Advanced Topics in Data Sciences

Prof. Volkan Cevher volkan.cevher@epfl.ch
Lecture 08: Randomized Linear Algebra and Stochastic quasi-Newton Method
Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-731 (Spring 2016)

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- Randomized Linear Algebra

1. Review of last lecture
2. Row extraction method
3. Power method
4. Column selection methods
5. What to use in different scenarios ?

- Stochastic quasi-Newton Method

Recommended reading material:

- Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM review 53.2 (2011): 217-288.
- Michael W Mahoney, Randomized algorithms for matrices and data, Foundations and Trends in Machine Learning 3.2 (2011): 123-224.

Recall the last lecture

Matrix decompositions

- SVD and QR decompositions have $\mathcal{O}(n p \min \{n, p\})$ complexity.
- Real data is often noisy, so it makes sense to sacrife accuracy for speed-up.
- Randomized methods offer faster and parallelizible approximative solutions that also require a lower number of passes over the data matrix.

Random projections

- Step-1: Find an orthonormal basis \mathbf{Q} that can approximate \mathbf{A} well:

$$
\mathbf{A} \approx \mathbf{Q Q}^{*} \mathbf{A}
$$

- Step-2: Apply classical linear algebra to the smaller matrix $\mathbf{Q}^{*} \mathbf{A}$.

Recall the last lecture

1. Multiply $\mathbf{A} \boldsymbol{\Omega}$ for $\boldsymbol{\Omega}_{i, j} \sim \mathcal{N}(0,1)$, at cost $\mathcal{O}(n p \ell)$ (or $\mathcal{O}(n p \log \ell)$ using FFT)

2. Compute thin $Q R$ factorization of \mathbf{Y}, at a cost of $\mathcal{O}\left(n \ell^{2}\right)$ (e.g. with Gram-Schmidt)

3. Finally multiply $\mathbf{C}=\mathbf{Q}^{*} \mathbf{A}$ at a cost $\mathcal{O}(n p \ell)$. THIS IS THE BOTTLENECK !!!

Smaller SVD to form the randomized SVD

1. Find SVD factors of \mathbf{C} in $\mathcal{O}\left(p \ell^{2}\right)$ time.

2. Multiply, in $\mathcal{O}\left(n \ell^{2}\right)$ time

QR decomposition to form the randomized SVD

1. Find $Q R$ factors of $\mathbf{C}^{*}: \mathbf{C}^{*}=\mathbf{Q}_{\mathbf{C}} \mathbf{R}_{\mathbf{C}}$, in $\mathcal{O}\left(p \ell^{2}\right)$ time.

2. Calculate the SVD of the small inner matrix, in $\mathcal{O}\left(\ell^{3}\right)$ time

3. Multiply in $\mathcal{O}\left((n+p) \ell^{2}\right)$ time

Interpolative decomposition

Definition

For a matrix $\mathbf{A} \in \mathbb{R}^{n \times p}$ of rank- r, a one-sided interpolative decomposition is defined as

$$
\mathbf{A}=\mathbf{A}_{(:, J)} \mathbf{X}
$$

where $J=\left[j_{1}, \ldots j_{r}\right]$ is a computed column index set and \mathbf{X} is a $r \times p$ matrix with $\mathbf{X}_{(:, J)}=\mathbf{I}_{r}$ and $\mathbf{X}_{i, j} \leq 2 \forall i, j$. In other words $\mathbf{A}_{(:, J)}$ is a subset of columns of \mathbf{A} that spans the range of \mathbf{A} with bounded coefficients.

Interpolative decomposition (ID)

Computational Cost

- There exists a decomposition of the form above with \mathbf{X} whose coefficients are bounded by 1 , but it is NP-hard to compute. [9]
- When the bound is 2 , there are stable and efficient algorithms that computes this decomposition of a rank- r matrix $\mathbf{A} \in \mathbb{R}^{n \times p}$ at a cost of $\mathcal{O}(n r p)$ [7]
- This decomposition can also be generalized to a two-sided form

$$
\mathbf{A}=\mathbf{W} \mathbf{A}_{\left(J^{\prime}, J\right)} \mathbf{X}
$$

- We need the interpolative decomposition of $\mathbf{Q} \in \mathbb{R}^{n \times l}: \mathbf{Q}=\mathbf{X Q}_{(J,:)}$ where J denotes the l rows of \mathbf{Q} that spans the rowspace of \mathbf{Q} and \mathbf{X} is a $n \times l$ matrix with $\mathbf{X}_{(J,:)}=\mathbf{I}_{k}$ and $\mathbf{X}_{i, j} \leq 2 \forall i, j$. This costs $\mathcal{O}\left(l^{2} n\right)$.

Row extraction

- Motivation: We want to have something cheaper than forming $\mathbf{Q}^{*} \mathbf{A}$.
- Given a matrix $\mathbf{Q} \in \mathbb{R}^{n \times r}$ such that $\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\| \leq \epsilon$, one can obtain the ID

$$
\mathbf{Q}=\mathbf{X} \mathbf{Q}_{(\mathbf{J},:)}
$$

- It turns out that [8]

- Then we can perform SVD on these smaller dimensions.

Partial SVD using row extraction

Given is $\mathbf{Q} \in \mathbb{R}^{n \times r}$ such that $\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\| \leq \epsilon$.

Algorithm: Partial SVD using row extraction

1. Form the row extraction as above: $\mathbf{Q}: \mathbf{A}=\mathbf{X} \mathbf{A}_{(J,:)}$ as above $\mathcal{O}\left(l^{2} n\right)$
2. Form the RQ decomposition: $\mathbf{A}_{(J,:)}=\mathbf{R}^{*} \mathbf{W}^{*} \mathcal{O}\left(l^{2} p\right)$
3. Multiply $\mathbf{Z}=\mathbf{X} \mathbf{R}^{*} \mathcal{O}\left(l^{2} n\right)$
4. Compute a classical SVD: $\mathbf{Z}=\mathbf{U} \boldsymbol{\Sigma} \widetilde{\boldsymbol{V}}^{*} \mathcal{O}\left(l^{2} n\right)$
5. Multiply $\mathbf{V}=\mathbf{W} \boldsymbol{V}$ and conclude $\mathbf{A} \approx \mathbf{U} \boldsymbol{\Sigma} \widetilde{\boldsymbol{V}}^{*} \mathcal{O}\left(l^{2} p\right)$

- This costs $\mathcal{O}\left(l(n+p)^{2}\right)$ instead of $n p l+\mathcal{O}\left((n+p) l^{2}\right)$ (forming $\mathbf{Q}^{*} \mathbf{A}$ and performing SVD on it)

Error bound

Lemma (Error bound for Row Extraction [6])

Let $\mathbf{A} \approx \mathbf{U} \boldsymbol{\Sigma} V^{*}$ be the output of the algorithm produced by a given \mathbf{Q} with an approximation error ϵ. Then the following error bound holds:

$$
\left\|\mathbf{A}-\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{*}\right\| \leq[\sqrt{1+4 k(n-k)}] \epsilon
$$

In other words, the bound is multiplied by a factor of $\sqrt{1+4 k(n-k)}$ if we avoid the multiplication $\mathbf{Q}^{*} \mathbf{A}$ and use row extraction technique.

Power method

Motivation

- Spectrum of A does not always decay fast.
- In these cases basic algorithm does not work well.
- This is the case e.g., when the matrix has noise.
- Therefore we apply ($\mathbf{A A}^{*}$) several times to reduce the relative weight of smaller singular values.

Power method

Algorithm: Power method

1. Draw a random matrix $\boldsymbol{\Omega} \in \mathbb{R}^{p \times \ell}$
2. Form the multiplication $\mathbf{Y}=\left(\mathbf{A A}^{*}\right)^{q} \mathbf{A} \boldsymbol{\Omega}$
3. Find the orthogonal \mathbf{Q} that spans the range of \mathbf{Y} (e.g. using Gram-Schmidt)

Cost of random projections: $(2 q+1) n p \ell+\mathcal{O}\left(q \ell^{2} n\right)$ flops

Power method

Algorithm: Power method

1. Draw a random matrix $\boldsymbol{\Omega} \in \mathbb{R}^{p \times \ell}$
2. Form the multiplication $\mathbf{Y}=\left(\mathbf{A} \mathbf{A}^{*}\right)^{q} \mathbf{A} \boldsymbol{\Omega}$
3. Find the orthogonal \mathbf{Q} that spans the range of \mathbf{Y} (e.g. using Gram-Schmidt)

Cost of random projections: $(2 q+1) n p \ell+\mathcal{O}\left(q \ell^{2} n\right)$ flops

Practical considerations

- Usually $q=2$ or $q=3$ is sufficient
- $\boldsymbol{\Omega}$ is taken to be Gaussian, the other matrices do not work well
- We perform QR factorization at each step
- Apply A and \mathbf{A}^{*} alternatively instead of forming $\mathbf{A} \mathbf{A}^{*}$

Power method

Theorem (Power method [6])

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ with $n \geq p$ be the matrix that is randomly approximated using power method. Then the following holds:

$$
\mathbb{E}\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\|_{2} \leq\left(1+\frac{4 \sqrt{r+s}}{s-1} \sqrt{p}\right)^{1 /(2 q+1)} \sigma_{r+1}
$$

- When $q=0$, this is the original algorithm with $\mathbf{Y}=\mathbf{A} \boldsymbol{\Omega}$
- The extra factor can be made close to 1 by increasing the number of the passes, q, but this is at the expense of increasing the computational cost.

Column Selection Methods

Motivation

- So far we have considered linear combinations of the columns for reducing the dimensionality of a matrix (SVD)
- Another approach is to find a subset of columns that could well summarize action of the matrix
- This makes it easer to interpret for data analysts
- However this is combinatorially hard

Column Selection Methods

Motivation

- So far we have considered linear combinations of the columns for reducing the dimensionality of a matrix (SVD)
- Another approach is to find a subset of columns that could well summarize action of the matrix
- This makes it easer to interpret for data analysts
- However this is combinatorially hard

Problem (Column Subset Selection Problem)

Given a matrix $\mathbf{A} \in \mathbb{R}^{n \times p}$ and a positive integer r, pick r columns of \mathbf{A} to form a matrix $\mathbf{C} \in \mathbb{R}^{n \times r}$ such that the residual

$$
\left\|\mathbf{A}-\mathbf{P}_{\mathbf{C}} \mathbf{A}\right\|_{\xi}
$$

is minimized over all possible $\binom{n}{r}$ choices for the matrix \mathbf{C}. Here, $\mathbf{P}_{\mathbf{C}}=\mathbf{C} \mathbf{C}^{\dagger}$ denotes the projection onto the r-dimensional space spanned by the columns of \mathbf{C} and $\xi=2$ or F denotes the spectral norm or Frobenius norm. [1]

Column Selection Methods

Preliminary results

- Uniform sampling of the columns is a bad idea in theory and in practice
- When $\mathcal{O}\left(r \log (r) / \epsilon^{2}\right)$ columns are selected with probabilities proportional to Frobenius norm of columns of A, we have [3].

$$
\begin{gathered}
\left\|\mathbf{A}-\mathbf{P}_{\mathbf{C}_{r}} \mathbf{A}\right\|_{F} \leq\left\|\mathbf{A}-\mathbf{A}_{r}\right\|_{F}+\epsilon\|\mathbf{A}\|_{F} \\
\left\|\mathbf{A}-\mathbf{P}_{\mathbf{C}_{r}} \mathbf{A}\right\|_{2} \leq\left\|\mathbf{A}-\mathbf{A}_{r}\right\|_{2}+\epsilon\|\mathbf{A}\|_{F}
\end{gathered}
$$

with high probability. \mathbf{A}_{r} and \mathbf{C}_{r} are the best rank- r approximations to the matrices \mathbf{A} and \mathbf{C} respectively. ($\mathbf{P}_{\mathbf{X}}=\mathbf{X X} \mathbf{X}^{\dagger}$ is the projection to the column space of X.)

Column Selection Methods

An improved random sampling [4]

Given a singular value decomposition, $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{*}$

- Compute the importance sampling probabilities (leverage scores)

$$
p_{i}=\frac{1}{r}\left\|\mathbf{V}_{r}^{*^{(i)}}\right\|_{2}^{2}
$$

where $\mathbf{V}_{r}^{*^{(i)}}$ is the $i^{\text {th }}$ row of matrix \mathbf{V}_{r}^{*} that contains the top r right-singular vectors.

- Sample $c=\mathcal{O}\left(r \log (1 / \delta) r / \epsilon^{2}\right)$ columns of \mathbf{A} according to this distribution to form a submatrix $\mathbb{C} \in \mathbb{R}^{n \times c}$
- Then with probability at least $1-\delta$ the following holds

$$
\left\|\mathbf{A}-\mathbf{P}_{\mathbf{C}_{r}} \mathbf{A}\right\|_{2} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{r}\right\|_{F}
$$

- However approximating the leverage scores is expensive: $\mathcal{O}(n p \log n)$

Plenty of methods, what to choose ?

Low rank approximation considerations

- If interpretability is important, then go for column subset selection
- But this might be expensive due to cost of calculating leverage scores
- Otherwise use random projections
- The choice of specific random projection depends on the scenarios below.

Plenty of methods, what to choose ?

Scenario-1: Matrix A fits in the core memory

- Use a structured random matrix (e.g. SRFT) for Step-1 of low rank approximation using $\mathcal{O}\left(n p \log \ell+\ell^{2} n\right)$ flops
- For Step-2, use the row extraction technique at the cost of $\mathcal{O}\left(\ell^{2}(n+p)\right)$
- The total cost is $\mathcal{O}\left(n p \log l+\ell^{2}(n+p)\right)$
- If the row extraction results in a large error, use the direct method of forming $\mathbf{Q}^{*} \mathbf{A}$ at Step-2 which costs $\mathcal{O}(n p \ell)$

Plenty of methods, what to choose ?

Scenario-2: Matrix A can be rapidly applied to vectors

- This is the case for sparse matrices or structured matrices such as Toeplitz
- The cost of matrix-vector multiplication could be as low as $C_{\text {mult }}=\mathcal{O}(n+p)$
- Step- 1 to find \mathbf{Q} costs $\ell C_{\text {mult }}+\mathcal{O}\left(\ell^{2} n\right)$
- In Step-2, form the $\mathbf{Q}^{*} \mathbf{A}$ as it is now cheap: $\ell C_{\text {mult }}+\mathcal{O}\left(\ell^{2}(n+p)\right)$
- In total it costs $2 \ell C_{\text {mult }}+\mathcal{O}\left(\ell^{2}(n+p)\right)$
- If the singular values of \mathbf{A} decays slowly, use power method with q iterations which costs $(2 q+2) \ell C_{\text {mult }}+\mathcal{O}\left(\ell^{2}(n+p)\right)$
- Krylov methods would also benefit from this speed-up, but they are less robust and not as parallelizable as these random methods.

Plenty of methods, what to choose ?

Scenario-3: Matrix A stored in a slow memory

- The computational time is dominated by the memory access, therefore classical methods which require at least r pass over the matrix is not practical.
- One can use any of the randomized algorithms above according to the needs: e.g. if the decay of singular values is slow, use power method, as a small q would be sufficient.

Outline

- Stochastic quasi-Newton Method

Recommended reading materials

1. R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method for large-scale optimization, SIAM. J. Optim., vol. 26, pp. 1008-1031, 2016.
2. R. M. Gower, D. Goldfarb, and P. Richtárik, Stochastic block BFGS: Squeezing more curvature out of data, arXiv:1603.09649v1, 2016.

Overview

$$
f^{*}=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})
$$

- The starting point of many optimization algorithms is to use the following approximation of the objective f at iteration \mathbf{x}^{k} :

$$
Q\left(\mathbf{x}, \mathbf{x}^{k}\right):=f\left(\mathbf{x}^{k}\right)+\left\langle\mathbf{x}-\mathbf{x}^{k}, g\left(\mathbf{x}^{k}\right)\right\rangle+(1 / 2)\left\langle\mathbf{x}-\mathbf{x}^{k}, \boldsymbol{H}_{k}\left(\mathbf{x}^{k}\right)\left(\mathbf{x}-\mathbf{x}^{k}\right)\right\rangle
$$

whose minimum is achieved at

$$
\overline{\mathbf{x}}^{k}=\mathbf{x}^{k}-\left[\boldsymbol{H}_{k}\left(\mathbf{x}^{k}\right)\right]^{-1} g\left(\mathbf{x}^{k}\right)
$$

- Next iteration update:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha_{k}\left(\overline{\mathbf{x}}^{k}-\mathbf{x}^{k}\right)
$$

- Step-size α_{k} can be updated by line-search.

	Newton	Quasi-Newton	Gradient	SG
g	∇f	∇f	∇f	$\mathbb{E}\left[g\left(\mathbf{x}^{k}\right)\right]=\nabla f\left(\mathbf{x}^{k}\right)$
\boldsymbol{H}_{k}	$\nabla^{2} f$	$\approx \nabla^{2} f$	$L_{k} \mathbb{I}$	$L_{k} \mathbb{I}$
rate	quadratic	superlinear	linear	$\mathcal{O}(1 / k)$

Table: Taxonomy of some methods.

Curvature

$$
f\left(x^{k}\right)+\left\langle x-x^{k}, \nabla f\left(x^{k}\right)\right\rangle+\frac{\Lambda}{2}\left\|x-x^{k}\right\|^{2}
$$

$$
\lambda \mathbb{I} \preceq \nabla^{2} f(\boldsymbol{x}) \preceq \Lambda \mathbb{I} \quad / \quad f(\boldsymbol{x})
$$

$$
f\left(\boldsymbol{x}^{k}\right)+\left\langle\boldsymbol{x}-\boldsymbol{x}^{k}, \nabla f\left(\boldsymbol{x}^{k}\right)\right\rangle+\frac{\lambda}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{k}\right\|^{2}
$$

- $\nabla^{2} f$ controls the curvature of f^{\prime} 's graph. Information on $\nabla^{2} f$ leads $Q\left(\mathbf{x}, \mathbf{x}^{k}\right)$ to be better approximation of f.
$\bullet\left(\forall \mathbf{x} \in \mathbb{R}^{p}\right) \nabla^{2} f(\mathbf{x}) \succeq \mu \mathbb{I}$ (i.e., $\left(\forall \mathbf{y} \in \mathbb{R}^{p}\right) \mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y} \geq \mu\|\mathbf{y}\|^{2} \Rightarrow f$ is μ-strongly convex.

Newton method

Newton algorithm

1. Initialize $\mathbf{x}^{0} \in \mathbb{R}^{p}$.
2. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\left[\nabla^{2} f\left(\mathbf{x}^{k}\right)\right]^{-1} \nabla f\left(\mathbf{x}^{k}\right) .
$$

- What curvature helps (yellow - gradient direction; violet - gradient direction modified by Hessian):

- Quadratic convergence!

Quasi-Newton methods

- High computation cost if the Hessian is dense!
- Idea: Approximate the Hessian to avoid second derivative computations using first-order information.

Quasi-Newton scheme

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$, set $\boldsymbol{H}_{0}=\mathbb{I}$, and compute $f\left(\mathbf{x}^{0}\right)$ and $\nabla f\left(\mathbf{x}^{0}\right)$.
2. For $k=0,1, \ldots$ perform:

2a. Compute $\mathbf{v}^{k}=\boldsymbol{H}_{k} \nabla f\left(\mathbf{x}^{k}\right)$.
2b. Compute $\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \mathbf{v}^{k}$.
2c. Compute $f\left(\mathbf{x}^{k+1}\right)$ and $\nabla f\left(\mathbf{x}^{k+1}\right)$.
2d. Update \boldsymbol{H}_{k+1} based on $f\left(\mathbf{x}^{k+1}\right)$ and $\nabla f\left(\mathbf{x}^{k+1}\right)$.

Question

How to update \boldsymbol{H}_{k} ?

- For $f(\mathbf{x})=(1 / 2) \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\boldsymbol{b}^{T} \mathbf{x}+c: \nabla f(\mathbf{x})=\mathbf{A} \mathbf{x}+\boldsymbol{b}$ and $\nabla^{2} f=A$. Hence

$$
\nabla f(\mathbf{x})-\nabla f(\mathbf{y})=\mathbf{A}(\mathbf{x}-\mathbf{y})=\nabla^{2} f(\mathbf{z})(\mathbf{x}-\mathbf{y})
$$

- Update rule:

$$
\boldsymbol{H}_{k+1}\left(\nabla f\left(\mathbf{x}^{k+1}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right)=\mathbf{x}^{k+1}-\mathbf{x}^{k} .
$$

Quasi-Newton method: some update rules

Example $\left(\mathbf{v}^{k}=\nabla f\left(\mathrm{x}^{k+1}\right)-\nabla f\left(\mathrm{x}^{k}\right), \mathbf{y}^{k}=\mathrm{x}^{k+1}-\mathrm{x}^{k}\right)$

- Rank-one correction:

$$
\boldsymbol{H}_{k+1}=\boldsymbol{H}_{k}+\frac{\left(\mathbf{y}^{k}-\boldsymbol{H}_{k} \mathbf{v}^{k}\right)\left(\mathbf{y}^{k}-\boldsymbol{H}_{k} \mathbf{v}^{k}\right)^{T}}{\left(\mathbf{y}^{k}-\boldsymbol{H}_{k} \mathbf{v}^{k}\right)^{T} \mathbf{v}^{k}}
$$

- Davidon-Fletcher-Powell:

$$
\boldsymbol{H}_{k+1}=\boldsymbol{H}_{k}+\frac{\mathbf{y}^{k}\left(\mathbf{y}^{k}\right)^{T}}{\left(\mathbf{v}^{k}\right)^{T} \mathbf{y}^{k}}-\frac{\boldsymbol{H}_{k} \mathbf{v}^{k}\left(\mathbf{v}^{k}\right)^{T} \boldsymbol{H}_{k}}{\left(\mathbf{v}^{k}\right)^{T} \boldsymbol{H}_{k} \mathbf{v}^{k}}
$$

- Broyden-Fletcher-Goldfarb-Shanno:

$$
\boldsymbol{H}_{k+1}=\boldsymbol{H}_{k}+\frac{\boldsymbol{H}_{k} \mathbf{v}^{k}\left(\mathbf{y}^{k}\right)^{T}+\mathbf{y}^{k}\left(\mathbf{v}^{k}\right)^{T} \boldsymbol{H}_{k}}{\left(\mathbf{v}^{k}\right)^{T} \boldsymbol{H}_{k} \mathbf{v}^{k}}-\beta_{k} \frac{\boldsymbol{H}_{k} \mathbf{v}^{k}\left(\mathbf{v}^{k}\right)^{T} \boldsymbol{H}_{k}}{\left(\mathbf{v}^{k}\right)^{T} \boldsymbol{H}_{k} \mathbf{v}^{k}},
$$

where

$$
\beta_{k}=1+\frac{\left(\mathbf{v}^{k}\right)^{T} \mathbf{y}^{k}}{\left(\mathbf{v}^{k}\right)^{T} \boldsymbol{H}_{k} \mathbf{v}^{k}}
$$

Stochastic approximation of Hessian

Problem

We consider the following problem

$$
f^{*}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(\mathbf{x})\right\}
$$

where $f_{i}, i=1, \ldots, n$, are twice continuously differentiable and their Hessians $\nabla^{2} f_{i}$ are positive definite.

- In the high dimensional regime where both n and p are large: evaluation of the gradient and Hessian can be computationally prohibitive.
- Idea: Use stochastic approximations:
- sub-sampled gradient;
- sub-sampled Hessian;
- sub-sampled approximation of Hessian.

Stochastic BFGS

Stochastic BFGS algorithm [2]

1. Set $t=-1$ and choose $L \in \mathbb{N}$ and $M \in \mathbb{N}$.
2. For $k=0,1, \ldots$ perform:

2a. Choose a sample \mathcal{S}.
2b. Calculate stochastic gradient $\nabla_{\mathcal{S}} f\left(\mathbf{x}^{k}\right)$.
2c. Update:

$$
\mathbf{x}^{k+1}= \begin{cases}\mathbf{x}^{k}-\alpha_{k} \nabla_{\mathcal{S}} f\left(\mathbf{x}^{k}\right), & \text { if } t<1 \\ \mathbf{x}^{k}-\alpha_{k} \boldsymbol{H}_{t} \nabla_{\mathcal{S}} f\left(\mathbf{x}^{k}\right), & \text { otherwise }\end{cases}
$$

2d. When $\bmod (k, L)=0$, perform:

$$
\text { 2d1. } t=t+1 \text {. }
$$

2d2. $\overline{\mathbf{x}}^{t}=\frac{1}{L} \sum_{j=k-L+1}^{k} \mathbf{x}^{j}$.
2d3. Choose a sample $\mathcal{T} \subset\{1, \ldots, n\}$.
2d4. Compute:

$$
\mathbf{y}^{t}=\overline{\mathbf{x}}^{t}-\overline{\mathbf{x}}^{t-1}, \quad \mathbf{v}^{t}=\nabla_{\mathcal{T}}^{2} f\left(\overline{\mathbf{x}}^{t}\right)\left(\overline{\mathbf{x}}^{t}-\overline{\mathbf{x}}^{t-1}\right) .
$$

2e. Update Hessian:
2e1. Compute: $\boldsymbol{H}=\left(\mathbf{y}^{t}\right)^{T} \mathbf{v}^{t} /\left(\left(\mathbf{v}^{t}\right)^{T} \mathbf{v}^{t}\right) \mathbb{I}$.
2e2. For $j=t-\min \{t, M\}+1, \ldots, t$ perform:
$\rho_{j}=1 /\left(\left(\mathbf{y}^{j}\right)^{T} \mathbf{v}^{j}\right), \quad \boldsymbol{H}_{t}=\left(\mathbb{I}-\rho_{j} \mathbf{y}^{j}\left(\mathbf{v}^{j}\right)^{T}\right) \boldsymbol{H}\left(\mathbb{I}-\rho_{j} \mathbf{v}^{j}\left(\mathbf{y}^{j}\right)^{T}\right)+\rho_{j} \mathbf{y}^{j}\left(\mathbf{y}^{j}\right)^{T}$.

- \boldsymbol{H}_{t} is result of applying M BFGS updates using the M most recent pairs $\left(\mathbf{y}^{t}, \mathbf{v}^{t}\right)$.

Stochastic BFGS (cont.)

- [2]: computational cost of stochastic BFGS could be much cheaper than SGD.
- One does not have to compute Hessian but the directional derivative along a vector

$$
\nabla_{\mathcal{S}}^{2} f(\mathbf{x})(\mathbf{v})=\left.\frac{d}{d \alpha} \nabla f_{\mathcal{S}}(\mathbf{x}+\alpha \mathbf{v})\right|_{\alpha=0}
$$

Theorem ($\mathcal{O}(1 / k)$ rate of stochastic BFGS [2])

Take $\alpha_{k}=\beta / k$ with $\beta>1 /\left(2 \mu_{1} \lambda\right)$ and suppose that:

1. $(\forall \mathcal{Q} \subset\{1, \ldots, n\})\left(\forall \mathbf{x} \in \mathbb{R}^{p}\right): \lambda \mathbb{I} \preceq \nabla_{\mathcal{Q}}^{2} f(\mathbf{x}) \preceq \Lambda \mathbb{I}$,

$$
\left(\nabla_{\mathcal{Q}}^{2} f(\mathbf{x})=\frac{1}{|\mathcal{W}|} \sum_{i \in \mathcal{Q}} \nabla^{2} f_{i}(\mathbf{x})\right)
$$

2. $\mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right] \leq \gamma^{2}$.

Then

1. There exists $\left(\mu_{1}, \mu_{2}\right)$ such that $\mu_{1} \mathbb{I} \preceq \boldsymbol{H}_{k} \preceq \mu_{2} \mathbb{I}$.
2. The following holds:

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}\right)-f^{*}\right] \leq Q(\beta) / k
$$

where

$$
Q(\beta)=\max \left\{\frac{\Lambda \mu_{2}^{2} \beta^{2} \gamma^{2}}{2\left(2 \mu_{1} \lambda \beta-1\right)}, f\left(\mathbf{x}^{0}\right)-f^{*}\right\} .
$$

- The convergence rate does not depend on condition number of problem (i.e., Λ / λ).

Numerical experiment (from [2])

- Problem:

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}-\frac{1}{n} \sum_{i=1}^{n} y_{i} \log \left(c\left(\mathbf{x} ; \mathbf{x}_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-c\left(\mathbf{x} ; \mathbf{x}_{i}\right)\right)
$$

where $c\left(\mathbf{x} ; \mathbf{x}_{i}\right)=1 /\left(1+\exp \left(-\mathbf{x}_{i}^{T} \mathbf{x}\right)\right)$ and $y_{i} \in\{0,1\}$.

- $\nabla f(\mathbf{x})=\left(c\left(\mathbf{x} ; \mathbf{x}_{i}\right)-y_{i}\right) \mathbf{x}_{i} ; \quad \nabla^{2} f(\mathbf{x})(\mathbf{v})=c\left(\mathbf{x} ; \mathbf{x}_{i}\right)\left(1-c\left(\mathbf{x} ; \mathbf{x}_{i}\right)\right)\left(\mathbf{x}_{i}^{T} \mathbf{v}\right) \mathbf{x}_{i}$.

After stochastic BFGS

- Stochastic BFGS: the rate $\mathcal{O}(1 / k)$ is similar to that of SG.
- Newton: quadratic; Quasi-Newton: superlinear!
- Could one obtain linear rate?
- Yes! with sub-sampled Hessian.
- Small sub-sampled Hessian: cost of Newton method is not much larger than the cost of gradient evaluation.
- Large sub-sampled Hessian: more curvature information.
- Challenge: achieve the right balance.

Sub-sampled Hessian

Hessian sub-sampling Newton algorithm [10]
1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}, \beta \in(0,1)$ and $\hat{\alpha} \geq 1$ and set sample size s.
2. For $k=0,1, \ldots$ perform:
2a. Select $\mathcal{S} \subset\{1, \ldots, n\}$ of size s, compute \mathcal{S}-sub-sampled Hessian $\nabla_{\mathcal{S}}^{2} f\left(\mathbf{x}^{k}\right)$.
2b. Compute $\boldsymbol{v}^{k}=-\left[\nabla_{\mathcal{S}}^{2} f\left(\mathbf{x}^{k}\right)\right]^{-1} \nabla f\left(\mathbf{x}^{k}\right)$ and solve
$\alpha_{k}=\arg \max \alpha$ s.t. $\alpha \leq \hat{\alpha}$ and $f\left(\mathbf{x}^{k}+\alpha \boldsymbol{v}^{k}\right) \leq f\left(\mathbf{x}^{k}\right)+\alpha \beta\left(\boldsymbol{v}^{k}\right)^{T} \nabla f\left(\mathbf{x}^{k}\right)$.
2c. Update
$\qquad \mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha_{k} \boldsymbol{v}^{k}$.

- \mathcal{S}-sub-sampled Hessian:

$$
\nabla_{\mathcal{S}}^{2} f(\mathbf{x}):=\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \nabla^{2} f_{i}(\mathbf{x})
$$

Convergence

Theorem (Linear rate convergence [10])

Suppose that $0 \preceq \nabla^{2} f_{i}(\mathbf{x}) \preceq \Lambda_{i} \mathbb{I}$ and $\lambda \mathbb{I} \preceq \nabla^{2} f(\mathbf{x}) \preceq \Lambda \mathbb{I}$ for every $\mathbf{x} \in \mathbb{R}^{p}$. Given $\varepsilon \in(0,1), \delta \in(0,1)$, and $\mathbf{x} \in \mathbb{R}^{p}$ and suppose that

$$
|\mathcal{S}| \geq \frac{2 \kappa_{1} \ln (p / \delta)}{\varepsilon^{2}}
$$

With probability $1-\delta$, one has

$$
f\left(\mathbf{x}^{k+1}\right)-f^{*} \leq\left(1-\rho_{k}\right)\left(f\left(\mathbf{x}^{k}\right)-f^{*}\right),
$$

where $\rho_{k}=\frac{2 \alpha_{k} \beta}{\tilde{\kappa}}$. Furthermore,

$$
\alpha_{k} \geq \frac{2(1-\beta)(1-\varepsilon)}{\kappa} .
$$

- $\kappa=\Lambda / \lambda$ and $\tilde{\kappa}= \begin{cases}\kappa_{1}, & \text { if } \mathcal{S} \text { is drawn with replacement, } \\ \kappa_{|\mathcal{S}|}, & \text { if } \mathcal{S} \text { is drawn without replacement. }\end{cases}$
(Here, given $q \in[1, n]: \hat{\Lambda}_{q}$ is the average of q largests Λ_{i} and $\kappa_{q}=\hat{\Lambda}_{q} / \lambda$).
- By choosing suitable β and ε, ρ_{k} can be smaller than the condition number $\rho=\Lambda / \lambda$ of F (recall that convergence rate of GD is $1-\rho$).

Combining Hessian sub-sampling and gradient sub-sampling

Hessian sub-sampling Newton algorithm [10]

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}, \beta \in(0,1)$ and $\hat{\alpha} \geq 1$ and set sample sizes s and t.
2. For $k=0,1, \ldots$ perform:

2a. Select sample sets $\mathcal{S} \subset\{1, \ldots, n\}$ of size s and $\mathcal{T} \subset\{1, \ldots, n\}$ of size t.
2b. Compute $\nabla_{\mathcal{S}}^{2} f\left(\mathbf{x}^{k}\right)$ and $\nabla_{\mathcal{T}} f\left(\mathbf{x}^{k}\right)$.
2c. Compute $\boldsymbol{v}^{k}=-\left[\nabla_{\mathcal{S}}^{2} f\left(\mathbf{x}^{k}\right)\right]^{-1} \nabla_{\mathcal{T}} f\left(\mathbf{x}^{k}\right)$ and solve

$$
\alpha_{k}=\arg \max \alpha \quad \text { s.t. } \quad \alpha \leq \hat{\alpha} \text { and } f\left(\mathbf{x}^{k}+\alpha \boldsymbol{v}^{k}\right) \leq f\left(\mathbf{x}^{k}\right)+\alpha \beta\left(\boldsymbol{v}^{k}\right)^{T} \nabla_{\mathcal{T}} f\left(\mathbf{x}^{k}\right)
$$

2d. Update

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha_{k} \boldsymbol{v}^{k}
$$

- \mathcal{T}-sub-sampled gradient:

$$
\nabla_{\mathcal{T}} f(\mathbf{x})=\frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} \nabla f_{i}(\mathbf{x})
$$

- \mathcal{S}-sub-sampled Hessian:

$$
\nabla_{\mathcal{S}}^{2} f(\mathbf{x}):=\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \nabla^{2} f_{i}(\mathbf{x})
$$

Convergence

Theorem (Linear rate convergence [10])

Suppose that $0 \preceq \nabla^{2} f_{i}(\mathbf{x}) \preceq \Lambda_{i} \mathbb{I}$ and $\lambda \mathbb{I} \preceq \nabla^{2} f(\mathbf{x}) \preceq \Lambda \mathbb{I}$ for every $\mathbf{x} \in \mathbb{R}^{p}$. Given $\varepsilon_{1} \in(0,1), \varepsilon_{2} \in(0,1 / 2), \delta \in(0,1)$, and $\mathbf{x} \in \mathbb{R}^{p}$ and suppose that

$$
|\mathcal{S}| \geq \frac{2 \kappa_{1} \ln (p / \delta)}{\varepsilon_{1}^{2}} \text { and }|\mathcal{T}| \geq \frac{\max _{1 \leq i \leq n} \sup _{k \in \mathbb{N}}\left\|\nabla f_{i}\left(\mathbf{x}^{k}\right)\right\|^{2}}{\varepsilon_{2}^{2}}\left(1+\sqrt{8 \ln \left(\frac{1}{\delta}\right)}\right)^{2} .
$$

With probability $1-\delta$, one has

$$
f\left(\mathbf{x}^{k+1}\right)-f^{*} \leq\left(1-\rho_{k}\right)\left(f\left(\mathbf{x}^{k}\right)-f^{*}\right)
$$

where $\rho_{k}=\frac{8 \alpha_{k} \beta}{9 \tilde{k}}$. Furthermore,

$$
\alpha_{k} \geq \frac{(1-\beta)\left(1-\varepsilon_{1}\right)}{\kappa} .
$$

- $\kappa=\Lambda / \lambda$ and $\tilde{\kappa}= \begin{cases}\kappa_{1}, & \text { if } \mathcal{S} \text { is drawn with replacement, } \\ \kappa_{|\mathcal{S}|}, & \text { if } \mathcal{S} \text { is drawn without replacement. }\end{cases}$
(Here, given $q \in[1, n]: \hat{\Lambda}_{q}$ is the average of q largests Λ_{i} and $\kappa_{q}=\hat{\Lambda}_{q} / \lambda$)

Stochastic block BFGS

$$
f^{*}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(\mathbf{x})\right\}
$$

- The sub-sampled Hessian with respect to the sample set $\mathcal{S} \subset\{1, \ldots, n\}$: $\nabla_{\mathcal{S}}^{2} f(\mathbf{x})=\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \nabla^{2} f_{i}(\mathbf{x})$, can be computationally expensive when the dimension p is large.
- Recent idea: Using Hessian-vector product $\nabla_{\mathcal{S}}^{2} f(\mathbf{x})(\mathbf{v})$ where \mathbf{v} is a suitable selected vector and combining with variance reduction.
- Update rule: normally $\boldsymbol{H}_{t} \nabla_{\mathcal{S}}^{2} f\left(\mathbf{x}^{t}\right)=\mathbb{I}$ but to reduce computational cost

$$
\boldsymbol{H}_{t} \nabla_{\mathcal{S}}^{2} f\left(\mathbf{x}^{t}\right) \boldsymbol{D}_{t}=\boldsymbol{D}_{t}
$$

where $\boldsymbol{D}_{t} \in \mathbb{R}^{d \times q},(q \ll p)$ is a random matrix. Hence

$$
\boldsymbol{H}_{t}=\boldsymbol{D}_{t} \Delta_{t} \boldsymbol{D}_{t}^{T}+\left(\mathbb{I}-\boldsymbol{D}_{t} \Delta_{t} \boldsymbol{Y}_{t}^{T}\right) \boldsymbol{H}_{t-1}\left(\mathbb{I}-\boldsymbol{Y}_{t} \Delta_{t} \boldsymbol{D}_{t}\right), \Delta_{t}=\left(\boldsymbol{D}_{t}^{T} \boldsymbol{Y}_{t}\right)^{-1}, \quad \boldsymbol{Y}_{t}=\nabla_{\mathcal{S}}^{2} f\left(\mathbf{x}^{t}\right) \boldsymbol{D}_{t} .
$$

- d large: can not store \boldsymbol{H}_{t} and hence, store M block triples

$$
\left(\boldsymbol{H}_{i}, \boldsymbol{Y}_{i}, \Delta_{i}\right)_{t+1-M \leq i \leq t}
$$

and using $\boldsymbol{V}_{t}=\mathbb{I}-\boldsymbol{D}_{t} \Delta_{t} \boldsymbol{Y}_{t}^{T}$ and
$\boldsymbol{H}_{t}=\boldsymbol{V}_{t} \ldots \boldsymbol{H}_{t+1-M} \boldsymbol{H}_{t-M} \boldsymbol{V}_{t+1-M}^{T} \ldots \boldsymbol{V}_{t}^{T}+\sum_{i=t}^{t+1-M} \boldsymbol{V}_{t} \ldots \boldsymbol{V}_{i+1} \boldsymbol{D}_{i} \Delta_{i} \boldsymbol{D}_{i}^{T} \boldsymbol{V}_{i+1}^{T} \ldots \boldsymbol{V}_{t}^{T}$

Stochastic block BFGS

Stochastic block BFGS algorithm [5]

Inputs: $\mathbf{x}^{0} \in \mathbb{R}^{p}$, stepsize $\eta>0, s=$ subsample size, $q=$ sample action size, $m=$ size of the inner loop, $M=$ memory parameter.

1. Initiate: $H_{-1}=\mathbb{I}$.
2. For $k=0,1,2, \ldots$ perform:

2a. Compute the full gradient $\nabla f\left(\mathbf{x}^{k}\right)$.
2b. Set $\mathbf{y}^{0}=\mathbf{x}^{k}$.
2c. For $t=0, \ldots, m-1$, perform:
2c1. Sample \mathcal{S}_{t} and \mathcal{T}_{t} in $\{1, \ldots, n\}$, independently.
2c2. Compute: $\mathbf{v}^{t}=\nabla_{\mathcal{S}_{t}} f\left(\mathbf{y}^{t}\right)-\nabla_{\mathcal{S}_{t}} f\left(\mathbf{x}^{k}\right)+\nabla f\left(\mathbf{x}^{k}\right)$.
2c3. Form $\mathbf{A}_{t} \in \mathbb{R}^{p \times p}$ so that $\operatorname{rank}\left(\mathbf{A}_{t}\right)=q$.
2c4. Compute $\boldsymbol{Y}_{t}=\nabla_{\mathcal{T}_{t}}^{2} f\left(\mathbf{y}^{t}\right) \mathbf{A}_{t}$.
2c5. Compute $\mathbf{A}_{t}^{T} \boldsymbol{Y}_{t}$ and its Cholesky factorization to obtain $\Delta_{t}=\left(\mathbf{A}_{t}^{T} \boldsymbol{Y}_{t}\right)^{-1}$.
2c6. For $i=1, \ldots, t$, perform:

2c7. Set $\mathbf{y}^{t+1}=\mathbf{y}^{t}-\eta \mathbf{v}^{t}$.
2d. Update $\mathbf{x}^{k+1}=\mathbf{y}^{m}$.

Stochastic block BFGS: Convergence

$$
f^{*}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(\mathbf{x})\right\}
$$

Theorem (Linear rate convergence of stochastic block BFGS [5])

Suppose that

$$
(\forall \mathcal{T} \subset\{1, \ldots, n\})\left(\forall \mathbf{x} \in \mathbb{R}^{p}\right) \quad \lambda \mathbb{I} \preceq \nabla_{\mathcal{T}}^{2} f(\mathbf{x}) \preceq \Lambda \mathbb{I},
$$

where $\nabla_{\mathcal{T}}^{2} f(\mathbf{x})=\frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} \nabla^{2} f_{i}(\mathbf{x})$. Then:

1. There exist (γ, Γ) such that $\gamma \mathbb{I} \preceq \boldsymbol{H}_{t} \preceq \Gamma \mathbb{I}$.
2. Suppose that $\eta<\gamma \lambda /\left(2 \Gamma^{2} \Lambda^{2}\right)$ and that

$$
m \geq \frac{1}{2 \eta\left(\gamma \lambda-\eta \Gamma^{2} \Lambda(2 \Lambda-\lambda)\right)}
$$

Then

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}\right)-f^{*}\right] \leq \rho^{k}\left(f\left(\mathbf{x}^{0}\right)-f^{*}\right)
$$

where

$$
\rho=\frac{1 /(2 m \eta)+\eta \Gamma^{2} \Lambda(\Lambda-\lambda)}{\gamma \lambda-\eta \Gamma^{2} \Lambda^{2}}<1
$$

References I

[1] Christos Boutsidis, Michael W Mahoney, and Petros Drineas.
An improved approximation algorithm for the column subset selection problem.
In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 968-977. Society for Industrial and Applied Mathematics, 2009.
[2] R. H. Byrd, Hansen, S. L., Jorge Nocedal, and Y. Singer.
A stochastic quasi-newton method for large-scale optimization.
SIAM J. Optim., 26:1008-1031, 2016.
[3] Petros Drineas, Ravi Kannan, and Michael W Mahoney.
Fast monte carlo algorithms for matrices ii: Computing a low-rank approximation to a matrix.
SIAM Journal on Computing, 36(1):158-183, 2006.
[4] Petros Drineas, Michael W Mahoney, and S Muthukrishnan.
Relative-error cur matrix decompositions.
SIAM Journal on Matrix Analysis and Applications, 30(2):844-881, 2008.
[5] R. M. Gower, D. Goldfarb, and P. Richtárik.
Stochastic block BFGS: Squeezing more curvature out of data.
http://arxiv.org/abs/1603.09649v1, 2016.

References II

[6] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp.
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM review, 53(2):217-288, 2011.
[7] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert.
Randomized algorithms for the low-rank approximation of matrices.
Proceedings of the National Academy of Sciences, 104(51):20167-20172, 2007.
[8] Per-Gunnar Martinsson, Vladimir Rockhlin, and Mark Tygert. A randomized algorithm for the approximation of matrices.
Technical report, DTIC Document, 2006.
[9] C-T Pan.
On the existence and computation of rank-revealing lu factorizations.
Linear Algebra and its Applications, 316(1):199-222, 2000.
[10] F. Roosta-Khorasani and M. W. Mahoney.
Sub-sampled newton methods I: Globally convergent algorithms.
http://arxiv.org/abs/1601.04737v3, 2016.

