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Outline

This lecture:

1. Variance reduction.

2. Coordinate descent methods for smooth objectives.

. V
ICHHEI{l  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 27 -ﬂ ﬂ.



Recommended reading materials

1. Y. Nesterov, Efficiency of coordinate descent methods on huge-scale
optimization, SIAM. J. Optim., vol. 22, pp. 341-362, 2012.

2. S. J. Wright, Coordinates descent algorithms, Math. Program., vol. 151, pp.
3-34, 2015.
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Recall: Stochastic proximal gradient method

Problem (Composite convex minimization)

Consider the following composite convex minimization problem:

F* := min {F(x) := E[h(x, )] + g(x)}
xERP

> f:=E[h(x,0)] and g are both proper, closed, and convex.
> Vf is L-Lipschitz continuous.

> g is possibly non-smooth.

> 0 is a random vector whose distribution is supported on ©

> The solution set S* := {x* € dom(F) : F(x*) = F*} is nonempty.

e Proximal gradient:
xhtl — prox, g (xk — 'kaf(x"’)).

e Stochastic proximal gradient (SPGM):

Compute G(x*,0},) such that E[G(x¥, 0;)] = Vf(xF),
xkt1 = prox,, g (xk — 1 G(xF, Gk))
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Recall: Stochastic proximal gradient method

Problem (Composite convex minimization: A simple example)

We consider the following simple example in the next few slides:

F* = )1(15@ {F(X) = %iﬂ(X) I 9(X)}
=1

| S
f(x)
> f; and g are proper, closed, and convex.

> Vfi is L;-Lipschitz continuous for i = 1,..., m.
> g is possibly non-smooth.
> The solution set S* := {x* € dom(F) : F(x*) = F*} is nonempty.
e One prevalent choice is given by
G(xF, i) = Vi, (x*).
m

e Computation of Vf;, (x) is m times cheaper than Vf(x) = 1 ijl Vfi(x).

m
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Recall: Stochastic proximal gradient method

Problem (Composite convex minimization: A simple example)

We consider the following simple example in the next few slides:

F* .= min {F(X) = %iﬁ(x) i g(X)}
=1

N —r
f(x)

> f; and g are proper, closed, and convex.

v

Vfi is Li-Lipschitz continuous for i =1,..., m.
> g is possibly non-smooth.

> The solution set S* := {x* € dom(F) : F(x*) = F*} is nonempty.

Variance reduction

To ensure the convergence of SPGM, we need the following assumption to hold:

Zvﬁ B[l G(x*, ix) — VF&M)|?[{i0, .. ., ir—1}] < +o00.
£>0

We decrease the learning rate - to satisfy above condition = Slow convergence!
Idea: We decrease the variance E[|| G(x*, i) — V£(x")||?|{é0, - - ., ix_1}] instead.
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Variance reduction techniques: Simple variance reduction

Proximal stochastic variance reduction (SPGD-VR)

1. Choose XV € RP, 0 # g € N and stepsize v > 0.
2. For k=0,1... perform:
g— m - p—

2a. Vf(XF) = % Zi:l Vfi(X), x0 = xF.

2b. Forl=0,1...,9—1, perform:
pick 4 € {1,..., m} uniformly at random,
G(xl, i) = Vf; (xh) = Vi (R*) + VAR,
xtl = proxvg(xl —yG(xL, ).

—k+1 _ 1\ 1
3 Update x =3 2121 x" .

Recipe:

In a cycle of q iterations:

> Set x to be the previous iteration and compute the full-gradient at x.

> Perform g SPG-iterations with the following stochastic gradient
G(x!,q) = Vy (x') — Vf;,(xF) + Vf(F).

» Update next iteration as average of ¢ previous iterations.
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Convergence of SPGD-VR

Theorem (Mean convergence of SPGD-VR [6])

Set Lmax = max L;, where L; is Lipschitz constant of Vf;. Suppose that F' is
1<i<m
u-strongly convex and that the stepsize satisfies

1 2 Lmaxy

<1.
(L = 2Lmaxy)g (1 — 2Lmaxy)q

p=

Then
E[F(RY) — F*] < p"(F(R0) — F*).

e Allows the constant step-size.

e Obtains linear rate convergence.
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Variance reduction techniques: Mini-batch variance reduction

Accelerated mini-batch prox-SVR (Acc. MB SPGD-VR)

B=01- 7)1+ ).

2. For k=0,1,... perform:

2a. x =xF, x0 =y =%, Vf(X) = £ X" | VLX)

2b. Forl=0,1,...,q— 1, perform:
pick I; C {1,..., m}: mini-batch of size s,
G(y', I) = Vi (y1) — V(%) + Vf(X),
x*1 = prox,,(y' —=vG(y!, 1)),
yHl = x4 B(xHT - xb),

3. Update xF+1 = x4 .

1. Choose ¢ € N, initialization %0 € RP, stepsize v > 0, accelerated stepsize

e A mini-batch of size s is indexed by I = {41,..., 4}, where each 4; € {1,...,m} is

chosen uniformly at random, and

fr= % Zfij‘
j=1

e s components are chosen instead of one + an accelerated step.
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Convergence of Acc. MB SPGD-VR

F* = iranp {F(X) = %ifi(x) + g(x)}
=1

Theorem (Mean convergence of Acc. MB SPGD-VR [6])

Set Lmax = maxi<;<m Li, where L; is Lipschitz constant of Vf;, and suppose that:

. 2(m—1)2
1. 0<7§Pymax:m1n{w,ﬁm} for some 0 < a < 1/8.

1 1
242 Ty v 8 5

Then,
E[F(xX") — F*] < p¥(F(X°) — F¥),

where p =202+ a)/(1 — a) < 1.

e Allows the constant step-size.

e Obtains linear rate convergence.

-
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Taxonomy of algorithms

F* .=

min {F(x) — ;éﬁ(w +g(x>}.

o f(x) = % Zzlfi(x): p-strongly convex with L-Lipschitz continuous gradient.

Gradient descent

Acc. MB SPGD-VR

SPGD-VR

SPGD

Linear

Linear

Linear

Sublinear

Table: Rate of convergence.

o k=L/pand sop = 8/rEm(V2a(m—1)+8k)~! for 0 < a <1/8.

SPGD-VR Acc. MB SPGD-VR s < [so] AccProxGrad
O((m + M) log(1/)) | O((m + vZ=2)log(1/)) | O((mw)log(1/2))

Table: Complexity to obtain e-solution.

Remarks:

e s =1: Acc. MB SPGD-VR has the same complexity as that of SPGD-VR.

e s = m: Acc. MB SPGD-VR has the same complexity of accelerated proximal

gradient (AccProxGrad).

A good choice of mini-batch size may outperfom both AccProxGrad and SPGD-VR.
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Another way of parsing data
Example (Least squares): min {f(x) = %HAx —bl3:x¢€ Rp}

b

Using a subset of rows

We have mainly focused on using a subset of rows instead of the full data at each
iteration.
This way, we compute an unbiased estimate G(x*, ;) of the gradient using

> a subset of data points: (aj,, b;,),
> and the whole decision variable: x*:
G(x* i) =al((al,x) — bi,).
Estimate G(x*, i) is dense, so we update the whole decision variable.

Next: Using a subset of columns.

. V
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Another way of parsing data
Example (Least squares): min {f(x) = %HAx —bl3:x¢€ Rp}

b aj r

Using a subset of columns

Denote the standard basis vectors by e;, and the corresponding directional derivatives
by V;. Let a; represent the ith column of matrix A. Consider the following unbiased

estimate:
G(xk, i) = pvikf(xk)ei,C = p(aik,aikxfk —Db)ey,.
This way, we compute an unbiased estimate G(x*, ;) of the gradient using
> a subset of columns (aik) and the whole measurement vector b,
> and only the chosen coordinates of decision variable: xfk.

Estimate G’(xk, i},) is sparse, only coordinates chosen by i, are nonzero.
Hence, we update these coordinates only.

Slide 11/ 27 QL]
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Coordinate descent methods (CD)

A special case of stochastic gradient methods

Randomized CD methods can be viewed as a special case of SG methods, in which
G(x*, i) = pV;, f(x¥)e;,, where i is chosen unlformly random from {1,...,p},
since,

E[G(x", it)] = pB[Vf(xF)es] = quf(x ei, = VF(x").

=

Coordinate descent is more than a special instance!

A proper theoretical analysis for CD is required because of the following distinctions
compared to the stochastic gradient methods:

> CD provides a descent lemma, so by properly choosing the step-size, we can
guarantee f(x*t1) < f(x¥).

> In some cases, variance of the gradient estimates can be characterized. As a
simple example, variance shrinks to zero as we converge to x* in unconstrained
smooth convex minimization.

> CD is more than unbiased estimates. Theoretical analysis shows that, properly
constructed biased estimates may outperform.

> CD can take advantage of easily computable geometrical properties like the
directional Lipschitz constants.
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Coordinate descent (CD): Background

CD methods have been popular over many years since:

> Reduce to a sequence of easier optimization problems to be solved, e.g.,
one-dimensional optimization.

» Each iteration activates one coordinate (block), and only activated coordinates
need to be updated = reduces problem’s dimension.

> Often easy to implement.

L]
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Basic coordinate descent framework
Problem (Unconstrained smooth minimization)

f* = min f(x).

xERP

Assume that f is a differentiable and the solution set is nonempty and bounded.

Basic coordinate descent algorithm

1. Choose x° € RP.
2. For k=0,1,... perform:
2a. Choose i, € {1,...,p}.
2b. Choose stepsize 7.
2c. Update
xFHl = xk _ 'ykvik_f(xk)eik.

There are many variants within this framework, relying of different approaches for
> selection of coordinate i,

> and selection of step size y.
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Some variants of coordinate descent methods

Selection of coordinate i:
» Cyclic: Cycles through the coordinates: 411 =4, + 1 mod p + 1.
» Essentially cyclic: Touch each coordinate ¢ at least once in each p iterations.
» Randomized: select 7 at random and independently at each iteration.
Selection of step size y:
> Short step: ~; prescribed by global knowledge about properties of f.
> Line search: choose 7y to approximately minimize f along coordinate direction iy.

» Exact: choose v to exactly minimize f along 7; coordinate.

" V
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Cyclic CD does not always converge

Powell's example [8]
Consider the following non-convex, continuously differentiable function f: R3 — R:

3
f(@1, 22, 23) = —(@122 + 2223 + 2321) + Z(Iwi\ —1)2,

=1

where 22 — 0, ifz<O,
T )22, ifz>0.

This function has minimizers at the corners (1,1,1) and (—1, —1, —1) of the unit cube.
This is a non-convex example, but this problem can be solved by gradient descent.

Cyclic CD does not always converge

e Consider cyclic CD with exact minimization.

o Choose x¥ near one of the vertices of the unit cube other than the solutions.
Then, x* cycles around the neighborhoods of six points that are close to the six
non-optimal vertices [7].
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Kaczmarz algorithm

Kaczmarz algorithm

1. Choose x° € RP.

2. For k=0,1,... perform:
2a. Choose i, € {1,...,n}
2b. Update

xhtl — xk ((aik7xk> — bik)aik'

Kaczmarz algorithm

Kaczmarz algorithm is a classical iterative method for solving linear systems of
equations, Ax = b. Let us consider a consistent system (i.e., a system that admits a
solution) such that:

> A € R"%P,

> |lajllz =1 for i=1,...,p, where al is the ith row of A.

Note that, we can preprocess A to satisfy this property.

e Kaczmarz algorithm chooses a single equation from the system at each iteration (or
a block of equations for the block Kaczmarz algorithm), and projects the current
iterate to the solution space of this equation.

.
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Kaczmarz algorithm and coordinate descent

Kaczmarz is CD applied to a dual formulation

Consider the following constrained convex problem, which seeks a least-norm solution
to the system Ax = b:

1
min = ||x[|2, s.t. Ax = b.
x€ERP 2

Then, Lagrange dual problem is

Y T T
min —||A —b'y.
nin, 5 1A 7yl y

The CD step on this dual formulation with step v, = 1 gives
yr L = yk (<aik,ATyk> _ bik)eik~
Multiplying both sides by AT, we get
ATy = ATyR — ((ag, ATy") = by )ay,.
Change of variable x¥ = ATy* yields Kaczmarz algorithm.

-
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Kaczmarz algorithm: Cyclic vs randomized

n
n

Kaczmarz algorithm: Cyclic vs randomized

» Convergence behavior depends heavily on the selection of 7.
> Worst case characterization of cyclic variant does not capture the expected
behavior well.

> Randomized variant performs better in the expectation.

(L]
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Randomized CD algorithm

Randomized coordinate descent algorithm
1. Choose § € R and x" € RP.
2. For k=0,1,... perform:
2a. Choose i, = Ag.

2b. Update _ #
xFT = b — 1 U [V f(xM)] T

[
pi+ P2 + p3 + =p

B[ Nley)

ViF(z) :=U!VF(x)
V2P (@ + Ushy) = ViF (@) < Lillhall
R ll3))

L=[U, U, 1 wre

e Sharp-operator : [x]# =argmax,cpp (X,s) — (1/2)||s]|> = for £2 norm, [x]# =x.
o Ay generates i € {1,..., s} with probability Lf/ Z;zl L]? = for 6 = 0, uniform
distribution.
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Randomized CD algorithm

Theorem (Convergence of randomized CD [4, 7])

1. Without strong convexity:
Zf—l L? 2 0
Blf(x*) - f*] < =iz Ri_e(x"), Loy — norm,
= (R3(x0)/2+ f(x0) — %), 6=0.

where Rg(x%) =

= max llx — x*|lig1 and ||x||1Z, = > 7 LO|Ix4]|%, -
{Gex) I ) < (x0)} . 1= 2o HelPeily

2. With strong convexity: Suppose that f is strongly convex with respect to the
norm || - ||[1—g; with convexity parameter uj_g > 0. Then
k
Blfct) — 1] < 4 (L7 #a=0/0) (16 = £7), €2 = norm,
- = k
(1—20/(s(1+0)))" (R3(x0) + f(x0) — f*), 6=0.

where Sp = Zs ?

i=1"i"
e Recall that SPGM only gets the rate of O(1/ \/E) for non strongly convex problems
and O(1/k) for strongly convex problems.
e One needs the condition that the level set of f defined by x is bounded.
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Example: Least squares problem

1
min {f(x) = §HAX —bl3:x¢€ Rp}
xX

10°
—CD
102
102
-~ = 10°
7o |
P = 102
% 510
10°
10
10° 0%
0 20 40 60 80 0 20 40 60 80
epoch epoch

Synthetic problem setup

> A :=randn(n, p) - standard Gaussian N/ (0,I), with n = 1000, p = 500.
> x € R? with Gaussian i.i.d. entries, normalized to [|x|]2 = 1.
» b:= Ax! + w, where w is Gaussian white noise. SNR is 30dB.

» 6 = 0, so coordinates are chosen uniformly random.

. V
ICLGHEI{]  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 27 -ﬂ ﬂ-




Randomized accelerated CD

Randomized accelerated CD algorithm 1 (RACD1)
1. Choose vV = xU € RP, a9 = 1/s, by = 2.
2. For k=0,1,... perform:

2
2a. Compute ;, > 1/s from equation 77 — L& = (1 — '”T”)Z—%
_ _s—ypn 1 _ Mk
and set oy = R and B, =1 et
2b. Compute y* = ap,vF + (1 — ay)x".
2c. Choose i, € {1,..., s} uniformly at random.
2d. Update

#
Xkl = gk _ L%k Uij, [Vz'k.f(yk)] )

vEHL = givk 4 (1 = By)y* — LLZ; Us [Val (5] ..

2e. Update parameters by1 = b/ /Br and ag+1 = Vibrt1-

Recall

e s: number of blocks.
e L;: Lipschitz constant of V;f; u: strong convexity constant of f.
e Sharp-operator : [x]# =arg max,cgp (X,s) — (1/2)]|s]|?.

-
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Randomized accelerated CD

Theorem (Convergence of RACD1 [4])

)~ 1 < (7). [P0 1y + 5 (60 =),

where
5 1/2
Il = (3 Lol )
i=1

and L; is Lipschitz constant of V;f.

The expected complexity of RACD1 for finding an e-solution is of the order

S
o] Li
(J2 )

which depends on the dimension.

. V
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Randomized accelerated CD: Dimensional independence [5]

Randomized accelerated CD algorithm 2 (RACD2)
1. Choose 0 € R, v0 =xY € RP, a9 = 1/s, bp = 1, and o = 0/2.
2. For k=0,1,... perform:
2a. Choose i, = A,
2b. Compute ;41 > 0 from equation 7/3+1S§ = ap41bp4+1 where ag41 = ar+vi41
and b1 = by + p1—6Vk+1-
2c. Compute oy, = EL g, — Hl—afktl

At 1 b1
2d. Update

k .

 yF = agvh 4 (1 — ag)x

xFHl = yk — L%k UikBizlvikf(yk):

s

Th+1 27‘:1 LJ{7

L1—0/2
i

Uy, Bi_lvikf(yk)~

vEHL = gryk 4 (1= Br)vF — b )
t+

The expected complexity of RACD2 for finding an e-solution is of the order

S
1 1/2
o131,
i=1
This complexity is dimension independent.

-
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Example: Least squares problem

1
min {f(x) = §HAX —bl3:x¢€ Rp}
xX

150 200

Synthetic problem setup

> A :=randn(n, p) - standard Gaussian N/ (0,I), with n = 1000, p = 500.
> x € R? with Gaussian i.i.d. entries, normalized to [|x|]2 = 1.
» b:= Ax! + w, where w is Gaussian white noise. SNR is 30dB.

» 6 = 0, so coordinates are chosen uniformly random.

" V
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Example: Least squares problem

min {f(x) = %HAx —bl2:x¢€ Rp}

150 200

Remarks

> CD adapts to the strong convexity without requiring p as an input.
> RACD requires p to be known. Otherwise, the rate becomes sublinear.

> Recall: This is also the case for gradient descent and its accelerated variants.

(L]
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