Advanced Topics in Data Sciences

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 06: Variance reduction and coordinate descent methods
Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-731 (Spring 2016)

FN/NF
Fonds national suisse Sorweizerischer Natiomalfonds

Outline

This lecture:

1. Variance reduction.
2. Coordinate descent methods for smooth objectives.

Recommended reading materials

1. Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization, SIAM. J. Optim., vol. 22, pp. 341-362, 2012.
2. S. J. Wright, Coordinates descent algorithms, Math. Program., vol. 151, pp. 3-34, 2015.

Recall: Stochastic proximal gradient method

Problem (Composite convex minimization)

Consider the following composite convex minimization problem:

$$
\begin{equation*}
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{F(\mathbf{x}):=\mathbb{E}[h(\mathbf{x}, \theta)]+g(\mathbf{x})\} \tag{1}
\end{equation*}
$$

- $f:=\mathbb{E}[h(\mathbf{x}, \theta)]$ and g are both proper, closed, and convex.
- ∇f is L-Lipschitz continuous.
- g is possibly non-smooth.
- θ is a random vector whose distribution is supported on Θ
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(F): F\left(\mathbf{x}^{\star}\right)=F^{\star}\right\}$ is nonempty.
- Proximal gradient:

$$
\mathbf{x}^{k+1}=\operatorname{prox}_{\gamma_{k} g}\left(\mathbf{x}^{k}-\gamma_{k} \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

- Stochastic proximal gradient (SPGM):

$$
\left\{\begin{array}{l}
\text { Compute } G\left(\mathbf{x}^{k}, \theta_{k}\right) \text { such that } \mathbb{E}\left[G\left(\mathbf{x}^{k}, \theta_{k}\right)\right]=\nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{x}^{k+1}=\operatorname{prox}_{\gamma_{k} g}\left(\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right)\right)
\end{array}\right.
$$

Recall: Stochastic proximal gradient method

Problem (Composite convex minimization: A simple example)

We consider the following simple example in the next few slides:

$$
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{F(\mathbf{x}):=\underbrace{\frac{1}{m} \sum_{i=1}^{m} f_{i}(\mathbf{x})}_{f(\mathbf{x})}+g(\mathbf{x})\}
$$

- f_{i} and g are proper, closed, and convex.
- ∇f_{i} is L_{i}-Lipschitz continuous for $i=1, \ldots, m$.
- g is possibly non-smooth.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(F): F\left(\mathbf{x}^{\star}\right)=F^{\star}\right\}$ is nonempty.
- One prevalent choice is given by

$$
G\left(\mathbf{x}^{k}, i_{k}\right)=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right) .
$$

- Computation of $\nabla f_{i_{k}}(\mathbf{x})$ is m times cheaper than $\nabla f(\mathbf{x})=\frac{1}{m} \sum_{i=1}^{m} \nabla f_{i}(\mathbf{x})$.

Recall: Stochastic proximal gradient method

Problem (Composite convex minimization: A simple example)

We consider the following simple example in the next few slides:

$$
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{F(\mathbf{x}):=\underbrace{\frac{1}{m} \sum_{i=1}^{m} f_{i}(\mathbf{x})}_{f(\mathbf{x})}+g(\mathbf{x})\}
$$

- f_{i} and g are proper, closed, and convex.
- ∇f_{i} is L_{i}-Lipschitz continuous for $i=1, \ldots, m$.
- g is possibly non-smooth.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(F): F\left(\mathbf{x}^{\star}\right)=F^{\star}\right\}$ is nonempty.

Variance reduction

To ensure the convergence of SPGM, we need the following assumption to hold:

$$
\sum_{k \geq 0} \gamma_{k}^{2} \mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, i_{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \mid\left\{i_{0}, \ldots, i_{k-1}\right\}\right]<+\infty .
$$

We decrease the learning rate γ_{k} to satisfy above condition \Longrightarrow Slow convergence! Idea: We decrease the variance $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, i_{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \mid\left\{i_{0}, \ldots, i_{k-1}\right\}\right]$ instead.

Variance reduction techniques: Simple variance reduction

$$
\begin{aligned}
& \text { Proximal stochastic variance reduction (SPGD-VR) } \\
& \hline \text { 1. Choose } \overline{\mathbf{x}}^{0} \in \mathbb{R}^{p}, 0 \neq q \in \mathbb{N} \text { and stepsize } \gamma>0 . \\
& \text { 2. For } k=0,1 \ldots \text { perform: } \\
& \text { 2a. } \nabla f\left(\overline{\mathbf{x}}^{k}\right)=\frac{1}{m} \sum_{i=1}^{m} \nabla f_{i}(\overline{\mathbf{x}}), \mathbf{x}^{0}=\overline{\mathbf{x}}^{k} . \\
& \text { 2b. For } l=0,1 \ldots, q-1 \text {, perform: } \\
& \qquad\left\{\begin{array}{l}
\text { pick } i_{l} \in\{1, \ldots, m\} \text { uniformly at random, } \\
G\left(\mathbf{x}^{l}, i_{l}\right) \\
\mathbf{x}^{l+1}=\nabla f_{i_{l}}\left(\mathbf{x}^{l}\right)-\nabla f_{i_{l}}\left(\overline{\mathbf{x}}^{k}\right)+\nabla f\left(\overline{\mathbf{x}}^{k}\right), \\
\operatorname{prox}_{\gamma g}\left(\mathbf{x}^{l}-\gamma \overline{G\left(\mathbf{x}^{l}, i_{l}\right)}\right) .
\end{array}\right. \\
& \text { 3 Update } \overline{\mathbf{x}}^{k+1}=\frac{1}{q} \sum_{l=1}^{q} \mathbf{x}^{l} .
\end{aligned}
$$

Recipe:

In a cycle of q iterations:

- Set $\overline{\mathbf{x}}$ to be the previous iteration and compute the full-gradient at $\overline{\mathbf{x}}$.
- Perform q SPG-iterations with the following stochastic gradient

$$
\overline{G\left(\mathbf{x}^{l}, i_{l}\right)}=\nabla f_{i_{l}}\left(\mathbf{x}^{l}\right)-\nabla f_{i_{l}}\left(\overline{\mathbf{x}}^{k}\right)+\nabla f\left(\overline{\mathbf{x}}^{k}\right) .
$$

- Update next iteration as average of q previous iterations.

Convergence of SPGD-VR

$$
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{F(\mathbf{x}):=\frac{1}{m} \sum_{i=1}^{m} f_{i}(\mathbf{x})+g(\mathbf{x})\right\} .
$$

Theorem (Mean convergence of SPGD-VR [6])

Set $L_{\text {max }}=\max _{1 \leq i \leq m} L_{i}$, where L_{i} is Lipschitz constant of ∇f_{i}. Suppose that F is μ-strongly convex and that the stepsize satisfies

$$
\rho=\frac{1}{\mu \gamma\left(1-2 L_{\max } \gamma\right) q}+\frac{2 L_{\max } \gamma}{\left(1-2 L_{\max } \gamma\right) q}<1 .
$$

Then

$$
\mathbb{E}\left[F\left(\overline{\mathbf{x}}^{k}\right)-F^{\star}\right] \leq \rho^{k}\left(F\left(\overline{\mathbf{x}}^{0}\right)-F^{\star}\right) .
$$

- Allows the constant step-size.
- Obtains linear rate convergence.

Variance reduction techniques: Mini-batch variance reduction

Accelerated mini-batch prox-SVR (Acc. MB SPGD-VR)

1. Choose $q \in \mathbb{N}$, initialization $\overline{\mathbf{x}}^{0} \in \mathbb{R}^{p}$, stepsize $\gamma>0$, accelerated stepsize $\beta=(1-\sqrt{\mu \gamma}) /(1+\sqrt{\mu \gamma})$.
2. For $k=0,1, \ldots$ perform:

2a. $\overline{\mathbf{x}}=\overline{\mathbf{x}}^{k}, \mathbf{x}^{0}=\mathbf{y}^{1}=\overline{\mathbf{x}} ; \nabla f(\overline{\mathbf{x}})=\frac{1}{m} \sum_{i=1}^{m} \nabla f_{i}(\overline{\mathbf{x}})$.
2b. For $l=0,1, \ldots, q-1$, perform:

$$
\left\{\begin{array}{l}
\frac{\text { pick } I_{l} \subset\{1, \ldots, m\}: \text { mini-batch of size } s,}{G\left(\mathbf{y}^{l}, I_{l}\right)}=\nabla f_{I_{l}}\left(\mathbf{y}_{l}\right)-\nabla f_{I_{l}}(\overline{\mathbf{x}})+\nabla f(\overline{\mathbf{x}}), \\
\mathbf{x}^{l+1}=\operatorname{prox}_{\gamma g}\left(\mathbf{y}^{l}-\gamma \overline{G\left(\mathbf{y}^{l}, I_{l}\right)}\right), \\
\mathbf{y}^{l+1}=\mathbf{x}^{l+1}+\beta\left(\mathbf{x}^{l+1}-\mathbf{x}^{l}\right) .
\end{array}\right.
$$

3. Update $\overline{\mathbf{x}}^{k+1}=\mathbf{x}^{q}$.

- A mini-batch of size s is indexed by $I=\left\{i_{1}, \ldots, i_{s}\right\}$, where each $i_{j} \in\{1, \ldots, m\}$ is chosen uniformly at random, and

$$
f_{I}=\frac{1}{s} \sum_{j=1}^{s} f_{i_{j}} .
$$

- s components are chosen instead of one + an accelerated step.

Convergence of Acc. MB SPGD-VR

$$
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{F(\mathbf{x}):=\frac{1}{m} \sum_{i=1}^{m} f_{i}(\mathbf{x})+g(\mathbf{x})\right\}
$$

Theorem (Mean convergence of Acc. MB SPGD-VR [6])

Set $L_{\text {max }}=\max _{1 \leq i \leq m} L_{i}$, where L_{i} is Lipschitz constant of ∇f_{i}, and suppose that:

1. $0<\gamma \leq \gamma_{\max }=\min \left\{\frac{(\alpha q)^{2}(m-1)^{2} \mu}{64(m-s)^{2} L_{\text {max }}^{2}}, \frac{1}{2 L_{\text {max }}}\right\}$ for some $0<\alpha<1 / 8$.
2. $q \geq \frac{1}{(1-\alpha) \sqrt{\mu \gamma}} \log \frac{1-\alpha}{\alpha}$.

Then,

$$
\mathbb{E}\left[F\left(\overline{\mathbf{x}}^{k}\right)-F^{\star}\right] \leq \rho^{k}\left(F\left(\overline{\mathbf{x}}^{0}\right)-F^{\star}\right),
$$

where $\rho=2 \alpha(2+\alpha) /(1-\alpha)<1$.

- Allows the constant step-size.
- Obtains linear rate convergence.

Taxonomy of algorithms

$$
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{F(\mathbf{x}):=\frac{1}{m} \sum_{i=1}^{m} f_{i}(\mathbf{x})+g(\mathbf{x})\right\}
$$

- $f(\mathbf{x})=\frac{1}{m} \sum_{i=1}^{m} f_{i}(\mathbf{x})$: μ-strongly convex with L-Lipschitz continuous gradient.

Gradient descent	Acc. MB SPGD-VR	SPGD-VR	SPGD
Linear	Linear	Linear	Sublinear

Table: Rate of convergence.

- $\kappa=L / \mu$ and $s_{0}=8 \sqrt{\kappa} m(\sqrt{2} \alpha(m-1)+8 \sqrt{\kappa})^{-1}$ for $0<\alpha \leq 1 / 8$.

SPGD-VR	Acc. MB SPGD-VR $s<\left\lceil s_{0}\right\rceil$	AccProxGrad
$\mathcal{O}((m+\kappa) \log (1 / \varepsilon))$	$\mathcal{O}\left(\left(m+\kappa \frac{m-s}{m-1}\right) \log (1 / \varepsilon)\right)$	$\mathcal{O}((m \kappa) \log (1 / \varepsilon))$

Table: Complexity to obtain ε-solution.

Remarks:

- $s=1$: Acc. MB SPGD-VR has the same complexity as that of SPGD-VR.
- $s=m$: Acc. MB SPGD-VR has the same complexity of accelerated proximal gradient (AccProxGrad).
A good choice of mini-batch size may outperfom both AccProxGrad and SPGD-VR.

Another way of parsing data

$$
\text { Example (Least squares): } \min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Using a subset of rows

We have mainly focused on using a subset of rows instead of the full data at each iteration.
This way, we compute an unbiased estimate $G\left(\mathbf{x}^{k}, i_{k}\right)$ of the gradient using

- a subset of data points: $\left(\mathbf{a}_{i_{k}}, b_{i_{k}}\right)$,
- and the whole decision variable: \mathbf{x}^{k} :

$$
G\left(\mathbf{x}^{k}, i_{k}\right)=\mathbf{a}_{i_{k}}^{T}\left(\left\langle\mathbf{a}_{i_{k}}^{T}, \mathbf{x}\right\rangle-\mathbf{b}_{i_{k}}\right) .
$$

Estimate $G\left(\mathbf{x}^{k}, i_{k}\right)$ is dense, so we update the whole decision variable.
Next: Using a subset of columns.

Another way of parsing data

Example (Least squares): $\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}$

Using a subset of columns

Denote the standard basis vectors by \mathbf{e}_{i}, and the corresponding directional derivatives by ∇_{i}. Let \mathbf{a}_{i} represent the i th column of matrix A. Consider the following unbiased estimate:

$$
G\left(\mathbf{x}^{k}, i_{k}\right)=p \nabla_{i_{k}} f\left(\mathbf{x}^{k}\right) \mathbf{e}_{i_{k}}=p\left\langle\mathbf{a}_{i_{k}}, \mathbf{a}_{i_{k}} \mathbf{x}_{i_{k}}^{k}-\mathbf{b}\right\rangle \mathbf{e}_{i_{k}} .
$$

This way, we compute an unbiased estimate $G\left(\mathbf{x}^{k}, i_{k}\right)$ of the gradient using

- a subset of columns ($\mathbf{a}_{i_{k}}$) and the whole measurement vector \mathbf{b},
- and only the chosen coordinates of decision variable: $\mathbf{x}_{i_{k}}^{k}$.

Estimate $G\left(\mathbf{x}^{k}, i_{k}\right)$ is sparse, only coordinates chosen by i_{k} are nonzero. Hence, we update these coordinates only.

Coordinate descent methods (CD)

A special case of stochastic gradient methods

Randomized CD methods can be viewed as a special case of SG methods, in which $G\left(\mathbf{x}^{k}, i_{k}\right)=p \nabla_{i_{k}} f\left(\mathbf{x}^{k}\right) \mathbf{e}_{i_{k}}$, where i_{k} is chosen uniformly random from $\{1, \ldots, p\}$, since,

$$
\mathbb{E}\left[G\left(\mathbf{x}^{k}, i_{k}\right)\right]=p \mathbb{E}\left[\nabla_{i_{k}} f\left(\mathbf{x}^{k}\right) \mathbf{e}_{i_{k}}\right]=\sum_{i=1}^{p} \nabla_{i_{k}} f\left(\mathbf{x}^{k}\right) \mathbf{e}_{i_{k}}=\nabla f\left(\mathbf{x}^{k}\right)
$$

Coordinate descent is more than a special instance!

A proper theoretical analysis for CD is required because of the following distinctions compared to the stochastic gradient methods:

- CD provides a descent lemma, so by properly choosing the step-size, we can guarantee $f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right)$.
- In some cases, variance of the gradient estimates can be characterized. As a simple example, variance shrinks to zero as we converge to \mathbf{x}^{\star} in unconstrained smooth convex minimization.
- CD is more than unbiased estimates. Theoretical analysis shows that, properly constructed biased estimates may outperform.
- CD can take advantage of easily computable geometrical properties like the directional Lipschitz constants.

Coordinate descent (CD): Background

CD methods have been popular over many years since:

- Reduce to a sequence of easier optimization problems to be solved, e.g., one-dimensional optimization.
- Each iteration activates one coordinate (block), and only activated coordinates need to be updated \Rightarrow reduces problem's dimension.
- Often easy to implement.

Basic coordinate descent framework

Problem (Unconstrained smooth minimization)

$$
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x}) .
$$

Assume that f is a differentiable and the solution set is nonempty and bounded.

Basic coordinate descent algorithm

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$.
2. For $k=0,1, \ldots$ perform:

2a. Choose $i_{k} \in\{1, \ldots, p\}$.
2b. Choose stepsize γ_{k}.
2c. Update

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} \nabla_{i_{k}} f\left(\mathbf{x}^{k}\right) \boldsymbol{e}_{i_{k}} .
$$

There are many variants within this framework, relying of different approaches for

- selection of coordinate i_{k},
- and selection of step size γ_{k}.

Some variants of coordinate descent methods

Selection of coordinate i_{k} :

- Cyclic: Cycles through the coordinates: $i_{k+1}=i_{k}+1 \bmod p+1$.
- Essentially cyclic: Touch each coordinate i at least once in each p iterations.
- Randomized: select i_{k} at random and independently at each iteration.

Selection of step size γ_{k} :

- Short step: γ_{k} prescribed by global knowledge about properties of f.
- Line search: choose γ_{k} to approximately minimize f along coordinate direction i_{k}.
- Exact: choose γ_{k} to exactly minimize f along i_{k} coordinate.

Cyclic CD does not always converge

Powell's example [8]

Consider the following non-convex, continuously differentiable function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=-\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)+\sum_{i=1}^{3}\left(\left|x_{i}\right|-1\right)_{+}^{2},
$$

where $x_{+}^{2}= \begin{cases}0, & \text { if } x<0, \\ x^{2}, & \text { if } x \geq 0 .\end{cases}$
This function has minimizers at the corners $(1,1,1)$ and $(-1,-1,-1)$ of the unit cube. This is a non-convex example, but this problem can be solved by gradient descent.

Cyclic CD does not always converge

- Consider cyclic CD with exact minimization.
- Choose \mathbf{x}^{0} near one of the vertices of the unit cube other than the solutions. Then, \mathbf{x}^{k} cycles around the neighborhoods of six points that are close to the six non-optimal vertices [7].

Kaczmarz algorithm

Kaczmarz algorithm
1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$.
2. For $k=0,1, \ldots$ perform:
2a. Choose $i_{k} \in\{1, \ldots, n\}$
2b. Update
$\quad \mathbf{x}^{k+1}=\mathbf{x}^{k}-\left(\left\langle\mathbf{a}_{i_{k}}, \mathbf{x}^{k}\right\rangle-b_{i_{k}}\right) \mathbf{a}_{i_{k}}$.

Kaczmarz algorithm

Kaczmarz algorithm is a classical iterative method for solving linear systems of equations, $\mathbf{A x}=\mathbf{b}$. Let us consider a consistent system (i.e., a system that admits a solution) such that:

- $\mathbf{A} \in \mathbb{R}^{n \times p}$,
- $\left\|\mathbf{a}_{i}\right\|_{2}=1$ for $i=1, \ldots, p$, where \mathbf{a}_{i}^{T} is the i th row of \mathbf{A}.

Note that, we can preprocess \mathbf{A} to satisfy this property.

- Kaczmarz algorithm chooses a single equation from the system at each iteration (or a block of equations for the block Kaczmarz algorithm), and projects the current iterate to the solution space of this equation.

Kaczmarz algorithm and coordinate descent

Kaczmarz is CD applied to a dual formulation

Consider the following constrained convex problem, which seeks a least-norm solution to the system $\mathbf{A x}=\mathbf{b}$:

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} \frac{1}{2}\|\mathbf{x}\|_{2}^{2} \text {, s.t. } \mathbf{A} \mathbf{x}=\mathbf{b}
$$

Then, Lagrange dual problem is

$$
\min _{\mathbf{y} \in \mathbb{R}^{p}} \frac{1}{2}\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{2}^{2}-\mathbf{b}^{T} \mathbf{y}
$$

The CD step on this dual formulation with step $\gamma_{k}=1$ gives

$$
\mathbf{y}^{k+1}=\mathbf{y}^{k}-\left(\left\langle\mathbf{a}_{i_{k}}, \mathbf{A}^{T} \mathbf{y}^{k}\right\rangle-b_{i_{k}}\right) \boldsymbol{e}_{i_{k}} .
$$

Multiplying both sides by \mathbf{A}^{T}, we get

$$
\mathbf{A}^{T} \mathbf{y}^{k+1}=\mathbf{A}^{T} \mathbf{y}^{k}-\left(\left\langle\mathbf{a}_{i_{k}}, \mathbf{A}^{T} \mathbf{y}^{k}\right\rangle-b_{i_{k}}\right) \mathbf{a}_{i_{k}}
$$

Change of variable $\mathbf{x}^{k}=\mathbf{A}^{T} \mathbf{y}^{k}$ yields Kaczmarz algorithm.

Kaczmarz algorithm: Cyclic vs randomized

Kaczmarz algorithm: Cyclic vs randomized

- Convergence behavior depends heavily on the selection of i_{k}.
- Worst case characterization of cyclic variant does not capture the expected behavior well.
- Randomized variant performs better in the expectation.

Randomized CD algorithm

Randomized coordinate descent algorithm

1. Choose $\theta \in \mathbb{R}$ and $\mathbf{x}^{0} \in \mathbb{R}^{p}$.
2. For $k=0,1, \ldots$ perform:

2a. Choose $i_{k}=\mathcal{A}_{\theta}$.
2b. Update

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-L_{i_{k}}^{-1} \boldsymbol{U}_{i_{k}}\left[\nabla_{i_{k}} f\left(\mathbf{x}^{k}\right)\right]^{\#}
$$

- Sharp-operator : $[\mathbf{x}]^{\#}=\arg \max _{s \in \mathbb{R}^{p}}\langle\mathbf{x}, s\rangle-(1 / 2)\|s\|^{2} \Longrightarrow$ for ℓ_{2} norm, $[\mathbf{x}]^{\#}=\mathbf{x}$. - \mathcal{A}_{θ} generates $i \in\{1, \ldots, s\}$ with probability $L_{i}^{\theta} / \sum_{j=1}^{s} L_{j}^{\theta} \Longrightarrow$ for $\theta=0$, uniform distribution.

Randomized CD algorithm

Theorem (Convergence of randomized CD $[4,7]$)

1. Without strong convexity:

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}\right)-f^{\star}\right] \leq \begin{cases}\frac{\sum_{j=1}^{s} L_{j}^{\theta}}{k+4} R_{1-\theta}^{2}\left(\mathbf{x}^{0}\right), & \ell_{2}-\text { norm } \\ \frac{s}{k+s}\left(R_{1}^{2}\left(\mathbf{x}_{0}\right) / 2+f\left(\mathbf{x}_{0}\right)-f^{\star}\right), & \theta=0\end{cases}
$$

where $R_{\theta}\left(\mathbf{x}^{0}\right)=\max _{\left\{\left(\mathbf{x}, \mathbf{x}^{\star}\right) \mid f(\mathbf{x}) \leq f\left(\mathbf{x}^{0}\right)\right\}}\left\|\mathbf{x}-\mathbf{x}^{\star}\right\|_{[\theta]}$ and $\|\mathbf{x}\|_{[\theta]}^{2}=\sum_{i=1}^{s} L_{i}^{\theta}\left\|\mathbf{x}_{i}\right\|_{(i)}^{2}$.
2. With strong convexity: Suppose that f is strongly convex with respect to the norm $\|\cdot\|_{[1-\theta]}$ with convexity parameter $\mu_{1-\theta}>0$. Then

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}\right)-f^{\star}\right] \leq \begin{cases}\left(1-\mu_{1-\theta} / S_{\theta}\right)^{k}\left(f\left(\mathbf{x}^{0}\right)-f^{\star}\right), & \ell_{2}-\text { norm } \\ (1-2 \sigma /(s(1+\sigma)))^{k}\left(R_{1}^{2}\left(\mathbf{x}_{0}\right)+f\left(\mathbf{x}_{0}\right)-f^{\star}\right), & \theta=0\end{cases}
$$

where $S_{\theta}=\sum_{i=1}^{s} L_{i}^{\theta}$.

- Recall that SPGM only gets the rate of $\mathcal{O}(1 / \sqrt{k})$ for non strongly convex problems and $\mathcal{O}(1 / k)$ for strongly convex problems.
- One needs the condition that the level set of f defined by \mathbf{x}_{0} is bounded.

Example: Least squares problem

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Synthetic problem setup

- $\mathbf{A}:=\operatorname{randn}(n, p)-$ standard Gaussian $\mathcal{N}(0, \mathbb{I})$, with $n=1000, p=500$.
- $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ with Gaussian i.i.d. entries, normalized to $\left\|\mathbf{x}^{\natural}\right\|_{2}=1$.
- $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} is Gaussian white noise. SNR is 30 dB .
- $\theta=0$, so coordinates are chosen uniformly random.

Randomized accelerated CD

Randomized accelerated CD algorithm 1 (RACD1)

1. Choose $\mathbf{v}^{0}=\mathbf{x}^{0} \in \mathbb{R}^{p}, a_{0}=1 / s, b_{0}=2$.
2. For $k=0,1, \ldots$ perform:

2a. Compute $\gamma_{k} \geq 1 / s$ from equation $\gamma_{k}^{2}-\frac{\gamma_{k}}{s}=\left(1-\frac{\gamma_{k} \mu}{s}\right) \frac{a_{k}^{2}}{b_{k}^{2}}$
and set $\alpha_{k}=\frac{s-\gamma_{k} \mu}{\gamma_{k}\left(s^{2}-\mu\right)}$ and $\beta_{k}=1-\frac{\gamma_{k} \mu}{s}$.
2b. Compute $\mathbf{y}^{k}=\alpha_{k} \mathbf{v}^{k}+\left(1-\alpha_{k}\right) \mathbf{x}^{k}$.
2c. Choose $i_{k} \in\{1, \ldots, s\}$ uniformly at random.
2d. Update

$$
\left\{\begin{array}{l}
\mathbf{x}^{k+1}=\mathbf{y}^{k}-\frac{1}{L_{i_{k}}} \boldsymbol{U}_{i_{k}}\left[\nabla_{i_{k}} f\left(\mathbf{y}^{k}\right)\right]^{\#} \\
\mathbf{v}^{k+1}=\beta_{k} \mathbf{v}^{k}+\left(1-\beta_{k}\right) \mathbf{y}^{k}-\frac{\gamma_{k}}{L_{i_{k}}} \boldsymbol{U}_{i_{k}}\left[\nabla_{i_{k}} f\left(\mathbf{y}^{k}\right)\right]^{\#}
\end{array}\right.
$$

2e. Update parameters $b_{k+1}=b_{k} / \sqrt{\beta_{k}}$ and $a_{k+1}=\gamma_{k} b_{k+1}$.

Recall

- s: number of blocks.
- L_{i} : Lipschitz constant of $\nabla_{i} f ; \mu$: strong convexity constant of f.
- Sharp-operator: $[\mathbf{x}]^{\#}=\arg \max _{s \in \mathbb{R}^{p}}\langle\mathbf{x}, s\rangle-(1 / 2)\|s\|^{2}$.

Randomized accelerated CD

Theorem (Convergence of RACD1 [4])

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}\right)-f^{\star}\right] \leq\left(\frac{s}{k+1}\right)^{2}\left[2\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{[1]}^{2}+\frac{1}{s^{2}}\left(f\left(\mathbf{x}^{0}\right)-f^{\star}\right)\right],
$$

where

$$
\|\mathbf{x}\|_{[1]}=\left(\sum_{i=1}^{s} L_{i}\left\|\mathbf{x}_{i}\right\|_{(i)}^{2}\right)^{1 / 2}
$$

and L_{i} is Lipschitz constant of $\nabla_{i} f$.
The expected complexity of RACD1 for finding an ε-solution is of the order

$$
\mathcal{O}\left(\frac{s}{\sqrt{\varepsilon}} \max _{1 \leq i \leq s} L_{i}\right)
$$

which depends on the dimension.

Randomized accelerated CD: Dimensional independence [5]

Randomized accelerated CD algorithm 2 (RACD2)
1. Choose $\theta \in \mathbb{R}, \mathbf{v}^{0}=\mathbf{x}^{0} \in \mathbb{R}^{p}, a_{0}=1 / s, b_{0}=1$, and $\sigma=\theta / 2$.
2. For $k=0,1, \ldots$ perform:
2a. Choose $i_{k}=\mathcal{A}_{\sigma}$.
2b. Compute $\gamma_{k+1}>0$ from equation $\gamma_{k+1}^{2} S_{\beta}^{2}=a_{k+1} b_{k+1}$ where $a_{k+1}=a_{t}+\gamma_{k+1}$
and $b_{k+1}=b_{k}+\mu_{1-\theta} \gamma_{k+1}$.
2c. Compute $\alpha_{k}=\frac{\gamma_{k+1}}{a_{k+1}}, \beta_{k}=\frac{\mu_{1-\alpha} a_{k+1}}{b_{k+1}}, \mathbf{y}^{k}=\alpha_{k} \mathbf{v}^{k}+\left(1-\alpha_{k}\right) \mathbf{x}^{k}$.
2d. Update
$\qquad\left\{\begin{array}{l}\mathbf{x}^{k+1}=\mathbf{y}^{k}-\frac{1}{L_{i_{k}}} \boldsymbol{U}_{i_{k}} B_{i_{k}}^{-1} \nabla_{i_{k}} f\left(\mathbf{y}^{k}\right), \\ \mathbf{v}^{k+1}=\beta_{k} \mathbf{y}^{k}+\left(1-\beta_{k}\right) \mathbf{v}^{k}-\frac{\gamma_{k+1} \sum_{j=1}^{s} L_{j}^{\sigma}}{L_{i_{k}}^{1-\theta / 2} b_{t+1}} \boldsymbol{U}_{i_{k}} B_{i_{k}}^{-1} \nabla_{i_{k}} f\left(\mathbf{y}^{k}\right) .\end{array}\right.$

The expected complexity of RACD2 for finding an ε-solution is of the order

$$
\mathcal{O}\left(\frac{1}{\sqrt{\varepsilon}} \sum_{i=1}^{s} L_{i}^{1 / 2}\right)
$$

This complexity is dimension independent.

Example: Least squares problem

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Synthetic problem setup

- $\mathbf{A}:=\operatorname{randn}(n, p)-$ standard Gaussian $\mathcal{N}(0, \mathbb{I})$, with $n=1000, p=500$.
- $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ with Gaussian i.i.d. entries, normalized to $\left\|\mathbf{x}^{\natural}\right\|_{2}=1$.
- $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} is Gaussian white noise. SNR is 30 dB .
- $\theta=0$, so coordinates are chosen uniformly random.

Example: Least squares problem

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Remarks

- CD adapts to the strong convexity without requiring μ as an input.
- RACD requires μ to be known. Otherwise, the rate becomes sublinear.
- Recall: This is also the case for gradient descent and its accelerated variants.

References

[1] O. Fercoq and P. Richatárik, Accelerated, parallel and proximal coordinate descent, SIAM. J. Optim., vol. 25, pp. 1997-2023, 2016.
[2] O. Fercoq and P. Bianchi, A coordinate descent primal-dual algorithm with large step size and possibly non separable functions, http://arxiv.org/abs/1508.04625, 2015.
[3] Q. Lin, Z. Lu, L. Xiao, An accelerated proximal coordinate gradient method and its application to regularized empirical risk minimization. SIAM J. Optim., vol. 25, pp. 2244-2273, 2015.
[4] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization, SIAM. J. Optim., vol. 22, pp. 341-362, 2012.
[5] Y. Nesterov and S. Stich, Efficiency of accelerated coordinate descent method on structured optimization problems, Preprint, 2016.
[6] A. Nitanda, Stochastic proximal gradient descent with acceleration techniques. NIPS, pp. 1574-1582, 2014.
[7] S. J. Wright, Coordinates descent algorithms, Math. Program., vol. 151, pp. 3-34, 2015.
[8] M.J.D. Powell, On search directions for minimization algorithms, Math. Program., vol. 4, pp. 193-201, 1973.

