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Outline

I Randomized Linear Algebra
1. Review of last lecture
2. Row extraction method
3. Power method
4. Column selection methods
5. What to use in different scenarios ?

I Stochastic quasi-Newton Method
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Recommended reading material:

I Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp, Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions, SIAM review 53.2 (2011): 217-288.

I Michael W Mahoney, Randomized algorithms for matrices and data, Foundations
and Trends in Machine Learning 3.2 (2011): 123-224.
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Recall the last lecture

Matrix decompositions

I SVD and QR decompositions have O(np min{n, p}) complexity.
I Real data is often noisy, so it makes sense to sacrife accuracy for speed-up.
I Randomized methods offer faster and parallelizible approximative solutions that
also require a lower number of passes over the data matrix.

Random projections

I Step-1: Find an orthonormal basis Q that can approximate A well:

A ≈ QQ∗A

I Step-2: Apply classical linear algebra to the smaller matrix Q∗A.
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Recall the last lecture

1. Multiply AΩ for Ωi,j ∼ N (0, 1), at cost O(np`) (or O(np log `) using FFT)

Yn

`

= An

p

Ωp

`

2. Compute thin QR factorization of Y, at a cost of O(n`2) (e.g. with Gram-Schmidt)

Yn

`

= Qn

`

R`

`

3. Finally multiply C = Q∗A at a cost O(np`). THIS IS THE BOTTLENECK !!!

Ân

`

= Qn

`

Q∗A`

p
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Smaller SVD to form the randomized SVD

1. Find SVD factors of C in O(p`2) time.

Â = Qn

`

C = Q∗A`

p

= Qn

`

U`

`

Σ`

`

V∗`

p

2. Multiply, in O(n`2) time

Â =
QUn

`

Σ`

`

V∗`

p
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QR decomposition to form the randomized SVD
1. Find QR factors of C∗: C∗ = QCRC, in O(p`2) time.

Â =
Qn

`

C`

p

=
Qn

`

R∗C`

`

Q∗C`

p

2. Calculate the SVD of the small inner matrix, in O(`3) time

R∗C`

`
=

Ũ`

`

Σ`

`

Ṽ`

`

3. Multiply in O((n + p)`2) time

Â =
QŨn

`

Σ`

`

ṼQ∗C`

p
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Interpolative decomposition

Definition
For a matrix A ∈ Rn×p of rank-r , a one-sided interpolative decomposition is defined
as

A = A(:,J)X

where J = [j1, ...jr ] is a computed column index set and X is a r × p matrix with
X(:,J) = Ir and Xi,j ≤ 2 ∀i, j. In other words A(:,J) is a subset of columns of A that
spans the range of A with bounded coefficients.

p

n
A

=
A(:,J)

r

n

p

r
X
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Interpolative decomposition (ID)

Computational Cost

I There exists a decomposition of the form above with X whose coefficients are
bounded by 1, but it is NP-hard to compute. [9]

I When the bound is 2, there are stable and efficient algorithms that computes this
decomposition of a rank-r matrix A ∈ Rn×p at a cost of O(nrp) [7]

I This decomposition can also be generalized to a two-sided form

A = WA(J′,J)X

I We need the interpolative decomposition of Q ∈ Rn×l : Q = XQ(J,:) where J
denotes the l rows of Q that spans the rowspace of Q and X is a n × l matrix
with X(J,:) = Ik and Xi,j ≤ 2 ∀i, j. This costs O(l2n).
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Row extraction

• Motivation: We want to have something cheaper than forming Q∗A.
• Given a matrix Q ∈ Rn×r such that ‖A−QQ∗A‖ ≤ ε , one can obtain the ID

Q = XQ(J,:)

• It turns out that [8]

A ≈
Xn

`

A(J,:)`

p

• Then we can perform SVD on these smaller dimensions.
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Partial SVD using row extraction

Given is Q ∈ Rn×r such that ‖A−QQ∗A‖ ≤ ε.

Algorithm: Partial SVD using row extraction
1. Form the row extraction as above: Q: A = XA(J,:) as above O(l2n)
2. Form the RQ decomposition: A(J,:) = R∗W∗ O(l2p)
3. Multiply Z = XR∗ O(l2n)
4. Compute a classical SVD: Z = UΣṼ

∗
O(l2n)

5. Multiply V = WV and conclude A ≈ UΣṼ
∗
O(l2p)

I This costs O(l(n + p)2) instead of npl +O((n + p)l2) (forming Q∗A and
performing SVD on it)
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Error bound

Lemma (Error bound for Row Extraction [6])
Let A ≈ UΣV∗ be the output of the algorithm produced by a given Q with an
approximation error ε. Then the following error bound holds:

‖A−UΣV∗‖ ≤
[√

1 + 4k(n − k)
]
ε

In other words, the bound is multiplied by a factor of
√

1 + 4k(n − k) if we avoid the
multiplication Q∗A and use row extraction technique.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 44



Power method

Motivation
I Spectrum of A does not always decay fast.
I In these cases basic algorithm does not work well.
I This is the case e.g., when the matrix has noise.
I Therefore we apply (AA∗) several times to reduce the relative weight of smaller
singular values.
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Power method

Algorithm: Power method
1. Draw a random matrix Ω ∈ Rp×`

2. Form the multiplication Y = (AA∗)qAΩ
3. Find the orthogonal Q that spans the range of Y (e.g. using Gram-Schmidt)

Cost of random projections: (2q + 1)np`+O(q`2n) flops

Practical considerations
I Usually q = 2 or q = 3 is sufficient
I Ω is taken to be Gaussian, the other matrices do not work well
I We perform QR factorization at each step
I Apply A and A∗ alternatively instead of forming AA∗
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Power method

Theorem (Power method [6])
Let A ∈ Rn×p with n ≥ p be the matrix that is randomly approximated using power
method. Then the following holds:

E‖A−QQ∗A‖2 ≤
(

1 +
4
√

r + s
s − 1

√p
)1/(2q+1)

σr+1

I When q = 0, this is the original algorithm with Y = AΩ
I The extra factor can be made close to 1 by increasing the number of the passes,

q, but this is at the expense of increasing the computational cost.
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Column Selection Methods

Motivation
I So far we have considered linear combinations of the columns for reducing the
dimensionality of a matrix (SVD)

I Another approach is to find a subset of columns that could well summarize action
of the matrix

I This makes it easer to interpret for data analysts
I However this is combinatorially hard

Problem (Column Subset Selection Problem)
Given a matrix A ∈ Rn×p and a positive integer r , pick r columns of A to form a
matrix C ∈ Rn×r such that the residual

‖A−PCA‖ξ

is minimized over all possible
(n

r

)
choices for the matrix C. Here, PC = CC†

denotes the projection onto the r-dimensional space spanned by the columns of C and
ξ = 2 or F denotes the spectral norm or Frobenius norm. [1]
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Column Selection Methods

Preliminary results

I Uniform sampling of the columns is a bad idea in theory and in practice
I When O(r log(r)/ε2) columns are selected with probabilities proportional to
Frobenius norm of columns of A, we have [3].

‖A−PCr A‖F ≤ ‖A−Ar‖F + ε‖A‖F

‖A−PCr A‖2 ≤ ‖A−Ar‖2 + ε‖A‖F

with high probability. Ar and Cr are the best rank-r approximations to the
matrices A and C respectively. (PX = XX† is the projection to the column
space of X.)
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Column Selection Methods

An improved random sampling [4]
Given a singular value decomposition, A = UΣV∗

I Compute the importance sampling probabilities (leverage scores)

pi =
1
r
‖V∗

(i)
r ‖2

2

where V∗(i)
r is the ith row of matrix V∗r that contains the top r right-singular

vectors.
I Sample c = O(r log(1/δ)r/ε2) columns of A according to this distribution to
form a submatrix C ∈ Rn×c

I Then with probability at least 1− δ the following holds

‖A−PCr A‖2 ≤ (1 + ε)‖A−Ar‖F

I However approximating the leverage scores is expensive: O(np log n)
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Plenty of methods, what to choose ?

Low rank approximation considerations

I If interpretability is important, then go for column subset selection
I But this might be expensive due to cost of calculating leverage scores
I Otherwise use random projections
I The choice of specific random projection depends on the scenarios below.
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Plenty of methods, what to choose ?

Scenario-1: Matrix A fits in the core memory

I Use a structured random matrix (e.g. SRFT) for Step-1 of low rank
approximation using O(np log `+ `2n) flops

I For Step-2, use the row extraction technique at the cost of O(`2(n + p))
I The total cost is O(np log l + `2(n + p))
I If the row extraction results in a large error, use the direct method of forming

Q∗A at Step-2 which costs O(np`)
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Plenty of methods, what to choose ?

Scenario-2: Matrix A can be rapidly applied to vectors

I This is the case for sparse matrices or structured matrices such as Toeplitz
I The cost of matrix-vector multiplication could be as low as Cmult = O(n + p)
I Step-1 to find Q costs `Cmult +O(`2n)
I In Step-2, form the Q∗A as it is now cheap: `Cmult +O(`2(n + p))
I In total it costs 2`Cmult +O(`2(n + p))
I If the singular values of A decays slowly, use power method with q iterations
which costs (2q + 2)`Cmult +O(`2(n + p))

I Krylov methods would also benefit from this speed-up, but they are less robust
and not as parallelizable as these random methods.
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Plenty of methods, what to choose ?

Scenario-3: Matrix A stored in a slow memory

I The computational time is dominated by the memory access, therefore classical
methods which require at least r pass over the matrix is not practical.

I One can use any of the randomized algorithms above according to the needs: e.g.
if the decay of singular values is slow, use power method, as a small q would be
sufficient.
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Outline

I Stochastic quasi-Newton Method
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Recommended reading materials

1. R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton
method for large-scale optimization, SIAM. J. Optim., vol. 26, pp. 1008–1031,
2016.

2. R. M. Gower, D. Goldfarb, and P. Richtárik, Stochastic block BFGS: Squeezing
more curvature out of data, arXiv:1603.09649v1, 2016.
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Overview

f ∗ = min
x∈Rp

f (x)

• The starting point of many optimization algorithms is to use the following
approximation of the objective f at iteration xk :

Q(x,xk) := f (xk) +
〈

x− xk , g(xk)
〉

+ (1/2)
〈

x− xk ,H k(xk)(x− xk)
〉

whose minimum is achieved at

x̄k = xk − [H k(xk)]−1g(xk).

• Next iteration update:
xk+1 = xk + αk(x̄k − xk).

• Step-size αk can be updated by line-search.

Newton Quasi-Newton Gradient SG
g ∇f ∇f ∇f E[g(xk)] = ∇f (xk)

H k ∇2f ≈ ∇2f Lk I Lk I
rate quadratic superlinear linear O(1/k)

Table: Taxonomy of some methods.
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Curvature

f(x)�I � r2f(x) � ⇤I

f(xk) + hx � xk,rf(xk)i +
1

2
hx � xk,r2f(xk)(x � xk)i

f(xk) + hx � xk,rf(xk)i +
⇤

2
kx � xkk2

f(xk) + hx � xk,rf(xk)i +
�

2
kx � xkk2

• ∇2f controls the curvature of f ’s graph. Information on ∇2f leads Q(x,xk) to be
better approximation of f .
• (∀x ∈ Rp) ∇2f (x) � µI (i.e.,(∀y ∈ Rp) yT∇2f (x)y ≥ µ‖y‖2 ⇒ f is µ-strongly
convex.
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Newton method

Newton algorithm
1. Initialize x0 ∈ Rp.
2. For k = 0, 1, . . . perform:

xk+1 = xk − [∇2f (xk)]−1∇f (xk).

• What curvature helps (yellow - gradient direction; violet - gradient direction
modified by Hessian):
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• Quadratic convergence!

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 44



Quasi-Newton methods
• High computation cost if the Hessian is dense!
• Idea: Approximate the Hessian to avoid second derivative computations using
first-order information.

Quasi-Newton scheme
1. Choose x0 ∈ Rp, set H 0 = I, and compute f (x0) and ∇f (x0).
2. For k = 0, 1, . . . perform:
2a. Compute vk = H k∇f (xk).
2b. Compute xk+1 = xk − αkvk .
2c. Compute f (xk+1) and ∇f (xk+1).
2d. Update H k+1 based on f (xk+1) and ∇f (xk+1).

Question
How to update H k?

• For f (x) = (1/2)xT Ax + bT x + c: ∇f (x) = Ax + b and ∇2f = A. Hence

∇f (x)−∇f (y) = A(x− y) = ∇2f (z)(x− y).

• Update rule:
H k+1(∇f (xk+1)−∇f (xk)) = xk+1 − xk .
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Quasi-Newton method: some update rules

Example (vk = ∇f (xk+1)−∇f (xk), yk = xk+1 − xk)
• Rank-one correction:

H k+1 = H k +
(yk −H kvk)(yk −H kvk)T

(yk −H kvk)T vk .

• Davidon-Fletcher-Powell:

H k+1 = H k +
yk(yk)T

(vk)T yk −
H kvk(vk)T H k

(vk)T H kvk .

• Broyden-Fletcher-Goldfarb-Shanno:

H k+1 = H k +
H kvk(yk)T + yk(vk)T H k

(vk)T H kvk − βk
H kvk(vk)T H k

(vk)T H kvk ,

where
βk = 1 +

(vk)T yk

(vk)T H kvk .
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Stochastic approximation of Hessian

Problem
We consider the following problem

f ∗ = min
x∈Rp

{
f (x) :=

1
n

n∑
i=1

fi(x)

}

where fi , i = 1, . . . ,n, are twice continuously differentiable and their Hessians ∇2fi
are positive definite.

• In the high dimensional regime where both n and p are large: evaluation of the
gradient and Hessian can be computationally prohibitive.
• Idea: Use stochastic approximations:
I sub-sampled gradient;
I sub-sampled Hessian;
I sub-sampled approximation of Hessian.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 44



Stochastic BFGS

Stochastic BFGS algorithm [2]
1. Set t = −1 and choose L ∈ N and M ∈ N.
2. For k = 0, 1, . . . perform:
2a. Choose a sample S.
2b. Calculate stochastic gradient ∇S f (xk).
2c. Update:

xk+1 =
{

xk − αk∇S f (xk), if t < 1,
xk − αkH t∇S f (xk), otherwise.

2d. When mod(k,L) = 0, perform:
2d1. t = t + 1.
2d2. x̄t = 1

L
∑k

j=k−L+1 xj .
2d3. Choose a sample T ⊂ {1, . . . ,n}.
2d4. Compute:

yt = x̄t − x̄t−1, vt = ∇2
T f (x̄t)(x̄t − x̄t−1).

2e. Update Hessian:
2e1. Compute: H = (yt)T vt/((vt)T vt)I.
2e2. For j = t −min{t,M}+ 1, . . . , t perform:
ρj = 1/((yj)T vj), H t = (I− ρjyj(vj)T )H (I− ρjvj(yj)T ) + ρjyj(yj)T .

• H t is result of applying M BFGS updates using the M most recent pairs (yt ,vt).

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 32/ 44



Stochastic BFGS (cont.)
• [2]: computational cost of stochastic BFGS could be much cheaper than SGD.
• One does not have to compute Hessian but the directional derivative along a vector

∇2
S f (x)(v) =

d
dα
∇fS(x + αv)

∣∣∣
α=0

.

Theorem (O(1/k) rate of stochastic BFGS [2])
Take αk = β/k with β > 1/(2µ1λ) and suppose that:
1. (∀Q ⊂ {1, . . . ,n})(∀x ∈ Rp): λI � ∇2

Qf (x) � ΛI,(
∇2
Qf (x) = 1

|W|
∑

i∈Q∇
2fi(x)

)
.

2. E[‖∇f (xk)‖2] ≤ γ2.
Then
1. There exists (µ1, µ2) such that µ1I � H k � µ2I.
2. The following holds:

E[f (xk)− f ∗] ≤ Q(β)/k,

where

Q(β) = max
{

Λµ2
2β

2γ2

2(2µ1λβ − 1)
, f (x0)− f ∗

}
.

• The convergence rate does not depend on condition number of problem (i.e., Λ/λ).
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Numerical experiment (from [2])

• Problem:

min
x∈Rp

−
1
n

n∑
i=1

yi log(c(x; xi)) + (1− yi) log(1− c(x; xi));

where c(x; xi) = 1/(1 + exp(−xT
i x)) and yi ∈ {0, 1}.

I ∇f (x) = (c(x; xi)− yi)xi ; ∇2f (x)(v) = c(x; xi)(1− c(x; xi))(xT
i v)xi .
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SQN vs SGD on Synthetic Binary Logistic Regression
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Fig. 1. Illustration of SQN and SGD on the synthetic dataset. The dotted black line marks the
best function value obtained by the CD method. For SQN we set M = 10, L = 10, and bH = 300 or
600.
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Varying Memory Size on Synthetic Binary Logistic Regression with n = 50 and N = 7000

Fig. 2. Effect of the memory size M in the SQN method. The figure on the left reports the first
4 epochs, while the figure on the right lets the algorithm run for more than 70 epochs to observe if
the beneficial effect of increasing M is sustained. Parameters settings are b = 50, bH = 600, and
L = 10.

4.2. RCV1 data set. The RCV1 dataset [11] is a composition of newswire
articles produced by Reuters from 1996–1997. Each article was manually labeled
into 4 different classes: Corporate/Industrial, Economics, Government/Social, and
Markets. For the purpose of classification, each article was then converted into a
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After stochastic BFGS

• Stochastic BFGS: the rate O(1/k) is similar to that of SG.
• Newton: quadratic; Quasi-Newton: superlinear!
• Could one obtain linear rate?
• Yes! with sub-sampled Hessian.
I Small sub-sampled Hessian: cost of Newton method is not much larger than the
cost of gradient evaluation.

I Large sub-sampled Hessian: more curvature information.
I Challenge: achieve the right balance.
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Sub-sampled Hessian

Hessian sub-sampling Newton algorithm [10]
1. Choose x0 ∈ Rp, β ∈ (0, 1) and α̂ ≥ 1 and set sample size s.
2. For k = 0, 1, . . . perform:
2a. Select S ⊂ {1, . . . ,n} of size s, compute S-sub-sampled Hessian ∇2

S f (xk).
2b. Compute vk = −[∇2

S f (xk)]−1∇f (xk) and solve

αk = arg max α s.t. α ≤ α̂ and f (xk + αvk) ≤ f (xk) + αβ(vk)T∇f (xk).

2c. Update
xk+1 = xk + αkvk .

• S-sub-sampled Hessian:

∇2
S f (x) :=

1
|S|

∑
i∈S

∇2fi(x).
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Convergence

Theorem (Linear rate convergence [10])
Suppose that 0 � ∇2fi(x) � Λi I and λI � ∇2f (x) � ΛI for every x ∈ Rp. Given
ε ∈ (0, 1), δ ∈ (0, 1), and x ∈ Rp and suppose that

|S| ≥
2κ1 ln(p/δ)

ε2 .

With probability 1− δ, one has

f (xk+1)− f ∗ ≤ (1− ρk)
(

f (xk)− f ∗
)
,

where ρk = 2αkβ
κ̃

. Furthermore,

αk ≥
2(1− β)(1− ε)

κ
.

• κ = Λ/λ and κ̃ =
{
κ1, if S is drawn with replacement,
κ|S|, if S is drawn without replacement.

(Here, given q ∈ [1,n]: Λ̂q is the average of q largests Λi and κq = Λ̂q/λ).
• By choosing suitable β and ε, ρk can be smaller than the condition number
ρ = Λ/λ of F (recall that convergence rate of GD is 1− ρ).
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Combining Hessian sub-sampling and gradient sub-sampling

Hessian sub-sampling Newton algorithm [10]
1. Choose x0 ∈ Rp, β ∈ (0, 1) and α̂ ≥ 1 and set sample sizes s and t.
2. For k = 0, 1, . . . perform:
2a. Select sample sets S ⊂ {1, . . . ,n} of size s and T ⊂ {1, . . . ,n} of size t.
2b. Compute ∇2

S f (xk) and ∇T f (xk).
2c. Compute vk = −[∇2

S f (xk)]−1∇T f (xk) and solve

αk = arg max α s.t. α ≤ α̂ and f (xk + αvk) ≤ f (xk) + αβ(vk)T∇T f (xk).

2d. Update
xk+1 = xk + αkvk .

• T -sub-sampled gradient:

∇T f (x) =
1
|T |

∑
i∈T

∇fi(x).

• S-sub-sampled Hessian:

∇2
S f (x) :=

1
|S|

∑
i∈S

∇2fi(x).
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Convergence

Theorem (Linear rate convergence [10])
Suppose that 0 � ∇2fi(x) � Λi I and λI � ∇2f (x) � ΛI for every x ∈ Rp. Given
ε1 ∈ (0, 1), ε2 ∈ (0, 1/2), δ ∈ (0, 1), and x ∈ Rp and suppose that

|S| ≥
2κ1 ln(p/δ)

ε2
1

and |T | ≥
max

1≤i≤n
sup
k∈N
‖∇fi(xk)‖2

ε2
2

(
1 +

√
8 ln
(

1
δ

))2

.

With probability 1− δ, one has

f (xk+1)− f ∗ ≤ (1− ρk)
(

f (xk)− f ∗
)
,

where ρk = 8αkβ
9κ̃ . Furthermore,

αk ≥
(1− β)(1− ε1)

κ
.

I κ = Λ/λ and κ̃ =
{
κ1, if S is drawn with replacement,
κ|S|, if S is drawn without replacement.

(Here, given q ∈ [1,n]: Λ̂q is the average of q largests Λi and κq = Λ̂q/λ)
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Stochastic block BFGS

f ∗ = min
x∈Rp

{
f (x) :=

1
n

n∑
i=1

fi(x)

}
• The sub-sampled Hessian with respect to the sample set S ⊂ {1, . . . ,n}:
∇2
S f (x) = 1

|S|
∑

i∈S ∇
2fi(x), can be computationally expensive when the dimension

p is large.
• Recent idea: Using Hessian-vector product ∇2

S f (x)(v) where v is a suitable selected
vector and combining with variance reduction.
• Update rule: normally H t∇2

S f (xt) = I but to reduce computational cost

H t∇2
S f (xt)Dt = Dt ,

where Dt ∈ Rd×q , (q � p) is a random matrix. Hence
H t = Dt∆tDT

t +(I−Dt∆tY T
t )H t−1(I−Y t∆tDt), ∆t = (DT

t Y t)−1, Y t = ∇2
S f (xt)Dt .

• d large: can not store H t and hence, store M block triples
(H i ,Y i ,∆i)t+1−M≤i≤t

and using V t = I−Dt∆tY T
t and

H t = V t . . .H t+1−M H t−M V T
t+1−M . . .V T

t +
t+1−M∑

i=t

V t . . .V i+1Di∆iDT
i V T

i+1 . . .V T
t
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Stochastic block BFGS

Stochastic block BFGS algorithm [5]
Inputs: x0 ∈ Rp, stepsize η > 0, s = subsample size, q = sample action size, m =
size of the inner loop, M = memory parameter.
1. Initiate: H−1 = I.
2. For k = 0, 1, 2, . . . perform:
2a. Compute the full gradient ∇f (xk).
2b. Set y0 = xk .
2c. For t = 0, . . . ,m − 1, perform:
2c1. Sample St and Tt in {1, . . . ,n}, independently.
2c2. Compute: vt = ∇St f (yt)−∇St f (xk) +∇f (xk).
2c3. Form At ∈ Rp×p so that rank(At) = q.
2c4. Compute Y t = ∇2

Tt
f (yt)At .

2c5. Compute At
T Y t and its Cholesky factorization to obtain ∆t = (AT

t Y t)−1.
2c6. For i = 1, . . . , t, perform:{

αi = ∆iAT
i vt and vt ← vt −Y iαi , for i = t, . . . , t −M + 1,

βi = ∆iY T
i vt and vt ← vt + Ai(αi − βi), for i = t −M + 1, . . . , t.

2c7. Set yt+1 = yt − ηvt .
2d. Update xk+1 = ym .
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Stochastic block BFGS: Convergence

f ∗ = min
x∈Rp

{
f (x) :=

1
n

n∑
i=1

fi(x)

}

Theorem (Linear rate convergence of stochastic block BFGS [5])
Suppose that

(∀T ⊂ {1, . . . ,n})(∀x ∈ Rp) λI � ∇2
T f (x) � ΛI,

where ∇2
T f (x) = 1

|T |
∑

i∈T ∇
2fi(x). Then:

1. There exist (γ,Γ) such that γI � H t � ΓI.
2. Suppose that η < γλ/(2Γ2Λ2) and that

m ≥
1

2η (γλ− ηΓ2Λ(2Λ− λ))
.

Then
E[f (xk)− f ∗] ≤ ρk(f (x0)− f ∗),

where
ρ =

1/(2mη) + ηΓ2Λ(Λ− λ)
γλ− ηΓ2Λ2 < 1.
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