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> This work is released under a Creative Commons License with the following terms:
> Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

> Non-Commercial

> The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees may not use the work for commercial purposes — unless they get the licensor’s
permission.

> Share Alike

> The licensor permits others to distribute derivative works only under a license identical
to the one that governs the licensor's work.

> Full Text of the License
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Outline

> Randomized Linear Algebra

1. Review of last lecture

Row extraction method

Power method

Column selection methods

. What to use in different scenarios ?

CECENES

» Stochastic quasi-Newton Method

-
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Recommended reading material:

> Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp, Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions, SIAM review 53.2 (2011): 217-288.

> Michael W Mahoney, Randomized algorithms for matrices and data, Foundations
and Trends in Machine Learning 3.2 (2011): 123-224.

o
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Recall the last lecture

Matrix decompositions

» SVD and QR decompositions have O(np min{n, p}) complexity.
> Real data is often noisy, so it makes sense to sacrife accuracy for speed-up.

> Randomized methods offer faster and parallelizible approximative solutions that
also require a lower number of passes over the data matrix.

Random projections

> Step-1: Find an orthonormal basis Q that can approximate A well:
A= QQ*A

> Step-2: Apply classical linear algebra to the smaller matrix Q*A.
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Recall the last lecture

1. Multiply A for €;; ~ N(0,1), at cost O(npl) (or O(nplogl) using FFT)

L p l

nlY|l= n A Pl Q

2. Compute thin QR factorization of Y, at a cost of O(nf?) (e.g. with Gram-Schmidt)

-

3. Finally multiply C = Q*A at a cost O(np¢). THIS IS THE BOTTLENECK !!!

L )4 p

LG
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Smaller SVD to form the randomized SVD

1. Find SVD factors of C in O(pl?) time.

>)

4 p £ 14 p
_ ¢|C=Q*A| ¢l U ¢ V*
nl Q nl Q
2. Multiply, in O(nf?) time
L / D
A— ARSI ' v
n | QU
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QR decomposition to form the randomized SVD
1. Find QR factors of C*: C* = QcRc, in O(pl?) time.

l p ¢ l p

C R ¢ Q¢

>)

Il
~

Il
~

n Q n Q

2. Calculate the SVD of the small inner matrix, in O(¢3) time

4 L 4 4

L] Rg LU | 2LV

3. Multiply in O((n + p)£?) time

4 4 p

A= (f = | vQp

n| QU
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Interpolative decomposition

Definition
For a matrix A € R"*P of rank-r, a one-sided interpolative decomposition is defined
as

G5 = SRS

where J = [j1, ...jr] is a computed column index set and X is a 7 X p matrix with
X5 = Ir and X;j <2 Vi,j. In other words A, ;) is a subset of columns of A that
spans the range of A with bounded coefficients.

p T p

3 V
ICLEHEI{l  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 44 LG




Interpolative decomposition (ID)

Computational Cost

> There exists a decomposition of the form above with X whose coefficients are
bounded by 1, but it is NP-hard to compute. [9]

> When the bound is 2, there are stable and efficient algorithms that computes this
decomposition of a rank-r matrix A € R"*? at a cost of O(nrp) [7]

> This decomposition can also be generalized to a two-sided form
A =WA pnX
> We need the interpolative decomposition of Q € R"*!: Q = XQ(J,:) where J

denotes the [ rows of Q that spans the rowspace of Q and X is a n X | matrix
with X7y = I and X;; < 2 V4,j. This costs O({%n).
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Row extraction

e Motivation: We want to have something cheaper than forming Q*A.
e Given a matrix Q € R™*" such that ||A — QQ*A|| < ¢, one can obtain the ID

Q=XQqu,
e It turns out that [8]

4 P
Ay

e Then we can perform SVD on these smaller dimensions.

i
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Partial SVD using row extraction

Given is Q € R™"*" such that ||A — QQ*A|| < e

Algorithm: Partial SVD using row extraction

1. Form the row extraction as above: Q: A = XA(J,;) as above O(I°n)
. Form the RQ decomposition: A ;) = R*W* O(I°p)

. Multiply Z = XR* O(I?n)

. Compute a classical SVD: Z = UX v O(1%n)

. Multiply V.= WYV and conclude A ~x UX v O(12p)

o B WN

> This costs O(I(n + p)?) instead of npl + O((n + p)i?) (forming Q*A and
performing SVD on it)

. V
ICHHEI{]  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 44 -ﬂ ﬂ.



Error bound

Lemma (Error bound for Row Extraction [6])

Let A ~ UX V* be the output of the algorithm produced by a given Q with an
approximation error €. Then the following error bound holds:

1A - Umv') < [+ aka—B)| e

In other words, the bound is multiplied by a factor of /1 + 4k(n — k) if we avoid the
multiplication Q* A and use row extraction technique.

. V
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Power method

Motivation

> Spectrum of A does not always decay fast.
> In these cases basic algorithm does not work well.
> This is the case e.g., when the matrix has noise.

» Therefore we apply (A A*) several times to reduce the relative weight of smaller
singular values.

i V
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Power method

Algorithm: Power method

1. Draw a random matrix € RPX?

2. Form the multiplication Y = (AA*)7AQ

3. Find the orthogonal Q that spans the range of Y (e.g. using Gram-Schmidt)

Cost of random projections: (2¢ + 1)npl + O(qt?n) flops

. V
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Power method

Algorithm: Power method

1. Draw a random matrix € RPX?

2. Form the multiplication Y = (AA*)7AQ

3. Find the orthogonal Q that spans the range of Y (e.g. using Gram-Schmidt)

Cost of random projections: (2¢ + 1)npl + O(qt?n) flops

Practical considerations

» Usually ¢ = 2 or ¢ = 3 is sufficient
» Q is taken to be Gaussian, the other matrices do not work well
> We perform QR factorization at each step

> Apply A and A* alternatively instead of forming AA*

. V
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Power method

Theorem (Power method [6])

Let A € R"*P with n > p be the matrix that is randomly approximated using power
method. Then the following holds:

1/(2¢+1)
. 4+r+s
E[lA - QQ*A|2 < <1+s_1\/5> Oril1

> When ¢ = 0, this is the original algorithm with Y = AQ

> The extra factor can be made close to 1 by increasing the number of the passes,
q, but this is at the expense of increasing the computational cost.
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Column Selection Methods

Motivation

> So far we have considered linear combinations of the columns for reducing the
dimensionality of a matrix (SVD)

> Another approach is to find a subset of columns that could well summarize action
of the matrix

> This makes it easer to interpret for data analysts

> However this is combinatorially hard

. V
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Column Selection Methods

Motivation
> So far we have considered linear combinations of the columns for reducing the
dimensionality of a matrix (SVD)

> Another approach is to find a subset of columns that could well summarize action
of the matrix

> This makes it easer to interpret for data analysts

> However this is combinatorially hard

Problem (Column Subset Selection Problem)

Given a matrix A € R"*? and a positive integer r, pick v columns of A to form a
matrix C € R"*" such that the residual

A —-PcAl

is minimized over all possible (:) choices for the matrix C. Here, Pc = CCt
denotes the projection onto the r-dimensional space spanned by the columns of C and
&€ = 2 or F denotes the spectral norm or Frobenius norm. [1]
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Column Selection Methods

Preliminary results

> Uniform sampling of the columns is a bad idea in theory and in practice

> When O(rlog(r)/€?) columns are selected with probabilities proportional to
Frobenius norm of columns of A, we have [3].

[A—-Pc,Alr < [|A-Arflr+elAllr

[A—-Pc,Al2 <[[A—Ar2 +elAllr

with high probability. A, and C, are the best rank-r approximations to the
matrices A and C respectively. (Px = XX is the projection to the column
space of X.)

L]
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Column Selection Methods

An improved random sampling [4]
Given a singular value decomposition, A = UXV*

» Compute the importance sampling probabilities (leverage scores)

1 () 9
pi= Vi3

where Vi(l) is the 7™ row of matrix V that contains the top 7 right-singular
vectors.

» Sample ¢ = O(rlog(1/8)r/€?) columns of A according to this distribution to
form a submatrix C € R"*¢

> Then with probability at least 1 — § the following holds

[A-Pc, Al < (1+6)||A-Ar|r

> However approximating the leverage scores is expensive: O(nplogn)

. V
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Plenty of methods, what to choose ?

Low rank approximation considerations

> If interpretability is important, then go for column subset selection
> But this might be expensive due to cost of calculating leverage scores
> Otherwise use random projections

> The choice of specific random projection depends on the scenarios below.

Slide 20/ 44 L]
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Plenty of methods, what to choose ?

Scenario-1: Matrix A fits in the core memory

> Use a structured random matrix (e.g. SRFT) for Step-1 of low rank
approximation using O(nplog ¢ + £2n) flops

» For Step-2, use the row extraction technique at the cost of O(¢2(n + p))

> The total cost is O(nplog !+ £2(n + p))

> If the row extraction results in a large error, use the direct method of forming
Q*A at Step-2 which costs O(np/)

Slide 21/ 44 i
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Plenty of methods, what to choose ?

Scenario-2: Matrix A can be rapidly applied to vectors

lions@epfl

This is the case for sparse matrices or structured matrices such as Toeplitz
The cost of matrix-vector multiplication could be as low as C,,,;: = O(n + p)
Step-1 to find Q costs £C,,. + O(4%n)

In Step-2, form the Q* A as it is now cheap: £C,,.;; + O(%(n + p))

In total it costs 2£Cui; + O£ (n + p))

If the singular values of A decays slowly, use power method with ¢ iterations
which costs (2q + 2)¢Cui; + O(L%(n + p))

Krylov methods would also benefit from this speed-up, but they are less robust
and not as parallelizable as these random methods.

D/
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Plenty of methods, what to choose ?

Scenario-3: Matrix A stored in a slow memory

> The computational time is dominated by the memory access, therefore classical
methods which require at least r pass over the matrix is not practical.

> One can use any of the randomized algorithms above according to the needs: e.g.

if the decay of singular values is slow, use power method, as a small ¢ would be
sufficient.
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Outline

> Stochastic quasi-Newton Method

D/
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Recommended reading materials

1. R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton
method for large-scale optimization, SIAM. J. Optim., vol. 26, pp. 1008-1031,
2016.

2. R. M. Gower, D. Goldfarb, and P. Richtarik, Stochastic block BFGS: Squeezing
more curvature out of data, arXiv:1603.09649v1, 2016.

i
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Overview

f* = min f(x)

xERP

e The starting point of many optimization algorithms is to use the following

approximation of the objective f at iteration x*:

Qx,xb) 1= F(xb) + (x — x¥, g(xF)) + (1/2) (x — x5, Hy(xF)(x — xb))
whose minimum is achieved at
% = xE — [ (x")] " g(x).

e Next iteration update:
xFH = xF 4 ak(ik - xk).

e Step-size a, can be updated by line-search.

Newton Quasi-Newton Gradient SG
g vf i v E[g(x")] = VF(x")
Hy VQf ~ va Lyl Ll
rate | quadratic superlinear linear O(1/k)

Table: Taxonomy of some methods.
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Curvature

A =< V2f(x) < Al

F@) +{m — 2, Vi) + e — ot

o V2f controls the curvature of f's graph. Information on V2f leads Q(x,x") to be
better approximation of f.
o (Vx € RP) V2f(x) = ul (i.e.,(Vy € R?) yTV2f(x)y > plly||* = [ is p-strongly
convex.
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Newton method

Newton algorithm

1. Initialize x¥ € RP.
2. For k=0,1,... perform:

xFHL = xb — [V2 (xR 71V (xF).

e What curvature helps (yellow - gradient direction; violet - gradient direction
modified by Hessian):

e Quadratic convergence!

i V
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Quasi-Newton methods

e High computation cost if the Hessian is dense!
o |dea: Approximate the Hessian to avoid second derivative computations using

first-order information.

Quasi-Newton scheme
1. Choose x" € RP, set Hy = I, and compute f(x") and Vf(x?).
2. For k=0,1,... perform:
2a. Compute vF = H,Vf(xF).
2b. Compute xF+1 = xb — o vh.
2c. Compute f(xF*1) and Vf(xF+1).
2d. Update H 11 based on f(x**+1) and Vf(xF+1).

Question
How to update H?

e For f(x) = (1/2)xTAx + bTx + ¢: Vf(x) = Ax+ b and V2f = A. Hence
VI(x) = VI(y) = Alx —y) = Vf(z)(x — ).

e Update rule:
Hip (VP = Vf(xF)) = <M — b

-
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Quasi-Newton method: some update rules

Example (vF = Vf(x*1) — Vf(xF), y* = x**1 — xF)
e Rank-one correction:

(y* - Hpv")(y* — Hpv®)T
(y* — Hivk)Tvk

Hyy =Hyp+

e Davidon-Fletcher-Powell:

y*oMT  HwhVHTH)

H =H —
el Kt (vF) Tyk (VW) TH vk
e Broyden-Fletcher-Goldfarb-Shanno:
Hoos = g BV OOT +Y O TH, o B TH,
AFl (VAT H pvF MR TH v
where Tk
Br=14 V)Y
(vk) TH vk ’
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Stochastic approximation of Hessian

Problem

We consider the following problem

xERP

fr = min <60 = = 3 i)
=1

where f;, i = 1,...,n, are twice continuously differentiable and their Hessians V2f;
are positive definite.

e In the high dimensional regime where both n and p are large: evaluation of the
gradient and Hessian can be computationally prohibitive.
e Idea: Use stochastic approximations:

> sub-sampled gradient;
> sub-sampled Hessian;

> sub-sampled approximation of Hessian.

. V
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Stochastic BFGS

Stochastic BFGS algorithm [2]
1. Set t = —1 and choose L € N and M € N.
2. For k=0,1,... perform:
2a. Choose a sample S.
2b. Calculate stochastic gradient Vsf(x").
2c. Update:

L xF — a, Vsf(xF), ift<1,
T xF — apH Vsf(x¥), otherwise.

2d. When mod(k, L) = 0, perform:

2dl. t=t+ 1.

_ k i

2d2. %P =750, %

2d3. Choose a sample 7 C {1,...,n}.

2d4. Compute:

yt — )_Ct _ )—(f,—l, vf, — V%—f(}_(f)()_(f _ }_(t_l)A

2e. Update Hessian:

2el. Compute: H = (y*)Tvt/((v)Tvt)L

2e2. For j=1t— min{t, M} +1,...,t perform:

pi =1/ V), Hi= (- py! (V) HI— oV (5)) + 0y’ (v) "

e H is result of applying M BFGS updates using the M most recent pairs (y!, vt).

. V
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Stochastic BFGS (cont.)

® [2]: computational cost of stochastic BFGS could be much cheaper than SGD.
e One does not have to compute Hessian but the directional derivative along a vector

VAW = G VIstetaw)|

Theorem (O(1/k) rate of stochastic BFGS [2])
Take o, = B/k with B > 1/(2u1\) and suppose that:
L (VQC{l,...,n})(Vx € RP): A X V4 f(x) = Al
(Vo) = mor Lo V2Hi0)-
2. B VF(xH)12] < +2.
Then
1. There exists (1, u2) such that p1l < Hj < pol.

2. The following holds:
E[f(x*) - £*] < Q(B)/k,

_ A/"%B2'Y2 0 .
Q('g)max{mm)\ﬁ—l)’f(x V=4 po

where

e The convergence rate does not depend on condition number of problem (i.e., A/\).

. V
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Numerical experiment (from [2])

e Problem:

min =3 yilog(e(xixi)) + (1= i) log(1 = e(xsx,));
i=1
where c(x;x;) = 1/(1 + exp(—xIx)) and y; € {0,1}.
> V) = (e(xxi) = yi)xis V2(x)(v) = e(xxi) (1 = e(x; %)) (x] V)i

10° ——SGD: b=50,=7
——SQN: b =50, =2, bH =300
——SQN: b =50, =2, bH = 600
= = - CD approx min

(L]
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After stochastic BFGS

e Stochastic BFGS: the rate O(1/k) is similar to that of SG.
e Newton: quadratic; Quasi-Newton: superlinear!

e Could one obtain linear rate?

e Yes! with sub-sampled Hessian.

> Small sub-sampled Hessian: cost of Newton method is not much larger than the
cost of gradient evaluation.

> Large sub-sampled Hessian: more curvature information.

> Challenge: achieve the right balance.

. V
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Sub-sampled Hessian

Hessian sub-sampling Newton algorithm [10]
1. Choose x” € RP, 3 € (0,1) and & > 1 and set sample size s.
2. For k=0,1,... perform:
2a. Select S C {1,. n} of size s, compute S-sub-sampled Hessian VZf(x*).
2b. Compute v¥ = —[V F(x*)]~1Vf(x*) and solve

ap =argmax a st a < a&and f(xF + avf) < F(xF) + aB(v*) TV F(xF).

2c. Update
k

kL — xk + agv”.

X

e S-sub-sampled Hessian:

V2 f(x) : |S‘ZVf7

i€S

Slide 36/ 44 i

ICHHEI{l  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch



Convergence

Theorem (Linear rate convergence [10])

Suppose that 0 < V2f;(x) = A;I and Xl < V2f(x) =< Al for every x € RP. Given
e € (0,1), § € (0,1), and x € RP and suppose that

2k1 In(p/d)
S| > =

With probability 1 — §, one has
FOM) = £ < (1= o) (F M) = £7),
_ 2048
where pj, = £, Furthermore,

i 20— =8

~ K1, if S is drawn with replacement,
ex=A/Xand i = o .
K|s|, if &is drawn without replacement.
(Here, given g € [1,7n]: A, is the average of ¢ largests A; and kg = Ag/A).
e By choosing suitable 8 and ¢, p; can be smaller than the condition number
p = A/X of F (recall that convergence rate of GD is 1 — p).

. V
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Combining Hessian sub-sampling and gradient sub-sampling

Hessian sub-sampling Newton algorithm [10]

1. Choose x” € RP, B € (0,1) and & > 1 and set sample sizes s and t.
2. For k=0,1,... perform:

2a. Select sampIe sets S C {1,. n} of size s and 7 C {1,...,n} of size ¢.

2b. Compute V f(xk) and VTf( kY.
2c. Compute v* = —[VZf(xF)] "1V f(x*) and solve

ap=argmax a st. a<aand f(xF + av®) < F(xP) 4+ aB(o?) TV Sf(x

2d. Update
k

b+l — xk + aipv”.

X

e T -sub-sampled gradient:

Vrf(x) E Vi(x)
€T
® S-sub-sampled Hessian:

2
Va6 = o o> Vi

i€S
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Convergence

Theorem (Linear rate convergence [10])
Suppose that 0 < V2f;(x) < A;I and AT = V2f(x) < Al for every x € RP. Given
e1 € (0,1), e2 € (0,1/2), 6 € (0,1), and x € RP and suppose that

max sup || Vfi(x")||? 2

1<i<np
|5|2%2(”/5)and|7|2 — ke 1+ /sm(2)) .
€1 €5 )

With probability 1 — §, one has
PO = £ < (1= o) (FF) = 17),
_ 8aiB
where pj, = o Furthermore,

L 0=pl-e)

o 2
K

r k= A/ and & = {m, if S is drawn with replacement,

K|s|, if Sis drawn without replacement.

(Here, given g € [1,7n]: A, is the average of ¢ largests A; and rq = Ay/))
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Stochastic block BFGS

* = min X'*ln :(x
= i )-fn;fz()

xXERP
e The sub-sampled Hessian with respect to the sample set S C {1,...,n}:
V%f(x) = ﬁ ZiGS V2f;(x), can be computationally expensive when the dimension
p is large.

® Recent idea: Using Hessian-vector product V%f(x)(v) where v is a suitable selected
vector and combining with variance reduction.
e Update rule: normally H;V%f(x") =1I but to reduce computational cost

HV%f(x")D¢ = Dy,
where D; € R4X4, (g < p) is a random matrix. Hence
H, = D,ADI+(1-DA YD) H 1 (I-Y A Dy), Ay = (DI Y)Y, YV = Vif(x')D,.
e d large: can not store H; and hence, store M block triples
(Hi, Y, Ai)pp1—M<i<t
and using V;=1— DtAthT and
t+1—M
Hi=Vi. . Hyq yH y Vi . V4 Z Vi Vi DADIVE V]
i=t

-
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Stochastic block BFGS

Stochastic block BFGS algorithm [5]
Inputs: x0 € R?, stepsize > 0, s = subsample size, ¢ = sample action size, m =
size of the inner loop, M = memory parameter.
1. Initiate: H_1 =1
2. For k=0,1,2,... perform:
2a. Compute the full gradient Vf(x*).
2b. Set y0 = x*.
2c. For t=0,...,m — 1, perform:
2cl. Sample S; and T; in {1,...,n}, independently.
2c2. Compute: v! = Vs, f(y?) — Vs, f(xF) + Vf(xF).
2c3. Form A; € RPX? so that rank(A;) = g.
2c4. Compute Y = V%f(yt)At.
2c5. Compute A; 7Y, and its Cholesky factorization to obtain A; = (AtT Yy~ L
2¢b. For i =1,...,t, perform:

{ai:AiAiTvt and vl « vl — Y;a;, fori=¢t,...,t—M+1,

Bi=A;YIvt and vl vt Ai(a;—Bi), fori=t—M+1,...,t

2c7. Set ytt1l =yt — nvt.
2d. Update xF+1 = y™,

. V
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Stochastic block BFGS: Convergence

* = min X'*ln i (x
= i >.fn;fz<>

xERP

Theorem (Linear rate convergence of stochastic block BFGS [5])
Suppose that

(YT C{1,...,n})(¥x €RP) Al = VZf(x) =< Al

where V%—f(x) = % ZieTVZﬁ(x)' Then:
1. There exist (v,T') such that y1 < H; < T'I
2. Suppose that n < yA/(2I'2A2) and that

m > ! .
T 2n(yA —nl2A2A - X))

Then
Elf(x*) — £*] < p*(f(x%) — ),

where

. 1/(2mn) +nI2A(A — X)

< 1.
YA — nT'2A2
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