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Outline

This lecture:

1. Variance reduction.
2. Coordinate descent methods for smooth objectives.
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Recommended reading materials

1. Y. Nesterov, Efficiency of coordinate descent methods on huge-scale
optimization, SIAM. J. Optim., vol. 22, pp. 341–362, 2012.

2. S. J. Wright, Coordinates descent algorithms, Math. Program., vol. 151, pp.
3–34, 2015.
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Recall: Stochastic proximal gradient method

Problem (Composite convex minimization)
Consider the following composite convex minimization problem:

F? := min
x∈Rp

{F(x) := E[h(x, θ)] + g(x)} (1)

I f := E[h(x, θ)] and g are both proper, closed, and convex.
I ∇f is L-Lipschitz continuous.
I g is possibly non-smooth.
I θ is a random vector whose distribution is supported on Θ
I The solution set S? := {x? ∈ dom(F) : F(x?) = F?} is nonempty.

• Proximal gradient:
xk+1 = proxγkg

(
xk − γk∇f (xk)

)
.

• Stochastic proximal gradient (SPGM):{
Compute G(xk , θk) such that E[G(xk , θk)] = ∇f (xk),
xk+1 = proxγkg

(
xk − γkG(xk , θk)

)
.
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Recall: Stochastic proximal gradient method

Problem (Composite convex minimization: A simple example)
We consider the following simple example in the next few slides:

F? := min
x∈Rp

{
F(x) :=

1
m

m∑
i=1

fi(x)︸            ︷︷            ︸
f (x)

+ g(x)
}

I fi and g are proper, closed, and convex.
I ∇fi is Li-Lipschitz continuous for i = 1, . . . ,m.
I g is possibly non-smooth.
I The solution set S? := {x? ∈ dom(F) : F(x?) = F?} is nonempty.

• One prevalent choice is given by

G(xk , ik) = ∇fik (xk).

• Computation of ∇fik (x) is m times cheaper than ∇f (x) = 1
m
∑m

i=1∇fi(x).
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Recall: Stochastic proximal gradient method

Problem (Composite convex minimization: A simple example)
We consider the following simple example in the next few slides:

F? := min
x∈Rp

{
F(x) :=

1
m

m∑
i=1

fi(x)︸            ︷︷            ︸
f (x)

+ g(x)
}

I fi and g are proper, closed, and convex.
I ∇fi is Li-Lipschitz continuous for i = 1, . . . ,m.
I g is possibly non-smooth.
I The solution set S? := {x? ∈ dom(F) : F(x?) = F?} is nonempty.

Variance reduction
To ensure the convergence of SPGM, we need the following assumption to hold:∑

k≥0

γ2
k E[‖G(xk , ik)−∇f (xk)‖2|{i0, . . . , ik−1}] < +∞.

We decrease the learning rate γk to satisfy above condition =⇒ Slow convergence!
Idea: We decrease the variance E[‖G(xk , ik)−∇f (xk)‖2|{i0, . . . , ik−1}] instead.
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Variance reduction techniques: Simple variance reduction

Proximal stochastic variance reduction (SPGD-VR)
1. Choose x0 ∈ Rp, 0 , q ∈ N and stepsize γ > 0.
2. For k = 0, 1 . . . perform:
2a. ∇f (xk) = 1

m
∑m

i=1∇fi(x), x0 = xk .
2b. For l = 0, 1 . . . , q − 1, perform:pick il ∈ {1, . . . ,m} uniformly at random,

G(xl , il) = ∇fil (xl)−∇fil (xk) +∇f (xk),
xl+1 = proxγg(xl − γG(xl , il)).

3 Update xk+1 = 1
q
∑q

l=1 xl .

Recipe:
In a cycle of q iterations:
I Set x̄ to be the previous iteration and compute the full-gradient at x̄.
I Perform q SPG-iterations with the following stochastic gradient

G(xl , il) = ∇fil (x
l)−∇fil (x

k) +∇f (xk).

I Update next iteration as average of q previous iterations.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 27



Convergence of SPGD-VR

F? := min
x∈Rp

{
F(x) :=

1
m

m∑
i=1

fi(x) + g(x)
}
.

Theorem (Mean convergence of SPGD-VR [6])
Set Lmax = max

1≤i≤m
Li , where Li is Lipschitz constant of ∇fi . Suppose that F is

µ-strongly convex and that the stepsize satisfies

ρ =
1

µγ(1− 2Lmaxγ)q
+

2Lmaxγ

(1− 2Lmaxγ)q
< 1.

Then
E[F(xk)− F?] ≤ ρk(F(x0)− F?).

• Allows the constant step-size.

• Obtains linear rate convergence.
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Variance reduction techniques: Mini-batch variance reduction

Accelerated mini-batch prox-SVR (Acc. MB SPGD-VR)
1. Choose q ∈ N, initialization x0 ∈ Rp, stepsize γ > 0, accelerated stepsize
β = (1− √µγ)/(1 + √µγ).
2. For k = 0, 1, . . . perform:
2a. x̄ = x̄k , x0 = y1 = x; ∇f (x) = 1

m
∑m

i=1∇fi(x).
2b. For l = 0, 1, . . . , q − 1, perform:

pick Il ⊂ {1, . . . ,m}: mini-batch of size s,
G(yl , Il) = ∇fIl (yl)−∇fIl (x) +∇f (x),
xl+1 = proxγg(yl − γG(yl , Il)),
yl+1 = xl+1 + β(xl+1 − xl).

3. Update xk+1 = xq .

• A mini-batch of size s is indexed by I = {i1, . . . , is}, where each ij ∈ {1, . . . ,m} is
chosen uniformly at random, and

fI =
1
s

s∑
j=1

fij .

• s components are chosen instead of one + an accelerated step.
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Convergence of Acc. MB SPGD-VR

F? := min
x∈Rp

{
F(x) :=

1
m

m∑
i=1

fi(x) + g(x)
}

Theorem (Mean convergence of Acc. MB SPGD-VR [6])
Set Lmax = max1≤i≤m Li , where Li is Lipschitz constant of ∇fi , and suppose that:

1. 0 < γ ≤ γmax = min
{

(αq)2(m−1)2µ
64(m−s)2L2

max
, 1

2Lmax

}
for some 0 < α < 1/8.

2. q ≥ 1
(1−α)√µγ log 1−α

α
.

Then,
E[F(xk)− F?] ≤ ρk(F(x0)− F?),

where ρ = 2α(2 + α)/(1− α) < 1.

• Allows the constant step-size.

• Obtains linear rate convergence.
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Taxonomy of algorithms

F? := min
x∈Rp

{
F(x) :=

1
m

m∑
i=1

fi(x) + g(x)
}
.

• f (x) = 1
m
∑m

i=1 fi(x): µ-strongly convex with L-Lipschitz continuous gradient.

Gradient descent Acc. MB SPGD-VR SPGD-VR SPGD
Linear Linear Linear Sublinear

Table: Rate of convergence.

• κ = L/µ and s0 = 8
√
κm(

√
2α(m − 1) + 8

√
κ)−1 for 0 < α ≤ 1/8.

SPGD-VR Acc. MB SPGD-VR s < ds0e AccProxGrad
O((m + κ) log(1/ε)) O((m + κm−s

m−1 ) log(1/ε)) O((mκ) log(1/ε))

Table: Complexity to obtain ε-solution.
Remarks:
• s = 1: Acc. MB SPGD-VR has the same complexity as that of SPGD-VR.
• s = m: Acc. MB SPGD-VR has the same complexity of accelerated proximal
gradient (AccProxGrad).
A good choice of mini-batch size may outperfom both AccProxGrad and SPGD-VR.
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Another way of parsing data

Example (Least squares): min
x

{
f (x) :=

1
2
‖Ax− b‖2

2 : x ∈ Rp
}

A x

bi

b

⇥ = A

x b

⇥ =
xj

ai

aj

A x

bi

b

⇥ = A

x b

⇥ =
xj

ai

aj

Using a subset of rows
We have mainly focused on using a subset of rows instead of the full data at each
iteration.
This way, we compute an unbiased estimate G(xk , ik) of the gradient using
I a subset of data points: (aik , bik ),
I and the whole decision variable: xk :

G(xk , ik) = aT
ik (〈aT

ik ,x〉 − bik ).

Estimate G(xk , ik) is dense, so we update the whole decision variable.

Next: Using a subset of columns.
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Another way of parsing data

Example (Least squares): min
x

{
f (x) :=

1
2
‖Ax− b‖2

2 : x ∈ Rp
}

A x

bi

b

⇥ = A

x b

⇥ =
xj

ai

ajA x

bi

b

⇥ = A

x b

⇥ =
xj

ai

aj

Using a subset of columns
Denote the standard basis vectors by ei , and the corresponding directional derivatives
by ∇i . Let ai represent the ith column of matrix A. Consider the following unbiased
estimate:

G(xk , ik) = p∇ik f (xk)eik = p〈aik ,aik xk
ik − b〉eik .

This way, we compute an unbiased estimate G(xk , ik) of the gradient using
I a subset of columns (aik ) and the whole measurement vector b,
I and only the chosen coordinates of decision variable: xk

ik
.

Estimate G(xk , ik) is sparse, only coordinates chosen by ik are nonzero.
Hence, we update these coordinates only.
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Coordinate descent methods (CD)

A special case of stochastic gradient methods
Randomized CD methods can be viewed as a special case of SG methods, in which
G(xk , ik) = p∇ik f (xk)eik , where ik is chosen uniformly random from {1, . . . , p},
since,

E[G(xk , ik)] = pE[∇ik f (xk)eik ] =
p∑

i=1

∇ik f (xk)eik = ∇f (xk).

Coordinate descent is more than a special instance!
A proper theoretical analysis for CD is required because of the following distinctions
compared to the stochastic gradient methods:
I CD provides a descent lemma, so by properly choosing the step-size, we can
guarantee f (xk+1) ≤ f (xk).

I In some cases, variance of the gradient estimates can be characterized. As a
simple example, variance shrinks to zero as we converge to x? in unconstrained
smooth convex minimization.

I CD is more than unbiased estimates. Theoretical analysis shows that, properly
constructed biased estimates may outperform.

I CD can take advantage of easily computable geometrical properties like the
directional Lipschitz constants.
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Coordinate descent (CD): Background

CD methods have been popular over many years since:
I Reduce to a sequence of easier optimization problems to be solved, e.g.,
one-dimensional optimization.

I Each iteration activates one coordinate (block), and only activated coordinates
need to be updated ⇒ reduces problem’s dimension.

I Often easy to implement.
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Basic coordinate descent framework

Problem (Unconstrained smooth minimization)

f ? = min
x∈Rp

f (x).

Assume that f is a differentiable and the solution set is nonempty and bounded.

Basic coordinate descent algorithm

1. Choose x0 ∈ Rp.
2. For k = 0, 1, . . . perform:
2a. Choose ik ∈ {1, . . . , p}.
2b. Choose stepsize γk .
2c. Update

xk+1 = xk − γk∇ik f (xk)eik .

There are many variants within this framework, relying of different approaches for
I selection of coordinate ik ,
I and selection of step size γk .
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Some variants of coordinate descent methods

Selection of coordinate ik :
I Cyclic: Cycles through the coordinates: ik+1 = ik + 1 mod p + 1.
I Essentially cyclic: Touch each coordinate i at least once in each p iterations.
I Randomized: select ik at random and independently at each iteration.

Selection of step size γk :
I Short step: γk prescribed by global knowledge about properties of f .
I Line search: choose γk to approximately minimize f along coordinate direction ik .
I Exact: choose γk to exactly minimize f along ik coordinate.
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Cyclic CD does not always converge

Powell’s example [8]
Consider the following non-convex, continuously differentiable function f : R3 → R:

f (x1, x2, x3) = −(x1x2 + x2x3 + x3x1) +
3∑

i=1

(|xi | − 1)2
+,

where x2
+ =

{
0, if x < 0,
x2, if x ≥ 0.

This function has minimizers at the corners (1, 1, 1) and (−1,−1,−1) of the unit cube.
This is a non-convex example, but this problem can be solved by gradient descent.

Cyclic CD does not always converge
• Consider cyclic CD with exact minimization.
• Choose x0 near one of the vertices of the unit cube other than the solutions.
Then, xk cycles around the neighborhoods of six points that are close to the six
non-optimal vertices [7].
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Kaczmarz algorithm

Kaczmarz algorithm

1. Choose x0 ∈ Rp.
2. For k = 0, 1, . . . perform:
2a. Choose ik ∈ {1, . . . ,n}
2b. Update

xk+1 = xk −
(
〈aik ,x

k〉 − bik

)
aik .

Kaczmarz algorithm
Kaczmarz algorithm is a classical iterative method for solving linear systems of
equations, Ax = b. Let us consider a consistent system (i.e., a system that admits a
solution) such that:
I A ∈ Rn×p,
I ‖ai‖2 = 1 for i = 1, . . . , p, where aT

i is the ith row of A.
Note that, we can preprocess A to satisfy this property.

• Kaczmarz algorithm chooses a single equation from the system at each iteration (or
a block of equations for the block Kaczmarz algorithm), and projects the current
iterate to the solution space of this equation.
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Kaczmarz algorithm and coordinate descent

Kaczmarz is CD applied to a dual formulation
Consider the following constrained convex problem, which seeks a least-norm solution
to the system Ax = b:

min
x∈Rp

1
2
‖x‖2

2, s.t. Ax = b.

Then, Lagrange dual problem is

min
y∈Rp

1
2
‖AT y‖2

2 − bT y.

The CD step on this dual formulation with step γk = 1 gives

yk+1 = yk −
(
〈aik ,A

T yk〉 − bik

)
eik .

Multiplying both sides by AT , we get

AT yk+1 = AT yk −
(
〈aik ,A

T yk〉 − bik

)
aik .

Change of variable xk = AT yk yields Kaczmarz algorithm.
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Kaczmarz algorithm: Cyclic vs randomized

1

2
3

4

5

x0

x1

x2
x3. . .

1

2
3

4

5

x0

x1

x2

x3

Kaczmarz algorithm: Cyclic vs randomized

I Convergence behavior depends heavily on the selection of ik .
I Worst case characterization of cyclic variant does not capture the expected
behavior well.

I Randomized variant performs better in the expectation.
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Randomized CD algorithm

Randomized coordinate descent algorithm
1. Choose θ ∈ R and x0 ∈ Rp.
2. For k = 0, 1, . . . perform:
2a. Choose ik = Aθ.
2b. Update

xk+1 = xk − L−1
ik

U ik

[
∇ik f (xk)

]#
.

1
1

1
1

1
1

1
1

1
1

RpU2 U3U1 U4

p4p3p2p1 p=+ + +

Ip= [ ]

riF (x) := UT
i rF (x).

kriF (x + U ihi) �riF (x)k⇤(i)  Likhik(i),

(Rp1 , k · k(1))

(Rp2 , k · k(2))

(Rp3 , k · k(3))

(Rp4 , k · k(4))

• Sharp-operator : [x]# =arg maxs∈Rp 〈x, s〉 − (1/2)‖s‖2 =⇒ for `2 norm, [x]# =x.
• Aθ generates i ∈ {1, . . . , s} with probability Lθi /

∑s
j=1 Lθj =⇒ for θ = 0, uniform

distribution.
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Randomized CD algorithm

Theorem (Convergence of randomized CD [4, 7])
1. Without strong convexity:

E[f (xk)− f ?] ≤

{∑s
j=1

Lθj
k+4 R2

1−θ(x0), `2 − norm,
s

k+s

(
R2

1(x0)/2 + f (x0)− f ?
)
, θ = 0.

where Rθ(x0) = max
{(x,x?)|f (x)≤f (x0)}

‖x− x?‖[θ] and ‖x‖2
[θ] =

∑s
i=1 Lθi ‖xi‖2

(i).

2. With strong convexity: Suppose that f is strongly convex with respect to the
norm ‖ · ‖[1−θ] with convexity parameter µ1−θ > 0. Then

E[f (xk)− f ?] ≤

{(
1− µ1−θ/Sθ

)k(
f (x0)− f ?

)
, `2 − norm,(

1− 2σ/(s(1 + σ))
)k(

R2
1(x0) + f (x0)− f ?

)
, θ = 0.

where Sθ =
∑s

i=1 Lθi .

• Recall that SPGM only gets the rate of O(1/
√

k) for non strongly convex problems
and O(1/k) for strongly convex problems.
• One needs the condition that the level set of f defined by x0 is bounded.
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Example: Least squares problem

min
x

{
f (x) :=

1
2
‖Ax− b‖2

2 : x ∈ Rp
}

epoch
0 20 40 60 80

∥x
k
−
x
⋆
∥2 2

10-8

10-6

10-4

10-2

100

CD

epoch
0 20 40 60 80

(

f
(x

k
)
−
f
⋆
)
/

f
⋆

10-6

10-4

10-2

100

102

Synthetic problem setup

I A := randn(n, p) - standard Gaussian N (0, I), with n = 1000, p = 500.
I x\ ∈ Rp with Gaussian i.i.d. entries, normalized to ‖x\‖2 = 1.
I b := Ax\ + w, where w is Gaussian white noise. SNR is 30dB.
I θ = 0, so coordinates are chosen uniformly random.
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Randomized accelerated CD

Randomized accelerated CD algorithm 1 (RACD1)
1. Choose v0 = x0 ∈ Rp, a0 = 1/s, b0 = 2.
2. For k = 0, 1, . . . perform:
2a. Compute γk ≥ 1/s from equation γ2

k −
γk
s =

(
1− γkµ

s

) a2
k

b2
k

and set αk = s−γkµ
γk(s2−µ) and βk = 1− γkµ

s .
2b. Compute yk = αkvk + (1− αk)xk .
2c. Choose ik ∈ {1, . . . , s} uniformly at random.
2d. Update{

xk+1 = yk − 1
Lik

U ik

[
∇ik f (yk)

]#
,

vk+1 = βkvk + (1− βk)yk − γk
Lik

U ik

[
∇ik f (yk)

]#
.

2e. Update parameters bk+1 = bk/
√
βk and ak+1 = γkbk+1.

Recall
• s: number of blocks.
• Li : Lipschitz constant of ∇i f ; µ: strong convexity constant of f .
• Sharp-operator : [x]# =arg maxs∈Rp 〈x, s〉 − (1/2)‖s‖2.
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Randomized accelerated CD

Theorem (Convergence of RACD1 [4])

E[f (xk)− f ?] ≤
( s

k + 1

)2[
2‖x0 − x?‖2

[1] +
1
s2

(
f (x0)− f ?

)]
,

where

‖x‖[1] =
( s∑

i=1

Li‖xi‖2
(i)

)1/2

and Li is Lipschitz constant of ∇i f .

The expected complexity of RACD1 for finding an ε-solution is of the order

O
( s
√
ε

max
1≤i≤s

Li

)
which depends on the dimension.
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Randomized accelerated CD: Dimensional independence [5]

Randomized accelerated CD algorithm 2 (RACD2)
1. Choose θ ∈ R, v0 = x0 ∈ Rp, a0 = 1/s, b0 = 1, and σ = θ/2.
2. For k = 0, 1, . . . perform:
2a. Choose ik = Aσ .
2b. Compute γk+1 > 0 from equation γ2

k+1S2
β = ak+1bk+1 where ak+1 = at +γk+1

and bk+1 = bk + µ1−θγk+1.
2c. Compute αk = γk+1

ak+1
, βk = µ1−αak+1

bk+1
, yk = αkvk + (1− αk)xk .

2d. Update
xk+1 = yk − 1

Lik
U ik B−1

ik
∇ik f (yk),

vk+1 = βkyk + (1− βk)vk −
γk+1

∑s
j=1

Lσj

L1−θ/2
ik

bt+1
U ik B−1

ik
∇ik f (yk).

The expected complexity of RACD2 for finding an ε-solution is of the order

O
( 1
√
ε

s∑
i=1

L1/2
i

)
.

This complexity is dimension independent.
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Example: Least squares problem

min
x

{
f (x) :=

1
2
‖Ax− b‖2

2 : x ∈ Rp
}
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102

Synthetic problem setup

I A := randn(n, p) - standard Gaussian N (0, I), with n = 1000, p = 500.
I x\ ∈ Rp with Gaussian i.i.d. entries, normalized to ‖x\‖2 = 1.
I b := Ax\ + w, where w is Gaussian white noise. SNR is 30dB.
I θ = 0, so coordinates are chosen uniformly random.
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Example: Least squares problem

min
x

{
f (x) :=

1
2
‖Ax− b‖2

2 : x ∈ Rp
}

epoch
50 100 150 200

∥x
k
−
x
⋆
∥2 2
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CD
RACD1
RACD1 choosing µ = 0
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f
(x

k
)
−
f
⋆
)
/

f
⋆
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Remarks
I CD adapts to the strong convexity without requiring µ as an input.
I RACD requires µ to be known. Otherwise, the rate becomes sublinear.
I Recall: This is also the case for gradient descent and its accelerated variants.
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