H|/δ)

2ε2 .

The proposition is a simple consequence of Hoeffding’s inequality and the union bound.

Theorem (Hoeffding’s inequality (see, e.g., [14]))
Let (ξi)1≤i≤m be a sequence of independent [0, 1]-valued random variables. Let
Sn := (1/n)

∑
1≤i≤n(ξi − E ξi). Then for any t > 0, P (|Sn | ≥ t) ≤ 2 exp

(
−2nt2

)
.
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Proof

Proof of the proposition.
Define ξi(h) = f (h, xi), and define Sn(h) := (1/n)

∑
1≤i≤n(ξi(h)− E ξi(h)) for every

h ∈ H. Notice that then

sup
h∈H
|Sn(h)| = sup

h∈H
|F̂n(h)− F(h)|.

By the union bound and Hoeffding’s inequality, we have for any t > 0,

P

(
sup
h∈H
|Sn(h)| ≥ t

)
≤
∑
h∈H

P (|Sn(h)| ≥ t) ≤ |H| · 2 exp
(
−2nt2

)
.

Hence it suffices to choose

nH(ε, δ) =
log(2|H|/δ)

2ε2 .

�
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Necessity of choosing a not-too-big hypothesis class

We may write the proposition in another way:
For every probability distribution P and every δ ∈ (0, 1), the ERM satisfies

sup
h∈H
|F̂n(h)− F(h)| ≤ εn :=

√
log(2|H|/δ)

2n
,

with probability at least 1− δ.

Observation
If |H| is large, we need a large number of training data of the order O(log |H|) to
achieve a small excess risk εn .
Otherwise, if εn is large, the values of F̂n and F can be very different on certain
hypotheses, and overfitting occurs.

Question
What if H is too small?

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 42



? What if |H| is not finite?
Consider the binary classification problem, in which H is a set of {0, 1}-valued
functions, and f is the 0− 1 loss.

Definition (Shattering coefficient)
The shattering coefficient of a hypothesis class H is defined as

Sn(H) := sup
x1,...,xn∈X

|{(h(xi))1≤i≤n : h ∈ H}|.

Definition (Vapnik-Chervonenkis (VC) dimension)
The VC dimension of a hypothesis class H, denoted by VC(H), is defined as the
largest integer k such that Sk(H) = 2k . If Sk(H) = 2k for all k, then VC(H) :=∞.

Theorem ([21])
Let H be a hypothesis class with VC dimension d. Then

sup
h∈H
|F̂n(h)− F(h)| ≤ 2

√
2d log(2en/d)

n
+

√
log(2/δ)

2n
,

with probability at least 1− δ.
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Model Selection and Structural Risk Minimization
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Approximation and estimation errors
Let hopt be a global minimizer of the risk F(·) which is not necessarily in H.
Let h? be a minimizer of the risk F(·) on H.
Then we can write

F(ĥn)− F(hopt) = F(ĥn)− F(h?) + F(h?)− F(hopt).

Definition (Approximation error)
The approximation error is defined as Eapp = F(h?)− F(hopt).

I The approximation error is fixed given a hypothesis class H.
I The ERM can yield small risk only if H contains a “good enough” hypothesis.

Definition (Estimation error)
The estimation error is defined as Eest = F(ĥn)− F(h?).

I The estimation error decreases with the training data size.

Observation
If we shrink the hypothesis class, while the estimation error Eest can be smaller, doing
so can only increase the approximation error Eapp.
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Model selection

Model selection seeks a balance between approximation and estimation errors.

The model selection problem
Let H be a hypothesis class. Consider a countable family of sub-classes {Hk : k ∈ K}
such that

⋃
k∈KHk = H. Denote by ĥn,k an empirical risk minimizer chosen based

on Dn in Hk for all k ∈ K.

The model selection problem asks to choose a k̂n ∈ K based on Dn , such that

F(ĥn,k̂n
)− F(h?) ≤ C inf

k∈K

(
inf

h∈Hk
F(h)− F(h?) + π̃n(k)

)
,

with high probability for some constant C > 0 and π̃n(k) > 0.

I Such an inequality on F(ĥn,k̂n
)− F(h?) is called an oracle inequality.

I If C = 1, the oracle inequality is called sharp.
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Structural risk minimization (SRM)

The idea of structural risk minimization is to minimize a risk estimate.

Structural risk minimization (see, e.g., [22])
1. Choose

k̂n ∈ arg min
k∈K

(F̂n(ĥn,k) + πn(k)),

where πn(k) is some good estimate of F(ĥn,k)− F̂n(ĥn,k).

2. Output ĥn = ĥn,k̂n
.

I Computational complexity is completely ignored here.
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Structural risk minimization (SRM) contd.

Theorem ([1])
Suppose there exists a double sequence (Rn,k)n∈N,k∈K, such that for every n ∈ N,
k ∈ K, and ε > 0,

P
(

F(ĥn,k) > Rn,k + ε
)
≤ αn exp(−2βnε

2),

for some constants αn , βn > 0. Set πn(k) := Rn,k − F̂n(ĥn,k) +
√
β−1

n log k. Then
we have

F(ĥn) < inf
k

(
inf

h∈Hk
F(h) + πn(k) +

√
log k

n

)
+ ε,

with probability at least 1− 2αn exp(−βnε2/2)− 2 exp(−nε2/2).

Observation
I The risk bound based on the VC dimension may be used [13, 22], but it can be
loose since the bound is for the worst case.

I Hence it is important to find sharp data dependent risk estimates. See [12] for
some recent advances.
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Convex Surrogate Functions
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Logistic regression as a learning algorithm

Logistic regression as a learning algorithm
Given training data (xi , yi) ∈ Rp × {±1}, 1 ≤ i ≤ n.
Given a hypothesis class {sign(〈x, θ〉) : θ ∈ Θ} (linear classifiers) for some Θ ⊂ Rp.
Solve the empirical risk minimization (?) problem:

θ̂n ∈ arg min
θ∈Θ

1
n

∑
1≤i≤n

log [1 + exp (−yi〈xi , θ〉)] .

Output the classifier ĥn(x) = sign(〈x, θ̂n〉).

Observation
Unlike the empirical risk minimization problem with the 0− 1 loss, the logistic
regression approach yields a convex optimization problem that can be efficiently
solved (when Θ is also convex).

Question
Why does logistic regression work for binary classification?
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Intuition
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logistic loss (properly shifted)
0-1 loss

I Logistic loss: φ(t) = log(1 + exp(−t))
I 0− 1 loss: φ(t) = 1{t≤0}

(For logistic regression, t corresponds to y〈x, θ〉.)
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Soft classification

Consider a cost function g : H×Z → R.

Definition (Margin-based cost [6])
A cost function g is margin-based, if it can be written as g(h, z) = φ(yh(x)) for some
function φ.

Example
In logistic regression, φ(t) = log(1 + exp(−t)), and h ∈ H = {〈·, θ〉 : θ ∈ Θ}.

The corresponding empirical cost minimization problem is given by

ĥn ∈ arg min
h∈H

1
n

∑
1≤i≤n

φ(yih(xi)).

The corresponding soft classifier is given by

h̃n(x) = sign(ĥn(x)).
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Zhang’s lemma

Define

Hφ(η, α) = ηφ(α) + (1− η)φ(−α), α?φ(η) = arg min
α

Hφ(η, α).

Let F(h) = P(sign(h(X)) , Y ) denote the risk function, and G(h) = Eφ(Yh(X)) be
the expected cost function.

Zhang’s lemma ([23])
Assume that φ is convex, and α?φ(η) > 0 when η > 1/2. If there exist c > 0 and s ≥ 1
such that for all η ∈ [0, 1],

|1/2− η|s ≤ cs [H(η, 0)−H(η, α?(η))]1/s ,

Then for any hypothesis h,

F(h)−min
h

F(h) ≤ 2c
[

G(h)−min
h

G(h)
]1/s

.
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Risk bound for `1-regularized logistic regression

I For the logistic regression, c = 1/
√

2 and s = 2.

Theorem
Consider the `1-regularized logistic regression with Θ = {θ : ‖θ‖1 ≤ ν} for some
ν > 0. Assume that ‖x‖∞ ≤ 1 for all x ∈ X . Then there exists a constant C > 0
depending only on p, such that with probability at least 1− δ,

F(ĥn)− inf
h

F(h) ≤ 4

(
ν

√
C
n

+

√
2 log(1/δ)

n

)1/2

+
√

2
[(

inf
h∈H

G(h)
)
−
(

inf
h

G(h)
)]1/2

.

Proof.
Similar to Theorem 4.4 in [4]. �

I The right-hand side may be viewed as the sum of the estimation error and
approximation error (w.r.t. the cost).
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Other examples

Recall the risk bound

F(h)−min
h

F(h) ≤ 2c
[

G(h)−min
h

G(h)
]1/s

.

AdaBoost (See, e.g., [16])
Adaboost is equivalent to solving an empirical cost minimization problem with
φ(t) = exp(−t), for which s = 2 and c = 1/

√
2.

I Notice that in practice AdaBoost may not be implemented by directly solving the
empirical cost minimization problem.

Support vector machine (See, e.g., [19])
The hinge cost function used by the support vector machine (SVM) corresponds to
φ(t) = max(0, 1− t), for which s = 1 and c = 1/2.
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Stability
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Analysis of SVM

A linear SVM is given by

θ̂n ∈ arg min
θ∈Θ

1
n

∑
1≤i≤n

φ(yi〈xi , θ〉) + λ ‖θ‖2
2 ,

for some λ > 0, where φ(t) = max(0, 1− t) is the hinge loss.

The output classifier is given by h̃n(·) = sign(〈·, θ̂n〉).

Question
How do we analyze SVM, which is not exactly empirical cost minimization?

Idea
Instead of considering a class of algorithms, we may do an algorithm-wise analysis.
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Stability implies generalization

Definition (Classification stability [5])
Consider the soft classification setting, where H is a class of soft classifiers (i.e.,
h̃n = sign(ĥn)). For any Dn = {z1, . . . , zn}, define D\in as Dn with the i-th element
zi removed. An algorithm A has classification stability with parameter β > 0, if for all
Dn ⊂ Z and for all 1 ≤ i ≤ n,

‖A(Dn)−A(D\in )‖L∞ ≤ β.

Observation
Then by the triangle inequality,

‖A(Dn)−A(Dn ∪ {z})‖L∞ ≤ 2β, for all z ∈ Z,

meaning the algorithm is robust to a small change of the training data.
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Stability implies generalization contd.
Consider the 0− 1 loss f (h, z) = 1{sign(h(x)),y}. Then the risk F(h) = E f (h,Z) is
the probability of classification error.

Define the margin-based loss

f γ(h, z) =

{
1 for yh(x) , 0
1− yh(x)/γ for 0 ≤ yh(x) ≤ γ
0 for yh(x) ≥ γ

,

and the corresponding margin-based empirical risk F̂γn (h) = (1/n)
∑

1≤i≤n fγ(h, zi).

Theorem ([5])
Let A be a soft classification algorithm that possesses classification stability with
parameter βn > 0. Then for any γ > 0, n ∈ N, and any δ ∈ (0, 1),

F(A(Dn)) ≤ F̂γn (A(Dn)) + 2
βn

γ
+
(

1 + 4n
βn

γ

) √ log(1/δ)
2n

.

Observation
Notice that the uniform convergence property is not required.
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Risk bound for the linear SVM

Recall that the linear SVM defines the algorithm ASVM(Dn) = 〈·, θ̂n〉, where

θ̂n ∈ arg min
θ∈Θ

1
n

∑
1≤i≤n

φ(yi〈xi , θ〉) + λ ‖θ‖2
2 .

Theorem
Assume that ‖x‖2 ≤ κ for all x ∈ X for some κ > 0. Then ASVM has classification
stability with parameter βn = κ2/(2λn). Hence for any n ∈ N and δ ∈ (0, 1),

F(ASVM(Dn)) ≤ F̂1
n(ASVM(Dn)) +

κ2

λn
+
(

1 +
2κ2

λ

) √
log(1/δ)

2n
,

with probability at least 1− δ.

Proof.
Similar to Example 2 in [5]. �
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Review
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Review

I Learning theory is concerned with developing learning algorithms that have
distribution-free guarantees.

I The ERM principle provides a principled approach, if the uniform convergence
property holds.

I SRM is an extension of the ERM principle that seeks a balance between the
estimation error and the approximation error.

I In practice, we may replace the loss by an convex surrogate to yield an efficiently
solvable empirical cost minimization problem.

I Stability provides another algorithm-wise analysis framework.
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