Advanced Topics in Data Sciences

$\begin{gathered}\text { Prof. Volkan Cevher } \\ \text { volkan.cevher@epfl.ch }\end{gathered}$
Lecture 7: Randomized Linear Algebra
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-731 (Spring 2016)

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- Coordinate descent methods (cont.)

1. Coordinate descent methods for composite functions
2. Coordinate descent primal-dual algorithm

- Randomized Linear Algebra

1. Randomized matrix decompositions
2. Comparison to classical methods

Recommended reading material:

- Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM review 53.2 (2011): 217-288. vspace1mm
- Michael W Mahoney, Randomized algorithms for matrices and data, Foundations and Trends in Machine Learning 3.2 (2011): 123-224.

Recall: Randomized CD algorithm

Randomized coordinate descent algorithm

1. Choose $\theta \in \mathbb{R}$ and $\mathbf{x}^{0} \in \mathbb{R}^{p}$.
2. For $k=0,1, \ldots$ perform:

2a. Choose $i_{k}=\mathcal{A}_{\theta}$.
2b. Update $\mathbf{x}^{k+1}=\mathbf{x}^{k}-L_{i_{k}}^{-1} \boldsymbol{U}_{i_{k}}\left[\nabla_{i_{k}} f\left(\mathbf{x}^{k}\right)\right]^{\#}$.

- Sharp-operator: $[\mathbf{x}]^{\#}=\arg \max _{\boldsymbol{s} \in \mathbb{R}^{p}}\langle\mathbf{x}, \boldsymbol{s}\rangle-(1 / 2)\|\boldsymbol{s}\|^{2} \Longrightarrow$ for ℓ_{2} norm, $[\mathbf{x}]^{\#}=\mathbf{x}$.
- \mathcal{A}_{θ} generates $i \in\{1, \ldots, s\}$ with probability $L_{i}^{\theta} / \sum_{j=1}^{s} L_{j}^{\theta} \Longrightarrow$ for $\theta=0$, uniform distribution.

Coordinate descent for composite minimization problem

Problem (Composite convex minimization)

Consider the following unconstrained composite convex minimization problem:

$$
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{F(\mathbf{x}):=f(\mathbf{x})+g(\mathbf{x})\}
$$

- f and g are both proper, closed, and convex.
- ∇f is L-Lipschitz continuous.
- g is possibly non-smooth.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(F): F\left(\mathbf{x}^{\star}\right)=F^{\star}\right\}$ is nonempty.

Next: Examples that illustrates we need an additional assumption for CD to work for composite problems!

CD does not always converge for composite convex problems!

Smooth objective function: $f(\mathbf{x})=\|\mathbf{x}\|_{2}^{2}$

$f(\mathbf{x})$ is minimized along each coordinate axis, if and only if \mathbf{x} is the global optimum.

$$
\frac{\partial f(\mathbf{x})}{\partial x_{i}}=0, \quad \text { for } i=1, \ldots, p \quad \Longleftrightarrow \quad \nabla f(\mathbf{x})=\left[\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{p}}\right]^{T}=\mathbf{0} .
$$

What if $f(\mathbf{x})$ is non-smooth?

CD does not always converge for composite convex problems!

Composite (non-smooth) objective function: $F(\mathbf{x})=\|\mathbf{x}\|_{2}^{2}+\left|x_{1}-x_{2}\right|$ $F(x)$ is minimized along each coordinate axis, if and only if x is the global optimum.

Statement above is not valid anymore!
Consider the point $(0.5,0.5)$ as a counter example.

This is why we need an additional assumption!

CD does not always converge for composite convex problems!

Composite (non-smooth) objective function: $F(\mathbf{x})=\|\mathbf{x}\|_{2}^{2}+\|\mathbf{x}\|_{1}$
Denote $f(\mathbf{x}):=\|\mathbf{x}\|_{2}^{2}$ the smooth part and $g(\mathbf{x}):=\|\mathbf{x}\|_{1}$ the non-smooth part.
Assume that the non-smooth part is seperable: $g(\mathbf{x})=\sum_{i=1}^{p} g_{i}\left(\mathbf{x}_{i}\right)$.
Then, $F(\mathbf{x})$ is minimized along each coordinate axis, if and only if \mathbf{x} is the global optimum.

Coordinate descent for composite minimization problem

Problem (Composite convex minimization)

Consider the following unconstrained composite convex minimization problem:

$$
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{F(\mathbf{x}):=f(\mathbf{x})+g(\mathbf{x})\}
$$

- f and g are both proper, closed, and convex.
- ∇f is L-Lipschitz continuous.
- g is possibly non-smooth.
- $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(F): F\left(\mathbf{x}^{\star}\right)=F^{\star}\right\} \neq \emptyset$.
- g is separable: $g(\mathbf{x})=\sum_{i=1}^{p} g_{i}\left(x_{i}\right)$, where $g_{i}: \mathbb{R} \rightarrow \mathbb{R}$ for all i, e.g.,
- Unconstrained: $g(\mathbf{x})=$ constant.
- Box constrained: $g(\mathbf{x})=\sum_{i=1}^{s} \mathbb{1}_{\left[a_{i}, b_{i}\right]}\left(x_{i}\right)$.
- ℓ_{q} norm regularization: $g(\mathbf{x})=\|\mathbf{x}\|_{q}^{q}$ where $q \geq 1$.
- g is block-separable: $p \times p$ identity matrix can be partitioned into column submatrices $\boldsymbol{U}_{i}, i=1, \ldots, s$ such that $g(\mathbf{x})=\sum_{i=1}^{s} g_{i}\left(\boldsymbol{U}_{i}^{T} \mathbf{x}\right)$. Block-separable examples include group-sparse regularizers.

Examples: Composite convex problems with separable g

Example (LASSO)

$$
\min _{\mathbf{x}} \underbrace{\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}}_{f(\mathbf{x})}+\underbrace{\lambda\|\mathbf{x}\|_{1}}_{g(\mathbf{x})} .
$$

Example (Support vector machine (SVM) with squared hinge loss)

$$
\min _{\mathbf{x}} \underbrace{C \sum_{i} \max \left\{y_{i}\left(\boldsymbol{w}_{i}^{T} \mathbf{x}-b\right), 0\right\}^{2}}_{g(\mathbf{x})}+\underbrace{\frac{1}{2}\|\mathbf{x}\|_{2}^{2}}_{f(\mathbf{x})}
$$

Example (SVM: dual form with bias term)

$$
\min _{0 \leq \mathbf{x} \leq C \mathbb{1}} \underbrace{\frac{1}{2} \sum_{i, j} x_{i} x_{j} y_{i} y_{j} \boldsymbol{K}\left(\boldsymbol{w}_{i}, \boldsymbol{w}_{j}\right)}_{f(\mathbf{x})}-\underbrace{\sum_{i} x_{i}}_{g(\mathbf{x})}
$$

Examples: Composite convex problems with separable g

Example (Logistic regression with ℓ_{q} norm regularization)

$$
\min _{\mathbf{x}} \underbrace{\frac{1}{p} \sum_{i} \log \left(1+\exp \left(-b_{i} \boldsymbol{w}_{i}^{T} \mathbf{x}\right)\right)}_{g(\mathbf{x})}+\underbrace{\lambda\|\mathbf{x}\|_{q}^{q}}_{f(\mathbf{x})} .
$$

Example (Semi-supervised learning with Tikhonov regularization)

Example (Relaxed linear programming)

$$
\min _{\mathbf{x} \geq 0} \boldsymbol{c}^{T} \mathbf{x} \quad \text { s.t. } \quad \mathbf{A} \mathbf{x}=\mathbf{b} \Rightarrow \min _{\mathbf{x} \geq 0} \underbrace{\boldsymbol{c}^{T} \mathbf{x}}_{g(\mathbf{x})}+\underbrace{\lambda\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}}_{f(\mathbf{x})} .
$$

Randomized proximal coordinate descent algorithm

$$
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{F(\mathbf{x}):=f(\mathbf{x})+\sum_{i=1}^{s} g_{i}\left(\mathbf{x}_{i}\right)\right\}
$$

Randomized coordinate descent for composite functions (RCDC)

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\left.\left(\gamma_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty\left[^{\mathbb{N}}\right.$.
2. For $k=0,1, \ldots$ perform:

2a. Pick $i_{k} \in\{1, \ldots, s\}$ uniformly at random.
2b. Update coordinate i_{k} :

$$
\mathbf{x}_{i_{k}}^{k+1}=\underset{\mathbf{v} \in \mathbb{R}^{p_{i}}}{\arg \min } g_{i_{k}}(\mathbf{v})+\left\langle\mathbf{v}, \nabla_{i_{k}} f\left(\mathbf{x}^{k}\right)\right\rangle+\frac{1}{2 \alpha_{k}}\left\|\mathbf{v}-\mathbf{x}_{i_{k}}^{k}\right\|_{\left(i_{k}\right)}^{2} .
$$

- If $\|\cdot\|_{\left(i_{k}\right)}=\|\cdot\|_{2}$, then we can simplify the update rule as

$$
\mathbf{x}_{i_{k}}^{k+1}=\operatorname{prox}_{\alpha_{k} g_{i_{k}}}\left(\mathbf{x}_{i_{k}}^{k}-\alpha_{k} \nabla_{i_{k}} f\left(\mathbf{x}^{k}\right)\right) .
$$

Convergence of RCDC

Suppose that ∇f_{i} is Lipschitz continuous with respect to some norm $\|\cdot\|_{(i)}$ for $i=1,2, \ldots s$, that is

$$
\left\|\nabla_{i} f\left(\mathbf{x}+\boldsymbol{U}_{i} \mathbf{t}\right)-\nabla_{i} f(\mathbf{x})\right\|_{(i)}^{*} \leq L_{i}\|\mathbf{t}\|_{(i)}, \quad \forall \mathbf{t} \in \mathbb{R}^{p_{i}}
$$

Theorem (Convergence without strong convexity [7])

Choose a target confidence $0<\rho<1$. For any target accuracy $\varepsilon<F\left(\mathbf{x}^{0}\right)-F^{\star}$,

$$
\mathbb{P}\left(F\left(\mathbf{x}^{k}\right)-F^{\star} \leq \varepsilon\right) \geq 1-\rho, \quad \text { for any } \quad k \geq \frac{2 s D_{L}}{\varepsilon}(1-\log (\rho))+2-\frac{2 s D_{L}}{F\left(\mathbf{x}^{0}\right)-F^{\star}},
$$

where

$$
D_{L}:=\max \{F\left(\mathbf{x}^{0}\right)-F^{\star}, \max _{\mathbf{y}} \max _{\mathbf{x}^{\star} \in \mathcal{X}^{\star}}\{\underbrace{\sum_{i=1}^{s} L_{i}\left\|\mathbf{y}_{i}-\mathbf{x}_{i}^{\star}\right\|_{(i)}^{2}}_{:=\left\|\mathbf{y}-\mathbf{x}^{\star}\right\|_{L}^{2}}: F(\mathbf{y}) \leq F\left(\mathbf{x}^{0}\right)\}\}
$$

Convergence of RCDC

Suppose that ∇f_{i} is Lipschitz continuous with respect to some norm $\|\cdot\|_{(i)}$ for $i=1,2, \ldots s$, that is

$$
\left\|\nabla_{i} f\left(\mathbf{x}+\boldsymbol{U}_{i} \mathbf{t}\right)-\nabla_{i} f(\mathbf{x})\right\|_{(i)}^{*} \leq L_{i}\|\mathbf{t}\|_{(i)}, \quad \forall \mathbf{t} \in \mathbb{R}^{p_{i}}
$$

Theorem (Convergence with strong convexity [8])

Suppose f is a strongly convex function with convexity constant μ. Let us set $\alpha_{k}=1 / L_{\text {max }}$ for all k, where $L_{\text {max }}=\max _{i} L_{i}$, then

$$
\mathbb{E}\left[F\left(\mathbf{x}^{k}\right)-F^{\star}\right] \leq\left(1-\frac{\mu}{s L_{\max }}\right)^{k}\left(F\left(\mathbf{x}^{0}\right)-F^{\star}\right)
$$

Example: LASSO

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Synthetic problem setup

- A $:=\operatorname{randn}(n, p)$ - standard Gaussian $\mathcal{N}(0, \mathbb{I})$, with $n=1000, p=500$.
- $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ is 50 -sparse with Gaussian i.i.d. entries, normalized to $\left\|\mathbf{x}^{\natural}\right\|_{2}=1$.
- $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} is Gaussian white noise. SNR is 30 dB .
- $\theta=0$, so coordinates are chosen uniformly random.
- $\lambda:=10^{-2}$.

Accelerated parallel proximal coordinate descent method

Accelerated parallel proximal coordinate descent method (APPROX)

1. Choose $\mathbf{v}^{0}=\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\alpha_{0}=\tau / s$.
2. For $k=0,1, \ldots$ perform:

2a. $\mathbf{y}^{k}=\left(1-\alpha_{k}\right) \mathbf{x}^{k}+\alpha_{k} \mathbf{v}^{k}$.
2b. Generate a random set of coordinate blocks \mathcal{S}_{k} with uniform block sampling.
2c. For $i \in \mathcal{S}_{k}$, perform:

$$
\mathbf{v}_{i}^{k+1}=\underset{\mathbf{v} \in \mathbb{R}^{p_{i}}}{\arg \min }\left\{\left\langle\mathbf{v}-\mathbf{y}_{i}^{k}, \nabla_{i} f\left(\mathbf{y}^{k}\right)\right\rangle+\frac{s \alpha_{k} \sigma_{i}}{2 \tau}\left\|\mathbf{v}-\mathbf{v}_{i}^{k}\right\|_{(i)}^{2}+g_{i}(\mathbf{v})\right\} .
$$

2d. $\mathbf{x}_{i}^{k+1}=\mathbf{y}_{i}^{k}+\frac{s \alpha_{k}}{\tau}\left(\mathbf{v}_{i}^{k+1}-\mathbf{v}_{i}^{k}\right)$.
3. $\alpha_{k+1}=\frac{1}{2}\left(\sqrt{\alpha_{k}^{4}+4 \alpha_{k}^{2}}-\alpha_{k}^{2}\right)$.

- Uniform block sampling: $\mathbb{P}(i \in \mathcal{S})=\mathbb{P}(j \in \mathcal{S})$ for all $i, j \in\{1,2, \ldots, s\}$.
- $\tau=\mathbb{E}[|\mathcal{S}|]$.
- $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{s}\right) \in \mathbb{R}_{+}^{s}$ satisfy $\forall \mathbf{x}, \mathbf{h} \in \mathbb{R}^{p}$:

$$
\mathbb{E}\left[f\left(\mathbf{x}+\sum_{i \in \mathcal{S}} \boldsymbol{U}_{i} \mathbf{h}_{i}\right)\right] \leq f(\mathbf{x})+\frac{\tau}{s}\left(\langle\nabla f(\mathbf{x}), \mathbf{h}\rangle+\frac{1}{2}\left\|\sum_{i \in \mathcal{S}} \boldsymbol{U}_{i} \mathbf{h}_{i}\right\|_{\boldsymbol{\sigma}}^{2}\right)
$$

where $\|\mathbf{x}\|_{\boldsymbol{\sigma}}^{2}:=\sum_{i=1}^{s} \sigma_{i}\left\|\mathbf{x}_{i}\right\|_{(i)}^{2}$.

Rate of convergence of APPROX: $\mathcal{O}\left(1 / k^{2}\right)$

- Uniform block sampling: $\mathbb{P}(i \in \mathcal{S})=\mathbb{P}(j \in \mathcal{S})$ for all $i, j \in\{1,2, \ldots, s\}$.
- $\tau=\mathbb{E}[|\mathcal{S}|]$.
- $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{s}\right) \in \mathbb{R}_{+}^{s}$ satisfy $\forall \mathbf{x}, \mathbf{h} \in \mathbb{R}^{p}$:

$$
\mathbb{E}\left[f\left(\mathbf{x}+\sum_{i \in \mathcal{S}} \boldsymbol{U}_{i} \mathbf{h}_{i}\right)\right] \leq f(\mathbf{x})+\frac{\tau}{s}\left(\langle\nabla f(\mathbf{x}), \mathbf{h}\rangle+\frac{1}{2}\left\|\sum_{i \in \mathcal{S}} \boldsymbol{U}_{i} \mathbf{h}_{i}\right\|_{\boldsymbol{\sigma}}^{2}\right)
$$

where $\|\mathbf{x}\|_{\boldsymbol{\sigma}}^{2}:=\sum_{i=1}^{s} \sigma_{i}\left\|\mathbf{x}_{i}\right\|_{(i)}^{2}$.

Theorem ([4])

Let $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ be a sequence generated by APPROX. Then, for any optimal point \mathbf{x}^{\star}, we have

$$
\mathbb{E}\left[F\left(\mathbf{x}^{k}\right)-F^{\star}\right] \leq \frac{4 s^{2}}{((k-1) \tau+2 s)^{2}} C
$$

where

$$
C=\left(1-\frac{\tau}{s}\right)\left(F\left(\mathbf{x}^{0}\right)-F^{\star}\right)+\frac{1}{2}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{\sigma}^{2} .
$$

Coordinate descent primal-dual algorithm

Problem (Composite minimization problem with linear operator)

Consider the following minimization problem

$$
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x})+g(\mathbf{x})+h(\mathbf{A} \mathbf{x})\}
$$

- g and h are convex, f is convex and differentiable.
- $\mathbf{A} \in \mathbb{R}^{q \times p}$.

This problem can be transformed to finding saddle points of the Lagrangian function

$$
\mathcal{L}(\mathbf{x}, \mathbf{y})=f(\mathbf{x})+g(\mathbf{x})+\langle\mathbf{y}, \mathbf{A} \mathbf{x}\rangle-h^{\star}(\mathbf{y})
$$

where $h^{\star}: \mathbf{y} \mapsto \sup _{\mathbf{z}}\langle\mathbf{y}, \mathbf{z}\rangle-h(\mathbf{z})$ is the Fenchel-Legendre transform of h.

Examples

Example (Total variation $+\ell_{1}$ regularized least squares regression)

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} \underbrace{\frac{1}{2}\|\boldsymbol{M} \mathbf{x}-\mathbf{b}\|_{2}^{2}}_{f(\mathbf{x})}+\underbrace{\alpha r\|\mathbf{x}\|_{1}}_{g(\mathbf{x})}+\underbrace{\alpha(1-r)\|\mathbf{A} \mathbf{x}\|_{2,1}}_{h(\mathbf{A} \mathbf{x})}
$$

where

$$
\|\mathbf{A} \mathbf{x}\|_{2,1}=\sum_{j}\left\|\mathbf{A}_{i j} \mathbf{x}_{i}\right\|_{2}, \quad \mathbf{x}=\left(\mathbf{x}_{i}\right)_{i}
$$

Example (Dual SVM)

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} \underbrace{\frac{1}{2 \lambda}\|\mathbf{A}(\mathbf{b} \odot \mathbf{x})\|_{2}^{2}-e^{T} \mathbf{x}}_{f(\mathbf{x})}+\underbrace{\sum_{i=1}^{p} \iota_{\left[0, C_{i}\right]}\left(x_{i}\right)}_{g(\mathbf{x})}+\underbrace{\iota_{\mathbf{b}} \perp(\mathbf{x})}_{h\left(\mathbb{I}_{p} \mathbf{x}\right)}
$$

where $\mathbf{b} \odot \mathbf{x}$ is the component-wise multiplications of two vectors \mathbf{b} and \mathbf{x} and

$$
\mathbf{b}^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{p} \mid \mathbf{b}^{T} \mathbf{x}=0\right\}
$$

Set up

1. $\mathbb{R}^{p}=\mathbb{R}^{p_{1}} \times \ldots \times \mathbb{R}^{p_{s}}$ and $\mathbb{R}^{q}=\mathbb{R}^{q_{1}} \times \ldots \times \mathbb{R}^{q_{t}}$. Hence, matrix $\mathbf{A} \in \mathbb{R}^{q \times p}$ can be decomposed in blocks of matrices $\mathbf{A}_{i j} \in \mathbb{R}^{q_{j} \times p_{i}}$.

2. $\mathbb{I}(j)$ indices the set of nonzero q_{j}-rows matrices and m_{j} its cardinal.
3. $\mathbb{J}(i)$ indices the set of nonzero p_{i}-columns matrices.

Coordinate descent primal-dual algorithm

Coordinate descent primal-dual algorithm

1. Choose $\sigma=\left(\sigma_{1}, \ldots, \sigma_{t}\right), \tau=\left(\tau_{1}, \ldots, \tau_{s}\right), \mathbf{x}^{0} \in \mathbb{R}^{p}, \mathbf{y}^{0} \in \mathbb{R}^{q}$ and initialize

$$
\begin{cases}(\forall i \in\{1, \ldots, s\}) & \boldsymbol{w}_{i}^{0}=\sum_{j \in \mathbb{J}(i)} \mathbf{A}_{j i}^{T} \mathbf{y}_{j}^{0}(i) \\ (\forall j \in\{1, \ldots, t\}) & \mathbf{z}_{j}^{0}=\left(1 / m_{j}\right) \sum_{i \in \mathbb{I}(j)} \mathbf{y}_{j}^{0}(i) .\end{cases}
$$

2. For $k=0,1, \ldots$ perform:

2a. Choose $i_{k} \in\{1, \ldots, s\}$ at random and uniformly.
2b. Compute:

$$
\left\{\begin{array}{l}
\overline{\mathbf{y}}^{k+1}=\operatorname{prox}_{\sigma h^{\star}}\left(\mathbf{z}^{k}+\sigma \odot\left(\mathbf{A} \mathbf{x}^{k}\right)\right) \\
\overline{\mathbf{x}}^{k+1}=\operatorname{prox}_{\tau g}\left(\mathbf{x}^{k}-\tau \odot\left(\nabla f\left(\mathbf{x}^{k}\right)+2 \mathbf{A}^{T} \overline{\mathbf{y}}^{k+1}-\boldsymbol{w}^{k}\right)\right) .
\end{array}\right.
$$

2c. Update:
2c1. For $i=i_{k+1}$ and for each $j \in \mathbb{J}\left(i_{k+1}\right)$:

$$
\left\{\begin{array}{l}
\mathbf{x}_{i}^{k+1}=\overline{\mathbf{x}}_{i}^{k+1}, \quad \mathbf{y}_{j}^{k+1}(i)=\overline{\mathbf{y}}_{j}^{k+1}(i) \\
\boldsymbol{w}_{i}^{k+1}=\boldsymbol{w}_{i}^{k}+\sum_{j \in \mathrm{~J}(i)} \mathbf{A}_{j i}^{\star}\left(\mathbf{y}_{j}^{k+1}(i)-\mathbf{y}_{j}^{k}(i)\right) \\
\mathbf{z}_{j}^{k+1}=\mathbf{z}_{j}^{k}+\frac{1}{m_{j}}\left(\mathbf{y}_{j}^{k+1}(i)-\mathbf{y}_{j}^{k}(i)\right) .
\end{array}\right.
$$

2c2. Otherwise: $\mathbf{x}_{i}^{k+1}=\mathbf{x}_{i}^{k}, \boldsymbol{w}_{i}^{k+1}=\boldsymbol{w}_{i}^{k}, \mathbf{z}_{j}^{k+1}=\mathbf{z}_{j}^{k}, \mathbf{y}_{j}^{k+1}(i)=\mathbf{y}_{j}^{k+1}(i)$.
${ }^{-} \operatorname{prox}_{\tau g}: \mathbf{x} \mapsto \arg \min _{\mathbf{y}}\left\{f(\mathbf{y})+(1 / 2)\|\mathbf{x}-\mathbf{y}\|_{\tau}^{2}\right\}$, where $\|\mathbf{x}\|_{\tau}^{2}=\sum_{i=1}^{s} \tau_{i}^{-1}\left\|\mathbf{x}_{i}\right\|_{(i)}^{2}$.

Example

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} \underbrace{\frac{1}{2 \lambda}\|\mathbf{A}(\mathbf{b} \odot \mathbf{x})\|_{2}^{2}-\boldsymbol{e}^{T} \mathbf{x}}_{f(\mathbf{x})}+\underbrace{\sum_{i=1}^{p} \iota_{\left[0, C_{i}\right]}\left(x_{i}\right)}_{g(\mathbf{x})}+\underbrace{\iota_{\mathbf{b}} \perp(\mathbf{x})}_{h\left(\mathbb{I}_{p} \mathbf{x}\right)}
$$

We have: $\mathbb{R}^{p}=\mathbb{R} \times \ldots \times \mathbb{R}$ and

$$
\mathbb{I}_{p}=\left(\begin{array}{cccc}
\hline 1 & \boxed{0} & \cdots & \boxed{0} \\
\hline 0 & \begin{array}{|c}
1 \\
\cdots
\end{array} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \boxed{0} & \cdots & 1
\end{array}\right)
$$

- $\mathbb{J}(i)=\{i\}$ and $\mathbb{I}(j)=\{j\}$.
- m_{j} is the number of nonzero elements in j th column, i.e., 1 .

Example (cont.)

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} \underbrace{\frac{1}{2 \lambda}\|\mathbf{A}(\mathbf{b} \odot \mathbf{x})\|_{2}^{2}-e^{T} \mathbf{x}}_{f(\mathbf{x})}+\underbrace{\sum_{i=1}^{p} \iota_{\left[0, C_{i}\right]}\left(x_{i}\right)}_{g(\mathbf{x})}+\underbrace{\iota_{\mathbf{b}} \perp(\mathbf{x})}_{h\left(\mathbb{I}_{p} \mathbf{x}\right)}
$$

1. Choose $\sigma=\left(\sigma_{1}, \ldots, \sigma_{p}\right), \tau=\left(\tau_{1}, \ldots, \tau_{p}\right)$, $\mathbf{x}^{0} \in \mathbb{R}^{p}, \mathbf{y}^{0} \in \mathbb{R}^{p}$.
2. For $k=0,1, \ldots$ perform:

2a. Choose $i_{k} \in\{1, \ldots, p\}$ at random and uniformly.
2b. Compute:

$$
\left\{\begin{array}{l}
\overline{\mathbf{y}}^{k+1}=\operatorname{prox}_{\sigma h^{\star}}\left(\mathbf{y}^{k}+\sigma \odot\left(\mathbf{A} \mathbf{x}^{k}\right)\right) \\
\overline{\mathbf{x}}^{k+1}=\operatorname{prox}_{\tau g}\left(\mathbf{x}^{k}-\tau \odot\left(\nabla f\left(\mathbf{x}^{k}\right)+\mathbf{A}^{T}\left(2 \overline{\mathbf{y}}^{k+1}-\mathbf{y}^{k}\right)\right)\right)
\end{array}\right.
$$

2c. Update:

$$
\left(\mathbf{x}_{i}^{k+1}, \mathbf{y}_{i}^{k+1}\right)= \begin{cases}\left(\overline{\mathbf{x}}_{i}^{k+1}, \overline{\mathbf{y}}_{i_{k}}^{k+1}\right), & \text { if } i=i_{k+1} \\ \left(\mathbf{x}_{i}^{k}, \mathbf{y}_{i}^{k}\right), & \text { otherwise }\end{cases}
$$

- $\nabla f(\mathbf{x})=\lambda^{-1} \mathbf{b}^{T} \odot\left(\mathbf{A}^{T} \mathbf{A}(\mathbf{b} \odot \mathbf{x})\right)-\boldsymbol{e}^{T}$.
- $\operatorname{prox}_{\tau g} \mathbf{x}=P_{[0, \boldsymbol{C}]} \mathbf{x}$.
- $\operatorname{prox}_{\sigma h^{*}} \mathbf{x}=\mathbf{x}-\sigma \odot \operatorname{prox}_{\sigma^{-1} h}\left(\sigma^{-1} \odot \mathbf{x}\right)=\mathbf{x}-\sigma \odot P_{\mathbf{b}^{\perp}}^{\sigma^{-1}}\left(\sigma^{-1} \odot \mathbf{x}\right)$.

Convergence's results

Theorem ([3])

Suppose that for every $i \in\{1, \ldots, s\}$:

1. There exists $\beta_{i} \geq 0$ such that

$$
\left(\forall \mathbf{x} \in \mathbb{R}^{p}\right)\left(\forall \mathbf{u} \in \mathbb{R}^{p_{i}}\right) \quad f\left(\mathbf{x}+\boldsymbol{U}_{i} \mathbf{u}\right) \leq f(\mathbf{x})+\left\langle\boldsymbol{U}_{i} \mathbf{u}, \nabla f(\mathbf{x})\right\rangle+\frac{\beta_{i}}{2}\|\mathbf{u}\|_{(i)}^{2}
$$

2. $\tau_{i}<1 /\left(\beta_{i}+\rho(\boldsymbol{B})\right)$, where $\boldsymbol{B}=\sum_{j \in \mathrm{~J}(i)} m_{j} \sigma_{j} \mathbf{A}_{j i}^{T} \mathbf{A}_{j i}$ and $\rho(\boldsymbol{B})$ denotes the spectral radius of \boldsymbol{B}, i.e., the maximum of absolute values of eigenvalues of \boldsymbol{B}.
Then
3. $\mathbf{x}^{k} \rightarrow \mathbf{x}^{\star}$.
4. $\mathbf{y}_{j}^{k}(i) \rightarrow \mathbf{y}_{j}^{\star}$ for every $j \in\{1, \ldots, t\}$ and every $i \in \mathbb{I}(j)$.

- Note. No result on convergence's rate!

Outline

- Coordinate descent methods (cont.)

1. Coordinate descent methods for composite functions
2. Coordinate descent primal-dual algorithm

- Randomized Linear Algebra

1. Randomized matrix decompositions
2. Comparison to classical methods

Top-Ten Algorithms of 20th century [2]:

- 1946: Monte Carlo Method
- 1947: Simplex Method for Linear Programming
- 1950: Krylov Subspace Iteration Method
- 1951: The Decompositional Approach to Matrix Computations
- 1957: The Fortran Optimizing Compiler
- 1959: QR Algorithm for Computing Eigenvalues
- 1962: Quicksort Algorithms for Sorting
- 1965: Fast Fourier Transform.
- 1977: Integer Relation Detection
- 1987: Fast Multipole Method

Matrix Decompositions

- Cholesky, Schur, eigenvalue, QR and singular value decompositions (SVD) etc.
- Allows software packages that can be used to solve different linear algebra problems
- SVD and QR decompositions have $\mathcal{O}(n p \min \{n, p\})$ complexity
- This can be the major computational bottleneck due to their superlinear dependence on matrix size
- Real data is often noisy, so it makes sense to sacrife accuracy for speed-up.

Example-I: Matrix vector multiplication

Advantages

1. Faster computation: $\mathcal{O}(n p)$ instead of $\mathcal{O}(r(n+p))$.
2. Lower memory: $\mathcal{O}(n p)$ instead of $\mathcal{O}(r(n+p))$.

- The approximation costs $\mathcal{O}\left(n p \log (r)+r^{2}(n+p)\right)$ with state-of-the-art when the decomposition is SVD.

Example-II: Robust Principal Component Analysis (RPCA)

For certain applications such as video surveillance, we need to solve

$$
\min _{X=L+S}\|L\|_{\star}+\lambda\|S\|_{1}
$$

which requires computation of the proximal operator of the nuclear norm

$$
Z^{*}=\underset{Z}{\arg \min } \frac{1}{2}\|X-Z\|_{F}^{2}+\lambda\|Z\|_{\star} .
$$

We can only need to compute $Z^{*}=U_{r} \Sigma_{r} V_{r}$ where U_{r} and V_{r} contain the first r left and right singular vectors and Σ_{r} is a diagonal matrix with the first r singular values on its diagonal.

Complexities

- Truncated SVD with classical methods has $\mathcal{O}(n p r)$ complexity .
- The randomized approach can cost as low as $\mathcal{O}\left(n p \log (r)+r^{2}(n+p)\right)$ operations.

Example-II: Robust Principal Component Analysis (RPCA)

Example

To compute the proximity operator for the nuclear norm in robust PCA for video background subtraction, we try

1. Lanczos-based SVD using PROACK software
2. Randomized factorization

The matrix to be decomposed has dimensions 61440×17884 (8.1 GB) and is taken from a video sequence. We see that U

- Faster even with one core
- Accuracies are indistinguishable
- Randomized method scales much better for parallel computation

Figure: Computing the top 5 singular vectors of a 10^{9} entry matrix using varying number of computer cores [1]

Randomized low rank decompositions: How do we do it ?

Step-1: Finding a range

- Apply a randomized algorithm to find an orthogonal low-dimensional basis $\mathbf{Q} \in \mathbb{R}^{n \times l}$ with $l \ll p$ that can well represent the matrix \mathbf{A}
- In other words, \mathbf{Q}, when approximated on its span, should well approximate \mathbf{A} :

$$
\mathbf{A} \approx \mathbf{Q Q}^{*} \mathbf{A}
$$

where $\mathbf{Q Q}^{*}$ is the projection onto the subspace spanned by the basis \mathbf{Q}
\qquad
\qquad
\qquad

Randomized low rank decompositions: How do we do it ?

Step-1: Finding a range

- Apply a randomized algorithm to find an orthogonal low-dimensional basis $\mathbf{Q} \in \mathbb{R}^{n \times l}$ with $l \ll p$ that can well represent the matrix \mathbf{A}
- In other words, \mathbf{Q}, when approximated on its span, should well approximate \mathbf{A} :

$$
\mathbf{A} \approx \mathbf{Q Q}^{*} \mathbf{A}
$$

where $\mathbf{Q Q}^{*}$ is the projection onto the subspace spanned by the basis \mathbf{Q}

Step-2: Decomposition

- Reduce the dimension using \mathbf{Q} as the approximation above suggests
- Apply classical linear algebra which is no more prohibitive at these dimensions
- Obtain the desired decomposition

Step-1: Finding the range

Step-1: Finding a range

Given $\mathbf{A} \in \mathbb{R}^{n \times p}$, find $\mathbf{Q} \in \mathbb{R}^{n \times l}$ such that

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\| \approx \min _{\operatorname{rank}(\mathbf{X}) \leq r}\|\mathbf{A}-\mathbf{X}\|
$$

- r is the target rank,
- $l=r+s$ number of columns used
- s is the number of oversamples

Method: Obtain random vectors in the range of \mathbf{A} by multiplying it with random

 vectors$$
\begin{aligned}
& \text { From these vectors we can find an orthogonal basis } \mathrm{Q} \\
& \text { There exists a } \mathrm{Q} \in \mathbb{R}^{n \times r} \text { which gives the optimum value of the above } \\
& \text { minimization problem (guess what it is !) }
\end{aligned}
$$

Step-1: Finding the range

Step-1: Finding a range

Given $\mathbf{A} \in \mathbb{R}^{n \times p}$, find $\mathbf{Q} \in \mathbb{R}^{n \times l}$ such that

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\| \approx \min _{\operatorname{rank}(\mathbf{X}) \leq r}\|\mathbf{A}-\mathbf{X}\|
$$

- r is the target rank,
- $l=r+s$ number of columns used
- s is the number of oversamples

Method: Obtain random vectors in the range of \mathbf{A} by multiplying it with random vectors

- From these vectors we can find an orthogonal basis \mathbf{Q}
- There exists a $\mathbf{Q} \in \mathbb{R}^{n \times r}$ which gives the optimum value of the above minimization problem (guess what it is !)
- But for a better approximation we oversample it: $\mathbf{Q} \in \mathbb{R}^{n \times(r+s)}$

Step-1: Finding a range

1. Multiply $\mathbf{A} \boldsymbol{\Omega}$ for $\boldsymbol{\Omega}_{i, j} \sim \mathcal{N}(0,1)$, at cost $\mathcal{O}(n p \ell)$ (or less)

2. Compute thin QR factorization of \mathbf{Y}, at a cost of $\mathcal{O}\left(n \ell^{2}\right)$ (e.g. with Gram-Schmidt)

$$
{ }_{n} \begin{gathered}
\ell \\
\hline \mathbf{Y} \\
\hline \begin{array}{|c}
\ell \\
\mathbf{Q} \\
\ell
\end{array} \\
\ell \\
\hline \mathbf{R} \\
\hline
\end{gathered}
$$

3. Final multiply $\mathbf{Q}^{*} \mathbf{A}$, at cost $\mathcal{O}(n p \ell)$

Random Sampling: Geometric Interpretation

- $A=\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$
- $n=3, p=4$, rank is $r=2$
- $Y=A \Omega$

Figure: Random sampling can span the range

- Column selection would also work, but we need to be careful about how we select the columns. (next lecture)

Mathematical Intuition: What does randomness bring ?

Randomness

- $\Omega=\left[\omega_{1}, \omega_{2}, \ldots, \omega_{r}\right]$ has linearly independent columns.
- No linear combination of the columns can be in the null space of A.

Claim: $\operatorname{Range}(A)=\operatorname{Range}(Y=A \Omega)$
Claim: $A=Q Q^{*} A$, when A is rank- r.

In practice we have

$$
X=A+E
$$

where A is best rank- r approximation to X. By random sampling, we aim to span the range of A with $X \omega_{1}, \ldots ., X \omega_{r}$. However they're distorted by $E \omega_{i}$. That is the reason why we oversample and take $\ell=r+s$ columns.

Theoretical Guarentees

Best rank-r errors

Note the different optimal errors in spectral and Frobenius norms. Let σ_{i} be the $i^{\text {th }}$ singular value of \mathbf{A}. Then

$$
\sigma_{r+1}=\min _{\operatorname{rank}(\mathbf{B}) \leq r}\|\mathbf{A}-\mathbf{B}\| \quad \text { vs. } \quad\left(\sum_{j} \sigma_{j}^{2}\right)^{1 / 2}=\min _{\operatorname{rank}(\mathbf{B}) \leq r}\|\mathbf{A}-\mathbf{B}\|_{F}
$$

Theoretical Guarentees

Best rank-r errors

Note the different optimal errors in spectral and Frobenius norms. Let σ_{i} be the $i^{\text {th }}$ singular value of \mathbf{A}. Then
$\sigma_{r+1}=\min _{\operatorname{rank}(\mathbf{B}) \leq r}\|\mathbf{A}-\mathbf{B}\| \quad$ vs. $\quad\left(\sum_{j} \sigma_{j}^{2}\right)^{1 / 2}=\min _{\operatorname{rank}(\mathbf{B}) \leq r}\|\mathbf{A}-\mathbf{B}\|_{F}$
Theorem (expected Frobenius error [6])
Let $\widehat{\mathbf{A}}_{(l)}$ be the approximation with l columns obtained above. The average error decreases with the oversampling rate s. In particular for $r \geq 2, s \geq 2$ and $l=r+s \leq \min \{n, p\}$

$$
\mathbb{E}\left\|\widehat{\mathbf{A}}_{(l)}-\mathbf{A}\right\|_{F}=\sqrt{1+\frac{r}{s-1}}\left(\sum_{j>r} \sigma_{j}^{2}\right)^{1 / 2}
$$

Theoretical Guarentees

Theorem (simple spectral bound [6])

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ with $n \geq p$ be the matrix that is randomly approximated as above. Let also $r \geq 2, s \geq 2$ and $l=r+s \leq \min \{n, p\}$. Then the following holds:

$$
\mathbb{E}\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\| \leq\left(1+\frac{4 \sqrt{r+s}}{s-1} \sqrt{p}\right) \sigma_{r+1}
$$

- In practice an oversampling of $s=5$ is sufficient

Theoretical Guarentees

Theorem (simple spectral bound [6])

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ with $n \geq p$ be the matrix that is randomly approximated as above. Let also $r \geq 2, s \geq 2$ and $l=r+s \leq \min \{n, p\}$. Then the following holds:

$$
\mathbb{E}\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\| \leq\left(1+\frac{4 \sqrt{r+s}}{s-1} \sqrt{p}\right) \sigma_{r+1}
$$

Theorem (deterministic spectral bound [6])

Furthermore, the following deterministic bounds also holds:

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\| \leq[1+9 \sqrt{r+s} \cdot \min (n, p) \sqrt{p}] \sigma_{r+1}
$$

with probability at least $1-3 \cdot s^{-s}$. under some mild assumptions on p.

- In practice an oversampling of $s=5$ is sufficient

Structured Random Matrices

Motivation

- If we have a fast way of multiplying $\mathbf{Y}=\mathbf{A} \boldsymbol{\Omega}$, then random projection method is attractive.
- Use of structured matrices such as Fourier or Hadamard allows a faster matrix multiplication (e.g. using FFT)
- If A has a fast spectral decay, then this approach below works as well as Gaussian matrices.

Theorem

If $\boldsymbol{\Omega}$ is a subsampled random Fourier transform matrix (SRFT) of dimensions $p \times \ell$ with $\ell \geq(r+\log n) \log r$, then

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\|_{2} \leq \sqrt{1+\frac{7 p}{\ell}} \cdot \sigma_{r+1}
$$

except with probability $\mathcal{O}\left(r^{-1}\right)$. [6]

- We need more oversampling for a decent performance : $s=20$

Structured Random Matrices

A subsampled random Fourier transform matrix is a $p \times l$ matrix of the form

$$
\Omega_{\mathrm{FFT}}=\sqrt{\frac{p}{l}} \mathrm{DFR}
$$

where

- $\mathbf{D} \in \mathbb{R}^{p \times p}$ is diagonal matrix with entries that are independent RV s uniformly distributed on the complex unit circle
- \mathbf{F} is $p \times p$ is the unitary DFT Matrix
- \mathbf{R} is a $p \times l$ matrix whose l columns are drawn uniformly from the identity matrix without replacement.

Using Fast Fourier Transform (FFT), cost of $\mathbf{Y}=\mathbf{A} \boldsymbol{\Omega}$ reduces to $\mathcal{O}(n p \log \ell)$!
(compare with direct method that costs $\mathcal{O}(n p \ell)$)

Step-2: Forming the decomposition

- So far we have obtained:

$$
\mathbf{A} \approx \mathbf{Q}\left(\mathbf{Q}^{*} \mathbf{A}\right)
$$

- Multiplying ($\left.\mathbf{Q}^{*} \mathbf{A}\right)$ costs $\mathcal{O}(n p l)$
- This is the bottleneck and could be avoided and reduced to $\mathcal{O}\left(l^{2}(n+p)\right)$ using row extraction method (next lecture) but at the expense of worse error bound.
- For the moment we work with the product $\mathbf{Q}^{*} \mathbf{A}$ and decompose it.
- Let $\mathbf{B}=\mathbf{Q}$ and $\mathbf{C}=\mathbf{Q}^{*} \mathbf{A}$ in our low rank approximation $\mathbf{A} \approx \mathbf{B C}$
- Indeed this is the partial QR decomposition using Randomized Linear Algebra
- We now form partial singular value decomposition out of this

Classical Methods for partial Singular Value Decomposition

via Full SVD

- The full SVD of a $n \times p$ matrix is computed and truncated.
- It costs $\mathcal{O}(n p \min \{n, p\})$.
- Stable but very expensive.

Classical Methods for partial Singular Value Decomposition

via Full SVD

- The full SVD of a $n \times p$ matrix is computed and truncated.
- It costs $\mathcal{O}(n p \min \{n, p\})$.
- Stable but very expensive.

Krylov Subspace methods

- The idea is to choose a random initial vector ω and apply successively a Hermitian operator \mathbf{H} to form the subspace

$$
\mathcal{K}_{r}(\mathbf{H}, \omega)=\operatorname{span}\left\{b, \mathbf{H} b, \mathbf{H}^{2} b, \ldots, \mathbf{H}^{r-1} b\right\}
$$

to find of the eigenvectors of \mathbf{H} (or first few of them)

- One of the best methods in numerical linear algebra such as Arnoldi and Lanczos algorithms are based on this idea [5]
- It might vary but typically costs $\mathcal{O}\left(r n p+r^{2}(n+p)\right)$
- It requires $\mathcal{O}(k)$ passes over the data

Classical Methods for partial Singular Value Decomposition

Computing a partial SVD using QR

- Use Businger-Golub or strong rank revealing QR algorithm to form $\mathbf{A} \approx \mathbf{Q R}$ where $\mathbf{Q} \in \mathbb{R}^{n \times \ell}$ and $\mathbf{R} \in \mathbb{R}^{\ell \times p}$ [5]
- Then transform this to SVD as above.
- This also costs $\mathcal{O}(n p r)$ but more robust compared to Krylov methods.
- It requires $\mathcal{O}(k)$ passes over the data

Classical Methods for partial Singular Value Decomposition

Computing a partial SVD using QR

- Use Businger-Golub or strong rank revealing QR algorithm to form $\mathbf{A} \approx \mathbf{Q R}$ where $\mathbf{Q} \in \mathbb{R}^{n \times \ell}$ and $\mathbf{R} \in \mathbb{R}^{\ell \times p}$ [5]
- Then transform this to SVD as above.
- This also costs $\mathcal{O}(n p r)$ but more robust compared to Krylov methods.
- It requires $\mathcal{O}(k)$ passes over the data

A comparison

- Classical techniques require at least $\mathcal{O}(n p r)$ whereas randomized algorithms can be implemented with $\mathcal{O}\left(n p \log (l)+l^{2}(n+p)\right)$.
- In the slow memory environment, the figure of merit is not the flop counts, but number of passes over the data.
- All these classical techniques require many passes over the matrix and whereas randomized algorithms require a constant number of passes over the data. [6]
- Randomized methods are highy parallelizable, because $\mathbf{Y}=\mathbf{A} \boldsymbol{\Omega}$ can be efficiently implemented in modern architectures: GPUs, distributed computing, multi-core processors.

References I

[1] Volkan Cevher, Steffen Becker, and Martin Schmidt.
Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics.
Signal Processing Magazine, IEEE, 31(5):32-43, 2014.
[2] Jack Dongarra and Francis Sullivan.
Guest editors? introduction: The top 10 algorithms.
Computing in Science \& Engineering, 2(1):22-23, 2000.
[3] Olivier Fercoq and Pascal Bianchi.
A coordinate descent primal-dual algorithm with large step size and possibly non separable functions.
http://arxiv.org/abs/1508.04625, Aug. 2015.
[4] Olivier Fercoq and Peter Richatárik.
Accelerated, parallel and proximal coordinate descent.
SIAM J. Optim., 25:1997-2023, 2016.
[5] Gene H Golub and Charles F Van Loan.
Matrix computations, volume 3.
JHU Press, 2012.

References II

[6] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp.
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM review, 53(2):217-288, 2011.
[7] Peter Richatárik and Martin Takac.
Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function.
Math. Program., 144:1-38, 2014.
[8] Stephen J Wright.
Coordinates descent algorithms.
Math. Program., 151:3-34, 2015.

