# Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2014)











#### License Information for Mathematics of Data Slides

- This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
  - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
  - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- ► Share Alike
  - ► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

#### Outline

### Today

- 1. Convex constrained optimization and motivating examples
- 2. Optimality condition
- 3. Conjugate functions
- 4. Monotone inclusion and monotone mixed variational inequality formulations
- 5. Chambolle-Pock's primal-dual method
- 6. Primal-dual hybrid gradient method
- 7. Splitting methods
- 8. Model-based excessive gap primal-dual method
- Next week
  - 1. Disciplined convex programming

#### Motivation

#### Motivation

- Primal-dual convex optimization methods are powerful for solving saddle point problems as well as constrained convex optimization problems.
- This lecture aims at presenting some emerging primal-dual methods which have been recently used to solve many practical problems in signal/image processing, machine learning and statistics.
- This lecture is a continuation of Lecture 7.

## Motivating example: image denoising via anisotropicTV-norm

We consider an image denoising problem with anisotropic total variation norm:

• Given a noisy image  $\mathbf{b} \in \mathbb{R}^{m \times n}$ . The goal is to recover a clean image from  $\mathbf{b}$  using anisotropic total variation norm.

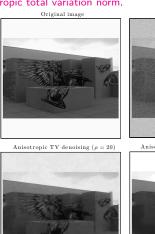




## Motivating example: image denoising via anisotropicTV-norm

We consider an image denoising problem with anisotropic total variation norm:

Figure Given a noisy image  $\mathbf{b} \in \mathbb{R}^{m \times n}$ . The goal is to recover a clean image from  $\mathbf{b}$  using anisotropic total variation norm.







## Motivating example: image denoising via anisotropicTV-norm

We consider an image denoising problem with anisotropic total variation norm:

- Figure Given a noisy image  $\mathbf{b} \in \mathbb{R}^{m \times n}$ . The goal is to recover a clean image from  $\mathbf{b}$  using anisotropic total variation norm.
- ▶ This problem can be formulated as a convex optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^{m \times n}} \frac{1}{2} \|\mathbf{x} - \mathbf{b}\|_F^2 + \rho \|\mathbf{D}\mathbf{x}\|_1, \tag{1}$$

where  $\rho > 0$  is a regularization parameter and  ${\bf D}$  is a given matrix representing the total variation of  ${\bf x}$ .

There are different ways to reformulate problem (1), for example:

• Since  $\|\mathbf{z}\|_1 = \max_{\|\mathbf{u}\|_{\infty} \le 1} \mathbf{u}^T \mathbf{z}$ , we can reformulate (1) as a saddle point problem:

$$\min_{\mathbf{x} \in \mathbb{R}^{m \times n}} \max_{\|\mathbf{u}\|_{\infty} \le 1} \left\{ \frac{1}{2} \|\mathbf{x} - \mathbf{b}\|_F^2 + \rho \mathbf{u}^T \mathbf{D} \mathbf{x} \right\},\,$$

▶ We can also reformulate (1) as a constrained convex minimization problem:

$$\begin{aligned} & \min_{\mathbf{x}, \mathbf{r}} & & \Big\{ \frac{1}{2} \|\mathbf{x} - \mathbf{b}\|_F^2 + \rho \|\mathbf{r}\|_1 \Big\}, \\ & \mathsf{s.t.} & & \mathbf{D} \mathbf{x} - \mathbf{r} = 0. \end{aligned}$$

In this lecture, we present several emerging methods to solve both the saddle point formulation and the constrained formulation of (1).

## Mathematical form of constrained convex optimization

Constrained convex optimization setting

$$f^* := \begin{cases} \min_{\mathbf{x} \in \mathbb{R}^p} & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}. \end{cases}$$
 (2)

- $f \in \mathcal{F}(\mathbb{R}^p)$  is a proper, closed and convex function (see Lecture 2).
- $\mathbf{A} \in \mathbb{R}^{n \times p}$  is full-row rank (n < p),  $\mathbf{b} \in \mathbb{R}^n$ .

We can incorporating constraints  $\mathbf{x} \in \mathcal{X}$  for a given closed and convex set  $\mathcal{X}$  via its indicator function  $\iota_{\mathcal{X}}$ , i.e.:

$$\boxed{f(\mathbf{x}) \leftarrow f(\mathbf{x}) + \iota_{\mathcal{X}}(\mathbf{x})} \quad \text{where} \quad \iota_{\mathcal{X}}(\mathbf{x}) := \begin{cases} 0 & \text{if } \mathbf{x} \in \mathcal{X} \\ +\infty & \text{otherwise.} \end{cases}}$$

## Mathematical form of constrained convex optimization

## Constrained convex optimization setting

$$f^* := \begin{cases} \min_{\mathbf{x} \in \mathbb{R}^p} & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}. \end{cases}$$
 (2)

- $f \in \mathcal{F}(\mathbb{R}^p)$  is a proper, closed and convex function (see Lecture 2).
- ▶  $\mathbf{A} \in \mathbb{R}^{n \times p}$  is full-row rank (n < p),  $\mathbf{b} \in \mathbb{R}^n$ .

We can incorporating constraints  $\mathbf{x} \in \mathcal{X}$  for a given closed and convex set  $\mathcal{X}$  via its indicator function  $\iota_{\mathcal{X}}$ , i.e.:

$$\boxed{f(\mathbf{x}) \leftarrow f(\mathbf{x}) + \iota_{\mathcal{X}}(\mathbf{x})} \quad \text{where} \quad \iota_{\mathcal{X}}(\mathbf{x}) := \begin{cases} 0 & \text{if } \mathbf{x} \in \mathcal{X} \\ +\infty & \text{otherwise.} \end{cases}}$$

#### Common structures

As in Lecture 7, methods presented in this lecture also rely on the two common structures:

- Decomposability of f.
- ► Tractable proximity of f.

## Structures of constrained convex optimization problems

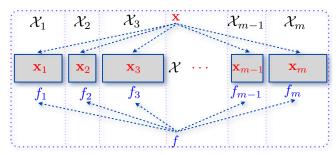
### Decomposable structure

The function f can be decomposed as

$$f(\mathbf{x}) := \sum_{i=1}^{m} f_i(\mathbf{x}_i)$$
 (3)

where  $m\geq 1$  is the number of components,  $\mathbf{x}_i$  is a sub-vector (component) of  $\mathbf{x}$ ,  $f_i:\mathbb{R}^{p_i}\to\mathbb{R}\cup\{+\infty\}$  is convex and  $\sum_{i=1}^m p_i=p$ .

**Special case:** m=2, which already covers many important instances (see Lecture 7).



## Structures of constrained convex optimization problems

## Tractable proximity

Each component  $f_i$  has a "tractably proximal operator" (i = 1, ..., m), i.e.:

$$\operatorname{prox}_{f_i}(\mathbf{x}_i) := \underset{\mathbf{z}_i \in \mathbb{R}^{p_i}}{\operatorname{argmin}} \left\{ f_i(\mathbf{z}_i) + (1/2) \|\mathbf{z}_i - \mathbf{x}_i\|_2^2 \right\}$$
(4)

can be solved "efficiently":

- ▶ (4) has a closed form solution (with low computational cost)
- ▶ (4) can be solved in polynomial time.

# Example (Tractable proximity functions)

- One-variable functions
  - ▶ Smooth functions, e.g.,  $f(x) := x 2\log(1+x)$
  - Nonsmooth functions, e.g., f(x) := |x|
- lacksquare Separable functions, e.g.,  $f(\mathbf{x}) := \sum_{i=1}^p \|\mathbf{x}_i\|_2$ , where  $\mathbf{x} := (\mathbf{x}_1^T, \cdots, \mathbf{x}_p^T)^T$ .
- ▶ The indicator function  $\iota$  of boxes, cones ( $\mathbb{R}^p_+$ ,  $\mathbb{S}^p_+$  and Lorentz cone) and simplex.
- More examples can be found in Lectures 4 and 5.

#### Outline

### Today

- 1. Convex constrained optimization and motivating examples
- 2. Optimality condition
- 3. Conjugate functions
- 4. Monotone inclusion and monotone mixed variational inequality formulations
- 5. Chambolle-Pock's primal-dual method
- 6. Primal-dual hybrid gradient method
- 7. Splitting methods
- 8. Model-based excessive gap primal-dual method
- Next week
  - 1. Disciplined convex programming

#### Solutions and solution set

## Optimal solutions and optimal solution set

We define the feasible set of (2): (cf.  $f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \{f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}\}$ ) as:

$$\mathcal{D} := \{ \mathbf{x} \in \mathbb{R}^p : \mathbf{A}\mathbf{x} = \mathbf{b} \}.$$

A feasible point  $\mathbf{x}^{\star} \in \mathcal{D}$  is called a globally optimal solution (or solution) of (2) if

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \ \forall \mathbf{x} \in \mathcal{D}.$$

All solutions of (2) forms the solution set  $\mathcal{X}^*$  of (2).

- The solution set X\* is closed and convex.
- Numerical solution methods often try to find an approximation  $\mathbf{x}_{\epsilon}^{\star}$  of one solution  $\mathbf{x}^{\star} \in \mathcal{X}^{\star}$  in the following sense:

#### Solutions and solution set

## Optimal solutions and optimal solution set

We define the feasible set of (2): (cf.  $f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \{f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}\}$ ) as:

$$\mathcal{D} := \{ \mathbf{x} \in \mathbb{R}^p : \mathbf{A}\mathbf{x} = \mathbf{b} \}.$$

A feasible point  $\mathbf{x}^{\star} \in \mathcal{D}$  is called a globally optimal solution (or solution) of (2) if

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \ \forall \mathbf{x} \in \mathcal{D}.$$

All solutions of (2) forms the solution set  $\mathcal{X}^*$  of (2).

- The solution set X\* is closed and convex.
- Numerical solution methods often try to find an approximation  $\mathbf{x}_{\epsilon}^{\star}$  of one solution  $\mathbf{x}^{\star} \in \mathcal{X}^{\star}$  in the following sense:

## Approximate solution

Given a tolerance  $\epsilon \geq 0$ , a point  $\mathbf{x}_{\epsilon}^{\star} \in \mathbb{R}^{p}$  is called an  $\epsilon$ -solution of (2) if

$$\begin{cases} |f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star}| \leq \epsilon & \text{(objective residual),} \\ \|\mathbf{A}\mathbf{x}_{\epsilon}^{\star} - \mathbf{b}\| \leq \epsilon & \text{(feasibility gap).} \end{cases}$$

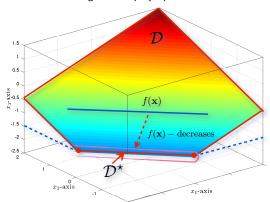
Remark: we can use different tolerances for the objective residual and feasibility gap.

### Example: Feasible set and solution set

Consider a constrained convex problem:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^3} & & \{f(\mathbf{x}) := x_3\}, \\ & \text{s.t.} & & 2x_3 - x_1 - x_2 = -1, \\ & & & \mathbf{x} \in \mathcal{X} := [-2, 2] \times [-2, 2] \times [-1.5, 1.5]. \end{aligned}$$

The feasible set  $\mathcal{D} := \{\mathbf{x} \in \mathbb{R}^3 : 2x_3 - x_1 - x_2 = -1, \mathbf{x} \in \mathcal{X}\}$  and the solution set  $\mathcal{D}^*$  of this problem are plotted in the figure below.  $\mathcal{D}^*$  is in fact a segment (many solutions), which is the lowest edge of the polytope  $\mathcal{D}$ .



## **Optimality condition**

## Lagrange function

$$\mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \lambda^T (\mathbf{A}\mathbf{x} - \mathbf{b}).$$

Here,  $\lambda \in \mathbb{R}^n$  is the vector of Lagrange multipliers (or dual variables).

### Optimality condition

The optimality condition of (2) can be written as

$$\begin{cases} 0 \in \mathbf{A}^T \lambda^* + \partial f(\mathbf{x}^*), \\ 0 = \mathbf{A}\mathbf{x}^* - \mathbf{b}. \end{cases}$$
 (5)

Here the subdifferential of f at  $\mathbf{x}^{\star}$  is defined as (see Lecture 2):

$$\partial f(\mathbf{x}^*) := \{ \mathbf{z} \in \mathbb{R}^p : f(\mathbf{y}) \ge f(\mathbf{x}^*) + \mathbf{z}^T (\mathbf{y} - \mathbf{x}^*), \ \forall \mathbf{y} \in \mathbb{R}^p \}.$$

- ► The condition (5) is the KKT (Karush-Kuhn-Tucker) condition.
- Any point  $(\mathbf{x}^*, \lambda^*)$  satisfying (5) is called a KKT point.
- $\mathbf{x}^*$  is called a stationary point and  $\lambda^*$  is the corresponding multipliers.

## Conjugation of functions

- Duality is a central concept in optimization, especially in convex optimization.
- We review the notion of Fenchel's conjugate function and its basic properties which will be used to define the dual problem.
- We limit our definition to the class of convex functions  $f \in \mathcal{F}(\mathbb{R}^p)$ .

#### Definition

Let  $\mathcal Q$  be a predefined Euclidean space and  $Q^*$  be its dual space. Given a proper, closed and convex function  $f:\mathcal Q\to\mathbb R\cup\{+\infty\}$ , the function  $f^*:\mathcal Q^*\to\mathbb R\cup\{+\infty\}$  such that

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathsf{dom}(f)} \left\{ \mathbf{y}^T \mathbf{x} - f(\mathbf{x}) \right\}$$

is called the Fenchel conjugate (or conjugate) of f.

## **Conjugation of functions**

- Duality is a central concept in optimization, especially in convex optimization.
- We review the notion of Fenchel's conjugate function and its basic properties which will be used to define the dual problem.
- We limit our definition to the class of convex functions  $f \in \mathcal{F}(\mathbb{R}^p)$ .

#### Definition

Let  $\mathcal Q$  be a predefined Euclidean space and  $Q^*$  be its dual space. Given a proper, closed and convex function  $f:\mathcal Q\to\mathbb R\cup\{+\infty\}$ , the function  $f^*:\mathcal Q^*\to\mathbb R\cup\{+\infty\}$  such that

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathsf{dom}(f)} \left\{ \mathbf{y}^T \mathbf{x} - f(\mathbf{x}) \right\}$$

is called the Fenchel conjugate (or conjugate) of f.

- $f^*$  is a convex and lower, semicontinuous function by construction (as the supremum of affine functions of y).
- ▶ The conjugate of the conjugate of a convex function f is ... the same function f; i.e.,  $f^{**} = f$  for  $f \in \mathcal{F}(Q)$ .

# Two basic properties of the function and its conjugation

# Lemma (Fenchel-Young inequality (Property 1))

Let  $f: \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$  and  $f^*: \mathcal{Q}^* \to \mathbb{R} \cup \{+\infty\}$  be a function and its conjugation; here  $\mathcal{Q}^*$  be the dual space of  $\mathcal{Q}$ . Then, the following inequality holds true:

$$f(\mathbf{x}) + f^*(\mathbf{y}) \ge \mathbf{x}^T \mathbf{y}, \quad \forall \mathbf{x} \in Q, \mathbf{y} \in Q^*.$$

## Two basic properties of the function and its conjugation

# Lemma (Fenchel-Young inequality (Property 1))

Let  $f: \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$  and  $f^*: \mathcal{Q}^* \to \mathbb{R} \cup \{+\infty\}$  be a function and its conjugation; here  $\mathcal{Q}^*$  be the dual space of  $\mathcal{Q}$ . Then, the following inequality holds true:

$$f(\mathbf{x}) + f^*(\mathbf{y}) \ge \mathbf{x}^T \mathbf{y}, \quad \forall \mathbf{x} \in Q, \mathbf{y} \in Q^*.$$

- Since  $f^*$  is proper, closed and convex, its subdifferential  $\partial f^*$  exists for any  $\mathbf y$  in the relative interior of its domain.
- For  $f \in \mathcal{F}(\mathcal{Q})$ , if the subdifferential of f and  $f^*$  exists, then we have the following relation:

# Lemma (Subgradient property (Property 2))

Let  $y \in \partial f(x)$  for some  $x \in dom(f)$ . Then  $y \in dom(f^*)$  and vise versa. Moreover, we have

$$\mathbf{u} \in \partial f(\mathbf{x}) \Leftrightarrow \mathbf{x} \in \partial f^*(\mathbf{u}).$$

## **Conjugation of functions**

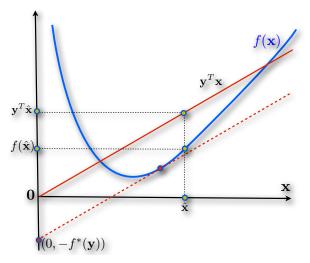


Figure: The conjugate function  $f^*(y)$  is the maximum gap between the linear function  $x^Ty$  (red line) and f(x), as shown in dashed line.

## **Example 1: Convex quadratic function**

# Example (Strictly convex quadratic function)

- ▶ Given a symmetric positive definite matrix  $\Phi$ ,  $(\Phi \succ 0)$  and a vector  $\mathbf{b}$ .
- Let  $f(\mathbf{x}) := \frac{1}{2}\mathbf{x}^T\mathbf{\Phi}\mathbf{x} + \mathbf{b}^T\mathbf{x}$  be a quadratic function for  $\mathbf{x} \in \mathbb{R}^p$ .
- It is clear that  $dom(f) = \mathbf{R}^p$ .
- ▶ By definition,

$$f^*(\mathbf{y}) := \sup_{\mathbf{x} \in \mathbb{R}^p} \left\{ \mathbf{y}^T \mathbf{x} - \frac{1}{2} \mathbf{x}^T \mathbf{\Phi} \mathbf{x} - \mathbf{b}^T \mathbf{x} \right\}.$$

- Fince this is an unconstrained convex problem, the maximum is attained when  $\Phi \mathbf{x}^* + \mathbf{b} = \mathbf{y}$ , which leads to  $\mathbf{x}^* = \Phi^{-1}(\mathbf{y} \mathbf{b})$ .
- ▶ Hence, we have

$$f^*(\mathbf{y}) = \frac{1}{2}(\mathbf{y} - \mathbf{b})^T \mathbf{\Phi}^{-1}(\mathbf{y} - \mathbf{b}) = \frac{1}{2} \mathbf{y}^T \mathbf{\Phi}^{-1} \mathbf{y} - (\mathbf{\Phi}^{-1} \mathbf{b})^T \mathbf{y} + \frac{1}{2} \mathbf{b}^T \mathbf{\Phi}^{-1} \mathbf{b},$$

which is again a convex quadratic function with  $dom(f^*) = \mathbb{R}^p$ .

Fince  $\nabla f(\mathbf{x}) = \Phi \mathbf{x} + \mathbf{b} := \mathbf{u}$  and  $\nabla f^*(\mathbf{y}) = \Phi^{-1}(\mathbf{y} - \mathbf{b})$ , we can see that  $\mathbf{x} = \Phi^{-1}(\mathbf{u} - \mathbf{b}) = \nabla f^*(\mathbf{u})$ .

## **Example 2: Log-determinant**

# Example (Log-determinant function)

- ▶ Let  $f(\mathbf{X}) := -\log \det(\mathbf{X})$ , where  $dom(f) \equiv \mathbb{S}_{++}^p$ .
- By definition, we have

$$f^*(\mathbf{Y}) = \sup_{\mathbf{X} \in \mathsf{dom}(f)} \left\{ \mathsf{tr}(\mathbf{Y}\mathbf{X}) + \log \det(\mathbf{X}) \right\},$$

- One can show that the above is unbounded above unless  $\mathbf{Y} \prec 0$ .
- ▶ To find the maximum of the above problem, we have:

$$\nabla \left( \mathsf{tr}(\mathbf{Y}\mathbf{X}) + \log \det(\mathbf{X}) \right) = 0 \Rightarrow \mathbf{X}^{\star} = -\mathbf{Y}^{-1},$$

and thus,

$$f^*(\mathbf{Y}) = -\log \det (-\mathbf{Y}) - p$$
, with  $\operatorname{dom}(f^*) = -\mathbb{S}_{++}^p$ .

► Since  $\nabla f(\mathbf{X}) = -\mathbf{X}^{-1} := \mathbf{U}$  and  $\nabla f^*(\mathbf{Y}) = -\mathbf{Y}^{-1}$ , we have  $\mathbf{X} = -\mathbf{U}^{-1} = \nabla f^*(\mathbf{U})$ .

# Conjugation of functions

# Example

| $f(\mathbf{x})$                             | $dom(f)/dom(f^*)$               | $f^*(\mathbf{y})$                                                                    |
|---------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------|
| $f(\alpha \mathbf{x})$ (where $a \neq 0$ )  | $\mathcal{Q}/\mathcal{Q}^*$     | $f^*\left(\frac{\mathbf{y}}{\alpha}\right)$                                          |
| $f(\mathbf{x} + \beta)$                     | $\mathcal{Q}/\mathcal{Q}^*$     | $f^*(\mathbf{y}) - \langle \beta, \mathbf{y} \rangle$                                |
| $\alpha f(\mathbf{x})$ (where $\alpha>0$ )  | $\mathcal{Q}/\mathcal{Q}^*$     | $\alpha f^* \left( \frac{\mathbf{y}}{\alpha} \right)$                                |
| $\frac{\ \mathbf{x}\ ^T}{r}$ (where $r>1$ ) | $\mathbb{R}^p/\mathbb{R}^p$     | $rac{\ \mathbf{y}\ ^q}{q}$ (where $rac{1}{r}+rac{1}{q}=1$ )                       |
| $-\log(x)$                                  | $\mathbb{R}_{++}/\mathbb{R}_{}$ | $-(1+\log(y))$                                                                       |
| $e^x$                                       | $\mathbb{R}/\mathbb{R}_+$       | $\begin{cases} y \log(y) - y & \text{if } y > 0 \\ 0 & \text{if } y = 0 \end{cases}$ |

Table: Legendre transforms (conjugations) for many common functions as well as a few useful properties.

## **Dual problem**

- In Lecture 7 we have used the Lagrange duality theory to present methods of multipliers.
- In this lecture, we use the Frenchel duality theory to define the dual problem formulation and develop primal-dual methods for solving (2).

### **Dual problem**

- In Lecture 7 we have used the Lagrange duality theory to present methods of multipliers.
- In this lecture, we use the Frenchel duality theory to define the dual problem formulation and develop primal-dual methods for solving (2).

### **Dual formulation**

From the optimality condition (5):  $\begin{cases} 0 \in \mathbf{A}^T \lambda^* + \partial f(\mathbf{x}^*) \\ 0 = \mathbf{A}\mathbf{x}^* - \mathbf{b} \end{cases}$  we have

$$-\mathbf{A}^T \lambda^* \in \partial f(\mathbf{x}^*).$$

- ▶ The last expression is equivalent to  $\mathbf{x}^* \in \partial f^*(-\mathbf{A}^T \lambda^*)$  (see Property 2).
- ► Since  $\mathbf{A}\mathbf{x}^* \mathbf{b} = 0$ , using  $\mathbf{x}^* \in \partial f^*(-\mathbf{A}^T \lambda^*)$ , we have

$$0 \in \mathbf{A}\partial f^*(-\mathbf{A}^T \lambda^*) - \mathbf{b}.$$
 (6)

(6) is exactly the optimality condition of

$$\max_{\lambda \in \mathbb{R}^n} \left\{ -f^*(-\mathbf{A}^T \lambda) - \mathbf{b}^T \lambda \right\}.$$
 (7)

(7) is still a convex problem and equivalent to  $\min_{\lambda} \{f^*(-\mathbf{A}^T\lambda) + \mathbf{b}^T\lambda\}$ .

## Decomposable structure

## Dual problem of the decomposable objective function

If  $f(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i)$  then

$$\max_{\lambda \in \mathbb{R}^n} \left\{ -\sum_{i=1}^m f_i^*(\mathbf{A}_i^T \lambda) - \mathbf{b}^T \lambda \right\}.$$

where  $\mathbf{A} \equiv [\mathbf{A}_1, \cdots, \mathbf{A}_m]$ .

Note: The evaluation of the dual objective function and its gradient can be computed in parallel.

## Decomposable structure

## Dual problem of the decomposable objective function

If  $f(\mathbf{x}) := \sum_{i=1}^m f_i(\mathbf{x}_i)$  then

$$\max_{\lambda \in \mathbb{R}^n} \left\{ -\sum_{i=1}^m f_i^*(\mathbf{A}_i^T \lambda) - \mathbf{b}^T \lambda \right\}.$$

where  $\mathbf{A} \equiv [\mathbf{A}_1, \cdots, \mathbf{A}_m]$ .

**Note:** The evaluation of the dual objective function and its gradient can be computed in parallel.

## Dual formulation of empirical risk minimization

An empirical risk minimization problem can be expressed as

$$\min_{\mathbf{z} \in \mathbb{R}^n} \sum_{i=1}^m f_i(\mathbf{A}_i^T \mathbf{z} + \mathbf{b}_i).$$

Its Fenchel dual problem therefore can be written as:

$$\min_{\mathbf{x} \in \mathbb{R}^p} \sum_{i=1}^m \left\{ f_i^*(\mathbf{x}_i) - \mathbf{b}_i^T \mathbf{x}_i \right\} \text{ s.t. } \sum_{i=1}^m \mathbf{A}_i \mathbf{x}_i = 0.$$

# Example: Dual problem of the basis pursuit

## Basis pursuit

Consider the following basis pursuit problem:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^p} & \left\{ f(\mathbf{x}) := \|\mathbf{x}\|_1 = \sum_{i=1}^p |x_i| \right\} \\ & \text{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}. \end{aligned}$$

# Example: Dual problem of the basis pursuit

## Basis pursuit

Consider the following basis pursuit problem:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^p} & \left\{ f(\mathbf{x}) := \|\mathbf{x}\|_1 = \sum_{i=1}^p |x_i| \right\} \\ & \text{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}. \end{aligned}$$

### Dual problem of basis pursuit

For The Fenchel dual function  $f^*(\mathbf{u}) := \sup_{\mathbf{x} \in \mathbb{R}^p} \{\mathbf{u}^T\mathbf{x} - \|\mathbf{x}\|_1\}$  becomes

$$f^*(\mathbf{u}) = \iota_{\{\|\mathbf{u}\|_{\infty} \le 1\}}(\mathbf{u}) = \begin{cases} 0 & \text{if } \|\mathbf{u}\|_{\infty} \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$

▶ The dual problem

$$\max_{\lambda} \left\{ -\iota_{\{\|\mathbf{A}^T\lambda\|_{\infty} \leq 1\}} (-\mathbf{A}^T\lambda) - \mathbf{b}^T\lambda \right\}$$

Equivalent expression:

$$\min_{\lambda \in \mathbb{R}^n} \mathbf{b}^T \lambda \quad \text{s.t.} \quad \|\mathbf{A}^T \lambda\|_{\infty} \le 1.$$

## **Set-valued mappings**

In the previous slide, we have seen the subdifferential  $\partial f(\mathbf{x})$  of a convex function f at a given point  $\mathbf{x}$ :

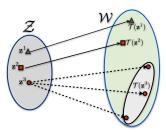
$$\partial f(\mathbf{x}) := \mathsf{set} \mathsf{\ of\ all\ subgradients\ of} \ f \mathsf{\ at\ } \mathbf{x}$$

**Example:** Subdifferential of  $|\mathbf{x}|$  in  $\mathbb{R}$ :

$$\mathcal{T}(\mathbf{x}) = \partial |\mathbf{x}| = \begin{cases} +1 & \text{if } x > 0 \text{ (single value)}, \\ -1 & \text{if } x < 0 \text{ (single value)}, \\ [-1,1] & \text{if } x = 0 \text{ (multiple values)}. \end{cases}$$

#### Set-valued mappings:

- For any convex set  $\mathcal{W}$ , we denote by  $2^{\mathcal{W}}$  the set of all subsets of  $\mathcal{W}$ .
- $ightharpoonup \mathcal{T}: \mathcal{Z} \rightrightarrows 2^{\mathcal{W}}$  is a set-valued mapping if for  $\mathbf{z} \in \mathcal{Z}$ ,  $\mathcal{T}(\mathbf{z})$  is a subset in  $\mathcal{W}$ .



Roughly speaking, a mapping that produces more than one output values for at least one input is called a set-valued mapping.

For a set-valued mapping  $\mathcal{T}:\mathcal{Z}\rightrightarrows 2^{\mathcal{Z}}$ , we define

- ▶ The domain of  $\mathcal{T}$  as  $dom(\mathcal{T}) := \{\mathbf{z} \in \mathcal{Z} : \mathcal{T}(\mathbf{z}) \neq \emptyset\}.$
- ${\color{red} \blacktriangleright} \ \, \mathsf{The} \ \, \mathsf{graph} \ \, \mathsf{of} \ \, \mathcal{T} \ \, \mathsf{is} \ \, \mathsf{graph}(\mathcal{T}) := \{(\mathbf{z},\mathbf{v}) \ \, : \ \, \mathbf{v} \in \mathcal{T}(\mathbf{z}), \ \, \mathbf{z} \in \mathsf{dom}(\mathcal{T})\}.$

For a set-valued mapping  $\mathcal{T}: \mathcal{Z} \rightrightarrows 2^{\mathcal{Z}}$ , we define

- ▶ The domain of  $\mathcal{T}$  as  $dom(\mathcal{T}) := \{\mathbf{z} \in \mathcal{Z} : \mathcal{T}(\mathbf{z}) \neq \emptyset\}.$
- ▶ The graph of  $\mathcal{T}$  is graph( $\mathcal{T}$ ) := {( $\mathbf{z}, \mathbf{v}$ ) :  $\mathbf{v} \in \mathcal{T}(\mathbf{z}), \ \mathbf{z} \in \mathsf{dom}(\mathcal{T})$ }.

Monotonicity can be considered as an equivalent property of convexity acting on the differential  $\nabla f$  or subdifferential  $\partial f$  of the function instead of the function value.

For smooth and convex function, monotonicity of  $\nabla f$  means that

$$(\nabla f(\mathbf{x}) - \nabla f(\hat{\mathbf{x}}))^T(\mathbf{x} - \hat{\mathbf{x}}) \ge 0, \quad \forall \mathbf{x}, \hat{\mathbf{x}} \in \mathsf{dom}(f).$$

This inequality is the sum of  $f(\mathbf{x}) \geq f(\hat{\mathbf{x}}) + \nabla f(\hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}})$  and  $f(\hat{\mathbf{x}}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\hat{\mathbf{x}} - \mathbf{x})$ .

For a set-valued mapping  $\mathcal{T}:\mathcal{Z}\rightrightarrows 2^{\mathcal{Z}}$ , we define

- ▶ The domain of  $\mathcal{T}$  as  $dom(\mathcal{T}) := \{\mathbf{z} \in \mathcal{Z} : \mathcal{T}(\mathbf{z}) \neq \emptyset\}.$
- ▶ The graph of  $\mathcal{T}$  is graph( $\mathcal{T}$ ) := {( $\mathbf{z}, \mathbf{v}$ ) :  $\mathbf{v} \in \mathcal{T}(\mathbf{z}), \mathbf{z} \in \mathsf{dom}(\mathcal{T})$ }.

Monotonicity can be considered as an equivalent property of convexity acting on the differential  $\nabla f$  or subdifferential  $\partial f$  of the function instead of the function value.

For smooth and convex function, monotonicity of  $\nabla f$  means that

$$(\nabla f(\mathbf{x}) - \nabla f(\hat{\mathbf{x}}))^T(\mathbf{x} - \hat{\mathbf{x}}) \ge 0, \quad \forall \mathbf{x}, \hat{\mathbf{x}} \in \mathsf{dom}(f).$$

This inequality is the sum of  $f(\mathbf{x}) \geq f(\hat{\mathbf{x}}) + \nabla f(\hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}})$  and  $f(\hat{\mathbf{x}}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\hat{\mathbf{x}} - \mathbf{x})$ .

### Monotonicity

Given a convex set  $\mathcal{Z}$  and a set-valued mapping  $\mathcal{T}: \mathcal{Z} \rightrightarrows 2^{\mathcal{Z}}$ .

•  $\mathcal{T}$  is called  $\mu$ -strongly monotone on  $\mathcal{Z}$  if for any  $\mathbf{z}$  and  $\hat{\mathbf{z}}$  in  $\mathcal{Z}$ :

$$(\mathbf{u} - \hat{\mathbf{u}})^T (\mathbf{z} - \hat{\mathbf{z}}) \ge \mu \|\mathbf{z} - \hat{\mathbf{z}}\|^2, \ \forall \mathbf{u} \in \mathcal{T}(\mathbf{z}), \hat{\mathbf{u}} \in \mathcal{T}(\hat{\mathbf{z}}).$$

- If  $\mu = 0$ , then we say that  $\mathcal{T}$  is monotone.
- If  $\mu > 0$ , then we say that  $\mathcal{T}$  is strongly monotone with the parameter  $\mu$ .

For a set-valued mapping  $\mathcal{T}:\mathcal{Z}\rightrightarrows 2^{\mathcal{Z}}$ , we define

- ▶ The domain of  $\mathcal{T}$  as  $dom(\mathcal{T}) := \{\mathbf{z} \in \mathcal{Z} : \mathcal{T}(\mathbf{z}) \neq \emptyset\}.$
- ▶ The graph of  $\mathcal{T}$  is graph( $\mathcal{T}$ ) := {( $\mathbf{z}, \mathbf{v}$ ) :  $\mathbf{v} \in \mathcal{T}(\mathbf{z}), \mathbf{z} \in \mathsf{dom}(\mathcal{T})$ }.

Monotonicity can be considered as an equivalent property of convexity acting on the differential  $\nabla f$  or subdifferential  $\partial f$  of the function instead of the function value.

For smooth and convex function, monotonicity of  $\nabla f$  means that

$$(\nabla f(\mathbf{x}) - \nabla f(\hat{\mathbf{x}}))^T (\mathbf{x} - \hat{\mathbf{x}}) \ge 0, \quad \forall \mathbf{x}, \hat{\mathbf{x}} \in \mathsf{dom}(f).$$

This inequality is the sum of  $f(\mathbf{x}) \geq f(\hat{\mathbf{x}}) + \nabla f(\hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}})$  and  $f(\hat{\mathbf{x}}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\hat{\mathbf{x}} - \mathbf{x})$ .

### Monotonicity

Given a convex set  $\mathcal{Z}$  and a set-valued mapping  $\mathcal{T}: \mathcal{Z} \rightrightarrows 2^{\mathcal{Z}}$ .

•  $\mathcal{T}$  is called  $\mu$ -strongly monotone on  $\mathcal{Z}$  if for any  $\mathbf{z}$  and  $\hat{\mathbf{z}}$  in  $\mathcal{Z}$ :

$$(\mathbf{u} - \hat{\mathbf{u}})^T (\mathbf{z} - \hat{\mathbf{z}}) \ge \mu \|\mathbf{z} - \hat{\mathbf{z}}\|^2, \ \forall \mathbf{u} \in \mathcal{T}(\mathbf{z}), \hat{\mathbf{u}} \in \mathcal{T}(\hat{\mathbf{z}}).$$

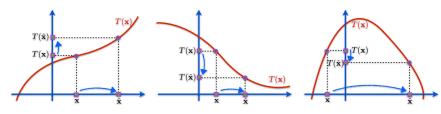
- If  $\mu = 0$ , then we say that  $\mathcal{T}$  is monotone.
- If  $\mu > 0$ , then we say that  $\mathcal{T}$  is strongly monotone with the parameter  $\mu$ .

If  $\mathcal T$  is single-valued, then the condition reduces to

$$(\mathbf{z} - \hat{\mathbf{z}})^T (\mathcal{T}(\mathbf{z}) - \mathcal{T}(\hat{\mathbf{z}})) \ge \mu \|\mathbf{z} - \hat{\mathbf{z}}\|^2, \quad \forall \ \mathbf{z}, \hat{\mathbf{z}} \in \mathcal{Z}.$$

### Monotone function vs nonmonotone functions

$$(T(\hat{\mathbf{x}}) - T(\mathbf{x}))^T(\hat{\mathbf{x}} - \mathbf{x}) \ge 0 \quad (T(\hat{\mathbf{x}}) - T(\mathbf{x}))^T(\hat{\mathbf{x}} - \mathbf{x}) \le 0 \quad (T(\hat{\mathbf{x}}) - T(\mathbf{x}))^T(\hat{\mathbf{x}} - \mathbf{x}) \le 0$$



- Figure: Monotone function
  - increasing function -
- Nonmonotone function
- decreasing function

Nonmonotone function

# Maximal monotone operators

# Definition (Maximal monotonicity)

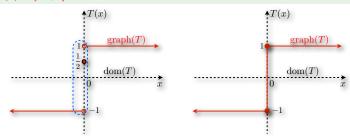
A set-valued mapping  $\mathcal{T}$  is called maximal monotone if:

- ▶ T is monotone
- ▶ There exists no other monotone mapping  $\tilde{\mathcal{T}}$  such that  $graph(\mathcal{T}) \subset graph(\tilde{\mathcal{T}})$ .

# Example (Visualization of a maximal monotone operator)

Consider the mapping  $\mathcal{T}$  from  $\mathbb{R}$  to  $2^{\mathbb{R}}$  as follows:

- Nonmaximal monotone (left figure): T(x) = 1 if x > 0, T(x) = -1 if x < 0 and T(x) = 1/2 if  $x = 0 \Rightarrow T$  is not maximal monotone.
- Maximal monotone (right figure): T(x) = 1 if x > 0, T(x) = -1 if x < 0 and T(x) = [-1, 1] if  $x = 0 \Rightarrow T$  is maximal monotone.



### Example of maximal monotone operators

- Affine mapping  $\mathcal{T}(\mathbf{z}) := \mathbf{H}\mathbf{z} + \mathbf{h}$  is maximal monotone if  $\mathbf{H}$  is positive semidefinite
  - We have

$$(\mathcal{T}(\mathbf{z}) - \mathcal{T}(\hat{\mathbf{z}}))^T (\mathbf{z} - \hat{\mathbf{z}}) = (\mathbf{z} - \hat{\mathbf{z}})^T \mathbf{H} (\mathbf{z} - \hat{\mathbf{z}}) \ge \sigma_{\min}(\mathbf{H}) \|\mathbf{z} - \hat{\mathbf{z}}\|^2,$$

where  $\mu = \sigma_{\min}(\mathbf{H})$  the smallest singular value of  $\mathbf{H}$ 

- T is strongly monotone if **H** is positive definite.
- Any nondecreasing function  $f : \mathbb{R} \to \mathbb{R}$  is monotone.

### **Example of maximal monotone operators**

- Affine mapping  $\mathcal{T}(\mathbf{z}) := \mathbf{H}\mathbf{z} + \mathbf{h}$  is maximal monotone if  $\mathbf{H}$  is positive semidefinite.
  - We have

$$\left(\mathcal{T}(\mathbf{z}) - \mathcal{T}(\hat{\mathbf{z}})\right)^{T}(\mathbf{z} - \hat{\mathbf{z}}) = \left(\mathbf{z} - \hat{\mathbf{z}}\right)^{T}\mathbf{H}(\mathbf{z} - \hat{\mathbf{z}}) \geq \sigma_{\min}(\mathbf{H})\|\mathbf{z} - \hat{\mathbf{z}}\|^{2},$$

where  $\mu = \sigma_{\min}(\mathbf{H})$  the smallest singular value of  $\mathbf{H}$ 

- ${}^{\blacktriangleright}\ {\cal T}$  is strongly monotone if H is positive definite.
- ▶ Any nondecreasing function  $f : \mathbb{R} \to \mathbb{R}$  is monotone.
- ▶ The subdifferential  $\partial f$  of a convex function f is maximal monotone.
  - ▶ By definition, any  $\mathbf{u} \in \partial f(\mathbf{x})$ , one has  $f(\hat{\mathbf{x}}) f(\mathbf{x}) \ge \mathbf{u}^T(\hat{\mathbf{x}} \mathbf{x})$  for any  $\hat{\mathbf{x}}$ .
  - ▶ Similarly,  $\hat{\mathbf{u}} \in \partial f(\hat{\mathbf{x}})$ , then  $f(\mathbf{x}) f(\hat{\mathbf{x}}) > \hat{\mathbf{u}}^T(\mathbf{x} \hat{\mathbf{x}})$ .
  - ▶ Summing up these inequalities, we obtain  $(\mathbf{u} \hat{\mathbf{u}})^T (\mathbf{x} \hat{\mathbf{x}}) \ge 0$ .
- ► If f is strongly convex with the convexity parameter  $\mu$ , then  $\partial f$  is strongly monotone with monotonicity parameter  $\mu$ .

### Example of maximal monotone operators

- Affine mapping  $\mathcal{T}(\mathbf{z}) := \mathbf{H}\mathbf{z} + \mathbf{h}$  is maximal monotone if  $\mathbf{H}$  is positive semidefinite
  - We have

$$(\mathcal{T}(\mathbf{z}) - \mathcal{T}(\hat{\mathbf{z}}))^T (\mathbf{z} - \hat{\mathbf{z}}) = (\mathbf{z} - \hat{\mathbf{z}})^T \mathbf{H} (\mathbf{z} - \hat{\mathbf{z}}) \ge \sigma_{\min}(\mathbf{H}) \|\mathbf{z} - \hat{\mathbf{z}}\|^2,$$

where  $\mu = \sigma_{\min}(\mathbf{H})$  the smallest singular value of  $\mathbf{H}$ 

- $ightharpoonup \mathcal{T}$  is strongly monotone if  $\mathbf{H}$  is positive definite.
- ▶ Any nondecreasing function  $f : \mathbb{R} \to \mathbb{R}$  is monotone.
- ▶ The subdifferential  $\partial f$  of a convex function f is maximal monotone.
  - ▶ By definition, any  $\mathbf{u} \in \partial f(\mathbf{x})$ , one has  $f(\hat{\mathbf{x}}) f(\mathbf{x}) \ge \mathbf{u}^T(\hat{\mathbf{x}} \mathbf{x})$  for any  $\hat{\mathbf{x}}$ .
  - ▶ Similarly,  $\hat{\mathbf{u}} \in \partial f(\hat{\mathbf{x}})$ , then  $f(\mathbf{x}) f(\hat{\mathbf{x}}) > \hat{\mathbf{u}}^T(\mathbf{x} \hat{\mathbf{x}})$ .
  - ▶ Summing up these inequalities, we obtain  $(\mathbf{u} \hat{\mathbf{u}})^T (\mathbf{x} \hat{\mathbf{x}}) \ge 0$ .
- If f is strongly convex with the convexity parameter  $\mu$ , then  $\partial f$  is strongly monotone with monotonicity parameter  $\mu$ .
- Fig. The normal cone  $\mathcal{N}_{\mathcal{X}}$  of a nonempty, closed and convex set  $\mathcal{X}$  is also a monotone mapping
  - Since it is the subdifferential of the indicator function ιχ, which is proper, closed and convex.

## Monotonicity of the normal cone

Given a nonempty, closed and convex set  $\mathcal{X}$ . The normal cone of  $\mathcal{X}$  at  $\mathbf{x}$  is defined as

$$\mathcal{N}_{\mathcal{X}}(\mathbf{x}) := \begin{cases} \{\mathbf{u} \ : \ \mathbf{u}^T(\mathbf{x} - \mathbf{y}) \geq 0, \ \forall \mathbf{y} \in \mathcal{X}\} & \text{if } \mathbf{x} \in \mathcal{X}, \\ \emptyset & \text{otherwise.} \end{cases}$$

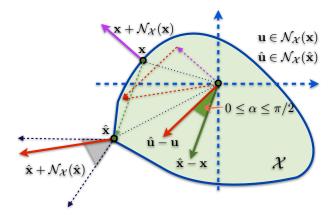
Then  $\mathcal{N}_{\mathcal{X}}(\cdot)$  is a set-valued mapping and is monotone.

## Monotonicity of the normal cone

Given a nonempty, closed and convex set  $\mathcal{X}$ . The normal cone of  $\mathcal{X}$  at  $\mathbf{x}$  is defined as

$$\mathcal{N}_{\mathcal{X}}(\mathbf{x}) := \begin{cases} \{\mathbf{u} \ : \ \mathbf{u}^T(\mathbf{x} - \mathbf{y}) \geq 0, \ \forall \mathbf{y} \in \mathcal{X}\} & \text{if } \mathbf{x} \in \mathcal{X}, \\ \emptyset & \text{otherwise}. \end{cases}$$

Then  $\mathcal{N}_{\mathcal{X}}(\cdot)$  is a set-valued mapping and is monotone.



# Resolvent and relation to prox-operator

# Resolvent of a maximal monotone mapping

Given a maximal monotone mapping  $\mathcal{T}$ .

▶ The resolvent  $\mathcal{J}_{\mathcal{T}}$  of  $\mathcal{T}$  at  $\mathbf{w}$  is defined as a solution of the inclusion w.r.t.  $\mathbf{z}$ :

$$\mathbf{w} \in \mathbf{z} + \mathcal{T}(\mathbf{z}).$$

lacktriangleright Conventionally, we can write  $\Big| \ \mathcal{J}_{\mathcal{T}}(\mathbf{w}) := (\mathbb{I} + \mathcal{T})^{-1}(\mathbf{w}) \ \Big|$ .

$$\mathbf{e} \mid \mathcal{J}_{\mathcal{T}}(\mathbf{w}) := (\mathbb{I} + \mathcal{T})^{-1}(\mathbf{w}) \mid$$

# Resolvent and relation to prox-operator

# Resolvent of a maximal monotone mapping

Given a maximal monotone mapping  $\mathcal{T}$ .

▶ The resolvent  $\mathcal{J}_{\mathcal{T}}$  of  $\mathcal{T}$  at w is defined as a solution of the inclusion w.r.t.  $\mathbf{z}$ :

$$\mathbf{w} \in \mathbf{z} + \mathcal{T}(\mathbf{z}).$$

ullet Conventionally, we can write  $egin{aligned} \mathcal{J}_{\mathcal{T}}(\mathbf{w}) := (\mathbb{I} + \mathcal{T})^{-1}(\mathbf{w}) \end{aligned}$ 

# Lemma (Well-definedness [12])

If T is maximal monotone then  $\mathcal{J}_{T}(\mathbf{w})$  is well-defined and single-valued.

**Remark:** If  $\mathcal{T}$  is not maximal monotone, then  $\mathcal{J}_{\mathcal{T}}(\mathbf{w})$  may not be well-defined.

# Resolvent and relation to prox-operator

# Resolvent of a maximal monotone mapping

Given a maximal monotone mapping  $\mathcal{T}$ .

▶ The **resolvent**  $\mathcal{J}_{\mathcal{T}}$  of  $\mathcal{T}$  at  $\mathbf{w}$  is defined as a solution of the *inclusion* w.r.t.  $\mathbf{z}$ :

$$\mathbf{w} \in \mathbf{z} + \mathcal{T}(\mathbf{z}).$$

ullet Conventionally, we can write  $egin{aligned} \mathcal{J}_{\mathcal{T}}(\mathbf{w}) := (\mathbb{I} + \mathcal{T})^{-1}(\mathbf{w}) \end{aligned}$ 

# Lemma (Well-definedness [12])

If T is maximal monotone then  $\mathcal{J}_T(\mathbf{w})$  is well-defined and single-valued.

**Remark:** If  $\mathcal{T}$  is not maximal monotone, then  $\mathcal{J}_{\mathcal{T}}(\mathbf{w})$  may not be well-defined.

### Relation to prox operator

Let  $\mathcal{T}:=\partial f$  the subdifferential of a proper, closed and convex function  $f\in\mathcal{F}(\mathbb{R}^p)$ . Then  $\mathcal{T}$  is maximal monotone and

$$\mathcal{J}_{\partial f}(\cdot) \equiv \operatorname{prox}_f(\cdot).$$

## **Example: Resolvent of the normal cone**

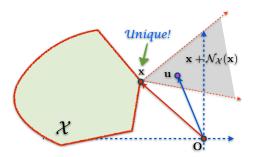
Consider the inclusion  $\mathbf{u} \in \mathbf{x} + \mathcal{N}_{\mathcal{X}}(\mathbf{x})$ . We can write  $\mathbf{u} - \mathbf{x} \in \mathcal{N}_{\mathcal{X}}(\mathbf{x})$ . By definition of  $\mathcal{N}_{\mathcal{X}}(\mathbf{x})$  we have  $(\mathbf{u} - \mathbf{x})^T \mathbf{x} \geq (\mathbf{u} - \mathbf{x})^T \mathbf{y}$  for all  $\mathbf{y} \in \mathcal{X}$ . Hence, we can write

$$(\mathbf{x} - \mathbf{u})^T (\mathbf{y} - \mathbf{u}) \ge \|\mathbf{x} - \mathbf{u}\|_2^2, \quad \forall \mathbf{y} \in \mathcal{X}.$$

This inequality shows that x is the solution of

$$\mathbf{x} = \operatorname*{arg\,min}_{\mathbf{y} \in \mathcal{X}} \|\mathbf{y} - \mathbf{u}\|_2^2$$

which is indeed the projection of  $\mathbf u$  onto  $\mathcal X$ , i.e.  $\mathcal S_{\mathcal N_{\mathcal X}(\cdot)}(\mathbf u)=\mathbf x=\pi_{\mathcal X}(\mathbf u).$ 



### From equations to inclusions

Before presenting methods for solving (2), we review a notion in convex analysis called inclusion. Let us motivate this concept by starting from a system of equations.

For a single-valued mapping  $J:\mathbb{R}^p \to \mathbb{R}^p$ , we consider the system of equations:

$$\mathbf{x} = J(\mathbf{x}). \tag{8}$$

### From equations to inclusions

Before presenting methods for solving (2), we review a notion in convex analysis called inclusion. Let us motivate this concept by starting from a system of equations.

For a single-valued mapping  $J: \mathbb{R}^p \to \mathbb{R}^p$ , we consider the system of equations:

$$\mathbf{x} = J(\mathbf{x}). \tag{8}$$

### Fixed point iteration scheme

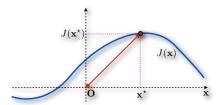
If the mapping J is contractive, i.e.,  $\exists \kappa \in [0,1)$  such that

$$||J(\mathbf{x}) - J(\hat{\mathbf{x}})|| < \kappa ||\mathbf{x} - \hat{\mathbf{x}}||, \quad \forall \mathbf{x}, \hat{\mathbf{x}},$$

then, by the Banach contraction mapping principle, the sequence  $\{\mathbf{x}^k\}$  generated by

$$\mathbf{x}^{k+1} := J(\mathbf{x}^k), \quad k > 0,$$

starting from  $\mathbf{x}^0$  converges to the unique fixed point  $\mathbf{x}^*$  of J, i.e.,  $\mathbf{x}^* = J(\mathbf{x}^*)$ .



### From equations ...

Now, given a single-valued mapping  $T: \mathbb{R}^p \to \mathbb{R}^p$ , let us consider a **general system of equations**:

$$T(\mathbf{x}) = 0, (9)$$

A simple way to transform (9) into (8), i.e.,  $\mathbf{x} = J(\mathbf{x})$ , is:

$$\mathbf{x} = \mathbf{x} - \gamma T(\mathbf{x}) := J_T^{\gamma}(\mathbf{x}), \quad \gamma \neq 0.$$

Then, we can generate a fixed-point scheme for solving (9) as

$$\mathbf{x}^{k+1} := J_T^{\gamma}(\mathbf{x}^k). \tag{10}$$

If  $J_T^{\gamma}$  is contractive for given  $\gamma \neq 0$ , then  $\{\mathbf{x}^k\}$  generated by (10) converges to a solution  $\mathbf{x}^{\star}$  of (8).

### From equations ...

Now, given a single-valued mapping  $T: \mathbb{R}^p \to \mathbb{R}^p$ , let us consider a general system of equations:

$$T(\mathbf{x}) = 0, (9)$$

A simple way to transform (9) into (8), i.e.,  $\mathbf{x} = J(\mathbf{x})$ , is:

$$\mathbf{x} = \mathbf{x} - \gamma T(\mathbf{x}) := J_T^{\gamma}(\mathbf{x}), \quad \gamma \neq 0.$$

Then, we can generate a fixed-point scheme for solving (9) as

$$\mathbf{x}^{k+1} := J_T^{\gamma}(\mathbf{x}^k). \tag{10}$$

If  $J_T^{\gamma}$  is contractive for given  $\gamma \neq 0$ , then  $\{\mathbf{x}^k\}$  generated by (10) converges to a solution  $\mathbf{x}^{\star}$  of (8).

## Example (Gradient method)

Let us consider the **optimality condition** of the unconstrained smooth convex problem:  $f^\star = \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$  as

$$\nabla f(\mathbf{x}) = 0.$$

Since  $\nabla f$  is single-valued, using the same trick as in the previous slide, we can write the fixed-point iterative scheme as

$$\mathbf{x}^{k+1} := \mathbf{x}^k - \gamma_k \nabla f(\mathbf{x}^k) = J_T^{\gamma_k}(\mathbf{x}).$$

If f is  $\mu$ -strongly convex with  $\mu > 0$  and  $\nabla f$  is  $L_f$ -Lipschitz continuous, then  $J_T^{\gamma}$  is contractive for any  $\gamma \in (0, 2\mu/L^2)$ .

# Proof of contractivity of $J_T^{\gamma}$

### Proof.

1. If f is smooth and strongly convex with the strong convexity parameter  $\mu$ . Then

$$(\nabla f(\mathbf{x}) - \nabla f(\hat{\mathbf{x}}))^T (\mathbf{x} - \hat{\mathbf{x}}) \ge \mu ||\mathbf{x} - \hat{\mathbf{x}}||^2, \ \forall \mathbf{x}, \hat{\mathbf{x}} \in \mathbb{R}^p.$$

2. Since  $J_T^{\gamma}(\mathbf{x}) := \mathbf{x} - \gamma \nabla f(\mathbf{x})$ , for any  $\mathbf{x}, \hat{\mathbf{x}} \in \mathbb{R}^p$ , we have

$$\begin{split} \|J_T^{\gamma}(\mathbf{x}) - J_T^{\gamma}(\hat{\mathbf{x}})\|^2 &= \|\mathbf{x} - \hat{\mathbf{x}} - \gamma(\nabla f(\mathbf{x}) - \nabla f(\hat{\mathbf{x}}))\|^2 \\ &= \|\mathbf{x} - \hat{\mathbf{x}}\|^2 - 2\gamma(\mathbf{x} - \hat{\mathbf{x}})^T(\nabla f(\mathbf{x}) - \nabla f(\hat{\mathbf{x}})) \\ &+ \gamma^2 \|\nabla f(\mathbf{x}) - \nabla f(\hat{\mathbf{x}})\|^2 \\ &\leq \|\mathbf{x} - \hat{\mathbf{x}}\|^2 - 2\gamma \underbrace{\mu \|\mathbf{x} - \hat{\mathbf{x}}\|^2}_{\text{strong convexity}} + \gamma^2 \underbrace{L^2 \|\mathbf{x} - \hat{\mathbf{x}}\|^2}_{\text{Lipschitz gradient}} \\ &\leq (1 - 2\gamma\mu + \gamma^2 L^2) \|\mathbf{x} - \hat{\mathbf{x}}\|^2. \end{split}$$

- 3. Hence,  $J_T^{\gamma}$  is contractive if  $1-2\gamma\mu+\gamma^2L^2\in[0,1)$ , which implies  $\gamma\in(0,2\mu/L^2)$ .
- 4. We note that  $1-2\gamma\mu+\gamma^2L^2$  is minimized if  $\gamma_\star=\mu/L^2$  and hence  $1-2\gamma\mu+\gamma^2L^2=1-\mu^2/L^2$ .

#### ... To inclusions

In the example presented previously, if we no longer assume f to be smooth, then the optimality condition turns out to be

$$0 \in \partial f(\mathbf{x}).$$

Since  $\partial f$  is a set-valued mapping, this condition is called an inclusion.

We can generalize this inclusion to any set-valued mapping  $\mathcal T$  from  $\mathbb R^p$  to  $2^{\mathbb R^p}$  as

$$0 \in \mathcal{T}(\mathbf{x}). \tag{11}$$

In general, solving the inclusion (11) is much more difficulty than solving the equation system  $T(\mathbf{x})=0$ . Methods for solving (11) on the one hand can inherit from methods of solving equations, but on the other hand, require new mathematical tools.

#### ... To inclusions

In the example presented previously, if we no longer assume f to be smooth, then the optimality condition turns out to be

$$0 \in \partial f(\mathbf{x}).$$

Since  $\partial f$  is a set-valued mapping, this condition is called an **inclusion**.

We can generalize this inclusion to any set-valued mapping  $\mathcal T$  from  $\mathbb R^p$  to  $2^{\mathbb R^p}$  as

$$0 \in \mathcal{T}(\mathbf{x}). \tag{11}$$

In general, solving the inclusion (11) is much more difficulty than solving the equation system  $T(\mathbf{x}) = 0$ . Methods for solving (11) on the one hand can inherit from methods of solving equations, but on the other hand, require new mathematical tools.

#### Additional mathematical tools

Since we are working with the possibly nonsmooth and constrained convex problem (2), where  $\mathcal{X}$  is not specified, its optimality condition will be reformulated as an inclusion. We will use additional mathematical tools from variational analysis such as:

- Monotone inclusions
- Monotone mixed variational inequalities
- Gap functions

# Mixed variational inequality (MVI) formulation

# Primal-dual mapping

We introduce a new primal-dual variable  $\mathbf{z} := (\mathbf{x}^T, \lambda^T)^T \in \mathbb{R}^{p+n}$  and two mappings:

$$M(\mathbf{z}) := \begin{bmatrix} \mathbf{A}^T \lambda \\ \mathbf{b} - \mathbf{A} \mathbf{x} \end{bmatrix}$$
 and  $\mathcal{T}(\mathbf{z}) := \left\{ \begin{pmatrix} \xi \\ 0^n \end{pmatrix} \in \mathbb{R}^{p+n} : \xi \in \partial f(\mathbf{x}) \right\}.$  (12)

- ▶ Then  $M: \mathbb{R}^{p+n} \to \mathbb{R}^{p+n}$  is a single-valued mapping (linear mapping).
- If f is not differentiable, then  $\mathcal{T}: \mathbb{R}^{p+n} \rightrightarrows 2^{\mathbb{R}^{p+n}}$  is a set-valued mapping.

# Mixed variational inequality (MVI) formulation

## Primal-dual mapping

We introduce a new primal-dual variable  $\mathbf{z}:=(\mathbf{x}^T,\lambda^T)^T\in\mathbb{R}^{p+n}$  and two mappings:

$$M(\mathbf{z}) := \begin{bmatrix} \mathbf{A}^T \lambda \\ \mathbf{b} - \mathbf{A} \mathbf{x} \end{bmatrix} \text{ and } \mathcal{T}(\mathbf{z}) := \left\{ \begin{pmatrix} \xi \\ 0^n \end{pmatrix} \in \mathbb{R}^{p+n} : \xi \in \partial f(\mathbf{x}) \right\}.$$
 (12)

- ▶ Then  $M: \mathbb{R}^{p+n} \to \mathbb{R}^{p+n}$  is a single-valued mapping (linear mapping).
- ▶ If f is not differentiable, then  $\mathcal{T}: \mathbb{R}^{p+n} \rightrightarrows 2^{\mathbb{R}^{p+n}}$  is a set-valued mapping.

#### Inclusion and MVI formulation

▶ The optimality condition (5) can be written as an inclusion:

$$0 \in \mathcal{P}(\mathbf{z}) := M(\mathbf{z}) + \mathcal{T}(\mathbf{z}).$$

▶ (5) can also be expressed as a mixed variational inequality (MVI):

$$f(\mathbf{x}) - f(\mathbf{x}^*) + M(\mathbf{z}^*)^T (\mathbf{z} - \mathbf{z}^*) \ge 0, \quad \forall \mathbf{z} \in \mathbb{R}^{p+n}.$$
 (13)

# Optimality condition as a monotone inclusion/VI problem

# Lemma (Monotonicity of primal-dual mapping)

The mapping M and T defined in (12):

$$M(\mathbf{z}) := \begin{bmatrix} \mathbf{A}^{T\lambda} \\ \mathbf{b} - \mathbf{A}\mathbf{x} \end{bmatrix}$$
 and  $\mathcal{T}(\mathbf{z}) := \left\{ \begin{pmatrix} \xi \\ 0^n \end{pmatrix} \in \mathbb{R}^{p+n} : \xi \in \partial f(\mathbf{x}) \right\}.$ 

are maximal monotone. Consequently,  $\mathcal{P} := M + \mathcal{T}$  is also maximal monotone.

To show the monotonicity of M, we can write  $M(\mathbf{z})$  as

$$M(\mathbf{z}) := \mathbf{H}\mathbf{z} + \mathbf{h} \equiv \begin{bmatrix} 0 & \mathbf{A}^T \\ -\mathbf{A} & 0 \end{bmatrix} \mathbf{z} + \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix}$$

It is clear that

$$\mathbf{z}^T \mathbf{H} \mathbf{z} = \mathbf{x}^T (\mathbf{A}^T \lambda) - \lambda^T \mathbf{A} \mathbf{x} = 0,$$

which shows that M is monotone.

# Optimality condition as a monotone inclusion/VI problem

# Lemma (Monotonicity of primal-dual mapping)

The mapping M and T defined in (12):

$$M(\mathbf{z}) := \begin{bmatrix} \mathbf{A}^T \boldsymbol{\lambda} \\ \mathbf{b} - \mathbf{A} \mathbf{x} \end{bmatrix} \quad \text{and} \quad \mathcal{T}(\mathbf{z}) := \bigg\{ \begin{pmatrix} \boldsymbol{\xi} \\ \boldsymbol{0}^n \end{pmatrix} \in \mathbb{R}^{p+n} \ : \ \boldsymbol{\xi} \in \partial f(\mathbf{x}) \bigg\}.$$

are maximal monotone. Consequently,  $\mathcal{P} := M + \mathcal{T}$  is also maximal monotone.

To show the monotonicity of M, we can write  $M(\mathbf{z})$  as

$$M(\mathbf{z}) := \mathbf{H}\mathbf{z} + \mathbf{h} \equiv \begin{bmatrix} 0 & \mathbf{A}^T \\ -\mathbf{A} & 0 \end{bmatrix} \mathbf{z} + \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix}$$

It is clear that

$$\mathbf{z}^T \mathbf{H} \mathbf{z} = \mathbf{x}^T (\mathbf{A}^T \lambda) - \lambda^T \mathbf{A} \mathbf{x} = 0,$$

which shows that M is monotone.

# Monotone inclusion and monotone variational inequality

- ▶ The inclusion  $0 \in \mathcal{P}(\mathbf{z}^*)$  is called a monotone inclusion if  $\mathcal{P}$  is maximal monotone.
- The mixed variational inequality

$$f(\mathbf{x}) - f(\mathbf{x}^*) + M(\mathbf{z}^*)^T (\mathbf{z} - \mathbf{z}^*) \ge 0, \quad \forall \mathbf{z} \in \mathbb{R}^{p+n}$$

is called monotone if f is proper, closed and convex and M is maximal monotone.

# Gap function for the MVI problem

### Gap function

Let us consider a monotone MVIP problem of the form:

$$f(\mathbf{x}) - f(\mathbf{x}^*) + M(\mathbf{z}^*)^T (\mathbf{z} - \mathbf{z}^*) \ge 0, \quad \forall \mathbf{z} \in \mathbb{R}^{p+n}$$

The gap function associated with this problem is defined as follows

$$G(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathbb{R}^{p+n}} \left\{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) \right\}.$$
(14)

# Gap function for the MVI problem

### Gap function

Let us consider a monotone MVIP problem of the form:

$$f(\mathbf{x}) - f(\mathbf{x}^*) + M(\mathbf{z}^*)^T (\mathbf{z} - \mathbf{z}^*) \ge 0, \quad \forall \mathbf{z} \in \mathbb{R}^{p+n}$$

The gap function associated with this problem is defined as follows

$$G(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathbb{R}^{p+n}} \left\{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) \right\}.$$
(14)

## **Properties**

- $\triangleright$  Computing G and its **gradient** require to solve the convex problem in (14).
- G is nonnegative, i.e.:  $G(\mathbf{z}) > 0$  for all  $\mathbf{z} \in \mathbb{R}^{p+n}$ .
  - Indeed, we have  $G(\mathbf{z}) = \max_{\hat{\mathbf{z}} \in \mathbb{R}^{p+n}} \left\{ f(\mathbf{x}) f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} \hat{\mathbf{z}}) \right\} \ge f(\mathbf{x}) f(\mathbf{x}) + M(\mathbf{z})^T (\mathbf{z} \mathbf{z}) = 0,$  with  $\hat{\mathbf{z}} = \mathbf{z}$ .

Exercise: By writing the optimality condition of the maximization problem (14) and rearranging it, we obtain exactly the KKT condition (5).

## **Example: Gap function**

Consider the following constrained convex problem:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^2} & & \{f(\mathbf{x}) := |x_1| + x_2^2\}, \\ & \text{s.t.} & & & x_1 + x_2 = 1. \end{aligned}$$

We have  $\mathbf{z} = (x_1, x_2, \lambda)^T \in \mathbb{R}^3$  and  $M(\mathbf{z}) := (\lambda, \lambda, 1 - x_1 - x_2)^T$ .

The gap function associated with the optimality condition of this problem becomes:

$$\begin{split} G(\mathbf{z}) &:= \max_{(y_1,y_2,\eta)^T \in \mathbb{R}^3} \left\{ |x_1| + x_2^2 - |y_1| - y_2^2 + \eta(x_1 + x_2 - 1) - \lambda(y_1 + y_2 - 1) \right\} \\ &= \max_{(y_1,y_2)^T \in \mathbb{R}^2} \left\{ - |y_1| - y_2^2 - \lambda(y_1 + y_2 - 1) \right\} + \max_{\eta \in \mathbb{R}} \left\{ |x_1| + x_2^2 + \eta(x_1 + x_2 - 1) \right\} \\ &= \begin{cases} |x_1| + x_2^2 - d(\lambda) & \text{if } x_1 + x_2 - 1, \\ +\infty & \text{otherwise,} \end{cases} \end{split}$$

where  $d(\lambda):=\min_{(y_1,y_2)^T\in\mathbb{R}^2}\left\{|y_1|+y_2^2+\lambda(y_1+y_2-1)\right\}$  is the dual function.

#### Outline

### Today

- 1. Convex constrained optimization and motivating examples
- 2. Optimality condition
- 3. Conjugate functions
- 4. Monotone inclusion and monotone mixed variational inequality formulations
- 5. Chambolle-Pock's primal-dual method
- 6. Primal-dual hybrid gradient method
- 7. Splitting methods
- 8. Model-based excessive gap primal-dual method
- Next week
  - 1. Disciplined convex programming

# A special class of constrained convex problems (2)

We first consider a constrained reformulation of composite convex minimization problems considered in Lecture 5.

#### Constrained convex reformulation

We consider the following special case of (2):

$$\begin{cases}
\min_{\mathbf{x}:=(\mathbf{u},\mathbf{v})\in\mathbb{R}^{p_1+p_2}} & \left\{ F(\mathbf{x}) := f(\mathbf{u}) + g(\mathbf{v}) \right\} \\
\text{s.t.} & \mathbf{K}\mathbf{u} - \mathbf{v} = 0.
\end{cases}$$
(15)

where **K** is a linear operator,  $f \in \mathcal{F}(\mathbb{R}^{p_1})$  and  $g \in \mathcal{F}(\mathbb{R}^{p_2})$  are two convex functions.

# A special class of constrained convex problems (2)

We first consider a constrained reformulation of composite convex minimization problems considered in Lecture 5.

#### Constrained convex reformulation

We consider the following special case of (2):

$$\begin{cases}
\min_{\mathbf{x}:=(\mathbf{u},\mathbf{v})\in\mathbb{R}^{p_1+p_2}} & \left\{ F(\mathbf{x}) := f(\mathbf{u}) + g(\mathbf{v}) \right\} \\
\text{s.t.} & \mathbf{K}\mathbf{u} - \mathbf{v} = 0.
\end{cases}$$
(15)

where **K** is a **linear operator**,  $f \in \mathcal{F}(\mathbb{R}^{p_1})$  and  $g \in \mathcal{F}(\mathbb{R}^{p_2})$  are two convex functions.

▶ By setting  $A := [K, -\mathbb{I}]$  and  $b := 0^n$ , we can formulate (15) into (2):

$$F^* := \begin{cases} \min_{\mathbf{x} \in \mathbb{R}^p} & F(\mathbf{x}) \\ \text{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}. \end{cases}$$

▶ Problem (15) can be written as a composite convex minimization:

$$F^{\star} := \min_{\mathbf{u} \in \mathbb{R}^{p_1}} \left\{ F(\mathbf{u}) := f(\mathbf{u}) + g(\mathbf{K}\mathbf{u}) \right\}. \tag{16}$$

# Min-max formulation and dual problem

# The min-max (saddle point) problem

By using the Fenchel conjugate  $g^{\ast}$  of g, we can write

$$g(\mathbf{K}\mathbf{u}) = \max_{\mathbf{v} \in \mathbb{R}^n} \{ \langle \mathbf{K}\mathbf{u}, \mathbf{v} \rangle - g^*(\mathbf{v}) \}.$$

Substituting this function into (16), we obtain:

$$\min_{\mathbf{u} \in \mathbb{R}^{p_1}} \max_{\mathbf{v} \in \mathbb{R}^n} \left\{ \langle \mathbf{K} \mathbf{u}, \mathbf{v} \rangle + f(\mathbf{u}) - g^*(\mathbf{v}) \right\}$$
 (17)

where  $g^*$  is the conjugate of g.

## Min-max formulation and dual problem

### The min-max (saddle point) problem

By using the Fenchel conjugate  $g^*$  of g, we can write

$$g(\mathbf{K}\mathbf{u}) = \max_{\mathbf{v} \in \mathbb{R}^n} \{ \langle \mathbf{K}\mathbf{u}, \mathbf{v} \rangle - g^*(\mathbf{v}) \}.$$

Substituting this function into (16), we obtain:

$$\min_{\mathbf{u} \in \mathbb{R}^{p_1}} \max_{\mathbf{v} \in \mathbb{R}^n} \left\{ \langle \mathbf{K} \mathbf{u}, \mathbf{v} \rangle + f(\mathbf{u}) - g^*(\mathbf{v}) \right\}$$
 (17)

where  $g^*$  is the conjugate of g.

### Dual problem

By exchanging the min-max in (17) and note that

$$\min_{\mathbf{u} \in \mathbb{R}^{p_1}} \left\{ \langle \mathbf{K} \mathbf{u}, \mathbf{v} \rangle + f(\mathbf{u}) \right\} = -\max_{\mathbf{u} \in \mathbb{R}^{p_1}} \left\{ \left\langle -\mathbf{K}^T \mathbf{v}, \mathbf{u} \right\rangle - f(\mathbf{u}) \right\} = -f^*(-\mathbf{K}^T \mathbf{v})$$

we have

$$\max_{\mathbf{v} \in \mathbb{R}^q} \left\{ -f^*(-\mathbf{K}^T \mathbf{v}) - g^*(\mathbf{v}) \right\}.$$
 (18)

# Chambolle-Pock's algorithm: the main idea

# Optimality condition

First, we write the optimality condition of (17) as follows:

$$\begin{cases} \mathbf{K}\mathbf{u}^{\star} & \in \partial g^{*}(\mathbf{v}^{\star}) \\ -\mathbf{K}^{T}\mathbf{v}^{\star} & \in \partial f(\mathbf{u}^{\star}). \end{cases}$$
(19)

Since problem is convex, condition (19) is necessary and sufficient for  $(\mathbf{u}^*, \mathbf{v}^*)$  to be primal and dual optimal to (17):

$$\min_{\mathbf{u} \in \mathbb{R}^p} \max_{\mathbf{v} \in \mathbb{R}^q} \Big\{ \langle \mathbf{K} \mathbf{u}, \mathbf{v} \rangle + f(\mathbf{u}) - g^*(\mathbf{v}) \Big\}.$$

# Chambolle-Pock's algorithm: the main idea

# Optimality condition

First, we write the optimality condition of (17) as follows:

$$\begin{cases} \mathbf{K}\mathbf{u}^{\star} & \in \partial g^{*}(\mathbf{v}^{\star}) \\ -\mathbf{K}^{T}\mathbf{v}^{\star} & \in \partial f(\mathbf{u}^{\star}). \end{cases}$$
(19)

Since problem is convex, condition (19) is necessary and sufficient for  $(\mathbf{u}^{\star}, \mathbf{v}^{\star})$  to be primal and dual optimal to (17):

## Fixed-point expression

Second, from (19), for any  $\sigma > 0$  and  $\tau > 0$ , we can write

$$\mathbf{v}^{\star} + \sigma \mathbf{K} \mathbf{u}^{\star} \in (\mathbb{I} + \sigma \partial g^{*})(\mathbf{v}^{\star}) \text{ and } \mathbf{u}^{\star} - \tau \mathbf{K}^{T} \mathbf{v}^{\star} \in (\mathbb{I} + \tau \partial f)(\mathbf{u}^{\star}).$$

Using the proximal operator of  $\tau f$  and  $\sigma g^*$ , we can write the last expression as

$$\begin{cases} \mathbf{v}^{\star} &= \operatorname{prox}_{\sigma g^{\star}} \left( \mathbf{v}^{\star} + \sigma \mathbf{K} \mathbf{u}^{\star} \right) \\ \mathbf{u}^{\star} &= \operatorname{prox}_{\tau f} \left( \mathbf{u}^{\star} - \tau \mathbf{K}^{T} \mathbf{v}^{\star} \right). \end{cases}$$
(20)

This relation shows that  $\mathbf{x}^\star := (\mathbf{u}^\star, \mathbf{v}^\star)$  is a fixed point of the mapping  $\mathcal T$  with:

$$\mathcal{T}(\mathbf{x}) := (\operatorname{prox}_{\sigma g^*}(\mathbf{v} + \sigma \mathbf{K} \mathbf{u}), \operatorname{prox}_{\tau f}(\mathbf{u} - \tau \mathbf{K}^T \mathbf{v})).$$

## The Chambolle-Pock algorithm

The Chambolle-Pock algorithm is rooted from the classical Arrow-Hurwicz method, which is based on the fixed-point expression (20).

### Chambolle-Pock's algorithm (CPA) [2]

- 1. Choose  $\tau > 0$ ,  $\sigma > 0$ ,  $\theta \in [0,1]$ ,  $\mathbf{u}^0 \in \mathbb{R}^p$  and  $\mathbf{v}^0 \in \mathbb{R}^q$ . Set  $\hat{\mathbf{u}}^0 := \mathbf{u}^0$ .
- **2**. For  $k = 0, 1, \dots$ , perform:

$$\begin{cases} \mathbf{v}^{k+1} &:= \operatorname{prox}_{\sigma g^*} \left( \mathbf{v}^k + \sigma \mathbf{K} \hat{\mathbf{u}}^k \right) \\ \mathbf{u}^{k+1} &:= \operatorname{prox}_{\tau f} \left( \mathbf{u}^k - \tau \mathbf{K}^T \mathbf{v}^k \right) \\ \hat{\mathbf{u}}^{k+1} &:= \mathbf{u}^{k+1} + \theta (\mathbf{u}^{k+1} - \mathbf{u}^k). \end{cases}$$
(21)

# The Chambolle-Pock algorithm

The Chambolle-Pock algorithm is rooted from the classical Arrow-Hurwicz method, which is based on the fixed-point expression (20).

### Chambolle-Pock's algorithm (CPA) [2]

- 1. Choose  $\tau > 0$ ,  $\sigma > 0$ ,  $\theta \in [0,1]$ ,  $\mathbf{u}^0 \in \mathbb{R}^p$  and  $\mathbf{v}^0 \in \mathbb{R}^q$ . Set  $\hat{\mathbf{u}}^0 := \mathbf{u}^0$ .
- **2**. For  $k = 0, 1, \dots$ , perform:

$$\begin{cases} \mathbf{v}^{k+1} &:= \operatorname{prox}_{\sigma g^*} \left( \mathbf{v}^k + \sigma \mathbf{K} \hat{\mathbf{u}}^k \right) \\ \mathbf{u}^{k+1} &:= \operatorname{prox}_{\tau f} \left( \mathbf{u}^k - \tau \mathbf{K}^T \mathbf{v}^k \right) \\ \hat{\mathbf{u}}^{k+1} &:= \mathbf{u}^{k+1} + \theta (\mathbf{u}^{k+1} - \mathbf{u}^k). \end{cases}$$
(21)

### Remarks

▶ If  $\theta = 0$ , then  $\hat{\mathbf{u}}^k = \mathbf{u}^k$  and (21) collapses to the Arrow-Hurwicz method:

$$\begin{cases} \mathbf{v}^{k+1} &:= \operatorname{prox}_{\sigma g^*} \left( \mathbf{v}^k + \sigma \mathbf{K} \mathbf{u}^k \right) \\ \mathbf{u}^{k+1} &:= \operatorname{prox}_{\tau f} \left( \mathbf{u}^k - \tau \mathbf{K}^T \mathbf{v}^k \right). \end{cases}$$

- $\blacktriangleright$  The step sizes  $\sigma$  and  $\tau$  and the parameter  $\theta$  can keep constantly or adaptively updates.
- When K = I, the **Chambolle-Pock algorithm** is equivalent to **ADMM**.

# Restricted gap function for optimality certification

Let us define  $\mathbf{x}:=(\mathbf{u},\mathbf{v})\equiv(\mathbf{u}^T,\mathbf{v}^T)^T$ ,  $\phi(\mathbf{x}):=f(\mathbf{u})+g^\star(\mathbf{v})$  and  $M(\mathbf{x}):=\begin{bmatrix}-\mathbf{K}^T\mathbf{v}\\\mathbf{K}\mathbf{u}\end{bmatrix}.$ 

Then (19):  $\begin{cases} \mathbf{K}\mathbf{u}^{\star} \in \partial g^{\star}(\mathbf{v}^{\star}) \\ -\mathbf{K}^{T}\mathbf{v}^{\star} \in \partial f(\mathbf{u}^{\star}) \end{cases}$  can be written as a **monotone MVI problem**:

$$\phi(\mathbf{x}) - \phi(\mathbf{x}^*) + M(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) \ge 0, \quad \forall \mathbf{x} \in \mathbb{R}^{p_1 + p_2}$$
(22)

where  $\mathbf{x}^{\star} := (\mathbf{u}^{\star}, \mathbf{v}^{\star})$ .

# Restricted gap function for optimality certification

Let us define  $\mathbf{x} := (\mathbf{u}, \mathbf{v}) \equiv (\mathbf{u}^T, \mathbf{v}^T)^T$ ,  $\phi(\mathbf{x}) := f(\mathbf{u}) + g^{\star}(\mathbf{v})$  and

$$M(\mathbf{x}) := \begin{bmatrix} -\mathbf{K}^T \mathbf{v} \\ \mathbf{K} \mathbf{u} \end{bmatrix}.$$

Then (19):  $\begin{cases} \mathbf{K}\mathbf{u}^{\star} \in \partial g^{\star}(\mathbf{v}^{\star}) \\ -\mathbf{K}^{T}\mathbf{v}^{\star} \in \partial f(\mathbf{u}^{\star}) \end{cases}$  can be written as a **monotone MVI problem**:

$$\phi(\mathbf{x}) - \phi(\mathbf{x}^*) + M(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) \ge 0, \quad \forall \mathbf{x} \in \mathbb{R}^{p_1 + p_2}$$
(22)

where  $\mathbf{x}^{\star} := (\mathbf{u}^{\star}, \mathbf{v}^{\star})$ .

## Definition (Restricted gap function)

Let  $\mathcal{X} \subseteq \mathbb{R}^{p_1+p_2}$  be a nonempty, closed, convex and bounded set. We define a restricted gap function of (22) restricted on  $\mathcal{X}$  as

$$G_{\mathcal{X}}(\mathbf{x}) := \max_{\tilde{\mathbf{x}} \in \mathcal{X} \subseteq \mathbb{R}^{p_1 + p_2}} \left\{ \phi(\mathbf{x}) - \phi(\tilde{\mathbf{x}}) + M(\mathbf{x})^T (\mathbf{x} - \tilde{\mathbf{x}}) \right\}$$
(23)

# Convergence theorem

# Theorem (Convergence)

#### Assumptions:

- (17):  $\min_{\mathbf{u} \in \mathbb{R}^{p_1}} \max_{\mathbf{v} \in \mathbb{R}^{p_2}} \left\{ \langle \mathbf{K} \mathbf{u}, \mathbf{v} \rangle + f(\mathbf{u}) g^*(\mathbf{v}) \right\} \text{ has a saddle point } \mathbf{z}^* := (\mathbf{u}^*, \mathbf{v}^*).$
- $\{(\mathbf{u}^k, \mathbf{v}^k)\}$  be the sequence generated by the **Chambolle-Pock algorithm**.
- If we choose  $\theta := 1$ ,  $\sigma > 0$  and  $\tau > 0$  such that  $\tau \sigma \|\mathbf{K}\|^2 < 1$ .

#### Conclusion:

• The sequence  $\{\bar{\mathbf{x}}^k\}_{k\geq 0}$  defined by

$$\bar{\mathbf{x}}^k = (\bar{\mathbf{u}}^k, \bar{\mathbf{v}}^k) := \frac{1}{(k+1)} \sum_{j=0}^k (\mathbf{u}^j, \mathbf{v}^j)$$

satisfies

$$G_{\mathcal{X}}(\bar{\mathbf{x}}^k) \le \frac{1}{k+1} \left[ \max_{\mathbf{x} := (\mathbf{u}, \mathbf{v}) \in \mathcal{X}} \left\{ (1/(2\tau)) \|\mathbf{u} - \mathbf{u}^0\|^2 + (1/(2\sigma)) \|\mathbf{v} - \mathbf{v}^0\|^2 \right\} \right].$$
 (24)

•  $\{\bar{\mathbf{z}}^k\}_{k\geq 0}$  converges to a saddle point  $\mathbf{z}^*$  of (17) at the  $\mathcal{O}(1/k)$  rate w.r.t. the restricted gap function  $G_{\mathcal{X}}$  (in the ergodic sense).

### Convergence theorem: Remarks

$$G_{\mathcal{X}}(\bar{\mathbf{x}}^k) \le \frac{1}{k+1} \Big[ \max_{\mathbf{x} := (\mathbf{u}, \mathbf{v}) \in \mathcal{X}} \Big\{ (1/(2\tau)) \|\mathbf{u} - \mathbf{u}^0\|^2 + (1/(2\sigma)) \|\mathbf{v} - \mathbf{v}^0\|^2 \Big\} \Big].$$
 (24)

- ▶ The right-hand side of the estimate (24) depends on the choice of  $\mathcal{X}$ . Theoretically, we need to choose  $\mathcal{X}$  such that  $\mathcal{X}^{\star} \subseteq \mathcal{X}$ , where  $\mathcal{X}^{\star}$  is the solution set of (17), which is unknown.
- ▶ The estimate (24) does not imply the convergence rate of  $\{\bar{\bf u}^k\}$  and  $\{\bar{\bf v}^k\}$  separately.

# Acceleration - Case 1: f or $g^*$ is strongly convex

If either f or  $g^*$  is strongly convex, the Chambolle-Pock algorithm can be accelerated to get better convergence rate.

# Assumption A.1.

The function f is strongly convex with a strong convexity parameter  $\sigma_f > 0$ .

- Under Assumption A.1., the conjugate  $f^*$  is smooth and has the Lipschitz gradient.
- ightharpoonup The Chambolle-Pock algorithm can be accelerated to get  $\mathcal{O}(1/k^2)$  convergence rate.

# Acceleration - Case 1: f or $g^*$ is strongly convex

If either f or  $g^*$  is strongly convex, the **Chambolle-Pock algorithm** can be accelerated to get better convergence rate.

### Assumption A.1.

The function f is strongly convex with a strong convexity parameter  $\sigma_f > 0$ .

- Under Assumption A.1., the conjugate f\* is smooth and has the Lipschitz gradient.
- The Chambolle-Pock algorithm can be accelerated to get  $\mathcal{O}(1/k^2)$  convergence rate.

#### Chambolle-Pock's algorithm for strongly convex (CPA<sub>1</sub>)

- 1. Choose  $\tau > 0$ ,  $\sigma > 0$  such that  $\sigma_0 \tau_0 L^2 \le 1$ ,  $\mathbf{u}^0 \in \mathbb{R}^p$  and  $\mathbf{v}^0 \in \mathbb{R}^q$ . Set  $\hat{\mathbf{u}}^0 := \mathbf{u}^0$ .
- 2. For  $k = 0, 1, \cdots$ , perform:

$$\begin{cases}
\mathbf{v}^{k+1} &:= \operatorname{prox}_{\sigma_{k}g^{*}} \left( \mathbf{v}^{k} + \sigma_{k} \mathbf{K} \hat{\mathbf{u}}^{k} \right) \\
\mathbf{u}^{k+1} &:= \operatorname{prox}_{\tau_{k}f} \left( \mathbf{u}^{k} - \tau_{k} \mathbf{K}^{T} \mathbf{v}^{k} \right) \\
\theta_{k} &:= (1 + 2\sigma_{f}\tau_{k})^{-1/2}, \\
\tau_{k+1} &:= \theta_{k}\tau_{k}, \\
\sigma_{k+1} &:= \theta_{k}^{-1}\sigma_{k}, \\
\hat{\mathbf{u}}^{k+1} &:= \mathbf{u}^{k+1} + \theta_{k} (\mathbf{u}^{k+1} - \mathbf{u}^{k}).
\end{cases} \tag{25}$$

### Acceleration - Case 2: Both f and $g^*$ are strongly convex

If both f and  $g^*$  are strongly convex, we can accelerate the Chambolle-Pock algorithm to obtain the linear convergence rate.

### Assumption A.2.

The functions f and  $g^*$  are strongly convex with a strong convexity parameters  $\sigma_f>0$  and  $\sigma_{g^*}>0$ , respectively.

# Acceleration - Case 2: Both f and $g^*$ are strongly convex

If both f and  $g^{*}$  are strongly convex, we can accelerate the Chambolle-Pock algorithm to obtain the linear convergence rate.

### Assumption A.2.

The functions f and  $g^*$  are strongly convex with a strong convexity parameters  $\sigma_f>0$  and  $\sigma_{g^*}>0$ , respectively.

#### Chambolle-Pock's algorithm for strongly convex f and $g^*$ (CPA<sub>2</sub>)

- 1. Choose  $\omega \leq 2\sqrt{\sigma_f \sigma_{q^*}}L$ .
- **2**. Set  $\tau := \omega/(2\sigma_f)$ ,  $\sigma := \omega/(2\sigma_{q^*})$  and choose  $\theta \in [(1+\omega)^{-1}, 1]$ .
- **3**. Find  $\mathbf{u}^0 \in \mathbb{R}^p$  and  $\mathbf{v}^0 \in \mathbb{R}^q$ . Set  $\hat{\mathbf{u}}^0 := \mathbf{u}^0$ .
- **4**. For  $k = 0, 1, \dots$ , perform:

$$\begin{cases}
\mathbf{v}^{k+1} &:= \operatorname{prox}_{\sigma g^*} \left( \mathbf{v}^k + \sigma \mathbf{K} \hat{\mathbf{u}}^k \right) \\
\mathbf{u}^{k+1} &:= \operatorname{prox}_{\tau f} \left( \mathbf{u}^k - \tau \mathbf{K}^T \mathbf{v}^k \right) \\
\hat{\mathbf{u}}^{k+1} &:= \mathbf{u}^{k+1} + \theta (\mathbf{u}^{k+1} - \mathbf{u}^k).
\end{cases}$$
(26)

### Example: Strong convexity of $f/g^*$

# Example (Strong convexity of f)

We consider the following image  $\ell_1$ -TV denoising problem:

$$\min_{\mathbf{u} \in \mathbb{R}^{p_1}} (1/2) \|\mathbf{u} - \mathbf{b}\|_F^2 + \rho \|\mathbf{D}\mathbf{u}\|_1.$$
 (27)

Here b is a noisy image,  $\rho>0$  is a regularization parameter, and  ${\bf D}$  is a given matrix. We can write this problem into the following minmax form:

$$\min_{\mathbf{u} \in \mathbb{R}^{p_1}} \max_{\|\mathbf{v}\|_{\infty} \le 1} \left\{ \rho \mathbf{v}^T \mathbf{D} \mathbf{u} + (1/2) \|\mathbf{u} - \mathbf{b}\|_F^2 \right\}.$$

In this case, we have  $f(\mathbf{u}):=(1/2)\|\mathbf{u}-\mathbf{b}\|_F^2$ , which is strongly convex with the parameter  $\mu_f=1$ , and  $g^*(\mathbf{v})=0$ .

### Example (Strong convexity of both f and $g^*$ )

If we apply Nesterov's smoothing technique to (27) with a simple prox-function  $(1/2)\|\mathbf{v}\|_F^2$ , we obtain the following problem:

$$\min_{\mathbf{u} \in \mathbb{R}^{p_1}} \max_{\|\mathbf{v}\|_{\infty} \leq 1} \left\{ \rho \mathbf{v}^T \mathbf{D} \mathbf{u} + (1/2) \|\mathbf{u} - \mathbf{b}\|_F^2 - (\gamma/2) \|\mathbf{v}\|_F^2 \right\}.$$

where  $\gamma > 0$  is a smoothness parameter. In this case, we can denote  $g^*(\mathbf{v}) := (\gamma/2) \|\mathbf{v}\|_E^2$ , which is strongly convex with the parameter  $\gamma > 0$ .

# Convergence of CPA<sub>1</sub> and CPA<sub>2</sub>

#### Assumptions:

- f is strongly convex with a strong convexity parameter  $\sigma_f > 0$ .
- Let  $\{(\mathbf{u}^k, \mathbf{v}^k)\}_{k>0}$  be the sequence generated by CPA<sub>1</sub>.
- Let  $\tau_0 > 0$  and  $\sigma_0 := 1/(\tau_0 L^2)$ .

**Conclusion**: Then for any  $\epsilon > 0$ , the exists  $K_0$  (depending on  $\epsilon$  and  $\sigma_f \tau_0$ ) such that for any  $k \geq K_0$ ,

$$\|\bar{\mathbf{u}}^k - \mathbf{u}^*\|^2 \le \frac{1+\epsilon}{(k+1)^2} \left( \frac{\|\mathbf{u}^0 - \mathbf{u}^*\|^2}{\sigma_f^2 \tau_0^2} + \frac{L^2}{\sigma_f^2} \|\mathbf{v}^0 - \mathbf{v}^*\|^2 \right),$$

where  $\bar{\mathbf{u}}^k := (k+1)^{-1} \sum_{j=0}^k \mathbf{u}^j$ . The sequence  $\{\bar{\mathbf{u}}^k\}_{k \geq 0}$  converges to  $\mathbf{u}^\star$  at the  $\mathcal{O}(1/k^2)$  rate.

### Convergence of CPA<sub>1</sub> and CPA<sub>2</sub>

#### Assumptions:

- f is strongly convex with a strong convexity parameter  $\sigma_f > 0$ .
- Let  $\{(\mathbf{u}^k, \mathbf{v}^k)\}_{k>0}$  be the sequence generated by CPA<sub>1</sub>.
- Let  $\tau_0 > 0$  and  $\sigma_0 := 1/(\tau_0 L^2)$ .

**Conclusion**: Then for any  $\epsilon > 0$ , the exists  $K_0$  (depending on  $\epsilon$  and  $\sigma_f \tau_0$ ) such that for any  $k \geq K_0$ ,

$$\|\bar{\mathbf{u}}^k - \mathbf{u}^{\star}\|^2 \le \frac{1 + \epsilon}{(k+1)^2} \left( \frac{\|\mathbf{u}^0 - \mathbf{u}^{\star}\|^2}{\sigma_f^2 \tau_0^2} + \frac{L^2}{\sigma_f^2} \|\mathbf{v}^0 - \mathbf{v}^{\star}\|^2 \right),$$

where  $\bar{\mathbf{u}}^k := (k+1)^{-1} \sum_{j=0}^k \mathbf{u}^j$ . The sequence  $\{\bar{\mathbf{u}}^k\}_{k \geq 0}$  converges to  $\mathbf{u}^\star$  at the  $\mathcal{O}(1/k^2)$  rate.

#### Assumptions:

- f and  $g^*$  are strongly convex with a strong convexity parameters  $\sigma_f>0$  and  $\sigma_{g^*}>0$ , respectively.
- Let  $\{(\mathbf{u}^k, \mathbf{v}^k)\}_{k>0}$  be the sequence generated by CPA<sub>2</sub>.
- ام ا

$$c := \frac{1+\theta}{2(1+\sqrt{\sigma_f \sigma_{g^*}}/L)} < 1.$$

Conclusion: Then  $\{(\mathbf{u}^k, \mathbf{v}^k)\}_{k\geq 0}$  converges to  $(\mathbf{u}^\star, \mathbf{v}^\star)$  at linear rate  $\mathcal{O}(c^k)$ .

# **Example: Image inpainting**

#### Mathematical formulation

Given a damaged image  $\mathbf{b} \in \mathbb{R}^{m \times n}$ , where the missed pixels  $b_{ij}$  are in certain region, i.e.,  $(i,j) \in \mathcal{M} \subset \mathcal{I} := \{1,\cdots,m\} \times \{1,\cdots,n\}$ . The aim is to recover a undamaged image  $\mathbf{x}$  by using the total variation operator. This problem can be formulated as:

$$\min_{\mathbf{u} \in \mathbb{R}^{m \times n}} \|\mathbf{K}\mathbf{u}\|_1 + (\rho/2) \sum_{(i,j) \in \mathcal{I} \setminus \mathcal{M}} (u_{ij} - b_{ij})^2$$
(28)

where  $\rho > 0$  is a regularization parameter and K is the total variation linear transform.

# **Example: Image inpainting**

#### Mathematical formulation

Given a damaged image  $\mathbf{b} \in \mathbb{R}^{m \times n}$ , where the missed pixels  $b_{ij}$  are in certain region, i.e.,  $(i,j) \in \mathcal{M} \subset \mathcal{I} := \{1,\cdots,m\} \times \{1,\cdots,n\}$ . The aim is to recover a undamaged image  $\mathbf{x}$  by using the total variation operator. This problem can be formulated as:

$$\min_{\mathbf{u} \in \mathbb{R}^{m \times n}} \|\mathbf{K}\mathbf{u}\|_1 + (\rho/2) \sum_{(i,j) \in \mathcal{I} \setminus \mathcal{M}} (u_{ij} - b_{ij})^2$$
 (28)

where  $\rho > 0$  is a regularization parameter and K is the total variation linear transform.

# How to apply the Chambolle-Pock algorithm?

- This problem is of the form  $F^* := \min_{\mathbf{u} \in \mathbb{R}^{p_1}} \{ F(\mathbf{u}) := f(\mathbf{u}) + g(\mathbf{K}\mathbf{u}) \}$ , where  $f(\mathbf{u}) := (\rho/2) \sum_{(i,j) \in \mathcal{I} \setminus \mathcal{M}} (u_{ij} b_{ij})^2$  and  $g(\mathbf{v}) := \|\mathbf{v}\|_1$ .
- ▶ Both f and g have closed form prox-operators:

$$\begin{array}{ll} \operatorname{prox}_{\sigma g^*}(\mathbf{v}) &= \mathbf{v}./\max(1,|v|) \\ \operatorname{prox}_{\tau f}(\mathbf{u}) &= \begin{cases} u_{ij} & \text{if}(i,j) \in \mathcal{M} \\ \frac{u_{ij} + \tau_\rho b_{ij}}{1 + \tau_\rho} & \text{otherwise} \end{cases} \end{array}$$

# Example: Image inpainting - configuration

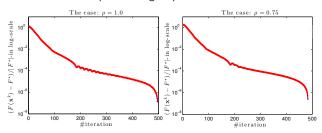
We implement Chambolle-Pock's algorithm for solving the inpainting problem (28) using the following configurations:

- ▶ Parameter selection:
  - $\sigma = 10$ ,  $\tau = 0.01125$  and  $\theta = 1$ .
  - ▶ The initial point  $\mathbf{u}^0 := \mathbf{b}$  and  $\mathbf{v}^0 := 0$ .
  - The tolerance  $\epsilon = 10^{-5}$ .
- Stopping criterion:

$$\|\mathbf{u}^{k+1} - \mathbf{u}^k\|_F \le \epsilon \|\mathbf{u}^k\|_F.$$

- Data generating:
  - We take a real gray image of size  $255 \times 255$
  - ▶ The image is damaged by a mask of 30 lines crossing from the left to the right.
  - The regularization parameter  $\rho$  is chosen as  $\rho = 1$  and  $\rho = 0.75$  for two cases.

Convergence behavior: Left:  $\rho = 1$  – Right:  $\rho = 0.75$ .



# Image inpainting: outputs





### Image inpainting: outputs

Original image



▶ The objective value:  $9.1323 \times 10^3$ 

Relative error:

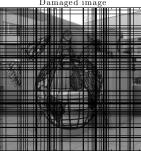
$$\|\mathbf{x}^k - \mathbf{x}^{\natural}\|/\|\mathbf{x}^{\natural}\| = 0.076398$$

where  $\mathbf{x}^{\natural}$  is the original image

The number of iterations: 497

The CPU time: 2.864s.

Damaged image



- ▶ The objective value:  $5.9100 \times 10^3$
- Relative error:

$$\|\mathbf{x}^k - \mathbf{x}^{\natural}\| / \|\mathbf{x}^{\natural}\| = 0.078396$$

where  $\mathbf{x}^{\natural}$  is the original image

- ► The number of iterations: 484
- ▶ The CPU time: 2.707s.

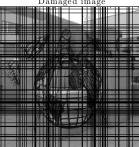
# Image inpainting: outputs



Recovered image  $(\rho = 1)$ 



Damaged image



Recovered image ( $\rho = 0.75$ )



Prof. Volkan Cevher volkan.cevher@epfl.ch

Mathematics of Data: From Theory to Computation

#### Outline

#### Today

- 1. Convex constrained optimization and motivating examples
- 2. Optimality condition
- 3. Conjugate functions
- 4. Monotone inclusion and monotone mixed variational inequality formulations
- 5. Chambolle-Pock's primal-dual method
- 6. Primal-dual hybrid gradient method
- 7. Splitting methods
- 8. Model-based excessive gap primal-dual method
- Next week
  - 1. Disciplined convex programming

### **Splitting methods**

- Splitting methods have been widely used to solve monotone inclusions involving the sum of two maximal monotone operators.
- ▶ They can be used to solve the constrained convex optimization problem (2).

From the first line of (19) we have  $\mathbf{v}^{\star} \in \partial g(\mathbf{K}\mathbf{u}^{\star})$ . Plug this into the second line of (19) to get

$$0 \in \partial f(\mathbf{u}^*) + \mathbf{K}^T \partial g(\mathbf{K}\mathbf{u}^*)$$
 (29)

#### Splitting methods

- Splitting methods have been widely used to solve monotone inclusions involving the sum of two maximal monotone operators.
- ▶ They can be used to solve the constrained convex optimization problem (2).

From the first line of (19) we have  $\mathbf{v}^* \in \partial g(\mathbf{K}\mathbf{u}^*)$ . Plug this into the second line of (19) to get

$$0 \in \partial f(\mathbf{u}^{\star}) + \mathbf{K}^{T} \partial g(\mathbf{K}\mathbf{u}^{\star})$$
(29)

### Splitting monotone inclusion

#### **Assumptions:**

- ▶ Define  $A(\mathbf{u}) := \mathbf{K}^T \partial q(\mathbf{K}\mathbf{u})$  and  $B(\mathbf{u}) := \partial f(\mathbf{u})$ .
- Assume that K is full rank.

#### Conclusion:

- ► A and B are two maximal monotone operators.
- ▶ (29) can be expressed as:

$$0 \in A(\mathbf{u}^{\star}) + B(\mathbf{u}^{\star}) \tag{30}$$

#### Splitting methods

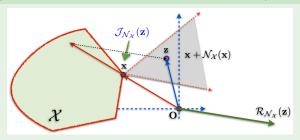
- Splitting methods have been widely used to solve monotone inclusions involving the sum of two maximal monotone operators.
- ▶ They can be used to solve the constrained convex optimization problem (2).

#### Reflection operator of the resolvent

Let  $\mathcal{J}_{\mathcal{T}}(\cdot):=(\mathbb{I}+\mathcal{T})^{-1}(\cdot)$  be the **resolvent** of a maximal monotone operator  $\mathcal{T}$ . We define the reflection operator of  $\mathcal{J}_{\mathcal{T}}$  as

$$\mathcal{R}_{\mathcal{T}}(\mathbf{z}) := 2\mathcal{J}_{\mathcal{T}}(\mathbf{z}) - \mathbf{z}.$$

# Example (The reflection operator of the normal cone $\mathcal{N}_{\mathcal{X}}$ )



- ▶ A splitting method generates an iterative sequence  $\{\mathbf{u}^k\}$  by using a fixed-point derivation of the inclusion (30):  $0 \in A(\mathbf{u}) + B(\mathbf{u})$ .
- In addition, it splits the computations such that one can exploit the individual computations of A and B separately.

### Deriving a fixed-point formulation

Starting from  $0 \in A(\mathbf{u}) + B(\mathbf{u})$ , we can rewrite

$$2\mathbf{u} \in (\mathbb{I} + A)(\mathbf{u}) + (\mathbb{I} + B)(\mathbf{u}). \tag{31}$$

- ▶ A splitting method generates an iterative sequence  $\{\mathbf{u}^k\}$  by using a fixed-point derivation of the inclusion (30):  $0 \in A(\mathbf{u}) + B(\mathbf{u})$ .
- In addition, it splits the computations such that one can exploit the individual computations of A and B separately.

### Deriving a fixed-point formulation

Starting from  $0 \in A(\mathbf{u}) + B(\mathbf{u})$ , we can rewrite

$$2\mathbf{u} \in (\mathbb{I} + A)(\mathbf{u}) + (\mathbb{I} + B)(\mathbf{u}). \tag{31}$$

Now, let take  $\mathbf{z} \in (\mathbb{I} + B)(\mathbf{u})$ , we have  $\mathbf{u} = \mathcal{J}_B(\mathbf{z})$ . The expression (31) leads to

$$2\mathbf{u} - \mathbf{z} \in (\mathbb{I} + A)(\mathbf{u}) \Leftrightarrow 2\mathcal{J}_B(\mathbf{z}) - \mathbf{z} \in (\mathbb{I} + A)(\mathbf{u}).$$

- ▶ A splitting method generates an iterative sequence  $\{\mathbf{u}^k\}$  by using a fixed-point derivation of the inclusion (30):  $0 \in A(\mathbf{u}) + B(\mathbf{u})$ .
- In addition, it splits the computations such that one can exploit the individual computations of A and B separately.

#### Deriving a fixed-point formulation

Starting from  $0 \in A(\mathbf{u}) + B(\mathbf{u})$ , we can rewrite

$$2\mathbf{u} \in (\mathbb{I} + A)(\mathbf{u}) + (\mathbb{I} + B)(\mathbf{u}). \tag{31}$$

Now, let take  $\mathbf{z} \in (\mathbb{I} + B)(\mathbf{u})$ , we have  $\mathbf{u} = \mathcal{J}_B(\mathbf{z})$ . The expression (31) leads to

$$2\mathbf{u} - \mathbf{z} \in (\mathbb{I} + A)(\mathbf{u}) \Leftrightarrow 2\mathcal{J}_B(\mathbf{z}) - \mathbf{z} \in (\mathbb{I} + A)(\mathbf{u}).$$

Using the resolvent of B, we can express the last inclusion as

$$\mathbf{u} = \mathcal{J}_A(2\mathcal{J}_B(\mathbf{z}) - \mathbf{z}) = \mathcal{J}_A(\mathcal{R}_B(\mathbf{z})).$$

- ▶ A splitting method generates an iterative sequence  $\{\mathbf{u}^k\}$  by using a fixed-point derivation of the inclusion (30):  $0 \in A(\mathbf{u}) + B(\mathbf{u})$ .
- In addition, it splits the computations such that one can exploit the individual computations of A and B separately.

#### Deriving a fixed-point formulation

Starting from  $0 \in A(\mathbf{u}) + B(\mathbf{u})$ , we can rewrite

$$2\mathbf{u} \in (\mathbb{I} + A)(\mathbf{u}) + (\mathbb{I} + B)(\mathbf{u}). \tag{31}$$

Now, let take  $\mathbf{z} \in (\mathbb{I} + B)(\mathbf{u})$ , we have  $\mathbf{u} = \mathcal{J}_B(\mathbf{z})$ . The expression (31) leads to

$$2\mathbf{u} - \mathbf{z} \in (\mathbb{I} + A)(\mathbf{u}) \Leftrightarrow 2\mathcal{J}_B(\mathbf{z}) - \mathbf{z} \in (\mathbb{I} + A)(\mathbf{u}).$$

Using the resolvent of B, we can express the last inclusion as

$$\mathbf{u} = \mathcal{J}_A(2\mathcal{J}_B(\mathbf{z}) - \mathbf{z}) = \mathcal{J}_A(\mathcal{R}_B(\mathbf{z})).$$

Hence, by using the reflection operator of B, we can rewrite this equivalently to

$$\mathbf{z} = 2\mathcal{J}_A(\mathcal{R}_B(\mathbf{z})) - (2\mathbf{u} - \mathbf{z}) = 2\mathcal{J}_A(\mathcal{R}_B(\mathbf{z})) - \mathcal{R}_B(\mathbf{z}).$$

- ▶ A splitting method generates an iterative sequence  $\{\mathbf{u}^k\}$  by using a fixed-point derivation of the inclusion (30):  $0 \in A(\mathbf{u}) + B(\mathbf{u})$ .
- In addition, it splits the computations such that one can exploit the individual computations of A and B separately.

#### Deriving a fixed-point formulation

Starting from  $0 \in A(\mathbf{u}) + B(\mathbf{u})$ , we can rewrite

$$2\mathbf{u} \in (\mathbb{I} + A)(\mathbf{u}) + (\mathbb{I} + B)(\mathbf{u}). \tag{31}$$

Now, let take  $\mathbf{z} \in (\mathbb{I} + B)(\mathbf{u})$ , we have  $\mathbf{u} = \mathcal{J}_B(\mathbf{z})$ . The expression (31) leads to

$$2\mathbf{u} - \mathbf{z} \in (\mathbb{I} + A)(\mathbf{u}) \Leftrightarrow 2\mathcal{J}_B(\mathbf{z}) - \mathbf{z} \in (\mathbb{I} + A)(\mathbf{u}).$$

Using the resolvent of B, we can express the last inclusion as

$$\mathbf{u} = \mathcal{J}_A(2\mathcal{J}_B(\mathbf{z}) - \mathbf{z}) = \mathcal{J}_A(\mathcal{R}_B(\mathbf{z})).$$

Hence, by using the reflection operator of B, we can rewrite this equivalently to

$$\mathbf{z} = 2\mathcal{J}_A(\mathcal{R}_B(\mathbf{z})) - (2\mathbf{u} - \mathbf{z}) = 2\mathcal{J}_A(\mathcal{R}_B(\mathbf{z})) - \mathcal{R}_B(\mathbf{z}).$$

Using the reflection operator of A we finally get

$$\mathbf{z} = \mathcal{R}_A(\mathcal{R}_B(\mathbf{z})).$$

### Fixed-point formulation

▶ If  $\mathbf{u}^{\star}$  is a solution of (30) (cf.  $0 \in A(\mathbf{u}^{\star}) + B(\mathbf{u}^{\star})$ ) then

$$\mathbf{z}^{\star} = \mathcal{R}_A \left( \mathcal{R}_B(\mathbf{z}^{\star}) \right) \text{ and } \mathbf{u}^{\star} = \mathcal{J}_B(\mathbf{z}^{\star}).$$
 (32)

▶ Alternatively, if  $\mathbf{u}^*$  is a solution of (30) then for any  $\beta \neq 0$ , we have

$$\mathbf{z}^{\star} = (1 - \beta)\mathbf{z}^{\star} + \beta \mathcal{R}_{A} (\mathcal{R}_{B}(\mathbf{z}^{\star})) \text{ and } \mathbf{u}^{\star} = \mathcal{J}_{B}(\mathbf{z}^{\star}).$$
 (33)

### Fixed-point formulation

▶ If  $\mathbf{u}^*$  is a solution of (30) (cf.  $0 \in A(\mathbf{u}^*) + B(\mathbf{u}^*)$ ) then

$$\mathbf{z}^{\star} = \mathcal{R}_A \left( \mathcal{R}_B(\mathbf{z}^{\star}) \right) \text{ and } \mathbf{u}^{\star} = \mathcal{J}_B(\mathbf{z}^{\star}).$$
 (32)

▶ Alternatively, if  $\mathbf{u}^*$  is a solution of (30) then for any  $\beta \neq 0$ , we have

$$\mathbf{z}^{\star} = (1 - \beta)\mathbf{z}^{\star} + \beta \mathcal{R}_{A} (\mathcal{R}_{B}(\mathbf{z}^{\star})) \text{ and } \mathbf{u}^{\star} = \mathcal{J}_{B}(\mathbf{z}^{\star}).$$
 (33)

### Splitting computation

Let assume that our iterative scheme is based on the fixed point formulation (33) as:

$$\mathbf{z}^{k+1} := (1 - \beta)\mathbf{z}^k + \beta \mathcal{R}_A \left( \mathcal{R}_B(\mathbf{z}^k) \right).$$

▶ Let 
$$\mathbf{u}^k := \mathcal{J}_B(\mathbf{z}^k)$$
. Then  $\mathcal{R}_B(\mathbf{z}^k) = 2\mathbf{u}^k - \mathbf{z}^k$ .

### Fixed-point formulation

▶ If  $\mathbf{u}^{\star}$  is a solution of (30) (cf.  $0 \in A(\mathbf{u}^{\star}) + B(\mathbf{u}^{\star})$ ) then

$$\mathbf{z}^{\star} = \mathcal{R}_A \left( \mathcal{R}_B(\mathbf{z}^{\star}) \right) \text{ and } \mathbf{u}^{\star} = \mathcal{J}_B(\mathbf{z}^{\star}).$$
 (32)

▶ Alternatively, if  $\mathbf{u}^*$  is a solution of (30) then for any  $\beta \neq 0$ , we have

$$\mathbf{z}^{\star} = (1 - \beta)\mathbf{z}^{\star} + \beta \mathcal{R}_{A} (\mathcal{R}_{B}(\mathbf{z}^{\star})) \text{ and } \mathbf{u}^{\star} = \mathcal{J}_{B}(\mathbf{z}^{\star}).$$
 (33)

### Splitting computation

Let assume that our iterative scheme is based on the fixed point formulation (33) as:

$$\mathbf{z}^{k+1} := (1 - \beta)\mathbf{z}^k + \beta \mathcal{R}_A \left( \mathcal{R}_B(\mathbf{z}^k) \right).$$

- Let  $\mathbf{u}^k := \mathcal{J}_B(\mathbf{z}^k)$ . Then  $\mathcal{R}_B(\mathbf{z}^k) = 2\mathbf{u}^k \mathbf{z}^k$ .
- $\mathcal{J}_A\left(\mathcal{R}_B(\mathbf{z}^k)\right) = \mathcal{J}_A(2\mathbf{u}^k \mathbf{z}^k) := \mathbf{v}^k.$

### Fixed-point formulation

▶ If  $\mathbf{u}^{\star}$  is a solution of (30) (cf.  $0 \in A(\mathbf{u}^{\star}) + B(\mathbf{u}^{\star})$ ) then

$$\mathbf{z}^{\star} = \mathcal{R}_A \left( \mathcal{R}_B(\mathbf{z}^{\star}) \right) \text{ and } \mathbf{u}^{\star} = \mathcal{J}_B(\mathbf{z}^{\star}).$$
 (32)

▶ Alternatively, if  $\mathbf{u}^*$  is a solution of (30) then for any  $\beta \neq 0$ , we have

$$\mathbf{z}^{\star} = (1 - \beta)\mathbf{z}^{\star} + \beta \mathcal{R}_{A} (\mathcal{R}_{B}(\mathbf{z}^{\star})) \text{ and } \mathbf{u}^{\star} = \mathcal{J}_{B}(\mathbf{z}^{\star}).$$
 (33)

### Splitting computation

Let assume that our iterative scheme is based on the fixed point formulation (33) as:

$$\mathbf{z}^{k+1} := (1 - \beta)\mathbf{z}^k + \beta \mathcal{R}_A \left( \mathcal{R}_B(\mathbf{z}^k) \right).$$

- ▶ Let  $\mathbf{u}^k := \mathcal{J}_B(\mathbf{z}^k)$ . Then  $\mathcal{R}_B(\mathbf{z}^k) = 2\mathbf{u}^k \mathbf{z}^k$ .
- $\mathcal{J}_A\left(\mathcal{R}_B(\mathbf{z}^k)\right) = \mathcal{J}_A(2\mathbf{u}^k \mathbf{z}^k) := \mathbf{v}^k.$
- $\qquad \qquad \mathcal{R}_A\left(\mathcal{R}_B(\mathbf{z}^k)\right) = 2\mathbf{v}^k (2\mathbf{u}^k \mathbf{z}^k).$

### Fixed-point formulation

▶ If  $\mathbf{u}^*$  is a solution of (30) (cf.  $0 \in A(\mathbf{u}^*) + B(\mathbf{u}^*)$ ) then

$$\mathbf{z}^{\star} = \mathcal{R}_A \left( \mathcal{R}_B(\mathbf{z}^{\star}) \right) \text{ and } \mathbf{u}^{\star} = \mathcal{J}_B(\mathbf{z}^{\star}).$$
 (32)

▶ Alternatively, if  $\mathbf{u}^*$  is a solution of (30) then for any  $\beta \neq 0$ , we have

$$\mathbf{z}^{\star} = (1 - \beta)\mathbf{z}^{\star} + \beta \mathcal{R}_{A} (\mathcal{R}_{B}(\mathbf{z}^{\star})) \text{ and } \mathbf{u}^{\star} = \mathcal{J}_{B}(\mathbf{z}^{\star}).$$
 (33)

#### Splitting computation

Let assume that our iterative scheme is based on the fixed point formulation (33) as:

$$\mathbf{z}^{k+1} := (1 - \beta)\mathbf{z}^k + \beta \mathcal{R}_A \left( \mathcal{R}_B(\mathbf{z}^k) \right).$$

- Let  $\mathbf{u}^k := \mathcal{J}_B(\mathbf{z}^k)$ . Then  $\mathcal{R}_B(\mathbf{z}^k) = 2\mathbf{u}^k \mathbf{z}^k$ .
- $\mathcal{J}_A\left(\mathcal{R}_B(\mathbf{z}^k)\right) = \mathcal{J}_A(2\mathbf{u}^k \mathbf{z}^k) := \mathbf{v}^k.$
- $\mathcal{R}_A\left(\mathcal{R}_B(\mathbf{z}^k)\right) = 2\mathbf{v}^k (2\mathbf{u}^k \mathbf{z}^k).$
- $\mathbf{z}^{k+1} = (1-\beta)\mathbf{z}^k + \beta(2\mathbf{v}^k (2\mathbf{u}^k \mathbf{z}^k)) = \mathbf{z}^k + 2\beta(\mathbf{v}^k \mathbf{u}^k).$

# Splitting: Douglas-Rachford's method

#### Fixed-point iteration

The **Douglas-Rachford method** bases on the fixed-point formulation (33) to generate an iterative sequence as:

$$\mathbf{z}^{k+1} := (1 - \beta_k)\mathbf{z}^k + \beta_k \mathcal{R}_A \left(\mathcal{R}_B(\mathbf{z}^k) \quad \text{and} \quad \mathbf{u}^k = \mathcal{J}_B(\mathbf{z}^k).$$

By **splitting the computation** as in the previous slide, we can summarize this scheme as:

$$\begin{cases} \mathbf{u}^k & := \mathcal{J}_B(\mathbf{z}^k) \\ \mathbf{v}^k & := \mathcal{J}_A(2\mathbf{u}^k - \mathbf{z}^k) \\ \mathbf{z}^{k+1} & := \mathbf{z}^k + \eta_k(\mathbf{v}^k - \mathbf{u}^k) \end{cases}$$

for  $\eta_k := 2\beta_k \neq 0$ .

### Splitting: Douglas-Rachford's method

#### Fixed-point iteration

The **Douglas-Rachford method** bases on the fixed-point formulation (33) to generate an iterative sequence as:

$$\mathbf{z}^{k+1} := (1 - \beta_k)\mathbf{z}^k + \beta_k \mathcal{R}_A \left(\mathcal{R}_B(\mathbf{z}^k) \quad \text{and} \quad \mathbf{u}^k = \mathcal{J}_B(\mathbf{z}^k).$$

By **splitting the computation** as in the previous slide, we can summarize this scheme as:

$$\begin{cases} \mathbf{u}^k & := \mathcal{J}_B(\mathbf{z}^k) \\ \mathbf{v}^k & := \mathcal{J}_A(2\mathbf{u}^k - \mathbf{z}^k) \\ \mathbf{z}^{k+1} & := \mathbf{z}^k + \eta_k(\mathbf{v}^k - \mathbf{u}^k) \end{cases}$$

for  $n_k := 2\beta_k \neq 0$ .

### Douglas-Rachford's algorithm (DRA)

- 1. Given  $\mathbf{z}^0 \in \mathsf{dom}(B)$  as an initial point and  $\eta_0 \neq 0$ .
- **2**. For  $k = 0, 1, \cdots$ , perform:

$$\begin{cases} \mathbf{u}^k & := \mathcal{J}_B(\mathbf{z}^k) \\ \mathbf{v}^k & := \mathcal{J}_A(2\mathbf{u}^k - \mathbf{z}^k) \\ \mathbf{z}^{k+1} & := \mathbf{z}^k + \eta_k(\mathbf{v}^k - \mathbf{u}^k) \end{cases}$$

and update  $\eta_k$  if required.

# Douglas-Rachford method for convex problem (15)

In order to apply DRA for solving (15), we define  $A(\mathbf{u}) := \tau \mathbf{K}^T \partial g(\mathbf{K}\mathbf{u})$  and  $B(\mathbf{u}) := \tau \partial f(\mathbf{u})$  for a given scaling factor  $\tau > 0$ .

#### Douglas-Rachford's method for solving (15)

- **1**. Given  $\mathbf{z}^0 \in \mathsf{dom}(f)$  as an initial point. Choose  $\tau_0 > 0$  and  $\eta_0 > 0$ .
- **2**. For  $k = 0, 1, \dots$ , perform:

$$\left\{ \begin{array}{ll} \mathbf{u}^k & := \operatorname{prox}_{\tau_k f}(\mathbf{z}^k), \\ \mathbf{v}^k & := \operatorname{argmin}_{\mathbf{v}} \left\{ g(\mathbf{K}\mathbf{v}) + (1/(2\tau_k)) \|\mathbf{v} - 2\mathbf{u}^k + \mathbf{z}^k\|_2^2 \right\}, \\ \mathbf{z}^{k+1} & := \mathbf{z}^k + \eta_k(\mathbf{v}^k - \mathbf{u}^k). \end{array} \right.$$

and update  $\tau_k$  and  $\eta_k$  if necessary.

# Douglas-Rachford method for convex problem (15)

In order to apply DRA for solving (15), we define  $A(\mathbf{u}) := \tau \mathbf{K}^T \partial g(\mathbf{K}\mathbf{u})$  and  $B(\mathbf{u}) := \tau \partial f(\mathbf{u})$  for a given scaling factor  $\tau > 0$ .

#### Douglas-Rachford's method for solving (15)

- **1**. Given  $\mathbf{z}^0 \in \mathsf{dom}(f)$  as an initial point. Choose  $\tau_0 > 0$  and  $\eta_0 > 0$ .
- **2**. For  $k = 0, 1, \dots$ , perform:

$$\left\{ \begin{array}{ll} \mathbf{u}^k & := \operatorname{prox}_{\tau_k f}(\mathbf{z}^k), \\ \mathbf{v}^k & := \underset{\mathbf{v}}{\operatorname{argmin}} \left\{ g(\mathbf{K}\mathbf{v}) + (1/(2\tau_k)) \|\mathbf{v} - 2\mathbf{u}^k + \mathbf{z}^k\|_2^2 \right\}, \\ \mathbf{z}^{k+1} & := \mathbf{z}^k + \eta_k(\mathbf{v}^k - \mathbf{u}^k). \end{array} \right.$$

and update  $\tau_k$  and  $\eta_k$  if necessary.

### Remark: Quadratic loss and diagonalizable operator

- ▶ Assumptions:  $g(\mathbf{K}\mathbf{v}) := (1/2) \|\mathbf{K}\mathbf{v} \mathbf{b}\|_2^2$  and  $\mathbf{K}^T \mathbf{K} = \Sigma$ , where  $\Sigma$  is diagonal.
- - Let  $\mathbf{s}^k := 2\mathbf{u}^k \mathbf{z}^k$ . We can write the optimality condition of  $\mathbf{v}^k$  as

$$(\tau_{k}^{-1}\mathbb{I} + \mathbf{K}^{T}\mathbf{K})\mathbf{v}^{k} = \mathbf{K}^{T}\mathbf{b} + \tau_{k}^{-1}\mathbf{s}^{k}.$$

• Since  $\mathbf{K}^T\mathbf{K} = \Sigma$ , we can compute  $\mathbf{v}^k$  explicitly as

$$\mathbf{v}^k = (\tau_k^{-1} \mathbb{I} + \Sigma)^{-1} (\mathbf{K}^T \mathbf{b} + \tau_k^{-1} \mathbf{s}^k).$$

### Convergence of splitting methods

### Theorem (Convergence of Douglas-Rachford's method [4])

Assume that the **solution set**  $\mathcal{U}^{\star}$  of (30) is **nonempty** and the sequence  $\{\eta_k\}$  is chosen such that

$$\eta_k \in [0, 2] \text{ and } \sum_{k=0}^{+\infty} \eta_k (2 - \eta_k) = \infty.$$
(34)

Then, the sequence  $\{\mathbf{u}^k\}$  generated by the **Douglas-Rachford algorithm** converges to a **solution**  $\mathbf{u}^*$  in  $\mathcal{U}^*$ .

### Convergence of splitting methods

# Theorem (Convergence of Douglas-Rachford's method [4])

Assume that the **solution set**  $\mathcal{U}^{\star}$  of (30) is **nonempty** and the sequence  $\{\eta_k\}$  is chosen such that

$$\eta_k \in [0, 2] \text{ and } \sum_{k=0}^{+\infty} \eta_k (2 - \eta_k) = \infty.$$
(34)

Then, the sequence  $\{\mathbf{u}^k\}$  generated by the **Douglas-Rachford algorithm** converges to a **solution**  $\mathbf{u}^*$  in  $\mathcal{U}^*$ .

#### Remarks

- We can choose  $\eta_k$  as a constant step, e.g.,  $\eta_k = 1$  for  $k \ge 0$ .
- ▶ If  $\eta_k = 1$  for all  $k \ge 0$ , then Douglas-Rachford's algorithm coincides with Peaceman-Rachford's method [10].
- When Douglas-Rachford's algorithm is applied to solve (15), it coincides with ADMM [3].

#### Alternative derivation

#### Assumptions

- ▶ The solution set  $U^*$  of  $0 \in A(\mathbf{u}) + B(\mathbf{u})$  is nonempty
- For simplicity of discussion, we assume that B is single-valued and  $\beta = 1/2$ .

By using the definition of  $\mathcal{R}_A=2\mathcal{J}_A-\mathbb{I}$  and  $\mathcal{R}_B=2\mathcal{J}_B-\mathbb{I}$ , the **Douglas-Rachford** iterative scheme

$$\begin{cases} \mathbf{u}^k & := \mathcal{J}_B(\mathbf{z}^k), \\ \mathbf{z}^{k+1} & := (1/2)\mathbf{z}^k + (1/2)\mathcal{R}_A(\mathcal{R}_B(\mathbf{z}^k)). \end{cases}$$

can be expressed as

$$\mathbf{u}^{k+1} := \mathcal{J}_B \left( \mathcal{J}_A (2\mathcal{J}_B (\mathcal{J}_B^{-1}(\mathbf{u}^k)) - \mathcal{J}_B^{-1}(\mathbf{u}^k)) + \mathcal{J}_B^{-1}(\mathbf{u}^k) - \mathcal{J}_B (\mathcal{J}_B^{-1}(\mathbf{u}^k)) \right). \tag{35}$$

- First, it is obvious that  $\mathcal{J}_B(\mathcal{J}_D^{-1}(\mathbf{u}^k)) = \mathbf{u}^k$
- ▶ Second, by definition of  $\mathcal{J}_B$ , we also have  $\mathcal{J}_B^{-1}(\mathbf{u}^k) = \mathbf{u}^k + B(\mathbf{u}^k)$ .

Substituting these relations into (35), we obtain

$$\mathbf{u}^{k+1} := \mathcal{J}_B \left( \mathcal{J}_A(\mathbf{u}^k - B(\mathbf{u}^k)) + B(\mathbf{u}^k)) \right)$$
(36)

We can rewrite (36) as

$$\left| (\mathbb{I} + B)(\mathbf{u}^{k+1}) \in (\mathbb{I} + B)(\mathbf{u}^k) - e(\mathbf{u}^k) \right|$$
(37)

where  $e(\mathbf{u}^k) := \mathbf{u}^k - \mathcal{J}_A(\mathbf{u}^k - B(\mathbf{u}^k)).$ 

### Convergence rate

#### Facts:

- ▶ It is obvious that  $\mathbf{u}^* = \mathcal{J}_A(\mathbf{u}^* B(\mathbf{u}^*))$  for any  $\mathbf{u}^* \in \mathcal{U}^*$ .
- We define  $e(\mathbf{u}) := \mathbf{u} \mathcal{J}_A(\mathbf{u} B(\mathbf{u}))$  the residual operator at  $\mathbf{u}$ . Then  $e(\mathbf{u}^*) = 0$ .
- Let  $\mathcal{T} := \mathbb{I} + A$ . The **Douglas-Rachford** scheme (37) can be written as

$$\boxed{\mathcal{T}(\mathbf{u}^{k+1}) \in \mathcal{T}(\mathbf{u}^k) - e(\mathbf{u}^k)}$$
(38)

#### Theorem (Convergence rate [7])

Assume that B is single-valued and the solution set  $\mathcal{U}^\star$  of  $0 \in A(\mathbf{u}) + B(\mathbf{u})$  is nonempty. Let  $\{\mathbf{u}^k\}_{k \geq 0}$  be the sequence generated by the **Douglas-Rachford** algorithm with  $\eta_k = 1$  for all  $k \geq 0$ . Then for any solution  $\mathbf{u}^\star$  of  $0 \in A(\mathbf{u}) + B(\mathbf{u})$ , we have

$$||e(\mathbf{u}^k)||^2 \le \frac{1}{k+1} ||(\mathbf{u}^0 - \mathbf{u}^*) + (B(\mathbf{u}^0) - B(\mathbf{u}^*))||^2.$$
 (39)

The sequence  $\{\|e(\mathbf{u}^k)\|^2\}$  converges to zero at the  $\mathcal{O}(1/k)$  rate. Consequently,  $\{\mathbf{u}^k\}$  converges to a solution  $\mathbf{u}^*$  of  $0 \in A(\mathbf{u}) + B(\mathbf{u})$ .

#### Remarks

- $\triangleright$  Since we assume that B is single-valued, the right-hand side (39) is bounded.
- In the case B is a set-valued mapping, the **right-hand** side may be no longer bounded. For example, if  $B = \mathcal{N}_{\mathcal{Z}}$  the normal cone of a convex set  $\mathcal{Z}$ .

## **Example: Image denoising**

#### TV-denoising

Given a noisy image  $\mathbf{b} \in \mathbb{R}^{m \times n}$ , we want to recover a clean image  $\mathbf{x}$  by using the total variation operator. This problem can be formulated as:

$$\min_{\mathbf{x} \in \mathbb{R}^{m \times n}} \frac{1}{2} \|\mathbf{x} - \mathbf{b}\|^2 + \rho \|\mathbf{x}\|_{\text{TV}},$$

where  $\rho > 0$  is a regularization parameter and

$$\|\mathbf{x}\|_{\text{TV}} := \begin{cases} \sum_{i,j} |x_{i,j+1} - x_{i,j}| + |x_{i,j+1} - x_{i,j}| & \text{anisotropic (ATV)} \\ \sum_{i,j} \sqrt{(x_{i,j+1} - x_{i,j})^2 + (x_{i,j+1} - x_{i,j})^2} & \text{isotropic (ITV)} \end{cases}$$

## **Example: Image denoising**

#### TV-denoising

Given a noisy image  $\mathbf{b} \in \mathbb{R}^{m \times n}$ , we want to recover a clean image  $\mathbf{x}$  by using the total variation operator. This problem can be formulated as:

$$\min_{\mathbf{x} \in \mathbb{R}^{m \times n}} \frac{1}{2} \|\mathbf{x} - \mathbf{b}\|^2 + \rho \|\mathbf{x}\|_{\text{TV}},$$

where  $\rho > 0$  is a regularization parameter and

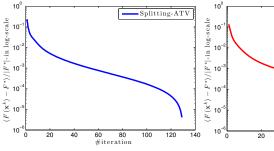
$$\|\mathbf{x}\|_{\text{TV}} := \begin{cases} \sum_{i,j} |x_{i,j+1} - x_{i,j}| + |x_{i,j+1} - x_{i,j}| & \text{anisotropic (ATV)} \\ \sum_{i,j} \sqrt{(x_{i,j+1} - x_{i,j})^2 + (x_{i,j+1} - x_{i,j})^2} & \text{isotropic (ITV)} \end{cases}$$

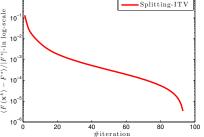
#### How to apply the splitting algorithm?

- P By letting z = Dx, we can convert the TV-denoising problem into (2), where D is a matrix representing the **total variation**.
- ▶ Splitting algorithm is now applied to the resulting problem.
- We choose  $\tau_k = \eta_k = 1$  in our test.

#### Example: Image denoising - convergence behavior

- $^{\triangleright}$  The convergence of the splitting method using ATV and ITV norms on a gray image of size  $512\times512.$
- ▶ The regularization parameter  $\rho = 20$ .





- ▶ The objective value:  $9.9319 \times 10^7$
- Relative error:

$$\|\mathbf{x}^k - \mathbf{x}^{\dagger}\|/\|\mathbf{x}^{\dagger}\| = 0.0727258$$

where  $\mathbf{x}^{\natural}$  is the original image

- ▶ The number of iterations: 131
- ► The CPU time: 30.6s.
- ▶ The PSNR = 23.1983.

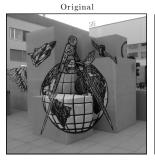
- ▶ The objective value:  $9.4897 \times 10^7$
- Relative error:

$$\|\mathbf{x}^k - \mathbf{x}^{\natural}\| / \|\mathbf{x}^{\natural}\| = 0.0676706$$

where  $\mathbf{x}^{\natural}$  is the original image

- ▶ The number of iterations: 95
- ► The CPU time: 26.0s.
- ► The PSNR = 23.6192.

## **Example: Image denoising**





## **Example: Image denoising**



Noisy



Anisotropic TV denoising



Isotropic TV denoising



#### Primal-dual hybrid gradient (PDHG) algorithm

#### The idea of PDHG

 Originally, PDHG is a combination of a primal and dual proximal-gradient descent step applying to the min-max problem (17) [17]:

$$\min_{\mathbf{u} \in \mathbb{R}^p} \max_{\mathbf{v} \in \mathbb{R}^q} \Big\{ \langle \mathbf{K} \mathbf{u}, \mathbf{v} \rangle + f(\mathbf{u}) - g^*(\mathbf{v}) \Big\}.$$

- First, PDHG performs a primal proximal-gradient step on the minimization problem w.r.t.  $\mathbf{u}$  given  $\mathbf{v}^k$  to compute  $\mathbf{u}^{k+1}$ .
- ► Second, PDHG performs a dual proximal-gradient step on the maximization problem w.r.t.  $\mathbf{v}$  given  $\mathbf{u}^{k+1}$  to compute  $\mathbf{v}^{k+1}$ .
- We can also add an intermediate step  $\bar{\mathbf{u}}^{k+1}$  before performing the dual step.

### Primal-dual hybrid gradient (PDHG) algorithm

#### The idea of PDHG

 Originally, PDHG is a combination of a primal and dual proximal-gradient descent step applying to the min-max problem (17) [17]:

$$\min_{\mathbf{u} \in \mathbb{R}^p} \max_{\mathbf{v} \in \mathbb{R}^q} \Big\{ \langle \mathbf{K} \mathbf{u}, \mathbf{v} \rangle + f(\mathbf{u}) - g^*(\mathbf{v}) \Big\}.$$

- First, PDHG performs a primal proximal-gradient step on the minimization problem w.r.t. u given v<sup>k</sup> to compute u<sup>k+1</sup>.
- Second, PDHG performs a dual proximal-gradient step on the maximization problem w.r.t. v given u<sup>k+1</sup> to compute v<sup>k+1</sup>.
- We can also add an intermediate step  $\bar{\mathbf{u}}^{k+1}$  before performing the dual step.

#### Primal-Dual Hybrid Gradient algorithm (PDHG) for (15)

- 1. Given  $\mathbf{u}^0 \in \mathbb{R}^p$  and  $\mathbf{v}^0 \in \mathbb{R}^n$  as an initial point.
- **2**. Choose  $\tau_0 > 0$ ,  $\sigma_0 > 0$  and  $\eta_0 \neq 0$ .
- 3. For  $k = 0, 1, \dots$ , perform:

$$\left\{ \begin{array}{ll} \mathbf{u}^{k+1} & := \operatorname{prox}_{\tau_k f}(\mathbf{u}^k - \tau_k \mathbf{K}^T \mathbf{v}^k), \\ \bar{\mathbf{u}}^{k+1} & := \mathbf{u}^{k+1} + \eta_k (\mathbf{u}^{k+1} - \mathbf{u}^k), \\ \mathbf{v}^{k+1} & := \operatorname{prox}_{\sigma_k \sigma^*} (\mathbf{v}^k + \sigma_k \mathbf{K} \bar{\mathbf{u}}^{k+1}). \end{array} \right.$$

and update  $\tau_k$ ,  $\sigma_k$  and  $\eta_k$  if necessary.

#### Connection to Chambolle-Pock's algorithm and enhancement

#### Connection to Chambolle-Pock's algorithm

u.

- ► PDHG is very similar to Chambolle-Pock's algorithm.
  - ▶ Chambolle-Pock's algorithm performs the dual step on v and then the primal step on
  - ▶ PDHG performs the primal step on u and then the dual step on v.
  - ▶ Symmetrically, we can say that both methods are equivalent.
- ► The convergence theory of Chambolle-Pock's algorithm is applicable to PDHG.

#### Connection to Chambolle-Pock's algorithm and enhancement

#### Connection to Chambolle-Pock's algorithm

- ► PDHG is very similar to Chambolle-Pock's algorithm.
  - ▶ Chambolle-Pock's algorithm performs the dual step on v and then the primal step on
  - ▶ PDHG performs the primal step on u and then the dual step on v.
  - ▶ Symmetrically, we can say that both methods are equivalent.
- ► The convergence theory of Chambolle-Pock's algorithm is applicable to PDHG.

#### Adaptive PDHG

u.

- If we select the parameters  $\tau_k$  and  $\sigma_k$  based on the convergence theory, PDHG often has poor performance in practice.
- We can enhance the performance of PDHG by adaptively updating  $\tau_k$  and  $\sigma_k$  [5].
  - ▶ Define the primal and dual residuals  $(\mathbf{p}^{k+1}, \mathbf{d}^{k+1})$ :

$$\begin{cases} \mathbf{p}^{k+1} &:= \tau_k^{-1} (\mathbf{u}^k - \mathbf{u}^{k+1}) - \mathbf{K}^T (\mathbf{v}^k - \mathbf{v}^{k+1}), \\ \mathbf{d}^{k+1} &:= \sigma_k^{-1} (\mathbf{v}^k - \mathbf{v}^{k+1}) + \mathbf{K} (\mathbf{u}^k - \mathbf{u}^{k+1}). \end{cases}$$

Adaptively update  $\tau_k$  and  $\sigma_k$  by trading-off the primal residual  $\|\mathbf{p}^{k+1}\|$  and dual residual  $\|\mathbf{d}^{k+1}\|$  at each iteration.

#### Outline

#### Today

- 1. Convex constrained optimization and motivating examples
- 2. Optimality condition
- 3. Conjugate functions
- 4. Monotone inclusion and monotone mixed variational inequality formulations
- 5. Chambolle-Pock's primal-dual method
- 6. Primal-dual hybrid gradient method
- 7. Splitting methods
- 8. Model-based excessive gap primal-dual method
- Next week
  - 1. Disciplined convex programming

### Primal-dual method using model-based excessive gap technique

#### Problem restatement

We consider again problem (2) with additional convex constraint as:

$$f^{\star} := \begin{cases} \min_{\mathbf{x} \in \mathbb{R}^p} & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \in \mathcal{X} \end{cases}$$
(40)

where f, A and b are defined as in (2) and  $\mathcal{X}$  is a nonempty, closed, convex and bounded set in  $\mathbb{R}^p$ .

We recall the variational inequality presenting the optimality condition of (40) as

$$f(\mathbf{x}) - f(\mathbf{x}^*) + M(\mathbf{z}^*)^T (\mathbf{z} - \mathbf{z}^*) \ge 0, \quad \forall \mathbf{z} \in \mathcal{X} \times \mathbb{R}^n$$
(41)

where  $\mathbf{z}^\star := (\mathbf{x}^\star, \lambda^\star) \in \mathcal{X} \times \mathbb{R}^n$  is a primal-dual solution of (40) and

$$M(\mathbf{z}) := \begin{bmatrix} \mathbf{A}^T \lambda \\ \mathbf{b} - \mathbf{A} \mathbf{x} \end{bmatrix}.$$

### Primal-dual method using model-based excessive gap technique

#### Problem restatement

We consider again problem (2) with additional convex constraint as:

$$f^{\star} := \begin{cases} \min_{\mathbf{x} \in \mathbb{R}^p} & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \in \mathcal{X} \end{cases}$$
(40)

where f, A and b are defined as in (2) and  $\mathcal{X}$  is a nonempty, closed, convex and bounded set in  $\mathbb{R}^p$ .

We recall the variational inequality presenting the optimality condition of (40) as

$$f(\mathbf{x}) - f(\mathbf{x}^*) + M(\mathbf{z}^*)^T (\mathbf{z} - \mathbf{z}^*) \ge 0, \quad \forall \mathbf{z} \in \mathcal{X} \times \mathbb{R}^n$$
(41)

where  $\mathbf{z}^\star := (\mathbf{x}^\star, \lambda^\star) \in \mathcal{X} \times \mathbb{R}^n$  is a primal-dual solution of (40) and

$$M(\mathbf{z}) := \begin{bmatrix} \mathbf{A}^T \lambda \\ \mathbf{b} - \mathbf{A} \mathbf{x} \end{bmatrix}.$$

#### Gap function

The gap function of (41) is redefined as (different from (14) at  $\hat{\mathbf{z}} \in \mathcal{X} \times \mathbb{R}^n$ ):

$$G(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathcal{X} \times \mathbb{R}^n} \left\{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) \right\}$$
(42)

- Let b be a prox-function of  $\mathcal X$  with strong convexity parameter  $\sigma_b=1$ .

   i.e., b is a smooth, strongly convex function with strong convexity parameter  $\sigma_b=1$ .
- We define  $\xi$  the Bregman distance corresponding to b as

$$\xi(\mathbf{x}, \hat{\mathbf{x}}) := b(\mathbf{x}) - b(\hat{\mathbf{x}}) - \nabla b(\hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}}).$$

lacktriangle For  $\mathbf{x}_c \in \mathbb{R}^p$  and two positive parameters  $\gamma$  and eta we define

$$\xi_{\gamma\beta}(\mathbf{z}) := \gamma \xi(\mathbf{x}, \mathbf{x}_c) + (\beta/2) \|\lambda\|_2^2 \tag{43}$$

a smoother for the gap function (42).

•  $\xi_{\gamma\beta}$  is strongly convex and satisfies  $\xi_{\gamma\beta}(\mathbf{z}) \geq (\gamma/2) \|\mathbf{x} - \mathbf{x}_c\|_2^2 + (\beta/2) \|\lambda\|_2^2$ .

### Smoothed gap function

We define a smoothed version for the gap function G given by (42) as follows:

- Let b be a prox-function of  $\mathcal X$  with strong convexity parameter  $\sigma_b=1$ .

   i.e., b is a smooth, strongly convex function with strong convexity parameter  $\sigma_b=1$ .
- We define  $\xi$  the Bregman distance corresponding to b as

$$\xi(\mathbf{x}, \hat{\mathbf{x}}) := b(\mathbf{x}) - b(\hat{\mathbf{x}}) - \nabla b(\hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}}).$$

• For  $\mathbf{x}_c \in \mathbb{R}^p$  and two positive parameters  $\gamma$  and  $\beta$  we define

$$\xi_{\gamma\beta}(\mathbf{z}) := \gamma \xi(\mathbf{x}, \mathbf{x}_c) + (\beta/2) \|\lambda\|_2^2 \tag{43}$$

a smoother for the gap function (42).

•  $\xi_{\gamma\beta}$  is strongly convex and satisfies  $\xi_{\gamma\beta}(\mathbf{z}) \geq (\gamma/2) \|\mathbf{x} - \mathbf{x}_c\|_2^2 + (\beta/2) \|\lambda\|_2^2$ .

#### Smoothed gap function

We define a smoothed version for the gap function G given by (42) as follows:

$$G(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathcal{X} \vee \mathbb{R}^n} \left\{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) \right\}$$

- Let b be a prox-function of  $\mathcal X$  with strong convexity parameter  $\sigma_b=1$ .

   i.e., b is a smooth, strongly convex function with strong convexity parameter  $\sigma_b=1$ .
- We define  $\xi$  the Bregman distance corresponding to b as

$$\xi(\mathbf{x}, \hat{\mathbf{x}}) := b(\mathbf{x}) - b(\hat{\mathbf{x}}) - \nabla b(\hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}}).$$

For  $\mathbf{x}_c \in \mathbb{R}^p$  and two positive parameters  $\gamma$  and  $\beta$  we define

$$\xi_{\gamma\beta}(\mathbf{z}) := \gamma \xi(\mathbf{x}, \mathbf{x}_c) + (\beta/2) \|\lambda\|_2^2 \tag{43}$$

a smoother for the gap function (42).

•  $\xi_{\gamma\beta}$  is strongly convex and satisfies  $\xi_{\gamma\beta}(\mathbf{z}) \geq (\gamma/2) \|\mathbf{x} - \mathbf{x}_c\|_2^2 + (\beta/2) \|\lambda\|_2^2$ .

### Smoothed gap function

We define a smoothed version for the gap function G given by (42) as follows:

$$G_{\gamma\beta}(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathcal{X} \times \mathbb{R}^n} \left\{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) - \xi_{\gamma\beta}(\hat{\mathbf{z}}) \right\}$$
(44)

- Let b be a prox-function of  $\mathcal X$  with strong convexity parameter  $\sigma_b=1$ .

   i.e., b is a smooth, strongly convex function with strong convexity parameter  $\sigma_b=1$ .
- We define  $\xi$  the Bregman distance corresponding to b as

$$\xi(\mathbf{x}, \hat{\mathbf{x}}) := b(\mathbf{x}) - b(\hat{\mathbf{x}}) - \nabla b(\hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}}).$$

lacktriangle For  $\mathbf{x}_c \in \mathbb{R}^p$  and two positive parameters  $\gamma$  and  $\beta$  we define

$$\xi_{\gamma\beta}(\mathbf{z}) := \gamma \xi(\mathbf{x}, \mathbf{x}_c) + (\beta/2) \|\lambda\|_2^2 \tag{43}$$

a smoother for the gap function (42).

•  $\xi_{\gamma\beta}$  is strongly convex and satisfies  $\xi_{\gamma\beta}(\mathbf{z}) \geq (\gamma/2) \|\mathbf{x} - \mathbf{x}_c\|_2^2 + (\beta/2) \|\lambda\|_2^2$ .

### Smoothed gap function

We define a smoothed version for the gap function G given by (42) as follows:

$$G_{\gamma\beta}(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathcal{X} \times \mathbb{R}^n} \left\{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) - \xi_{\gamma\beta}(\hat{\mathbf{z}}) \right\}$$
(44)

## Properties of $G_{\gamma\beta}$

- Evaluating  $G_{\gamma\beta}$  and its gradient requires to solve a strongly convex program (42)
- $G_{\gamma\beta}(\mathbf{z}) \to G(\mathbf{z})$  as  $\gamma$  and  $\beta$  go to zero for all  $\mathbf{z} \in \mathbb{R}^{p+n}$ .

### Comments on the gap function G and its smooth version $G_{\gamma\beta}$

▶ The gap function *G* defined by (42):

$$G(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathcal{X} \times \mathbb{R}^n} \left\{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) \right\}$$

can be written as

$$G(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathbb{R}^{p} \times \mathbb{R}^{n}} \left\{ \left( f(\mathbf{x}) + \iota_{\mathcal{X}}(\mathbf{x}) \right) - \left( f(\hat{\mathbf{x}}) + \iota_{\mathcal{X}}(\hat{\mathbf{x}}) \right) + M(\mathbf{z})^{T} (\mathbf{z} - \hat{\mathbf{z}}) \right\}$$

which is exactly the gap function G in the unconstrained form (14), where  $\iota_{\mathcal{X}}$  is the indicator function of  $\mathcal{X}$ .

If we define

$$\begin{aligned} d_{\gamma}(\lambda) &:= \min_{\mathbf{x} \in \mathcal{X}} \left\{ f(\mathbf{x}) + \lambda^{T} (\mathbf{A} \mathbf{x} - \mathbf{b}) + \gamma \xi(\mathbf{x}; \mathbf{x}_{c}) \right\} \\ f_{\beta}(\mathbf{x}) &:= f(\mathbf{x}) + \max_{\lambda \in \mathbb{R}^{n}} \{ \lambda^{T} (\mathbf{A} \mathbf{x} - \mathbf{b}) - (\beta/2) \|\lambda\|^{2} \} \\ &= f(\mathbf{x}) + (1/(2\beta)) \|\mathbf{A} \mathbf{x} - \mathbf{b}\|^{2} \end{aligned}$$

then:

- $d_{\gamma}$  is an approximation of the dual function d
- $f_{\beta}$  is an approximation of the objective function f.

Moreover, we have

$$G_{\alpha\beta}(\mathbf{z}) = f_{\beta}(\mathbf{x}) - d_{\alpha}(\lambda).$$

- ▶ The objective function  $f(\mathbf{x})$  does not depend on  $\beta$
- ▶ The dual function  $d(\lambda)$  does not depend on  $\gamma$ :

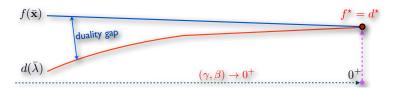
$$d(\bar{\lambda}) := \min_{\mathbf{x} \in \mathcal{X}} \{ f(\mathbf{x}) + \bar{\lambda}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) \}.$$

• f(x) is decreasing over  $\mathbf x$  and  $d(\lambda)$  is increasing over  $\lambda$ .

- ▶ The objective function  $f(\mathbf{x})$  does not depend on  $\beta$
- ▶ The dual function  $d(\lambda)$  does not depend on  $\gamma$ :

$$d(\bar{\lambda}) := \min_{\mathbf{x} \in \mathcal{X}} \{ f(\mathbf{x}) + \bar{\lambda}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) \}.$$

• f(x) is decreasing over  $\mathbf x$  and  $d(\lambda)$  is increasing over  $\lambda$ .

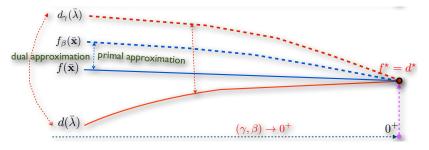


- ▶ The duality gap is defined as  $G(\bar{\mathbf{z}}) := f(\bar{\mathbf{x}}) d(\bar{\lambda}) \ge 0$ .
- At the optimal solution  $\mathbf{z}^{\star} := (\mathbf{x}^{\star}, \lambda^{\star})$ , one has  $f(\mathbf{x}^{\star}) = d(\lambda^{\star})$  and  $G(\mathbf{z}^{\star}) = 0$ .

- ▶ The objective function  $f(\mathbf{x})$  does not depend on  $\beta$
- ▶ The dual function  $d(\lambda)$  does not depend on  $\gamma$ :

$$d(\bar{\lambda}) := \min_{\mathbf{x} \in \mathcal{X}} \{ f(\mathbf{x}) + \bar{\lambda}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) \}.$$

• f(x) is decreasing over  $\mathbf x$  and  $d(\lambda)$  is increasing over  $\lambda$ .



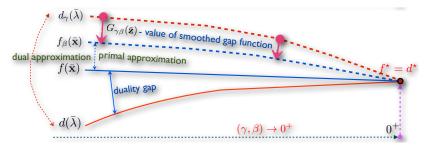
- ► The augmented function  $f_{\beta}$  approximates f:  $f_{\beta}(\mathbf{x}) = f(\mathbf{x}) + (1/(2\beta))\|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$
- ▶ The smoothed dual function  $d_{\gamma}$  approximates d:

$$d_{\gamma}(\lambda) := \min_{\mathbf{x} \in \mathcal{X}} \left\{ f(\mathbf{x}) + \lambda^{T} (\mathbf{A} \mathbf{x} - \mathbf{b}) + \gamma \xi(\mathbf{x}; \mathbf{x}_{c}) \right\}$$

- ▶ The objective function  $f(\mathbf{x})$  does not depend on  $\beta$
- ▶ The dual function  $d(\lambda)$  does not depend on  $\gamma$ :

$$d(\bar{\lambda}) := \min_{\mathbf{x} \in \mathcal{X}} \{ f(\mathbf{x}) + \bar{\lambda}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) \}.$$

• f(x) is decreasing over  ${\bf x}$  and  $d(\lambda)$  is increasing over  $\lambda$ .



- The smoothed duality gap is defined as  $G_{\gamma\beta}(\bar{\mathbf{z}}) := f_{\beta}(\bar{\mathbf{x}}) d_{\gamma}(\bar{\lambda}) \leq 0.$
- At the optimal solution  $\mathbf{z}^\star := (\mathbf{x}^\star, \lambda^\star)$ , one has  $f(\mathbf{x}^\star) = d(\lambda^\star)$  and

$$G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k) \to G(\mathbf{z}^{\star}) = 0 \text{ as } \gamma_k\beta_k \to 0^+.$$

## Model-based excessive gap technique

#### What is the smoothed gap function used for?

 $\textbf{Aim:} \ \ \mathsf{To} \ \ \mathsf{generate} \ \ \mathsf{a} \ \ \mathsf{primal-dual} \ \ \mathsf{sequence} \ \ \{\bar{\mathbf{z}}^k\}_{k\geq 0} \ \ \mathsf{with} \ \ \bar{\mathbf{z}}^k := (\bar{\mathbf{x}}^k, \bar{\lambda}^k) \ \ \mathsf{such} \ \ \mathsf{that}$ 

$$G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k) \to 0^+$$

by controlling  $\gamma_k$  and  $\beta_k \to 0^+$ .

- ▶ When  $\gamma_k$  and  $\beta_k$  go to zero, we have  $G_{\gamma_k,\beta_k}(\cdot) \to G(\cdot)$ .
- ► Consequence:  $G(\mathbf{z}^k) \to 0^+ \Rightarrow \bar{\mathbf{z}}^k \to \mathbf{z}^\star = (\mathbf{x}^\star, \lambda^\star)$  (primal-dual solution).

### Model-based excessive gap condition

A sequence  $\{\bar{\mathbf{z}}^k\}_{k\geq 0}\subset \mathcal{X}\times\mathbb{R}^n$  is said to satisfy the model-based excessive gap condition if

$$\boxed{G_{\gamma_{k+1}\beta_{k+1}}(\bar{\mathbf{z}}^{k+1}) \le (1-\tau_k)G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k) - \psi_k}$$
(45)

where  $\psi_k \geq 0$ ,  $\tau_k \in (0,1)$  and  $\gamma_k \beta_{k+1} < \gamma_k \beta_k$  for  $k \geq 0$ .

## Model-based excessive gap technique

#### What is the smoothed gap function used for?

 $\textbf{Aim:} \ \ \mathsf{To} \ \ \mathsf{generate} \ \ \mathsf{a} \ \ \mathsf{primal-dual} \ \ \mathsf{sequence} \ \ \{\bar{\mathbf{z}}^k\}_{k\geq 0} \ \ \mathsf{with} \ \ \bar{\mathbf{z}}^k := (\bar{\mathbf{x}}^k, \bar{\lambda}^k) \ \ \mathsf{such} \ \ \mathsf{that}$ 

$$G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k) \to 0^+$$

by controlling  $\gamma_k$  and  $\beta_k \to 0^+$ .

- ▶ When  $\gamma_k$  and  $\beta_k$  go to zero, we have  $G_{\gamma_k,\beta_k}(\cdot) \to G(\cdot)$ .
- ► Consequence:  $G(\mathbf{z}^k) \to 0^+ \Rightarrow \bar{\mathbf{z}}^k \to \mathbf{z}^\star = (\mathbf{x}^\star, \lambda^\star)$  (primal-dual solution).

### Model-based excessive gap condition

A sequence  $\{\bar{\mathbf{z}}^k\}_{k\geq 0}\subset \mathcal{X}\times\mathbb{R}^n$  is said to satisfy the model-based excessive gap condition if

$$\boxed{G_{\gamma_{k+1}\beta_{k+1}}(\bar{\mathbf{z}}^{k+1}) \le (1-\tau_k)G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k) - \psi_k}$$
(45)

where  $\psi_k \geq 0$ ,  $\tau_k \in (0,1)$  and  $\gamma_k \beta_{k+1} < \gamma_k \beta_k$  for  $k \geq 0$ .

## Model-based excessive gap technique

#### What is the smoothed gap function used for?

 $\textbf{Aim:} \ \ \mathsf{To} \ \ \mathsf{generate} \ \ \mathsf{a} \ \ \mathsf{primal-dual} \ \ \mathsf{sequence} \ \ \{\bar{\mathbf{z}}^k\}_{k\geq 0} \ \ \mathsf{with} \ \ \bar{\mathbf{z}}^k := (\bar{\mathbf{x}}^k, \bar{\lambda}^k) \ \ \mathsf{such} \ \ \mathsf{that}$ 

$$G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k) \to 0^+$$

by controlling  $\gamma_k$  and  $\beta_k \to 0^+$ .

- ▶ When  $\gamma_k$  and  $\beta_k$  go to zero, we have  $G_{\gamma_k\beta_k}(\cdot) \to G(\cdot)$ .
- ► Consequence:  $G(\mathbf{z}^k) \to 0^+ \Rightarrow \bar{\mathbf{z}}^k \to \mathbf{z}^\star = (\mathbf{x}^\star, \lambda^\star)$  (primal-dual solution).

### Model-based excessive gap condition

A sequence  $\{\bar{\mathbf{z}}^k\}_{k\geq 0}\subset \mathcal{X}\times\mathbb{R}^n$  is said to satisfy the model-based excessive gap condition if

$$G_{\gamma_{k+1}\beta_{k+1}}(\bar{\mathbf{z}}^{k+1}) \le (1 - \tau_k)G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k) - \psi_k$$
(45)

where  $\psi_k \geq 0$ ,  $\tau_k \in (0,1)$  and  $\gamma_k \beta_{k+1} < \gamma_k \beta_k$  for  $k \geq 0$ .

Let  $\bar{G}_k := G_{\gamma_k \beta_k}(\bar{\mathbf{z}}^k)$ . By induction, we have

$$\bar{G}_{k+1} \le \prod_{j=0}^{k} (1 - \tau_j) \bar{G}_0 - \left[ \psi_0 + \sum_{j=1}^{k-1} \prod_{l=0}^{j-1} (1 - \tau_l) \psi_j \right].$$

 $\Rightarrow$  The convergence rate of  $\{\bar{G}_k\}$  depends on the convergence rate of  $\{\tau_k\}$ .

#### Key estimates

For a bounded set  $\mathcal{X}$  and  $\hat{\mathbf{x}} \in \mathcal{X}$ , the quality  $D_{\mathcal{X}}$  defined below is finite

$$D_{\mathcal{X}} := \max_{\mathbf{x} \in \mathcal{X}} \xi(\mathbf{x}, \hat{\mathbf{x}}) < +\infty.$$

Denote

$$\omega_k := \prod_{j=0}^k (1-\tau_j) \quad \text{and} \quad \Psi_k := \psi_0 + \sum_{j=1}^{k-1} \prod_{l=0}^{j-1} (1-\tau_l) \psi_j.$$

#### Key estimates

For a bounded set  $\mathcal{X}$  and  $\hat{\mathbf{x}} \in \mathcal{X}$ , the quality  $D_{\mathcal{X}}$  defined below is finite

$$D_{\mathcal{X}} := \max_{\mathbf{x} \in \mathcal{X}} \xi(\mathbf{x}, \hat{\mathbf{x}}) < +\infty.$$

Denote

$$\omega_k := \prod_{j=0}^k (1-\tau_j) \ \ \text{and} \ \ \Psi_k := \psi_0 + \sum_{j=1}^{k-1} \prod_{l=0}^{j-1} (1-\tau_l) \psi_j.$$

## Theorem (Bounds on the objective residual and primal feasibility)

Assume that  $\{\bar{\mathbf{z}}^k\}_{k\geq 0}$  is a sequence satisfying (45). Then

$$\begin{cases}
-\|\lambda^{\star}\|\|\mathbf{A}\bar{\mathbf{x}}^{k} - \mathbf{b}\| \leq f(\bar{\mathbf{x}}^{k}) - f^{\star} \leq C_{k}, \\
\|\mathbf{A}\bar{\mathbf{x}}^{k} - \mathbf{b}\| \leq \beta_{k} \left[\|\lambda^{\star}\| + \sqrt{\|\lambda^{\star}\|^{2} + 2\beta_{k}^{-1}C_{k}}\right],
\end{cases} (46)$$

where  $C_k := \omega_{k-1} G_{\gamma_0 \beta_0}(\bar{\mathbf{z}}^0) + \gamma_k D_{\mathcal{X}} - \Psi_{k-1}$ , provided that  $\beta_k \|\lambda^*\| + 2C_k \ge 0$ .

#### Key estimates

For a bounded set  $\mathcal{X}$  and  $\hat{\mathbf{x}} \in \mathcal{X}$ , the quality  $D_{\mathcal{X}}$  defined below is finite

$$D_{\mathcal{X}} := \max_{\mathbf{x} \in \mathcal{X}} \xi(\mathbf{x}, \hat{\mathbf{x}}) < +\infty.$$

Denote

$$\omega_k := \prod_{j=0}^k (1-\tau_j) \ \ \text{and} \ \ \Psi_k := \psi_0 + \sum_{j=1}^{k-1} \prod_{l=0}^{j-1} (1-\tau_l) \psi_j.$$

### Theorem (Bounds on the objective residual and primal feasibility)

Assume that  $\{\bar{\mathbf{z}}^k\}_{k\geq 0}$  is a sequence satisfying (45). Then

$$\begin{cases}
-\|\lambda^{\star}\|\|\mathbf{A}\bar{\mathbf{x}}^{k} - \mathbf{b}\| \leq f(\bar{\mathbf{x}}^{k}) - f^{\star} \leq C_{k}, \\
\|\mathbf{A}\bar{\mathbf{x}}^{k} - \mathbf{b}\| \leq \beta_{k} \left[\|\lambda^{\star}\| + \sqrt{\|\lambda^{\star}\|^{2} + 2\beta_{k}^{-1} C_{k}}\right],
\end{cases} (46)$$

where  $C_k := \omega_{k-1} G_{\gamma_0 \beta_0}(\bar{\mathbf{z}}^0) + \gamma_k D_{\mathcal{X}} - \Psi_{k-1}$ , provided that  $\beta_k ||\lambda^*|| + 2C_k \ge 0$ .

As a consequence, we have

$$\begin{cases}
|f(\bar{\mathbf{x}}^k) - f^{\star}| & \leq \max\left\{\gamma_k D_{\mathcal{X}}, \left(2\beta_k D_{\Lambda^{\star}} + \sqrt{2\gamma_k \beta_k D_{\mathcal{X}}}\right) D_{\Lambda^{\star}}\right\}, \\
\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| & \leq 2\beta_k D_{\Lambda^{\star}} + \sqrt{2\gamma_k \beta_k D_{\mathcal{X}}},
\end{cases} (47)$$

where  $D_{\Lambda^*} := \min\{\|\lambda^*\| : \lambda^* \in \Lambda^*\}$  the norm of the minimum norm solution of the dual problem.

#### Sketch of proof

From the saddle point inequalities, we have  $f^{\star} = \mathcal{L}(\mathbf{x}^{\star}, \lambda^{\star}) \leq \mathcal{L}(\mathbf{x}, \lambda^{\star})$ . Hence,

$$d(\lambda) \le f^* \le f(\mathbf{x}) + (\mathbf{A}\mathbf{x} - \mathbf{b})^T \lambda^* \le f(\mathbf{x}) + \|\mathbf{A}\mathbf{x} - \mathbf{b}\| \|\lambda^*\|, \ \forall \mathbf{x} \in \mathcal{X}.$$

We finally get  $-\|\lambda^*\|\|\mathbf{A}\mathbf{x} - \mathbf{b}\| \le f(\mathbf{x}) - f^* \le f(\mathbf{x}) - d(\lambda)$  for all  $\mathbf{x} \in \mathcal{X}$ .

• Since  $\xi(\mathbf{x}, \mathbf{x}_c) \ge 0$  and  $d(\lambda) = \min_{\mathbf{x} \in \mathcal{X}} \{ f(\mathbf{x}) + \lambda^T (\mathbf{A}\mathbf{x} - \mathbf{b}) \}$ , we have

$$d(\lambda) \le d_{\gamma}(\lambda) \le d(\lambda) + \gamma D_{\mathcal{X}}$$

Putting things together, we get

$$- \|\lambda^{\star}\| \|\mathbf{A}\mathbf{x} - \mathbf{b}\| \le f(\mathbf{x}) - f^{\star} \le f(\mathbf{x}) - d(\lambda)$$

$$\le f_{\beta}(\mathbf{x}) - d_{\gamma}(\lambda) + \gamma D_{\mathcal{X}} - (1/(2\beta)) \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^{2}$$

$$= G_{\gamma\beta}(\mathbf{z}) + \gamma D_{\mathcal{X}} - (1/(2\beta)) \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^{2}.$$
(48)

► Since  $G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k) \leq \omega_{k-1}G_{\gamma_0\beta_0}(\bar{\mathbf{z}}^0) - \Psi_{k-1}$  due to (45), we obtain from (48)

$$-\|\lambda^{\star}\|\|\mathbf{A}\bar{\mathbf{x}}^{k} - \mathbf{b}\| \le f(\bar{\mathbf{x}}^{k}) - f^{\star} \le \omega_{k-1} G_{\gamma_{0}\beta_{0}}(\bar{\mathbf{z}}^{0}) - \Psi_{k-1} + \gamma_{k} D_{\mathcal{X}} = C_{k}.$$
(49)

which is the first inequality of (46).

Let  $s := \|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\|$ . From (49) and (48) we have  $s^2 - 2\beta_k \|\lambda^*\| s - 2\beta_k C_k \le 0$ . Solving this in equation, we obtain the **second inequality of** (46).

## Evaluating the smoothed gap function $G_{\gamma\beta}$

#### Evaluation of $G_{\gamma\beta}$

In order to evaluate  $G_{\gamma\beta}$ , we need to solve the maximization problem:

$$G_{\gamma\beta}(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathcal{X} \times \mathbb{R}^n} \left\{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) - d_{\gamma\beta}(\hat{\mathbf{z}}) \right\}$$

The solution  $\mathbf{z}_{\gamma\beta}^{\star}(\mathbf{z}):=(\mathbf{x}_{\gamma}^{\star}(\lambda),\lambda_{\beta}^{\star}(\mathbf{x}))$  of this problem is given as

$$\begin{cases}
\mathbf{x}_{\gamma}^{\star}(\lambda) &:= \underset{\mathbf{x} \in \mathcal{X}}{\arg \min} \left\{ f(\mathbf{x}) + (\mathbf{A}^{T} \lambda)^{T} \mathbf{x} + \gamma d(\mathbf{x}, \mathbf{x}_{c}) \right\} \\
\lambda_{\beta}^{\star}(\mathbf{x}) &:= \beta^{-1} (\mathbf{A} \mathbf{x} - \mathbf{b}).
\end{cases} (50)$$

# Evaluating the smoothed gap function $G_{\gamma\beta}$

### Evaluation of $G_{\gamma\beta}$

In order to evaluate  $G_{\gamma\beta}$ , we need to solve the maximization problem:

$$G_{\gamma\beta}(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathcal{X} \times \mathbb{R}^n} \left\{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) - d_{\gamma\beta}(\hat{\mathbf{z}}) \right\}$$

The solution  $\mathbf{z}^\star_{\gamma\beta}(\mathbf{z}) := (\mathbf{x}^\star_{\gamma}(\lambda), \lambda^\star_{\beta}(\mathbf{x}))$  of this problem is given as

$$\begin{cases}
\mathbf{x}_{\gamma}^{\star}(\lambda) &:= \underset{\mathbf{x} \in \mathcal{X}}{\arg \min} \left\{ f(\mathbf{x}) + (\mathbf{A}^{T} \lambda)^{T} \mathbf{x} + \gamma d(\mathbf{x}, \mathbf{x}_{c}) \right\} \\
\lambda_{\beta}^{\star}(\mathbf{x}) &:= \beta^{-1} (\mathbf{A} \mathbf{x} - \mathbf{b}).
\end{cases} (50)$$

Given  $\bar{\mathbf{z}}^k := (\bar{\mathbf{x}}^k, \bar{\lambda}^k)$  and  $(\gamma_k, \beta_k)$ . The idea of the algorithms is to:

- ▶ Update  $\bar{\mathbf{z}}^{k+1} := (\bar{\mathbf{x}}^{k+1}, \bar{\lambda}^{k+1})$  from  $\bar{\mathbf{z}}^k$  and  $\mathbf{z}^{\star}_{\gamma_k \beta_k}(\mathbf{z})$ .
- ▶ Decrease the parameters  $(\gamma_{k+1}, \beta_{k+1})$  such that  $\gamma_{k+1}\beta_{k+1} < \gamma_k\beta_k$ .

# Evaluating the smoothed gap function $G_{\gamma\beta}$

### Evaluation of $G_{\gamma\beta}$

In order to evaluate  $G_{\gamma\beta}$ , we need to solve the maximization problem:

$$G_{\gamma\beta}(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathcal{X} \times \mathbb{R}^n} \left\{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) - d_{\gamma\beta}(\hat{\mathbf{z}}) \right\}$$

The solution  $\mathbf{z}_{\gamma\beta}^{\star}(\mathbf{z}):=(\mathbf{x}_{\gamma}^{\star}(\lambda),\lambda_{\beta}^{\star}(\mathbf{x}))$  of this problem is given as

$$\begin{cases}
\mathbf{x}_{\gamma}^{\star}(\lambda) &:= \underset{\mathbf{x} \in \mathcal{X}}{\arg \min} \left\{ f(\mathbf{x}) + (\mathbf{A}^{T} \lambda)^{T} \mathbf{x} + \gamma d(\mathbf{x}, \mathbf{x}_{c}) \right\} \\
\lambda_{\beta}^{\star}(\mathbf{x}) &:= \beta^{-1} (\mathbf{A} \mathbf{x} - \mathbf{b}).
\end{cases} (50)$$

Given  $\bar{\mathbf{z}}^k := (\bar{\mathbf{x}}^k, \bar{\lambda}^k)$  and  $(\gamma_k, \beta_k)$ . The idea of the algorithms is to:

- ▶ Update  $\bar{\mathbf{z}}^{k+1} := (\bar{\mathbf{x}}^{k+1}, \bar{\lambda}^{k+1})$  from  $\bar{\mathbf{z}}^k$  and  $\mathbf{z}^{\star}_{\gamma, \beta, \mathbf{z}}(\mathbf{z})$ .
- ▶ Decrease the parameters  $(\gamma_{k+1}, \beta_{k+1})$  such that  $\gamma_{k+1}\beta_{k+1} < \gamma_k\beta_k$ .

#### Proximal-gradient step

In our algorithms, we need to compute  $\bar{\mathbf{x}}^{k+1}$  using the following mapping:

$$\operatorname{prox}_{\beta f}(\mathbf{x}, \lambda) := \arg \min_{\hat{\mathbf{x}} \in \mathcal{X}} \left\{ f(\hat{\mathbf{x}}) + (\mathbf{A}^T \lambda)^T \hat{\mathbf{x}} + (\|\mathbf{A}\|^2 / (2\beta)) \|\hat{\mathbf{x}} - \mathbf{x}\|_2^2 \right\}$$
 (51)

The main idea of generating the sequence  $\{\bar{\mathbf{z}}^k\}$  such that  $\{G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k)\}$  decreases come from the following observations:

• Since  $G_{\gamma\beta}(\mathbf{z}) = f_{\beta}(\mathbf{x}) - d_{\gamma}(\lambda)$ , then  $G_{\gamma\beta}(\mathbf{z})$  decreases if at least  $f_{\beta}(\mathbf{x})$  decrease or  $d_{\gamma}(\lambda)$  increases.

The main idea of generating the sequence  $\{\bar{\mathbf{z}}^k\}$  such that  $\{G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k)\}$  decreases come from the following observations:

- Since  $G_{\gamma\beta}(\mathbf{z}) = f_{\beta}(\mathbf{x}) d_{\gamma}(\lambda)$ , then  $G_{\gamma\beta}(\mathbf{z})$  decreases if at least  $f_{\beta}(\mathbf{x})$  decrease or  $d_{\gamma}(\lambda)$  increases.
- We note on the one hand that:
  - $d_{\gamma}$  is a smoothed version of the dual function d.
  - this function is concave and has Lipschitz gradient  $\nabla d_{\gamma}$ .

In order to increase  $d_\gamma$  as much as possible, one can implement a Nesterov's accelerated gradient ascent scheme.

The main idea of generating the sequence  $\{\bar{\mathbf{z}}^k\}$  such that  $\{G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k)\}$  decreases come from the following observations:

- Since  $G_{\gamma\beta}(\mathbf{z}) = f_{\beta}(\mathbf{x}) d_{\gamma}(\lambda)$ , then  $G_{\gamma\beta}(\mathbf{z})$  decreases if at least  $f_{\beta}(\mathbf{x})$  decrease or  $d_{\gamma}(\lambda)$  increases.
- We note on the one hand that:
  - $d_{\gamma}$  is a smoothed version of the dual function d.
  - this function is concave and has Lipschitz gradient  $\nabla d_{\gamma}$ .

In order to increase  $d_\gamma$  as much as possible, one can implement a Nesterov's accelerated gradient ascent scheme.

- ▶ On the other hand,  $f_{\beta}(\mathbf{x}) = f(\mathbf{x}) + (1/(2\beta)) \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$ :
  - $f_{\beta}$  is the sum of a convex function f and  $g(\mathbf{x}) := (1/(2\beta)) \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$ .
  - g is convex and has Lipschitz gradient, while f is just convex.

In order to decrease  $f_{\beta}$ , we can implement a Nesterov's accelerated proximal-gradient scheme.

The main idea of generating the sequence  $\{\bar{\mathbf{z}}^k\}$  such that  $\{G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k)\}$  decreases come from the following observations:

- Since  $G_{\gamma\beta}(\mathbf{z}) = f_{\beta}(\mathbf{x}) d_{\gamma}(\lambda)$ , then  $G_{\gamma\beta}(\mathbf{z})$  decreases if at least  $f_{\beta}(\mathbf{x})$  decrease or  $d_{\gamma}(\lambda)$  increases.
- We note on the one hand that:
  - $d_{\gamma}$  is a smoothed version of the dual function d.
  - this function is concave and has Lipschitz gradient  $\nabla d_{\gamma}$ .

In order to increase  $d_\gamma$  as much as possible, one can implement a Nesterov's accelerated gradient ascent scheme.

- ▶ On the other hand,  $f_{\beta}(\mathbf{x}) = f(\mathbf{x}) + (1/(2\beta)) \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$ :
  - $f_{\beta}$  is the sum of a convex function f and  $g(\mathbf{x}) := (1/(2\beta)) \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$ .
  - g is convex and has Lipschitz gradient, while f is just convex.

In order to decrease  $f_{\beta}$ , we can implement a Nesterov's accelerated proximal-gradient scheme.

Figure Every iteration, we can perform one scheme or both in order to decrease  $G_{\gamma\beta}(\mathbf{z})$ , while simultaneously decrease the **product**  $\gamma\beta$ .

This observations lead to the following two update schemes in the next slides.

#### Expression of the idea

We denote by s a variable standing for either x or  $\lambda$ . The main step of the algorithmic scheme consists of

For given s,  $s^*$  and  $\tau \in (0,1]$  at the current iteration. We perform one interpolation step:

$$\hat{\mathbf{s}} := (1 - \tau)\mathbf{s} + \tau\mathbf{s}^{\star}.$$

When \(\hat{s}\) is available, we perform a proximal-gradient or gradient step to compute the next iteration s<sup>+</sup>:

$$\mathbf{s}^+ := \operatorname{prox}_{\psi}(\hat{\mathbf{s}} - (1/L)\nabla\varphi(\hat{\mathbf{s}})).$$

#### where

- $\varphi := d_{\gamma}$  the smoothed dual function and  $\psi = f$  in the primal step
- $\varphi := (1/(2\beta))\|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$  and  $\psi = 0$  and in the dual scheme.
- L is the Lipschitz constant of  $\nabla \varphi$ .

#### Remarks

 The above scheme looks very similar to FISTA [1] in the context of Nesterov's accelerating method.

We propose two schemes to generate the sequence  $\{ar{\mathbf{z}}^k\}$ 

- ► The primal-dual scheme with two primal steps and one dual step (2P1D);
- ► The primal-dual scheme with one primal step and two dual steps (1P2D).

We propose two schemes to generate the sequence  $\{\bar{\mathbf{z}}^k\}$ 

- ► The primal-dual scheme with two primal steps and one dual step (2P1D);
- ► The primal-dual scheme with one primal step and two dual steps (1P2D).

#### Primal-dual schemes

▶ The (2P1D) scheme generates  $\{\bar{z}^k\}$  with  $\bar{\mathbf{z}}^k := (\bar{\mathbf{x}}^k, \bar{\lambda}^k)$  as follows:

$$\begin{cases}
\hat{\mathbf{x}}^{k} &:= (1 - \tau_{k}) \bar{\mathbf{x}}^{k} + \tau_{k} \mathbf{x}_{\gamma_{k}}^{\star} (\bar{\lambda}^{k}) \\
\bar{\mathbf{x}}^{k+1} &:= \operatorname{prox}_{\beta_{k+1} f} (\hat{\mathbf{x}}^{k}, \lambda_{\beta_{k+1}}^{\star} (\hat{\mathbf{x}}^{k})) \\
\bar{\lambda}^{k+1} &:= (1 - \tau_{k}) \bar{\lambda}^{k} + \tau_{k} \lambda_{\beta_{k+1}}^{\star} (\hat{\mathbf{x}}^{k})
\end{cases}$$
(2P1D)

We propose two schemes to generate the sequence  $\{\bar{\mathbf{z}}^k\}$ 

- The primal-dual scheme with two primal steps and one dual step (2P1D);
- The primal-dual scheme with one primal step and two dual steps (1P2D).

#### Primal-dual schemes

▶ The (2P1D) scheme generates  $\{\bar{z}^k\}$  with  $\bar{\mathbf{z}}^k := (\bar{\mathbf{x}}^k, \bar{\lambda}^k)$  as follows:

$$\begin{cases}
\hat{\mathbf{x}}^{k} &:= (1 - \tau_{k}) \bar{\mathbf{x}}^{k} + \tau_{k} \mathbf{x}_{\gamma_{k}}^{\star} \bar{\lambda}^{k}) \\
\bar{\mathbf{x}}^{k+1} &:= \operatorname{prox}_{\beta_{k+1} f} (\hat{\mathbf{x}}^{k}, \lambda_{\beta_{k+1}}^{\star} (\hat{\mathbf{x}}^{k})) \\
\bar{\lambda}^{k+1} &:= (1 - \tau_{k}) \bar{\lambda}^{k} + \tau_{k} \lambda_{\beta_{k+1}}^{\star} (\hat{\mathbf{x}}^{k})
\end{cases}$$
(2P1D)

• Symmetrically, the (1P2D) scheme generates  $\{\bar{z}^k\}$  as follows:

$$\begin{cases} \hat{\lambda}^{k} &:= (1 - \tau_{k}) \bar{\lambda}^{k} + \tau_{k} \lambda_{\beta_{k}}^{\star}(\bar{\mathbf{x}}^{k}) \\ \bar{\mathbf{x}}^{k+1} &:= (1 - \tau_{k}) \bar{\mathbf{x}}^{k} + \tau_{k} \mathbf{x}_{\gamma_{k+1}}^{\star}(\hat{\lambda}^{k}) \\ \bar{\lambda}^{k+1} &:= \hat{\lambda}^{k} + \alpha_{k} (\mathbf{A} \mathbf{x}_{\gamma_{k+1}}^{\star}(\hat{\lambda}^{k}) - \mathbf{b}) \end{cases}$$
(1P2D)

where  $\alpha_k := \gamma_{k+1} \|\mathbf{A}\|^{-2}$ .

We propose two schemes to generate the sequence  $\{\bar{\mathbf{z}}^k\}$ 

- The primal-dual scheme with two primal steps and one dual step (2P1D);
- ► The primal-dual scheme with one primal step and two dual steps (1P2D).

#### Primal-dual schemes

• The (2P1D) scheme generates  $\{\bar{z}^k\}$  with  $\bar{\mathbf{z}}^k:=(\bar{\mathbf{x}}^k,\bar{\lambda}^k)$  as follows:

$$\begin{cases} \hat{\mathbf{x}}^k &:= (1 - \tau_k) \bar{\mathbf{x}}^k + \tau_k \mathbf{x}^{\star}_{\gamma_k} (\bar{\lambda}^k) \\ \bar{\mathbf{x}}^{k+1} &:= \underset{}{\operatorname{prox}}_{\beta_{k+1} f} (\hat{\mathbf{x}}^k, \lambda^{\star}_{\beta_{k+1}} (\hat{\mathbf{x}}^k)) \\ \bar{\lambda}^{k+1} &:= (1 - \tau_k) \bar{\lambda}^k + \tau_k \lambda^{\star}_{\beta_{k+1}} (\hat{\mathbf{x}}^k) \end{cases}$$
(2P1D)

• Symmetrically, the (1P2D) scheme generates  $\{\bar{z}^k\}$  as follows:

$$\begin{cases} \hat{\lambda}^{k} &:= (1 - \tau_{k}) \bar{\lambda}^{k} + \tau_{k} \lambda_{\beta_{k}}^{\star}(\bar{\mathbf{x}}^{k}) \\ \bar{\mathbf{x}}^{k+1} &:= (1 - \tau_{k}) \bar{\mathbf{x}}^{k} + \tau_{k} \mathbf{x}_{\gamma_{k+1}}^{\star}(\hat{\lambda}^{k}) \\ \bar{\lambda}^{k+1} &:= \hat{\lambda}^{k} + \alpha_{k} (\mathbf{A} \mathbf{x}_{\gamma_{k+1}}^{\star}(\hat{\lambda}^{k}) - \mathbf{b}) \end{cases}$$
(1P2D)

where  $\alpha_k := \gamma_{k+1} ||\mathbf{A}||^{-2}$ .

▶ The parameters  $\beta_k$  and  $\gamma_k$  are updated as  $(c_k \in (-1,1]$  given):

$$\gamma_{k+1} := (1 - c_k \tau_k) \gamma_k$$
 and  $\beta_{k+1} = (1 - \tau_k) \beta_k$  (52)

#### Remarks on the computational complexity of both schemes

- (2P1D) requires two primal steps: one to compute  $\mathbf{x}_{\gamma_k}^{\star}(\bar{\lambda}^k)$  and one to compute  $\bar{\mathbf{x}}^{k+1}$ .
  - ► The first step corresponds to solving

$$\mathbf{x}_{\gamma_k}^{\star}(\bar{\lambda}^k) := \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{X}} \left\{ f(\mathbf{x}) + (\mathbf{A}^T \bar{\lambda}^k)^T \mathbf{x} + \gamma_k d(\mathbf{x}, \mathbf{x}_c) \right\}.$$

► The second step corresponds to solving

$$\bar{\mathbf{x}}^{k+1} := \arg\min_{\hat{\mathbf{x}} \in \mathcal{X}} \left\{ f(\hat{\mathbf{x}}) + (\mathbf{A}^T \boldsymbol{\lambda}^\star_{\beta_{k+1}} (\hat{\mathbf{x}}^k))^T \hat{\mathbf{x}} + (\|\mathbf{A}\|^2/(2\beta)) \|\hat{\mathbf{x}} - \hat{\mathbf{x}}^k\|_2^2 \right\}$$

- If b is a quadratic prox-function and X is absent, then solving both problems corresponds to computing the proximal operator of f.
- (1P2D) only requires one primal step to compute  $\mathbf{x}_{\gamma_{k\pm 1}}^{\star}(\hat{\lambda}^k)$ .
- (1P2D) requires two dual steps corresponding to two matrix-vector multiplications  $A\bar{\mathbf{x}}^k$  and  $A\mathbf{x}^*_{\lambda_{k+1}}(\hat{\lambda}^k)$ .
- (2P1D) requires only one  $\mathbf{A}\hat{\mathbf{x}}^k$ .

#### **Updating step-size**

The key point in both schemes (1P2D) and (2P1D) is to update the step size  $\tau_k$ :

- ▶ The model-based excessive gap condition (45) shows that  $G_{\gamma_k \beta_k}(\bar{\mathbf{z}}^k) \to 0^+$ .
- The convergence rate of  $\{\beta_k\}$  and  $\{\gamma_k\}$  depends on the convergence rate of  $\{\tau_k\}$  and hence, the convergence rate of the algorithms.

#### **Updating step-size**

The key point in both schemes (1P2D) and (2P1D) is to update the step size  $\tau_k$ :

- The model-based excessive gap condition (45) shows that  $G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k) o 0^+$ .
- For The convergence rate of  $\{\beta_k\}$  and  $\{\gamma_k\}$  depends on the convergence rate of  $\{\tau_k\}$  and hence, the convergence rate of the algorithms.

# Theorem (Key condition)

Let  $\{\bar{\mathbf{z}}^k\}$  be the sequence generated by either (1P2D) or (2P1D) and  $G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k) \leq 0$ . Then, under the condition:

$$\tau^2 \|\mathbf{A}\|^2 \le \gamma_{k+1} \beta_{k+1} \tag{53}$$

we have  $G_{\gamma_{k+1}\beta_{k+1}}(\bar{\mathbf{z}}^{k+1}) \leq 0$ .

Condition (53) and the update rules  $\gamma_{k+1} := (1 - c_k \tau_k) \gamma_k$  and  $\beta_{k+1} = (1 - \tau_k) \beta_k$  allow us to derive the update rule for  $\tau_k$ :

#### **Updating step-size**

The key point in both schemes (1P2D) and (2P1D) is to update the step size  $\tau_k$ :

- ▶ The model-based excessive gap condition (45) shows that  $G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k) \to 0^+$ .
- For The convergence rate of  $\{\beta_k\}$  and  $\{\gamma_k\}$  depends on the convergence rate of  $\{\tau_k\}$  and hence, the convergence rate of the algorithms.

# Theorem (Key condition)

Let  $\{\bar{\mathbf{z}}^k\}$  be the sequence generated by either (1P2D) or (2P1D) and  $G_{\gamma_k\beta_k}(\bar{\mathbf{z}}^k) \leq 0$ . Then, under the condition:

$$\tau^2 \|\mathbf{A}\|^2 \le \gamma_{k+1} \beta_{k+1} \tag{53}$$

we have  $G_{\gamma_{k+1}\beta_{k+1}}(\bar{\mathbf{z}}^{k+1}) \leq 0$ .

Condition (53) and the update rules  $\gamma_{k+1} := (1 - c_k \tau_k) \gamma_k$  and  $\beta_{k+1} = (1 - \tau_k) \beta_k$  allow us to derive the update rule for  $\tau_k$ :

#### Update the step-size $\tau_k$

- Initialization:  $\tau_0 := a_0^{-1}$ , where  $a_0 := \left(1 + c_0 + [4(1-c_0) + (1+c_0)^2]^{1/2}\right)/2$ .
- ▶ **Update:**  $\tau_{k+1}$  is updated from  $\tau_k$  as

$$\tau_k = a_k^{-1}, \quad a_{k+1} := \left(1 + c_{k+1} + \sqrt{4a_k^2 + (1 - c_{k+1})^2}\right)/2$$

# Primal-dual framework using model-based excessive gap technique

Putting all ingredients together, we can describe the complete algorithm as below:

# Primal-dual method using model-based excessive gap technique (PDM)

#### Initialization

- 1.1. Given  $\gamma_0 > 0$ ,  $c_0 \in (-1, 1]$  and  $\bar{L}_d := ||\mathbf{A}||^2$ .
- 1.2.  $a_0 := (1 + c_0 + \sqrt{4(1 c_0) + (1 + c_0)^2})/2$ ,  $\tau_0 := a_0^{-1}$  and  $\beta_0 := \bar{L}_g \gamma^{-1}$ .
- 1.3. Compute a starting point  $\bar{\mathbf{z}}^0 := (\bar{\mathbf{x}}^0, \bar{\lambda}^0)$ .

# Primal-dual framework using model-based excessive gap technique

Putting all ingredients together, we can describe the complete algorithm as below:

# Primal-dual method using model-based excessive gap technique (PDM)

# 1.1. Given $\gamma_0 > 0$ , $c_0 \in (-1, 1]$ and $\bar{L}_d := \|\mathbf{A}\|^2$ .

- 1.2.  $a_0 := (1 + c_0 + \sqrt{4(1 c_0) + (1 + c_0)^2})/2$ ,  $\tau_0 := a_0^{-1}$  and  $\beta_0 := \bar{L}_g \gamma^{-1}$ .
- 1.3. Compute a starting point  $\bar{\mathbf{z}}^0 := (\bar{\mathbf{x}}^0, \bar{\lambda}^0)$ .

#### **Iterations**: For $k = 0, 1, \dots, K$ , perform:

- 2.1. Given  $(\bar{\mathbf{x}}^k, \bar{\lambda}^k)$ , compute  $(\bar{\mathbf{x}}^{k+1}, \bar{\lambda}^{k+1})$  by either (2P1D) or (1P2D).
- **2.2.** Update  $\gamma_{k+1} := (1 c_k \tau_k) \gamma_k$  and  $\beta_{k+1} := (1 \tau_k) \beta_k$
- 2.3. Update  $c_{k+1}$  from  $c_k$  if necessary (optional).
- 2.4. Update  $a_{k+1} := \left(1 + c_{k+1} + \sqrt{4a_k^2 + (1 c_{k+1})^2}\right)/2$  and  $\tau_{k+1} = a_{k+1}^{-1}$ .

# Theorem (Convergence)

Let  $\{\bar{\mathbf{z}}^k := (\bar{\mathbf{x}}^k, \bar{\lambda}^k)\}$  be the sequence generated by **PDM** after  $k \geq 1$  iterations.

a) If (2P1D) is used and  $\gamma_0:=\|\mathbf{A}\|$  and  $c_k=1$  for all  $k\geq 0$ , then

$$\left\{ \begin{array}{rcl} \|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| & \leq \frac{\|\mathbf{A}\|(2D_{\Lambda^\star} + \sqrt{D_{\mathcal{X}}})}{k+1}, \\ -D_{\Lambda^\star}\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| & \leq f(\bar{\mathbf{x}}^k) - f^\star & \leq \frac{2\|\mathbf{A}\|D_{\mathcal{X}}}{k+1}. \end{array} \right.$$

# Theorem (Convergence)

Let  $\{\bar{\mathbf{z}}^k := (\bar{\mathbf{x}}^k, \bar{\lambda}^k)\}$  be the sequence generated by **PDM** after  $k \geq 1$  iterations.

a) If (2P1D) is used and  $\gamma_0 := \|\mathbf{A}\|$  and  $c_k = 1$  for all  $k \geq 0$ , then

$$\left\{ \begin{array}{rcl} \|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| & \leq \frac{\|\mathbf{A}\|(2D_{\Lambda^\star} + \sqrt{D_{\mathcal{X}}})}{k+1}, \\ -D_{\Lambda^\star}\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| & \leq f(\bar{\mathbf{x}}^k) - f^\star & \leq \frac{2\|\mathbf{A}\|D_{\mathcal{X}}}{k+1}. \end{array} \right.$$

b) If (1P2D) is used and  $\gamma_0 := \frac{2\sqrt{2}\|\mathbf{A}\|}{K+1}$  and  $c_k = 0$  for all  $0 \le k \le K$ , then

$$\left\{ \begin{array}{rcl} \|\mathbf{A}\bar{\mathbf{x}}^K - \mathbf{b}\| & \leq \frac{2\sqrt{2}\|\mathbf{A}\|(D_{\Lambda^\star} + \sqrt{D_{\mathcal{X}}})}{K+1}, \\ -D_{\Lambda^\star}\|\mathbf{A}\bar{\mathbf{x}}^K - \mathbf{b}\| & \leq f(\bar{\mathbf{x}}^K) - f^\star & \leq \frac{2\sqrt{2}\|\mathbf{A}\|D_{\mathcal{X}}}{K+1}. \end{array} \right.$$

The worst-case complexity of **PDM** to reach an  $\epsilon$ -solution  $\mathbf{x}^*$  of (40) is  $\mathcal{O}\left(\frac{\|\mathbf{A}\|R}{\epsilon}\right)$ , where  $R := \max\{D_{\mathcal{X}}, D_{\Lambda^*} + \sqrt{D_{\mathcal{X}}}\}$ .

# Theorem (Convergence)

Let  $\{\bar{\mathbf{z}}^k := (\bar{\mathbf{x}}^k, \bar{\lambda}^k)\}$  be the sequence generated by **PDM** after  $k \geq 1$  iterations.

a) If (2P1D) is used and  $\gamma_0 := \|\mathbf{A}\|$  and  $c_k = 1$  for all  $k \geq 0$ , then

$$\left\{ \begin{array}{rcl} \|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| & \leq \frac{\|\mathbf{A}\|(2D_{\Lambda^\star} + \sqrt{D_{\mathcal{X}}})}{k+1}, \\ -D_{\Lambda^\star}\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| & \leq f(\bar{\mathbf{x}}^k) - f^\star & \leq \frac{2\|\mathbf{A}\|D_{\mathcal{X}}}{k+1}. \end{array} \right.$$

b) If (1P2D) is used and  $\gamma_0:=\frac{2\sqrt{2}\|\mathbf{A}\|}{K+1}$  and  $c_k=0$  for all  $0\leq k\leq K$ , then

$$\left\{ \begin{array}{rcl} \|\mathbf{A}\bar{\mathbf{x}}^K - \mathbf{b}\| & \leq \frac{2\sqrt{2}\|\mathbf{A}\|(D_{\Lambda^\star} + \sqrt{D_{\mathcal{X}}})}{K+1}, \\ -D_{\Lambda^\star}\|\mathbf{A}\bar{\mathbf{x}}^K - \mathbf{b}\| & \leq f(\bar{\mathbf{x}}^K) - f^\star & \leq \frac{2\sqrt{2}\|\mathbf{A}\|D_{\mathcal{X}}}{K+1}. \end{array} \right.$$

The worst-case complexity of **PDM** to reach an  $\epsilon$ -solution  $\mathbf{x}^*$  of (40) is  $\mathcal{O}\left(\frac{\|\mathbf{A}\|R}{\epsilon}\right)$ , where  $R := \max\{D_{\mathcal{X}}, D_{\Lambda^*} + \sqrt{D_{\mathcal{X}}}\}$ .

#### Remarks:

If (1P2D) is used, then  $\gamma_0 := \frac{2\sqrt{2}\|\mathbf{A}\|}{K+1}$ , which requires to fix the number of iterations priori

#### Strongly convex case

**PDM** can be accelerated from  $\mathcal{O}(1/k)$  to  $\mathcal{O}(1/k^2)$  if f is strongly convex.

# Assumption A.2.

The objective function f is strongly convex with the convexity parameter  $\mu_f > 0$ .

#### Strongly convex case

**PDM** can be accelerated from  $\mathcal{O}(1/k)$  to  $\mathcal{O}(1/k^2)$  if f is strongly convex.

# Assumption A.2.

The objective function f is strongly convex with the convexity parameter  $\mu_f > 0$ .

#### **Dual function**

We define the dual function of (40) as

$$d(\lambda) := \min_{\mathbf{x} \in \mathcal{X}} \left\{ f(\mathbf{x}) + \lambda^{T} (\mathbf{A}\mathbf{x} - \mathbf{b}) \right\}.$$
 (54)

- Let  $\mathbf{x}^{\star}(\lambda)$  be the solution of (54)
- $\mathbf{x}^*(\lambda)$  exists and is unique.

#### Strongly convex case

**PDM** can be accelerated from  $\mathcal{O}(1/k)$  to  $\mathcal{O}(1/k^2)$  if f is strongly convex.

# Assumption A.2.

The objective function f is strongly convex with the convexity parameter  $\mu_f > 0$ .

#### **Dual function**

We define the dual function of (40) as

$$d(\lambda) := \min_{\mathbf{x} \in \mathcal{X}} \left\{ f(\mathbf{x}) + \lambda^T (\mathbf{A}\mathbf{x} - \mathbf{b}) \right\}.$$
 (54)

- Let  $\mathbf{x}^{\star}(\lambda)$  be the solution of (54)
- x\*(λ) exists and is unique.

#### Properties of d

- ▶ d is concave and smooth
- Gradient of d is given by  $\nabla d(\lambda) := \mathbf{A} \mathbf{x}^{\star}(\lambda) \mathbf{b}$ .
- ullet abla d is Lipschitz continuous with a Lipschitz constant  $ar{L}_d := rac{\|\mathbf{A}\|^2}{\mu_f}$  .

### Algorithm

When specifying **PDM** to solve the strongly convex case, some steps in the algorithm are changed:

- ▶ Only one smoothness parameter  $\beta_k$  is updated.
- ▶ The update rule of  $\tau_k$  is simplified.

#### Algorithm

When specifying PDM to solve the strongly convex case, some steps in the algorithm are changed:

- ▶ Only one smoothness parameter  $\beta_k$  is updated.
- ▶ The update rule of  $\tau_k$  is simplified.

#### Primal-dual method for strongly convex case (PDM $_{\mu}$ )

#### **Initialization:**

- 1.1. Compute  $\bar{L}_d := \mu_f^{-1} \|\mathbf{A}\|^2$ ,  $\tau_0 := (\sqrt{5} 1)/2$  and  $\beta_0 := \sqrt{\bar{L}_d}$ .
- 1.2. Compute a starting point  $\bar{\mathbf{z}}^0 := (\bar{\mathbf{x}}^0, \bar{\lambda}^0)$  as:

$$\bar{\mathbf{x}}^0 := \mathbf{x}^\star(0^n) \quad \text{and} \quad \bar{\lambda}^0 := \beta_0^{-1}(\mathbf{A}\bar{\mathbf{x}}^0 - \mathbf{b}).$$

#### **Algorithm**

When specifying **PDM** to solve the strongly convex case, some steps in the algorithm are changed:

- Only one smoothness parameter  $\beta_k$  is updated.
- ▶ The update rule of  $\tau_k$  is simplified.

#### Primal-dual method for strongly convex case (PDM $_{\mu}$ )

#### Initialization:

- 1.1. Compute  $\bar{L}_d := \mu_f^{-1} \|\mathbf{A}\|^2$ ,  $\tau_0 := (\sqrt{5} 1)/2$  and  $\beta_0 := \sqrt{\bar{L}_d}$ .
- 1.2. Compute a starting point  $\bar{\mathbf{z}}^0 := (\bar{\mathbf{x}}^0, \bar{\lambda}^0)$  as:

$$\bar{\mathbf{x}}^0 := \mathbf{x}^{\star}(0^n) \quad \text{and} \quad \bar{\lambda}^0 := \beta_0^{-1}(\mathbf{A}\bar{\mathbf{x}}^0 - \mathbf{b}).$$

# **Iterations**: For $k = 0, 1, \dots, K$ , perform:

2.1. Given  $(\bar{\mathbf{x}}^k, \bar{\lambda}^k)$ , compute  $(\bar{\mathbf{x}}^{k+1}, \bar{\lambda}^{k+1})$  as

$$\begin{cases} \hat{\lambda}^{k} &:= (1 - \tau_{k}) \bar{\lambda}^{k} + \tau_{k} \lambda_{\beta_{k}}^{\star}(\bar{\mathbf{x}}^{k}) \\ \bar{\mathbf{x}}^{k+1} &:= (1 - \tau_{k}) \bar{\mathbf{x}}^{k} + \tau_{k} \mathbf{x}^{\star}(\hat{\lambda}^{k}) \\ \bar{\lambda}^{k+1} &:= \hat{\lambda}^{k} + \bar{L}_{d}^{-1}(\mathbf{A}\mathbf{x}^{\star}(\hat{\lambda}^{k}) - \mathbf{b}). \end{cases}$$
(1P2D<sub>\(\mu\)</sub>)

**2.2.** Update  $\beta_{k+1} := (1 - \tau_k)\beta_k$  and  $\tau_{k+1} := \tau_k(\sqrt{\tau_k^2 + 4} - \tau_k)/2$ .

# Theorem (Convergence guarantee)

#### Assumptions:

- f is strongly convex with a strong convexity parameter  $\mu_f > 0$ .
- $\{\bar{\mathbf{z}}^k\}$  is generated by  $PDM_{\mu}$ .

#### Conclusions:

▶ We have estimates:

$$\left\{ \begin{array}{ll} -D_{\Lambda^{\star}} \|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| & \leq f(\bar{\mathbf{x}}^k) - f^{\star} & \leq 0 \\ & \|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| & \leq \frac{\|\mathbf{A}\|^2}{(k+2)^2 \mu_f} D_{\Lambda^{\star}} \\ & \|\bar{\mathbf{x}}^k - \mathbf{x}^{\star}\| & \leq \frac{\|\mathbf{A}\|}{(k+2)^2 \mu_f} D_{\Lambda^{\star}} \end{array} \right.$$

- ▶ The bounds do not depend on  $\mathcal{D}_{\mathcal{X}}$  the prox-diameter of  $\mathcal{X}$ .
- $\{\mathbf{x}^k\}$  converges to the unique solution  $\mathbf{x}^*$  of (40) at  $\mathcal{O}(1/k^2)$  rate.

### Theorem (Convergence guarantee)

#### Assumptions:

- f is strongly convex with a strong convexity parameter  $\mu_f > 0$ .
- $\{\bar{\mathbf{z}}^k\}$  is generated by  $PDM_{\mu}$ .

#### Conclusions:

We have estimates:

$$\left\{ \begin{array}{ll} -D_{\Lambda^{\star}} \| \mathbf{A} \bar{\mathbf{x}}^k - \mathbf{b} \| & \leq f(\bar{\mathbf{x}}^k) - f^{\star} & \leq 0 \\ & \| \mathbf{A} \bar{\mathbf{x}}^k - \mathbf{b} \| & \leq \frac{\| \mathbf{A} \|^2}{(k+2)^2 \mu_f} D_{\Lambda^{\star}} \\ & \| \bar{\mathbf{x}}^k - \mathbf{x}^{\star} \| & \leq \frac{\| \mathbf{A} \|}{(k+2)^2 \mu_f} D_{\Lambda^{\star}} \end{array} \right.$$

- The bounds do not depend on  $\mathcal{D}_{\mathcal{X}}$  the prox-diameter of  $\mathcal{X}$ .
- $\{\mathbf{x}^k\}$  converges to the unique solution  $\mathbf{x}^*$  of (40) at  $\mathcal{O}(1/k^2)$  rate.

#### Remarks:

- We always have  $f(\bar{\mathbf{x}}^k) \leq f^*$  in PDM<sub> $\mu$ </sub>, which is different from the unconstrained case, i.e.  $f(\mathbf{x}^k) > f^*$ .
- ► The convergence rate is optimal in the sense of black-box first order methods.

ADMM was originally developed to solve a special case of (40):

$$f^* := \min_{\mathbf{x} \in \mathcal{X}} \{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \},$$

where f and  $\mathcal{X}$  is decomposable with g=2.

# Problem setting: When f and $\mathcal X$ are 2-decomposable

$$f^* := \begin{cases} \min_{\mathbf{x} := (\mathbf{x}_1, \mathbf{x}_2)} & \left\{ f(\mathbf{x}) := f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) \right\}, \\ \mathbf{s.t.} & \mathbf{A}_1 \mathbf{x}_1 + \mathbf{A}_2 \mathbf{x}_2 = b, \\ & \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2. \end{cases}$$
(55)

ADMM was originally developed to solve a special case of (40):

$$f^* := \min_{\mathbf{x} \in \mathcal{X}} \{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \},$$

where f and  $\mathcal{X}$  is decomposable with g=2.

### Problem setting: When f and $\mathcal{X}$ are 2-decomposable

$$f^* := \begin{cases} \min_{\mathbf{x} := (\mathbf{x}_1, \mathbf{x}_2)} & \left\{ f(\mathbf{x}) := f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) \right\}, \\ \text{s.t.} & \mathbf{A}_1 \mathbf{x}_1 + \mathbf{A}_2 \mathbf{x}_2 = b, \\ & \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2. \end{cases}$$
(55)

# Augmented Lagrangian smoother

• When  $\tilde{\mathbf{x}}_1^k$  and  $\tilde{\mathbf{x}}_2^{k+1}$  are available, we use

$$d_{\gamma\beta}(\mathbf{z}) := \frac{\gamma}{2} \left[ \|\mathbf{A}_1\mathbf{x}_1 + \mathbf{A}_2\tilde{\mathbf{x}}_2^k - \mathbf{b}\|^2 + \|\mathbf{A}_1\tilde{\mathbf{x}}_1^{k+1} + \mathbf{A}_2\mathbf{x}_2 - \mathbf{b}\|^2 \right] + \frac{\beta}{2} \|\boldsymbol{\lambda}\|^2.$$

to smooth the gap function  $G(\mathbf{z}) := \max_{\hat{\mathbf{z}} \in \mathcal{X} \times \mathbb{R}^n} \{ f(\mathbf{x}) - f(\hat{\mathbf{x}}) + M(\mathbf{z})^T (\mathbf{z} - \hat{\mathbf{z}}) \}.$ 

Modify the (1P2D) scheme to obtain a new variant of ADMM by alternating the computation of  $\mathbf{x}_{\gamma}^{\star}(\lambda)$ .

By alternating the step of  $\mathbf{x}_{\gamma}^{\star}(\lambda)$ , the main step of the **new ADMM variant** becomes:

#### New ADMM scheme (ADMM<sub>1</sub>)

$$\left\{ \begin{array}{ll} \hat{\lambda}^k & := (1-\tau_k)\bar{\lambda}^k + \tau_k \lambda_{\beta_k}^\star(\bar{\mathbf{x}}^k) \\ \bar{\mathbf{x}}_1^{k+1} & := \underset{\mathbf{x}_1 \in \mathcal{X}_1}{\operatorname{argmin}} \left\{ f_1(\mathbf{x}_1) + (\mathbf{A}_1^T\hat{\lambda}^k)^T \mathbf{x}_1 + (\gamma_k/2) \|\mathbf{A}_1\mathbf{x}_1 + \mathbf{A}_2\tilde{\mathbf{x}}_2^k - \mathbf{b}\|^2 \right\} \\ \bar{\mathbf{x}}_2^{k+1} & := \underset{\mathbf{x}_2 \in \mathcal{X}_2}{\operatorname{argmin}} \left\{ f_2(\mathbf{x}_2) + (\mathbf{A}_2^T\hat{\lambda}^k)^T \mathbf{x}_2 + (\gamma_k/2) \|\mathbf{A}_1\tilde{\mathbf{x}}_1^{k+1} + \mathbf{A}_2\bar{\mathbf{x}}_2 - \mathbf{b}\|^2 \right\} \\ \bar{\mathbf{x}}^{k+1} & := (1-\tau_k)\bar{\mathbf{x}}^k + \tau_k\tilde{\mathbf{x}}^{k+1}, \text{ where } \tilde{\mathbf{x}}^{k+1} := (\tilde{\mathbf{x}}_1^{k+1}, \tilde{\mathbf{x}}_2^{k+1}) \\ \bar{\lambda}^{k+1} & := \hat{\lambda}^k + (\gamma_k/2)(\mathbf{A}\tilde{\mathbf{x}}^{k+1} - \mathbf{b}). \end{array} \right.$$

By alternating the step of  $\mathbf{x}_{\gamma}^{\star}(\lambda)$ , the main step of the **new ADMM variant** becomes:

#### New ADMM scheme (ADMM<sub>1</sub>)

$$\left\{ \begin{array}{ll} \hat{\lambda}^k & := (1-\tau_k)\bar{\lambda}^k + \tau_k\lambda_{\beta_k}^\star(\bar{\mathbf{x}}^k) \\ \bar{\mathbf{x}}_1^{k+1} & := \underset{\mathbf{x}_1 \in \mathcal{X}_1}{\operatorname{argmin}} \left\{ f_1(\mathbf{x}_1) + (\mathbf{A}_1^T\hat{\lambda}^k)^T\mathbf{x}_1 + (\gamma_k/2)\|\mathbf{A}_1\mathbf{x}_1 + \mathbf{A}_2\bar{\mathbf{x}}_2^k - \mathbf{b}\|^2 \right\} \\ \bar{\mathbf{x}}_2^{k+1} & := \underset{\mathbf{x}_2 \in \mathcal{X}_2}{\operatorname{argmin}} \left\{ f_2(\mathbf{x}_2) + (\mathbf{A}_2^T\hat{\lambda}^k)^T\mathbf{x}_2 + (\gamma_k/2)\|\mathbf{A}_1\bar{\mathbf{x}}_1^{k+1} + \mathbf{A}_2\bar{\mathbf{x}}_2 - \mathbf{b}\|^2 \right\} \\ \bar{\mathbf{x}}^{k+1} & := (1-\tau_k)\bar{\mathbf{x}}^k + \tau_k\bar{\mathbf{x}}^{k+1}, \text{ where } \bar{\mathbf{x}}^{k+1} := (\bar{\mathbf{x}}_1^{k+1}, \bar{\mathbf{x}}_2^{k+1}) \\ \bar{\lambda}^{k+1} & := \hat{\lambda}^k + (\gamma_k/2)(\mathbf{A}\bar{\mathbf{x}}^{k+1} - \mathbf{b}). \end{array} \right.$$

# Convergence of ADMM<sub>1</sub> [14]

#### Assumptions:

- Let  $\{(\mathbf{x}^k, \lambda^k)\}_{k\geq 0}$  be the sequence generated by **PDM** using ADMM<sub>1</sub>.
- ▶ Let  $\gamma_k = \gamma_0 := \frac{2\sqrt{2}\|\mathbf{A}\|}{K+3}$  and  $\beta_{k+1} := (1-\tau_k)\beta_k$  for  $k = 0, \dots, K$ .

#### Conclusion:

$$\begin{cases} \|\mathbf{A}\bar{\mathbf{x}}^K - \mathbf{b}\| & \leq \frac{2\sqrt{2}\|\mathbf{A}\|(D_{\Lambda^*} + \bar{D}_{\mathcal{X}})}{K+3} \\ -D_{\Lambda^*}\|\mathbf{A}\bar{\mathbf{x}}^K - \mathbf{b}\| & \leq f(\bar{\mathbf{x}}^K) - f^* & \leq \frac{2\sqrt{2}\|\mathbf{A}\|}{K+3}(\bar{D}_{\mathcal{X}})^2 \end{cases}$$

where  $\bar{D}_{\mathcal{X}} := 2 \max_{\mathbf{x} \ \hat{\mathbf{x}} \in \mathcal{X}} \|\mathbf{A}(\mathbf{x} - \hat{\mathbf{x}})\|.$ 

#### Preconditioned ADMM variant

When  $f_1$  and  $f_2$  are proximally tractable and  $\mathcal{X}_1$  and  $\mathcal{X}_2$  are absent

- ▶ We can linearize the quadratic terms in lines 2 and 3 of ADMM<sub>1</sub>.
- ▶ Then, by using the gradient step, we obtain a preconditioned ADMM variant.

#### Preconditioned ADMM variant

When  $f_1$  and  $f_2$  are proximally tractable and  $\mathcal{X}_1$  and  $\mathcal{X}_2$  are absent

- ▶ We can linearize the quadratic terms in lines 2 and 3 of ADMM<sub>1</sub>.
- ▶ Then, by using the gradient step, we obtain a preconditioned ADMM variant.

# Preconditioned ADMM variant (PADMM<sub>1</sub>)

$$\begin{cases} & \tilde{\mathbf{x}}_1^{k+1} & := \operatorname{prox}_{\gamma_k^{-1} \alpha_{1k} f_1} \left( \mathbf{g}_1^k + \gamma_k^{-1} \mathbf{A}_1^T \lambda^k \right) \\ & \tilde{\mathbf{x}}_2^{k+1} & := \operatorname{prox}_{\gamma_k^{-1} \alpha_{2k} f_2} \left( \mathbf{g}_2^k + \gamma_k^{-1} \mathbf{A}_2^T \lambda^k \right) \end{cases}$$

where  $g_1^k$  and  $g_2^k$  are the gradient step of the quadratic term computed as

$$\begin{cases} \mathbf{g}_1^k &:= \tilde{\mathbf{x}}_1^k - \alpha_{1k} \mathbf{A}_1^T (\mathbf{A}_1 \tilde{\mathbf{x}}_1^k + \mathbf{A}_2 \tilde{\mathbf{x}}_2^k - \mathbf{b}) \\ \mathbf{g}_2^k &:= \tilde{\mathbf{x}}_2^k - \alpha_{2k} \mathbf{A}_2^T (\mathbf{A}_1 \tilde{\mathbf{x}}_1^{k+1} + \mathbf{A}_2 \tilde{\mathbf{x}}_2^k - \mathbf{b}). \end{cases}$$

Here  $\alpha_{1k}$  and  $\alpha_{2k}$  are given step-sizes.

There are at least two ways of computing the step-sizes:

- ▶ Constant step size: We can take  $\alpha_{1k} := \|\mathbf{A}_1\|^{-1}$  and  $\alpha_{2k} := \|\mathbf{A}_2\|^{-1}$ .
- Adaptive step-size:  $\alpha_{1k}$  and  $\alpha_{2k}$  are computed from the exact line-search condition of the form:

$$\alpha := \arg\min_{\alpha > 0} \xi(\mathbf{u}^k - \alpha \nabla \xi(\mathbf{u}^k))$$

where  ${\bf u}$  can be  ${\bf x}_1$  or  ${\bf x}_2$ , and  $\xi$  is the quadratic function of  ${\bf x}_1$  or  ${\bf x}_2$  in PADMM $_1$ .

# Convergence of PAMMM

# Convergence of PADMM<sub>1</sub> [14]

#### **Assumptions:**

- Let  $\{(\mathbf{x}^k, \lambda^k)\}_{k\geq 0}$  be the sequence generated by **PDM** using PADMM<sub>1</sub>.
- Let  $\gamma_k=\gamma_0:=rac{2\sqrt{2}\|\mathbf{A}\|}{K+3}$  and  $\beta_{k+1}:=(1-\tau_k)\beta_k$  for  $k=0,\cdots,K$ .

#### Conclusion:

$$\left\{ \begin{array}{rcl} \|\mathbf{A}\bar{\mathbf{x}}^K - \mathbf{b}\| & \leq \frac{2\sqrt{2}\|\mathbf{A}\|(D_{\Lambda^\star} + \bar{D}_{\mathcal{X}})}{K+3} \\ -D_{\Lambda^\star}\|\mathbf{A}\bar{\mathbf{x}}^K - \mathbf{b}\| & \leq f(\bar{\mathbf{x}}^K) - f^\star & \leq \frac{2\sqrt{2}\|\mathbf{A}\|}{K+3}(\bar{D}_{\mathcal{X}})^2 \end{array} \right.$$

where  $\bar{D}_{\mathcal{X}} := 4 \max_{\mathbf{x}, \hat{\mathbf{x}} \in \mathcal{X}} \|\mathbf{x} - \hat{\mathbf{x}}\|.$ 

#### Enhancements of the PDM algorithm:

- ▶ There is a freedom of choosing the center point  $\mathbf{x}_c$  for computing  $\mathbf{x}_{\gamma}^{\star}(\lambda)$ .
  - x<sub>c</sub> can be fixed for all the iterations.
  - One can choose  $\mathbf{x}_c$  as the previous iteration, i.e.,  $\mathbf{x}_c := \mathbf{x}_{\gamma_k}^{\star}(\lambda^{k-1})$ .
  - Or choose  $\mathbf{x}_c$  adaptively as in the PADMM variant.
- ightharpoonup The smoothness parameter  $\gamma$  can be increased as long as the objective values does not increase substantially.
  - When  $\mathbf{x}_c$  is adaptively chosen, we can slightly increase  $\gamma_k$  as  $\gamma_{k+1} := c\gamma_k$ , for e.g.,  $c_k := 1.05$ .

### Comparison

We summarize the convergence rate of 5 different methods and the assumptions where the methods use in the following table:

- ▶ The average sequence  $\{\widehat{\mathbf{x}}^k\}$  is computed as  $\widehat{\mathbf{x}}^k := (k+1)^{-1} \sum_{j=0}^k \mathbf{x}^j$ .
- Convergence guarantee using this sequence is referred to as an ergodic convergence.

| Method name                              | Assumptions                                                     | Convergence                                                                                                                           | References |
|------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------|
| ADMM                                     | $\leq 2$ -decomposable                                          | $\mathcal{O}(1/k)$ on the joint $(\mathbf{x}^k,\mathbf{y}^k)$ using a gap function                                                    | [2, 8, 9]  |
| [Fast] ADMM                              | $\leq 2$ -decomposable and $f_1$ or $f_2 \in \mathcal{F}_{\mu}$ | $[\mathcal{O}(1/k^2)] \; \mathcal{O}(1/k)$ on the dual-objective                                                                      | [6]        |
| Decomposition methods with 1P2D and 2P1D | p-decomposable                                                  | $ f(\mathbf{x}^k) - f^\star  \le \mathcal{O}(1/k)$ and $\ \mathbf{A}\mathbf{x}^k - \mathbf{b}\ _2 \le \mathcal{O}(1/k)$ (non-ergodic) | [14]       |
|                                          | $p$ -decomposable and $f_i \in \mathcal{F}_{\mu}$               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                 |            |
| New ADMM                                 | ≤ 2-decomposable                                                | $ f(\mathbf{x}^k) - f^\star  \le \mathcal{O}(1/k)$ and $\ \mathbf{A}\mathbf{x}^k - \mathbf{b}\ _2 \le \mathcal{O}(1/k)$ (non-ergodic) | [14]       |
| New preconditioned ADMM                  | ≤ 2-decomposable                                                | $ f(\mathbf{x}^k) - f^\star  \le \mathcal{O}(1/k)$ and $\ \mathbf{A}\mathbf{x}^k - \mathbf{b}\ _2 \le \mathcal{O}(1/k)$ (non-ergodic) | [14]       |

#### **Example 1: Group sparse recovery**

# Sparse recovery

- ▶ Let  $\mathcal{I} := \{1, \dots, p\}$  be the set of indices. Let  $\mathfrak{G} := \{\mathcal{G}_1, \dots, \mathcal{G}_g\}$  be the set of g groups  $\mathcal{G}_i \subseteq \mathcal{I}$  and  $\mathcal{I} \subseteq \cup_{i=1}^g \mathcal{U}_i$ .
- For given group  $G_i$ , and a vector  $\mathbf{x} \in \mathbb{R}^p$ , we use  $\mathbf{x}_{G_i} = \{x_j : j \in G_i\}$ .
- For fixed group structure  $\mathfrak{G}$ ,  $\mathbf{x} \in \mathbb{R}^p$  is called group sparse vector if the number of groups in  $\mathcal{G}$  is small.
- Figure Given a linear operator A and an observed/measurement vector  $b \in \mathbb{R}^n$ . We want to recover the group sparse input vector  $x \in \mathbb{R}^p$  such that b = Ax.

#### **Example 1: Group sparse recovery**

# Sparse recovery

- ▶ Let  $\mathcal{I} := \{1, \dots, p\}$  be the set of indices. Let  $\mathfrak{G} := \{\mathcal{G}_1, \dots, \mathcal{G}_g\}$  be the set of g groups  $\mathcal{G}_i \subseteq \mathcal{I}$  and  $\mathcal{I} \subseteq \cup_{i=1}^g \mathcal{U}_i$ .
- For given group  $\mathcal{G}_i$ , and a vector  $\mathbf{x} \in \mathbb{R}^p$ , we use  $\mathbf{x}_{\mathcal{G}_i} = \{x_j : j \in \mathcal{G}_i\}$ .
- For fixed group structure  $\mathfrak{G}$ ,  $\mathbf{x} \in \mathbb{R}^p$  is called group sparse vector if the number of groups in  $\mathcal{G}$  is small.
- Figure Given a linear operator A and an observed/measurement vector  $b \in \mathbb{R}^n$ . We want to recover the group sparse input vector  $\mathbf{x} \in \mathbb{R}^p$  such that  $\mathbf{b} = A\mathbf{x}$ .

### Optimization formulation

$$\min_{\mathbf{x} \in \mathbb{R}^p} \quad \sum_{\mathcal{G}_i \in \mathfrak{G}} \|\mathbf{x}_{\mathcal{G}_i}\|_2 
\text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}.$$
(56)

Here,  $f(\mathbf{x}) := \sum_{\mathcal{G}_i \in \mathbb{G}} \|\mathbf{x}_{\mathcal{G}_i}\|_2$  and  $\mathcal{X} := \mathbb{R}^p$ . This problem possesses two common structures: decomposability and tractable proximity.

When g=p and  $\mathcal{G}_i=\{i\}$ , (56) reduces to the well-known linear sparse recovery problem (basis pursuit):

$$\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{b}. \tag{57}$$

#### Example 1: Group sparse recovery - Numerical results

#### Algorithm configuration:

- Assume that (56) is constrained by a boxed constraint  $\mathbf{x} \in \mathcal{X} := [\mathbf{l}, \mathbf{u}]$ .
- ▶ The Bregman distance is chosen as  $d(\mathbf{x}, \mathbf{x}_c) := (1/2) \|\mathbf{x} \mathbf{x}_c\|_2^2$  and  $\mathbf{x}_c = 0 \in [\mathbf{l}, \mathbf{u}].$
- $\beta_0 = \gamma_0 = \|\mathbf{A}\|$  in 2P1D and  $\gamma_0 := 2\sqrt{2}\|\mathbf{A}\|/(K+1)$  with  $K = 10^4$ .

#### Data generation:

- p = 1024, n = 341 and q = 128.
- ► A is a random matrix generated via the standard Gaussian distribution.
- $\mathbf{b} := \mathbf{A} \mathbf{x}^{\natural}$ , where  $\mathbf{x}^{\natural}$  is a 128-group sparse vector.
- ► The group 𝑵 is also generated randomly.
- $\mathbf{l} := \min(\mathbf{x}^{\natural})$  and  $\mathbf{u} := \max(\mathbf{x}^{\natural})$ .

#### **Example 1: Group sparse recovery - Numerical results**

#### Algorithm configuration:

- Assume that (56) is constrained by a boxed constraint  $x \in \mathcal{X} := [l, u]$ .
- ▶ The Bregman distance is chosen as  $d(\mathbf{x}, \mathbf{x}_c) := (1/2) \|\mathbf{x} \mathbf{x}_c\|_2^2$  and  $\mathbf{x}_c = 0 \in [\mathbf{l}, \mathbf{u}].$
- $\beta_0 = \gamma_0 = \|\mathbf{A}\|$  in 2P1D and  $\gamma_0 := 2\sqrt{2}\|\mathbf{A}\|/(K+1)$  with  $K = 10^4$ .

#### Data generation:

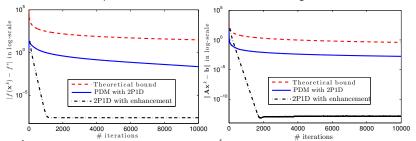
- p = 1024, n = 341 and g = 128.
- ► A is a random matrix generated via the standard Gaussian distribution.
- $\mathbf{b} := \mathbf{A} \mathbf{x}^{\natural}$ , where  $\mathbf{x}^{\natural}$  is a 128-group sparse vector.
- ► The group 𝔥 is also generated randomly.
- ▶  $\mathbf{l} := \min(\mathbf{x}^{\natural})$  and  $\mathbf{u} := \max(\mathbf{x}^{\natural})$ .

#### Comparison We compare the following three quantities:

- ► The theoretical bounds given in the right-hand side of the convergence theorem
- ▶ The PDM algorithm with 2P1D or 1P2D i.e., follow the theory.
- The 2P1D or 1P2D with enhancement i.e., updating the parameter  $\gamma_k$  by  $\gamma_{k+1}:=1.05\gamma_k$  and using the adaptive center point  $\mathbf{x}_c$  as in PADMM.

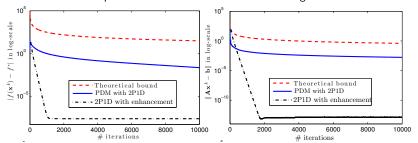
#### **Example 1: Theoretical bounds vs actual performance**

The performance of two variants of PDM using 2P1D

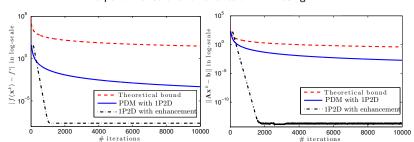


### **Example 1: Theoretical bounds vs actual performance**

The performance of two variants of PDM using 2P1D



The performance of two variants of PDM using 1P2D



# **Example 2: Image processing**

# Problem (Imaging denoising/deblurring)

Our goal is to obtain a clean image x given "dirty" observations  $b \in \mathbb{R}^{n \times 1}$  via  $b = \mathcal{A}(x) + w$ , where  $\mathcal{A}$  is a linear operator, which, e.g., captures camera blur as well as image subsampling, and w models Gaussian perturbations.

# **Optimization formulation**

Gaussian: 
$$\min_{\mathbf{z} \in \mathcal{Z}} \left\{ (1/2) \| \mathcal{A}(\mathbf{z}) - \mathbf{b} \|_2^2 + \frac{\rho \| \mathbf{z} \|_{\text{TV}}}{2} \right\}$$
 (58)

where  $\|\mathbf{z}\|_{\mathrm{TV}} := \sum_{i,j} |z_{i,j+1} - z_{i,j}| + |z_{i+1,j} - z_{i,j}|$ ,  $\rho > 0$  is a regularization parameter and  $\mathcal{Z} := [0, 255]^{n \times p}$ .

# **Example 2: Image processing**

## Problem (Imaging denoising/deblurring)

Our goal is to obtain a clean image x given "dirty" observations  $b \in \mathbb{R}^{n \times 1}$  via  $b = \mathcal{A}(x) + w$ , where  $\mathcal{A}$  is a linear operator, which, e.g., captures camera blur as well as image subsampling, and w models Gaussian perturbations.

## **Optimization formulation**

Gaussian: 
$$\min_{\mathbf{z} \in \mathcal{Z}} \left\{ (1/2) \| \mathcal{A}(\mathbf{z}) - \mathbf{b} \|_2^2 + \rho \| \mathbf{z} \|_{\text{TV}} \right\}$$
 (58)

where  $\|\mathbf{z}\|_{\mathrm{TV}} := \sum_{i,j} |z_{i,j+1} - z_{i,j}| + |z_{i+1,j} - z_{i,j}|$ ,  $\rho > 0$  is a regularization parameter and  $\mathcal{Z} := [0, 255]^{n \times p}$ .

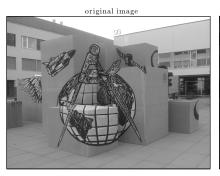
**Reformulation:** Since  $\|\mathbf{z}\|_{\mathrm{TV}} = \|\mathbf{D}\mathbf{z}\|_1$  for a given matrix  $\mathbf{D}$ . By letting  $\mathbf{r} = \mathbf{D}\mathbf{z}$ , we can reformulate (58) as

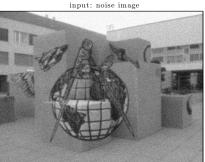
$$\begin{aligned} & \min_{\mathbf{z} \in \mathcal{Z}, \mathbf{r}} & \left\{ (1/2) \| \mathcal{A}(\mathbf{z}) - \mathbf{b} \|_2^2 + \rho \| \mathbf{r} \|_1 \right\} \\ & \text{s.t.} & \mathbf{D} \mathbf{z} - \mathbf{r} = 0. \end{aligned}$$

This problem is a constrained convex minimization problem with 2-decomposable objective  $f(\mathbf{x}) := (1/2) \|\mathcal{A}(\mathbf{z}) - \mathbf{b}\|_2^2 + \rho \|\mathbf{r}\|_1$  and  $\mathbf{x} := (\mathbf{z}, \mathbf{r})$ .

#### Example 2: Image processing - Input data

The original image and Gaussian noise image





#### Data generation:

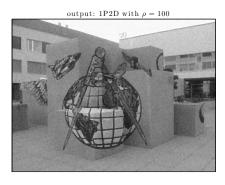
- The original image is filtered with a multidimensional filter H of size  $9 \times 9$  (circulant).
- ▶ 0.5% Gaussian noise is added to the output.

#### Parameter configuration:

▶ The number of iterations: 200 and the relative tolerance:  $10^{-8}$ .

### **Example 2: Image processing - Numerical results**

The performance of the new ADMM variant of PDM for two values of  $\rho$ .





- $f(\mathbf{x}^{\natural}) = 138097.919259$  and 77284.828237, where  $\mathbf{x}^{\natural}$  is the original image.
- ▶ The objective values:  $f(\mathbf{x}^k) := 122557.13880$  and  $f(\mathbf{x}^k) := 64456.44963$
- ▶ Relative error between original image to clean image: 0.089152 and 0.089167
- ▶ PSNR: 26.011 and 25.994.

# Problem (Binary classification)

Given a sample vector  $\mathbf{a} \in \mathbb{R}^p$  and a binary class label vector  $\mathbf{b} \in \{-1,+1\}^n$ . The goal is to find a separating hyperplane  $\varphi(\mathbf{a},\mathbf{z}) := \mathbf{a}^T \mathbf{z} + \mu$  such that

$$b_i = \begin{cases} +1 & \text{if } \varphi(\mathbf{a}, \mathbf{z}) \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

where  $\mathbf{z} \in \mathbb{R}^p$  is a weight vector,  $\mu$  is called a bias.

# Problem (Binary classification)

Given a sample vector  $\mathbf{a} \in \mathbb{R}^p$  and a binary class label vector  $\mathbf{b} \in \{-1, +1\}^n$ . The goal is to find a separating hyperplane  $\varphi(\mathbf{a}, \mathbf{z}) := \mathbf{a}^T \mathbf{z} + \mu$  such that

$$b_i = \begin{cases} +1 & \text{if } \varphi(\mathbf{a}, \mathbf{z}) \ge 0\\ -1 & \text{otherwise} \end{cases}$$

where  $\mathbf{z} \in \mathbb{R}^p$  is a weight vector,  $\mu$  is called a bias.

## **Optimization formulation**

$$\min_{\mathbf{z} \in \mathbb{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^n \mathcal{H}(b_i, \mathbf{a}_i^T \mathbf{z} + \mu) + \rho \|\mathbf{z}\|_1 \right\}$$
 (59)

where  $\mathbf{a}_i$  is the *i*-th row of the observed data matrix  $\mathbf{A}$  in  $\mathbb{R}^{n \times p}$ ,  $\rho > 0$  is a regularization parameter, and  $\mathcal{H}$  is the Hingle loss function  $\mathcal{H}(s,\tau) := \max\{0,1-s\tau\}$ .

Constrained reformulation: By introducing a slack variable  $\mathbf{r} := \mathbf{A}\mathbf{z} + \mu$ , we have

$$\min_{\mathbf{z} \in \mathbb{R}^p, \mathbf{r}} \quad \left\{ \frac{1}{n} \sum_{i=1}^n \mathcal{H}(b_i, r_i) + \rho \|\mathbf{z}\|_1 \right\}$$
  
s.t. 
$$\mathbf{A}\mathbf{z} + \mu - \mathbf{r} = 0.$$

#### Testing data

- Test problems: Two real-world problems a1a and news20 from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
- ▶ The data size of a1a: p = 119 features and n = 1605 data points
- ▶ The data size of news20: p = 1355191 features and n = 19996 data points
- The parameter  $\rho$  changes from  $\rho^{-1}=10^{-3}$  to  $\rho^{-1}=10^3$ .

Comparison: We compare the new PADMM variant with LibSVM.

#### Testing data

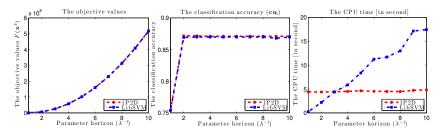
- Test problems: Two real-world problems a1a and news20 from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
- ▶ The data size of a1a: p = 119 features and n = 1605 data points
- ▶ The data size of news20: p = 1355191 features and n = 19996 data points
- ▶ The parameter  $\rho$  changes from  $\rho^{-1} = 10^{-3}$  to  $\rho^{-1} = 10^3$ .

Comparison: We compare the new PADMM variant with LibSVM.

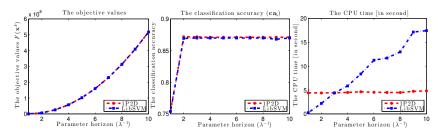
| Problem                                    | The parameter values |         |         |         |         |         |         |         |         |                 |
|--------------------------------------------|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------|
| $\lambda^{-1}$                             | $10^{-3}$            | 111.1   | 222.2   | 333.3   | 444.4   | 555.6   | 666.7   | 777.8   | 888.9   | 10 <sup>3</sup> |
| The accuracy of problem a1a                |                      |         |         |         |         |         |         |         |         |                 |
| (1P2D)                                     | 0.7539               | 0.8717  | 0.8717  | 0.8710  | 0.8710  | 0.8710  | 0.8710  | 0.8710  | 0.8710  | 0.8710          |
| LibSVM                                     | 0.7539               | 0.8692  | 0.8698  | 0.8698  | 0.8698  | 0.8698  | 0.8698  | 0.8698  | 0.8679  | 0.8698          |
| The CPU time [in second] of problem a1a    |                      |         |         |         |         |         |         |         |         |                 |
| (1P2D)                                     | 4.4045               | 4.3769  | 4.4246  | 4.4941  | 4.6238  | 4.5175  | 4.4836  | 4.4719  | 4.7179  | 4.8097          |
| LibSVM                                     | 0.2549               | 2.1909  | 4.3884  | 5.8583  | 8.3662  | 11.2350 | 11.7036 | 12.9832 | 17.1424 | 17.4362         |
| The accuracy of problem news20             |                      |         |         |         |         |         |         |         |         |                 |
| (1P2D)                                     | 0.5001               | 0.9987  | 0.9987  | 0.9987  | 0.9987  | 0.9987  | 0.9987  | 0.9987  | 0.9987  | 0.9987          |
| LibSVM                                     | 0.5001               | 0.9987  | 0.9987  | 0.9987  | 0.9987  | 0.9988  | 0.9988  | 0.9988  | 0.9988  | 0.9988          |
| The CPU time [in second] of problem news20 |                      |         |         |         |         |         |         |         |         |                 |
| (1P2D)                                     | 762.31               | 1023.22 | 994.64  | 1043.06 | 984.24  | 989.70  | 1064.33 | 1073.94 | 984.47  | 1018.35         |
| LibSVM                                     | 890.26               | 1440.28 | 1449.23 | 1439.77 | 1434.27 | 1518.56 | 1560.38 | 1557.48 | 1535.19 | 1530.71         |

► The accuracy is computed as  $\operatorname{ca}_{\rho} := 1 - n^{-1} \sum_{j=1}^{n} [\operatorname{sign}(\mathbf{A}\mathbf{z}^{k} + \mu)_{i} \neq b_{i})].$ 

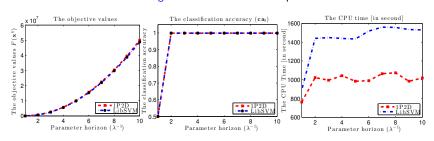
The results of two algorithms on the real-world problem a1a



The results of two algorithms on the real-world problem a1a



The results of two algorithms on the real-world problem news20



- A. Beck and M. Teboulle.
   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sciences, 2(1):183–202, 2009.
- [2] A. Chambolle and T. Pock.
   A first-order primal-dual algorithm for convex problems with applications to imaging.
   Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.
- [3] J. Eckstein and D. Bertsekas. On the Douglas - Rachford splitting method and the proximal point algorithm for maximal monotone operators. *Math. Program.*, 55:293–318, 1992.
- [4] F. Facchinei and J.-S. Pang.
   Finite-dimensional variational inequalities and complementarity problems, volume 1-2.

   Springer-Verlag, 2003.
- [5] T. Goldstein, E. Esser, and R. Baraniuk. Adaptive Primal-Dual Hybrid Gradient Methods for Saddle Point Problems. Tech. Report., http://arxiv.org/pdf/1305.0546v1.pdf:1–26, 2013.

[6] T. Goldstein, B. ODonoghue, and S. Setzer.

Fast Alternating Direction Optimization Methods.

Tech. report., Department of Mathematics, University of California, Los Angeles, USA, May 2012.

[7] B. He and X. Yuan.

On convergence rate of the douglas-rachford operator splitting method. *Tech. Report. (submitted to Math. Program.)*.

[8] B. He and X. Yuan.

On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers.

(submitted for publication), 2012.

[9] B.S. He and X.M. Yuan.

On the  ${\cal O}(1/n)$  convergence rate of the Douglas-Rachford alternating direction method.

SIAM J. Numer. Anal., 50:700-709, 2012.

[10] P. L. Lions and B. Mercier.

Splitting algorithms for the sum of two nonlinear operators.

SIAM J. Num. Anal., 16:964-979, 1979.

[11] Y. Ouyang, Y. Chen, G. LanG. Lan., and E. JR. Pasiliao. An accelerated linearized alternating direction method of multiplier. Tech. 2014.

[12] R.T. Rockafellar.

Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14:877–898, 1976.

[13] R. Shefi and M. Teboulle.

Rate of Convergence Analysis of Decomposition Methods Based on the Proximal Method of Multipliers for Convex Minimization.

SIAM J. O. 24(1):269–297, 2014.

[14] Q. Tran-Dinh and V. Cevher.

A primal-dual algorithmic framework for constrained convex minimization. *Tech. Report.*, *LIONS*, pages 1–54, 2014.

[15] Q. Tran-Dinh, Y. H. Li, and V. Cevher.

Barrier smoothing for nonsmooth convex minimization.

In Proc. of the 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)., 2014.

[16] H. Wang and A. Banerjee.

Bregman Alternating Direction Method of Multipliers.

http://arxiv.org/pdf/1306.3203v1.pdf, pages 1-18, 2013.

#### [17] M. Zhu and T. Chan.

An efficient primal-dual hybrid gradient algorithm for total variation image restoration.

UCLA CAM technical report, 08-34, 2008.