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Outline

I Coordinate descent methods (cont.)
1. Coordinate descent methods for composite functions
2. Coordinate descent primal-dual algorithm

I Randomized Linear Algebra
1. Randomized matrix decompositions
2. Comparison to classical methods
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Recommended reading material:

I Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp, Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions, SIAM review 53.2 (2011): 217-288. vspace1mm

I Michael W Mahoney, Randomized algorithms for matrices and data, Foundations
and Trends in Machine Learning 3.2 (2011): 123-224.
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Recall: Randomized CD algorithm

Randomized coordinate descent algorithm
1. Choose θ ∈ R and x0 ∈ Rp.
2. For k = 0, 1, . . . perform:
2a. Choose ik = Aθ.
2b. Update

xk+1 = xk − L−1
ik
U ik

[
∇ikf(xk)

]#
.

1
1

1
1

1
1

1
1

1
1

RpU2 U3U1 U4

p4p3p2p1 p=+ + +

Ip= [ ]

riF (x) := UT
i rF (x).

kriF (x + U ihi) �riF (x)k⇤(i)  Likhik(i),

(Rp1 , k · k(1))

(Rp2 , k · k(2))

(Rp3 , k · k(3))

(Rp4 , k · k(4))

• Sharp-operator : [x]# =arg maxs∈Rp 〈x, s〉 − (1/2)‖s‖2 =⇒ for `2 norm, [x]# =x.
• Aθ generates i ∈ {1, . . . , s} with probability Lθi /

∑s

j=1 L
θ
j =⇒ for θ = 0, uniform

distribution.
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Coordinate descent for composite minimization problem

Problem (Composite convex minimization)
Consider the following unconstrained composite convex minimization problem:

F ? := min
x∈Rp

{F (x) := f(x) + g(x)}

I f and g are both proper, closed, and convex.
I ∇f is L-Lipschitz continuous.
I g is possibly non-smooth.
I The solution set S? := {x? ∈ dom(F ) : F (x?) = F ?} is nonempty.

Next: Examples that illustrates we need an additional assumption for CD to work for
composite problems!
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CD does not always converge for composite convex problems!
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Smooth objective function: f(x) = ‖x‖2
2

f(x) is minimized along each coordinate axis, if and only if x is the global optimum.

∂f(x)
∂xi

= 0, for i = 1, . . . , p ⇐⇒ ∇f(x) =
[
∂f(x)
∂x1

, . . . ,
∂f(x)
∂xp

]T
= 0.

What if f(x) is non-smooth?
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CD does not always converge for composite convex problems!
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Composite (non-smooth) objective function: F (x) = ‖x‖2
2 + |x1 − x2|

F (x) is minimized along each coordinate axis, if and only if x is the global optimum.

Statement above is not valid anymore!

Consider the point (0.5, 0.5) as a counter example.

This is why we need an additional assumption!
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CD does not always converge for composite convex problems!
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Composite (non-smooth) objective function: F (x) = ‖x‖2
2 + ‖x‖1

Denote f(x) := ‖x‖2
2 the smooth part and g(x) := ‖x‖1 the non-smooth part.

Assume that the non-smooth part is seperable: g(x) =
∑p

i=1 gi(xi).

Then, F (x) is minimized along each coordinate axis, if and only if x is the global
optimum.
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Coordinate descent for composite minimization problem

Problem (Composite convex minimization)
Consider the following unconstrained composite convex minimization problem:

F ? := min
x∈Rp

{F (x) := f(x) + g(x)}

I f and g are both proper, closed, and convex.
I ∇f is L-Lipschitz continuous.
I g is possibly non-smooth.
I S? := {x? ∈ dom(F ) : F (x?) = F ?} , ∅.

• g is separable: g(x) =
∑p

i=1 gi(xi), where gi : R→ R for all i, e.g.,
I Unconstrained: g(x) = constant.
I Box constrained: g(x) =

∑s

i=1 1[ai,bi](xi).
I `q norm regularization: g(x) = ‖x‖qq where q ≥ 1.

• g is block-separable: p× p identity matrix can be partitioned into column
submatrices U i, i = 1, . . . , s such that g(x) =

∑s

i=1 gi(U
T
i x). Block-separable

examples include group-sparse regularizers.
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Examples: Composite convex problems with separable g

Example (LASSO)

min
x

1
2
‖Ax− b‖2

2︸              ︷︷              ︸
f(x)

+λ‖x‖1︸  ︷︷  ︸
g(x)

.

Example (Support vector machine (SVM) with squared hinge loss)

min
x

C
∑
i

max{yi(wTi x− b), 0}2

︸                                        ︷︷                                        ︸
g(x)

+
1
2
‖x‖2

2︸   ︷︷   ︸
f(x)

.

Example (SVM: dual form with bias term)

min
0≤x≤C1

1
2

∑
i,j

xixjyiyjK(wi,wj)︸                                   ︷︷                                   ︸
f(x)

−
∑
i

xi︸   ︷︷   ︸
g(x)

.
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Examples: Composite convex problems with separable g

Example (Logistic regression with `q norm regularization)

min
x

1
p

∑
i

log(1 + exp(−biwTi x))︸                                        ︷︷                                        ︸
g(x)

+λ‖x‖qq︸  ︷︷  ︸
f(x)

.

Example (Semi-supervised learning with Tikhonov regularization)

min
x

∑
i∈{labeled data}

(xi − yi)2

︸                              ︷︷                              ︸
g(x)

+λxTLx︸    ︷︷    ︸
f(x)

.

Example (Relaxed linear programming)

min
x≥0

cTx s.t. Ax = b ⇒ min
x≥0

cTx︸︷︷︸
g(x)

+λ‖Ax− b‖2
2︸             ︷︷             ︸

f(x)

.
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Randomized proximal coordinate descent algorithm

F ? := min
x∈Rp

{
F (x) := f(x) +

s∑
i=1

gi(xi)

}

Randomized coordinate descent for composite functions (RCDC)
1. Choose x0 ∈ Rp and (γk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:
2a. Pick ik ∈ {1, . . . , s} uniformly at random.
2b. Update coordinate ik:

xk+1
ik

= arg min
v∈Rpik

gik (v) +
〈
v,∇ikf(xk)

〉
+

1
2αk
‖v− xkik‖

2
(ik).

• If ‖ · ‖(ik) = ‖ · ‖2, then we can simplify the update rule as

xk+1
ik

= proxαkgik

(
xkik − αk∇ikf(xk)

)
.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 44



Convergence of RCDC

Suppose that ∇fi is Lipschitz continuous with respect to some norm ‖ · ‖(i) for
i = 1, 2, . . . s, that is

‖∇if(x +U it)−∇if(x)‖∗(i) ≤ Li‖t‖(i), ∀t ∈ Rpi .

Theorem (Convergence without strong convexity [7])
Choose a target confidence 0 < ρ < 1. For any target accuracy ε < F (x0)− F ?,

P(F (xk)− F ? ≤ ε) ≥ 1− ρ, for any k ≥
2sDL
ε

(1− log(ρ)) + 2−
2sDL

F (x0)− F ?
,

where

DL := max
{
F (x0)− F ?,max

y
max

x?∈X?

{ s∑
i=1

Li‖yi − x?i ‖
2
(i)︸                        ︷︷                        ︸

:=‖y−x?‖2
L

: F (y) ≤ F (x0)
}}

.
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Convergence of RCDC

Suppose that ∇fi is Lipschitz continuous with respect to some norm ‖ · ‖(i) for
i = 1, 2, . . . s, that is

‖∇if(x +U it)−∇if(x)‖∗(i) ≤ Li‖t‖(i), ∀t ∈ Rpi .

Theorem (Convergence with strong convexity [8])
Suppose f is a strongly convex function with convexity constant µ.
Let us set αk = 1/Lmax for all k, where Lmax = maxi Li, then

E[F (xk)− F ?] ≤
(

1−
µ

sLmax

)k(
F (x0)− F ?

)
.
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Example: LASSO

min
x

{
f(x) :=

1
2
‖Ax− b‖2

2 + λ‖x‖1 : x ∈ Rp
}

epoch
0 5 10 15 20

∥x
k
−
x
⋆
∥2
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PCD

epoch
0 5 10 15 20

(

f
(x

k
)
−
f
⋆
)
/

f
⋆

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Synthetic problem setup

I A := randn(n, p) - standard Gaussian N (0, I), with n = 1000, p = 500.
I x\ ∈ Rp is 50-sparse with Gaussian i.i.d. entries, normalized to ‖x\‖2 = 1.
I b := Ax\ + w, where w is Gaussian white noise. SNR is 30dB.
I θ = 0, so coordinates are chosen uniformly random.
I λ := 10−2.
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Accelerated parallel proximal coordinate descent method

Accelerated parallel proximal coordinate descent method (APPROX)

1. Choose v0 = x0 ∈ Rp and α0 = τ/s.
2. For k = 0, 1, . . . perform:
2a. yk = (1− αk)xk + αkvk.
2b. Generate a random set of coordinate blocks Sk with uniform block sampling.
2c. For i ∈ Sk, perform:

vk+1
i = arg min

v∈Rpi

{〈
v− yki ,∇if(yk)

〉
+
sαkσi

2τ
‖v− vki ‖

2
(i) + gi(v)

}
.

2d. xk+1
i = yki + sαk

τ
(vk+1
i − vki ).

3. αk+1 = 1
2

(√
α4
k

+ 4α2
k
− α2

k

)
.

• Uniform block sampling: P(i ∈ S) = P(j ∈ S) for all i, j ∈ {1, 2, . . . , s}.
• τ = E[|S|].
• σ = (σ1, . . . , σs) ∈ Rs+ satisfy ∀x,h ∈ Rp:

E

[
f

(
x +
∑
i∈S

U ihi

)]
≤ f(x) +

τ

s

(
〈∇f(x),h〉+

1
2

∥∥∥∑
i∈S

U ihi
∥∥∥2

σ

)
,

where ‖x‖2
σ :=

∑s

i=1 σi‖xi‖
2
(i).
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Rate of convergence of APPROX: O(1/k2)

• Uniform block sampling: P(i ∈ S) = P(j ∈ S) for all i, j ∈ {1, 2, . . . , s}.
• τ = E[|S|].
• σ = (σ1, . . . , σs) ∈ Rs+ satisfy ∀x,h ∈ Rp:

E

[
f

(
x +
∑
i∈S

U ihi

)]
≤ f(x) +

τ

s

(
〈∇f(x),h〉+

1
2

∥∥∥∑
i∈S

U ihi
∥∥∥2

σ

)
,

where ‖x‖2
σ :=

∑s

i=1 σi‖xi‖
2
(i).

Theorem ([4])
Let {xk}k≥0 be a sequence generated by APPROX. Then, for any optimal point x?,
we have

E[F (xk)− F ?] ≤
4s2

((k − 1)τ + 2s)2C,

where
C =

(
1−

τ

s

)(
F (x0)− F ?

)
+

1
2
‖x0 − x?‖2

σ .
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Coordinate descent primal-dual algorithm

Problem (Composite minimization problem with linear operator)
Consider the following minimization problem

F ? := min
x∈Rp

{
f(x) + g(x) + h(Ax)

}
.

I g and h are convex, f is convex and differentiable.
I A ∈ Rq×p.

This problem can be transformed to finding saddle points of the Lagrangian function

L(x,y) = f(x) + g(x) + 〈y,Ax〉 − h?(y),

where h? : y 7→ supz 〈y, z〉 − h(z) is the Fenchel-Legendre transform of h.
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Examples

Example (Total variation + `1 regularized least squares regression)

min
x∈Rp

1
2
‖Mx− b‖2

2︸               ︷︷               ︸
f(x)

+αr‖x‖1︸    ︷︷    ︸
g(x)

+α(1− r)‖Ax‖2,1︸                    ︷︷                    ︸
h(Ax)

,

where
‖Ax‖2,1 =

∑
j

‖Aijxi‖2, x = (xi)i.

Example (Dual SVM)

min
x∈Rp

1
2λ
‖A(b� x)‖2

2 − e
Tx︸                              ︷︷                              ︸

f(x)

+
p∑
i=1

ι[0,Ci](xi)︸                ︷︷                ︸
g(x)

+ ιb⊥ (x)︸    ︷︷    ︸
h(Ipx)

,

where b� x is the component-wise multiplications of two vectors b and x and

b⊥ =
{

x ∈ Rp | bTx = 0
}
.
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Set up

1. Rp = Rp1 × . . .× Rps and Rq = Rq1 × . . .× Rqt . Hence, matrix A ∈ Rq×p can
be decomposed in blocks of matrices Aij ∈ Rqj×pi .

A11 A12

A22 A21

I(j) = {i 2 {1, . . . , p}|Aji 6= 0}
mj = #I(j)
J(i) = {i 2 {1, . . . , q}|Aji 6= 0}
D(�) : x = (x1, . . . , xs)

T ! (�1x1, . . . , �sxs)
T ,

� = (�1, . . . , �s)

A Rp Rq

Rq1

Rq2

Rp2

Rp1

2. I(j) indices the set of nonzero qj-rows matrices and mj its cardinal.
3. J(i) indices the set of nonzero pi-columns matrices.
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Coordinate descent primal-dual algorithm

Coordinate descent primal-dual algorithm
1. Choose σ = (σ1, . . . , σt), τ = (τ1, . . . , τs), x0 ∈ Rp, y0 ∈ Rq and initialize{

(∀i ∈ {1, . . . , s}) w0
i =
∑

j∈J(i) AT
jiy

0
j (i).

(∀j ∈ {1, . . . , t}) z0
j = (1/mj)

∑
i∈I(j) y0

j (i).
2. For k = 0, 1, . . . perform:
2a. Choose ik ∈ {1, . . . , s} at random and uniformly.
2b. Compute:{

ȳk+1 = proxσh?

(
zk + σ � (Axk)

)
x̄k+1 = proxτg

(
xk − τ � (∇f(xk) + 2AT ȳk+1 −wk)

)
.

2c. Update:
2c1. For i = ik+1 and for each j ∈ J(ik+1):

xk+1
i = x̄k+1

i , yk+1
j (i) = ȳk+1

j (i)
wk+1
i = wki +

∑
j∈J(i) A?

ji

(
yk+1
j (i)− ykj (i)

)
zk+1
j = zkj + 1

mj

(
yk+1
j (i)− ykj (i)

)
.

2c2. Otherwise: xk+1
i = xki , w

k+1
i = wki , zk+1

j = zkj , yk+1
j (i) = yk+1

j (i).

• proxτg : x 7→ arg miny{f(y) + (1/2)‖x− y‖2
τ}, where ‖x‖2

τ =
∑s

i=1 τ
−1
i ‖xi‖

2
(i).
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Example

min
x∈Rp

1
2λ
‖A(b� x)‖2

2 − e
Tx︸                              ︷︷                              ︸

f(x)

+
p∑
i=1

ι[0,Ci](xi)︸                ︷︷                ︸
g(x)

+ ιb⊥ (x)︸    ︷︷    ︸
h(Ipx)

We have: Rp = R× . . .× R and

Ip =


1 0 . . . 0
0 1 . . . 0
...

...
...

...

0 0 . . . 1


I J(i) = {i} and I(j) = {j}.
I mj is the number of nonzero elements in jth column, i.e., 1.
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Example (cont.)

min
x∈Rp

1
2λ
‖A(b� x)‖2

2 − e
Tx︸                              ︷︷                              ︸

f(x)

+
p∑
i=1

ι[0,Ci](xi)︸                ︷︷                ︸
g(x)

+ ιb⊥ (x)︸    ︷︷    ︸
h(Ipx)

1. Choose σ = (σ1, . . . , σp), τ = (τ1, . . . , τp), x0 ∈ Rp, y0 ∈ Rp.
2. For k = 0, 1, . . . perform:
2a. Choose ik ∈ {1, . . . , p} at random and uniformly.
2b. Compute:{

ȳk+1 = proxσh?

(
yk + σ � (Axk)

)
x̄k+1 = proxτg

(
xk − τ � (∇f(xk) + AT (2ȳk+1 − yk))

)
.

2c. Update:

(xk+1
i ,yk+1

i ) =
{

(x̄k+1
i , ȳk+1

ik
), if i = ik+1,

(xki ,y
k
i ), otherwise.

• ∇f(x) = λ−1bT � (ATA(b� x))− eT .
• proxτgx = P[0,C]x.
• proxσh∗x = x− σ � proxσ−1h(σ−1 � x) = x− σ � Pσ−1

b⊥ (σ−1 � x).

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 44



Convergence’s results

Theorem ([3])
Suppose that for every i ∈ {1, . . . , s}:
1. There exists βi ≥ 0 such that

(∀x ∈ Rp)(∀u ∈ Rpi ) f(x +U iu) ≤ f(x) + 〈U iu,∇f(x)〉+
βi

2
‖u‖2

(i).

2. τi < 1/(βi + ρ(B)), where B =
∑

j∈J(i) mjσjA
T
jiAji and ρ(B) denotes the

spectral radius of B, i.e., the maximum of absolute values of eigenvalues of B.
Then
1. xk → x?.
2. ykj (i)→ y?j for every j ∈ {1, . . . , t} and every i ∈ I(j).

• Note. No result on convergence’s rate!
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Outline

I Coordinate descent methods (cont.)
1. Coordinate descent methods for composite functions
2. Coordinate descent primal-dual algorithm

I Randomized Linear Algebra
1. Randomized matrix decompositions
2. Comparison to classical methods
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Top-Ten Algorithms of 20th century [2]:

I 1946: Monte Carlo Method
I 1947: Simplex Method for Linear Programming
I 1950: Krylov Subspace Iteration Method
I 1951: The Decompositional Approach to Matrix Computations
I 1957: The Fortran Optimizing Compiler
I 1959: QR Algorithm for Computing Eigenvalues
I 1962: Quicksort Algorithms for Sorting
I 1965: Fast Fourier Transform.
I 1977: Integer Relation Detection
I 1987: Fast Multipole Method
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Matrix Decompositions

I Cholesky, Schur, eigenvalue, QR and singular value decompositions (SVD) etc.
I Allows software packages that can be used to solve different linear algebra
problems

I SVD and QR decompositions have O(npmin{n, p}) complexity
I This can be the major computational bottleneck due to their superlinear
dependence on matrix size

I Real data is often noisy, so it makes sense to sacrife accuracy for speed-up.
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Example-I: Matrix vector multiplication

p

n A ≈

r

n B

p

r C

Advantages

1. Faster computation: O(np) instead of O(r(n+ p)).
2. Lower memory: O(np) instead of O(r(n+ p)).

• The approximation costs O(np log(r) + r2(n+ p)) with state-of-the-art when the
decomposition is SVD.
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Example-II: Robust Principal Component Analysis (RPCA)

For certain applications such as video surveillance, we need to solve

min
X=L+S

‖L‖? + λ‖S‖1

which requires computation of the proximal operator of the nuclear norm

Z∗ = arg min
Z

1
2
‖X − Z‖2

F + λ‖Z‖?.

We can only need to compute Z∗ = UrΣrVr where Ur and Vr contain the first r left
and right singular vectors and Σr is a diagonal matrix with the first r singular values
on its diagonal.

Complexities

I Truncated SVD with classical methods has O(npr) complexity .

I The randomized approach can cost as low as O(np log(r) + r2(n+ p)) operations.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 44



Example-II: Robust Principal Component Analysis (RPCA)

Example
To compute the proximity operator for
the nuclear norm in robust PCA for
video background subtraction, we try

1. Lanczos-based SVD using
PROACK software

2. Randomized factorization

The matrix to be decomposed has
dimensions 61440 x 17884 (8.1 GB)
and is taken from a video sequence. We
see that U
I Faster even with one core
I Accuracies are indistinguishable
I Randomized method scales much
better for parallel computation
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Figure: Computing the top 5 singular vectors of a
109 entry matrix using varying number of
computer cores [1]
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Randomized low rank decompositions: How do we do it ?

Step-1: Finding a range

I Apply a randomized algorithm to find an orthogonal low-dimensional basis
Q ∈ Rn×l with l� p that can well represent the matrix A

I In other words, Q, when approximated on its span, should well approximate A:

A ≈ QQ∗A

where QQ∗ is the projection onto the subspace spanned by the basis Q

Step-2: Decomposition

I Reduce the dimension using Q as the approximation above suggests
I Apply classical linear algebra which is no more prohibitive at these dimensions
I Obtain the desired decomposition
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Step-1: Finding the range

Step-1: Finding a range
Given A ∈ Rn×p, find Q ∈ Rn×l such that

‖A−QQ∗A‖ ≈ min
rank(X)≤r

‖A−X‖

I r is the target rank,
I l = r + s number of columns used
I s is the number of oversamples

Method: Obtain random vectors in the range of A by multiplying it with random
vectors
I From these vectors we can find an orthogonal basis Q
I There exists a Q ∈ Rn×r which gives the optimum value of the above
minimization problem (guess what it is !)

I But for a better approximation we oversample it: Q ∈ Rn×(r+s)
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Step-1: Finding a range

1. Multiply AΩ for Ωi,j ∼ N (0, 1), at cost O(np`) (or less)

Yn

`

= An

p

Ωp

`

2. Compute thin QR factorization of Y, at a cost of O(n`2) (e.g. with Gram-Schmidt)

Yn

`

= Qn

`

R`

`

3. Final multiply Q∗A, at cost O(np`)

Ân

`

= Qn

`

Q∗A`

p
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Random Sampling: Geometric Interpretation
• A = [a1, a2, a3, a4]
• n = 3, p = 4, rank is r = 2
• Y = AΩ

R3

a1
a2

a3

a4

R3

A!1A!2
⌦ 2 R4⇥2

Figure: Random sampling can span the range

• Column selection would also work, but we need to be careful about how we select
the columns. (next lecture)
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Mathematical Intuition: What does randomness bring ?

Randomness
I Ω = [ω1, ω2, ..., ωr] has linearly independent columns.
I No linear combination of the columns can be in the null space of A.

Claim: Range(A) = Range(Y = AΩ)

Claim: A = QQ∗A, when A is rank-r.

In practice we have
X = A+ E

where A is best rank-r approximation to X. By random sampling, we aim to span the
range of A with Xω1, ...., Xωr. However they’re distorted by Eωi. That is the reason
why we oversample and take ` = r + s columns.
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Theoretical Guarentees

Best rank-r errors
Note the different optimal errors in spectral and Frobenius norms. Let σi be the ith
singular value of A. Then

σr+1 = min
rank(B)≤r

‖A−B‖ vs.
(∑

j
σ2
j

)1/2
= min

rank(B)≤r
‖A−B‖F

Theorem (expected Frobenius error [6])
Let Â(l) be the approximation with l columns obtained above. The average error
decreases with the oversampling rate s. In particular for r ≥ 2, s ≥ 2 and
l = r + s ≤ min{n, p}

E‖Â(l) −A‖F =
√

1 +
r

s− 1

(∑
j>r

σ2
j

)1/2
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Theoretical Guarentees

Theorem (simple spectral bound [6])
Let A ∈ Rn×p with n ≥ p be the matrix that is randomly approximated as above. Let
also r ≥ 2, s ≥ 2 and l = r + s ≤ min{n, p}. Then the following holds:

E‖A−QQ∗A‖ ≤
(

1 +
4
√
r + s

s− 1
√
p

)
σr+1

Theorem (deterministic spectral bound [6])
Furthermore, the following deterministic bounds also holds:

‖A−QQ∗A‖ ≤
[
1 + 9

√
r + s ·min(n, p)√p

]
σr+1

with probability at least 1− 3 · s−s. under some mild assumptions on p.

• In practice an oversampling of s = 5 is sufficient
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Structured Random Matrices

Motivation
I If we have a fast way of multiplying Y = AΩ , then random projection method is
attractive.

I Use of structured matrices such as Fourier or Hadamard allows a faster matrix
multiplication (e.g. using FFT)

I If A has a fast spectral decay, then this approach below works as well as Gaussian
matrices.

Theorem
If Ω is a subsampled random Fourier transform matrix (SRFT) of dimensions p× `
with ` ≥ (r + logn) log r, then

‖A−QQ∗A‖2 ≤

√
1 +

7p
`
· σr+1

except with probability O(r−1). [6]

• We need more oversampling for a decent performance : s = 20
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Structured Random Matrices

A subsampled random Fourier transform matrix is a p× l matrix of the form

ΩFFT =
√

p

l
DFR

ΩFFTp

`

= Dp

p

Fp

p

Rp

`

where
I D ∈ Rp×p is diagonal matrix with entries that are independent RVs uniformly
distributed on the complex unit circle

I F is p× p is the unitary DFT Matrix
I R is a p× l matrix whose l columns are drawn uniformly from the identity matrix
without replacement.

Using Fast Fourier Transform (FFT), cost of Y = AΩ reduces to O(np log `) !
(compare with direct method that costs O(np`))
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Step-2: Forming the decomposition

I So far we have obtained:
A ≈ Q(Q∗A)

I Multiplying (Q∗A) costs O(npl)
I This is the bottleneck and could be avoided and reduced to O(l2(n+ p)) using
row extraction method (next lecture) but at the expense of worse error bound.

I For the moment we work with the product Q∗A and decompose it.
I Let B = Q and C = Q∗A in our low rank approximation A ≈ BC
I Indeed this is the partial QR decomposition using Randomized Linear Algebra
I We now form partial singular value decomposition out of this
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Classical Methods for partial Singular Value Decomposition

via Full SVD
I The full SVD of a n× p matrix is computed and truncated.
I It costs O(npmin{n, p}).
I Stable but very expensive.

Krylov Subspace methods

I The idea is to choose a random initial vector ω and apply successively a
Hermitian operator H to form the subspace

Kr(H, ω) = span{b,Hb,H2b, ...,Hr−1b}

to find of the eigenvectors of H (or first few of them)
I One of the best methods in numerical linear algebra such as Arnoldi and Lanczos
algorithms are based on this idea [5]

I It might vary but typically costs O(rnp+ r2(n+ p))
I It requires O(k) passes over the data
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Classical Methods for partial Singular Value Decomposition

Computing a partial SVD using QR

I Use Businger-Golub or strong rank revealing QR algorithm to form A ≈ QR
where Q ∈ Rn×` and R ∈ R`×p [5]

I Then transform this to SVD as above.
I This also costs O(npr) but more robust compared to Krylov methods.
I It requires O(k) passes over the data

A comparison

I Classical techniques require at least O(npr) whereas randomized algorithms can
be implemented with O(np log(l) + l2(n+ p)).

I In the slow memory environment, the figure of merit is not the flop counts, but
number of passes over the data.

I All these classical techniques require many passes over the matrix and whereas
randomized algorithms require a constant number of passes over the data. [6]

I Randomized methods are highy parallelizable, because Y = AΩ can be efficiently
implemented in modern architectures: GPUs, distributed computing, multi-core
processors.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 42/ 44



Classical Methods for partial Singular Value Decomposition

Computing a partial SVD using QR

I Use Businger-Golub or strong rank revealing QR algorithm to form A ≈ QR
where Q ∈ Rn×` and R ∈ R`×p [5]

I Then transform this to SVD as above.
I This also costs O(npr) but more robust compared to Krylov methods.
I It requires O(k) passes over the data

A comparison

I Classical techniques require at least O(npr) whereas randomized algorithms can
be implemented with O(np log(l) + l2(n+ p)).

I In the slow memory environment, the figure of merit is not the flop counts, but
number of passes over the data.

I All these classical techniques require many passes over the matrix and whereas
randomized algorithms require a constant number of passes over the data. [6]

I Randomized methods are highy parallelizable, because Y = AΩ can be efficiently
implemented in modern architectures: GPUs, distributed computing, multi-core
processors.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 42/ 44



References I

[1] Volkan Cevher, Steffen Becker, and Martin Schmidt.
Convex optimization for big data: Scalable, randomized, and parallel algorithms
for big data analytics.
Signal Processing Magazine, IEEE, 31(5):32–43, 2014.

[2] Jack Dongarra and Francis Sullivan.
Guest editors? introduction: The top 10 algorithms.
Computing in Science & Engineering, 2(1):22–23, 2000.

[3] Olivier Fercoq and Pascal Bianchi.
A coordinate descent primal-dual algorithm with large step size and possibly non
separable functions.
http://arxiv.org/abs/1508.04625, Aug. 2015.

[4] Olivier Fercoq and Peter Richatárik.
Accelerated, parallel and proximal coordinate descent.
SIAM J. Optim., 25:1997–2023, 2016.

[5] Gene H Golub and Charles F Van Loan.
Matrix computations, volume 3.
JHU Press, 2012.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 43/ 44



References II

[6] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp.
Finding structure with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions.
SIAM review, 53(2):217–288, 2011.

[7] Peter Richatárik and Martin Takac.
Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function.
Math. Program., 144:1–38, 2014.

[8] Stephen J Wright.
Coordinates descent algorithms.
Math. Program., 151:3–34, 2015.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 44/ 44


	Lecture 11: Introduction to Big Data Methods

