Advanced Topics in Data Sciences

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 4: Robust Submodular Maximization

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-731 (Spring 2016)

License Information for Mathematics of Data Slides

- This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

This lecture

- 1 Robust submodular function maximization
- 2. Hardness results and performance of the greedy algorithm
- 3. MinCover problem and the Greedy Partial Cover algorithm
- 4. Algorithm overview
- 5. The Saturate algorithm

Recommended Reading

- Robust submodular observation selection, Krause, McMahan, Guestrin and Golovin, 2008
- An analysis of the greedy algorithm for the submodular set covering problem, Wolsey, 1982
- Learning-based compressive subsampling, Baldassarre, Li, Scarlett, Gözcü, Bogunovic, and Cevher, 2015
- Submodular function maximization, Krause and Golovin, 2012

Robust submodular maximization

Problem (Robust submodular maximization problem - RSFMax)

Given a collection of normalized monotonic submodular functions $f_1, ..., f_m$, find a set $S \subseteq V$, which is robust against the worst possible objective, $\min_i f_i$ ($i \in \{1, ..., m\}$):

 $\max_{S \subseteq V} \min_{i} f_i(S), \quad \text{ subject to } |S| \le k$

Example: Submodular maximization in learning-based CS

LB-CS: Problem statement

Given a set of *m* training signals $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{C}^p$, find an index set Ω of a given cardinality *n* such that a related test signal \mathbf{x} can reliably be recovered given the subsampled measurement vector $\mathbf{b} = \mathbf{P}_{\Omega} \Psi \mathbf{x}$.

Average energy criterion

$$\hat{\Omega} = \operatorname*{arg\,max}_{\Omega\,:\,|\Omega|=n} \frac{1}{m} \sum_{j=1}^{m} \sum_{i\in\Omega} |\langle \psi_i, \mathbf{x}_j \rangle|^2$$

This is a cardinality constrained modular maximization problem.

Example: Submodular maximization in learning-based CS

LB-CS: Problem statement

Given a set of *m* training signals $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{C}^p$, find an index set Ω of a given cardinality *n* such that a related test signal \mathbf{x} can reliably be recovered given the subsampled measurement vector $\mathbf{b} = \mathbf{P}_{\Omega} \Psi \mathbf{x}$.

Average energy criterion

$$\hat{\Omega} = \operatorname*{arg\,max}_{\Omega\,:\,|\Omega|=n} \frac{1}{m} \sum_{j=1}^{m} \sum_{i\in\Omega} |\langle\psi_i,\mathbf{x}_j\rangle|^2$$

This is a cardinality constrained modular maximization problem.

What about worst-case?

Worst-case energy criterion

$$\hat{\Omega} = \mathop{\arg\max}_{\Omega : |\Omega| = n} \quad \min_{j=1,...,m} \sum_{i \in \Omega} |\langle \psi_i, \mathbf{x}_j \rangle|^2.$$

This is an instance of the robust modular maximization problem.

Note: The worst-case criterion may be preferable in some cases, but it tends to be less robust to "outliers", e.g., compared to the average criterion.

lions@epfl

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Interpretation 1: Linear decoding performance

Capturing energy sounds like a reasonable criterion, but does it actually correspond to good recovery performance?

Linear decoder

We consider a linear decoder that expands b to a *p*-dimensional vector by placing zeros in the entries corresponding to Ω^c , and then applies the adjoint $\Psi^* = \Psi^{-1}$:

$$\hat{\mathbf{x}} = \boldsymbol{\Psi}^* \mathbf{P}_{\Omega}^T \mathbf{b}.$$

Interpretation 1: Linear decoding performance

Capturing energy sounds like a reasonable criterion, but does it actually correspond to good recovery performance?

Linear decoder

We consider a linear decoder that expands b to a *p*-dimensional vector by placing zeros in the entries corresponding to Ω^c , and then applies the adjoint $\Psi^* = \Psi^{-1}$:

$$\hat{\mathbf{x}} = \boldsymbol{\Psi}^* \mathbf{P}_{\Omega}^T \mathbf{b}.$$

Theorem

The ℓ_2 estimation error of the above decoder is

$$\|\mathbf{x} - \hat{\mathbf{x}}\|_2^2 = \|\mathbf{x}\|_2^2 - \|\mathbf{P}_{\Omega}\mathbf{\Psi}\mathbf{x}\|_2^2.$$

Worst-case energy criterion

$$\hat{\Omega} = \underset{\Omega: |\Omega|=n}{\operatorname{arg\,max}} \quad \min_{j=1,\dots,m} \|\mathbf{P}_{\Omega} \mathbf{\Psi} \mathbf{x}_j\|_2^2$$

Note: The previous theorem shows that maximizing the captured energy in the worst case, amounts to minimizing the error of the linear decoder.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Interpretation 2: Subsampling pattern providing the best restricted isometry property (RIP) constant

Worst-case energy criterion

$$\hat{\Omega} = \underset{\Omega: |\Omega|=n}{\arg \max} \quad \min_{j=1,\dots,m} \|\mathbf{P}_{\Omega} \boldsymbol{\Psi} \mathbf{x}_j\|_2^2$$

We have $\|\mathbf{P}_{\Omega}\Psi\mathbf{x}_{j}\|_{2} \leq \|\mathbf{x}_{j}\|_{2}$ (Ψ is an orthonormal basis matrix). Thus, defining $\mathbf{X} := [\mathbf{x}_{1}, \dots, \mathbf{x}_{m}]$ and $\mathbf{V} := \Psi\mathbf{X}$, we can equivalently write as

$$\hat{\Omega} = \underset{\Omega: |\Omega|=n}{\arg\min} \|\mathbf{1} - \operatorname{diag}(\mathbf{V}^T \mathbf{P}_{\Omega}^T \mathbf{P}_{\Omega} \mathbf{V})\|_{\infty},$$
(1)

where 1 is the vector of m ones, and $\mathrm{diag}(\cdot)$ forms a vector by taking the diagonal entries of a matrix.

Note: In this form, the optimization problem can also be interpreted as finding the subsampling pattern providing the best restricted isometry property (RIP) constant [4] with respect to the training [1, 6].

Generalization bounds

Capturing as much of the signal energy as possible on the training signals \mathbf{x}_j corresponds to minimizing the $\ell_2\text{-norm}$ error of the linear decoder.

Will the same be true on a new signal x?

Theorem (Deterministic generalization bound for $f = f_{\min}$ [2]) Fix $\delta > 0$ and $\epsilon > 0$, and suppose that for a set of training signals $\mathbf{x}_1, \ldots, \mathbf{x}_m$ with $\|\mathbf{x}_i\|_2 = 1$, we have a sampling set Ω such that

$$\min_{j=1,\dots,m} \|\mathbf{P}_{\Omega} \boldsymbol{\Psi} \mathbf{x}_j\|_2^2 \ge 1 - \delta.$$
(2)

Then for any signal \mathbf{x} with $\|\mathbf{x}\|_2 = 1$ such that $\|\mathbf{P}_{\Omega^c} \Psi(\mathbf{x} - \mathbf{x}_j)\|_2^2 \leq \epsilon$ for some $j \in \{1, \ldots, m\}$, we have

$$\|\mathbf{P}_{\Omega}\mathbf{\Psi}\mathbf{x}\|_{2}^{2} \ge 1 - \left(\sqrt{\delta} + \sqrt{\epsilon}\right)^{2}.$$
(3)

Exercise: Prove the previous theorem.

More examples

Sensor placement for outbreak detection [5]

Protection of networks against cascading phenomena [3]

Example: Protection of networks against cascading phenomena

Protection mechanism: if a cascade $c(V_c, E_c)$ contains a *blocking node* b, all descendant nodes of node b in c become protected.

We use F_c to denote the number of protected nodes in the cascade c,

$$F_c(B) := \left| \bigcup_{b \in B} \mathsf{descendants}_c(b) \right|.$$
(4)

Diminishing returns:

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Example: Protection of networks against cascading phenomena

Definition (The number of protected nodes)

For a given cascade $c(V_c,E_c)$ and a set of blocking nodes $B_{\rm r}$ let S_c denote the number of protected nodes in the network,

$$S_c(B) = F_c(B) + \lambda_c,$$
(5)

where λ_c is the difference between the size of the network and the size of the cascade c, i.e., $\lambda_c = |V| - |V_c|$.

Problem (Robust protection of networks)

Given a directed network G(V, E) and an arbitrary set of cascades C, $|C| \leq m$ that can possibly spread in G, find a set of nodes B to block so that

$$\max_{B \subseteq V} \min_{c} S_c(B) \quad s.t. \quad |B| \le k,$$
(6)

i.e., the protection against the worst-possible cascade outcome is maximized.

Outline

This lecture

- 1 Robust submodular function maximization
- 2. Hardness results and performance of the greedy algorithm
- 3. MinCover problem and the Greedy Partial Cover algorithm
- 4. Algorithm overview
- 5. The Saturate algorithm

Hardness of the RSFMax problem

Problem (Robust submodular maximization problem - RSFMax)

Given a collection of normalized monotonic submodular functions $f_1, ..., f_m$, find a set $S \subseteq V$, which is robust against the worst possible objective, $\min_i f_i \ (i \in \{1, ..., m\})$:

 $\max_{S \subseteq V} \min_{i} f_i(S), \quad \text{subject to} \quad |S| \le k$

- Note: f_i are all submodular, but $f_{wc}(S) := \min_i f_i(S)$ is generally not submodular
- The simple greedy algorithm (which performs near-optimally in the single-criterion setting) can perform arbitrarily badly

The simple greedy algorithm

S	$f_1(S)$	$f_2(S)$	$\min_{i} f_{i}(\mathbf{S})$
Ø	0	0	0
$\{s_1\}$	n	0	0
$\{s_2\}$	0	n	0
$\{t_1\}$	1	1	1
$\{t_2\}$	1	1	1
$\{s_1, s_2\}$	n	n	n
$\{s_1, t_1\}$	n-1	1	1
$\{s_1, t_2\}$	n+1	1	1
$\{s_2, t_1\}$	1	n+1	1
$\{s_2, t_2\}$	1	n+1	1
$\{t_1, t_2\}$	2	2	2

▶ Given, $V = \{s_1, s_2, t_1, t_2\}$ and k = 2, the greedy algorithm maximizing $f_{wc}(S)$ would choose obtaining a score of

The simple greedy algorithm

S	$f_1(S)$	$f_2(S)$	$\min_{i} f_i(\mathbf{S})$
Ø	0	0	0
$\{s_1\}$	n	0	0
$\{s_2\}$	0	n	0
$\{t_1\}$	1	1	1
$\{t_2\}$	1	1	1
$\{s_1, s_2\}$	n	n	n
$\{s_1, t_1\}$	n+1	1	1
$\{s_1, t_2\}$	n+1	1	1
$\{s_2, t_1\}$	1	n+1	1
$\{s_2, t_2\}$	1	n+1	1
$\{t_1, t_2\}$	2	2	2

• Given, $V = \{s_1, s_2, t_1, t_2\}$ and k = 2, the greedy algorithm maximizing would obtaining a score of choose

The simple greedy algorithm

S	$f_1(S)$	$f_2(S)$	$\min_{i} f_i(\mathbf{S})$
Ø	0	0	0
$\{s_1\}$	n	0	0
$\{s_2\}$	0	n	0
$\{t_1\}$	1	1	1
$\{t_2\}$	1	1	1
$\{s_1, s_2\}$	n	n	n
$\{s_1, t_1\}$	n+1	1	1
$\{s_1, t_2\}$	n+1	1	1
$\{s_2, t_1\}$	1	n+1	1
$\{s_2, t_2\}$	1	n+1	1
$\{t_1, t_2\}$	2	2	2

- Given, $V = \{s_1, s_2, t_1, t_2\}$ and k = 2, the greedy algorithm maximizing $f_{wc}(S) = \min \{f_1(S), f_2(S)\}$ would choose $\{t_1, t_2\}$ obtaining a score of 2
- The optimal solution for k = 2 is $\{s_1, s_2\}$, with a score of n. As, $n \to \infty$, the greedy algorithm performs arbitrarily worse

Theorem (Hardness of Approximate Solution [5])

If there exists a positive function $\gamma(\cdot) > 0$ and an algorithm that, for all n and k, in time polynomial in the size of the problem instance n, is guaranteed to find a set S' of size k such that

$$\min_{i} f_i(S') \ge \gamma(n) \max_{|S| \le k} \min_{i} f_i(S),$$

then P = NP

In other words: there cannot exist any polynomial time approximation algorithm for the *RSFMax* problem (unless P = NP).

Outline

This lecture

- 1. Robust submodular function maximization
- 2. Hardness results and performance of the greedy algorithm
- 3. MinCover problem and the Greedy Partial Cover algorithm
- 4. Algorithm overview
- 5. The Saturate algorithm

Revision: Minimum submodular set cover (MinCover)

MinCover: For any given *c* solve:

$$S_c = \underset{S \subseteq V}{\operatorname{arg\,min}} |S|$$
 subject to $f_i(S) \ge c$ for $1 \le i \le m$,

i.e., find the smallest set S with $f_i(S) \ge c$ for all i.

Theorem ([7])

Given a submodular integer-valued function f and a fixed $c \in \mathbb{Z}, c \leq f(V)$. Let S_l be the greedy solution and let ℓ be the smallest integer such that $f(S_l) \geq c$. Then

$$\ell \le \left(1 + \ln \max_{v \in V} f(\{v\})\right) k^{\star}$$

Simple trick

MinCover: For any given *c* solve:

 $S = \underset{S \subseteq V}{\operatorname{arg\,min}} |S| \quad \text{subject to} \quad f_i(S) \ge c \text{ for } 1 \le i \le m,$

i.e., find the smallest set S with $f_i(S) \ge c$ for all i.

How can we transform our *multi-objective problem* into the problem with a single objective?

Definition

$$\hat{f}_{i,c}(S) := \min\{f_i(S), c\}$$
 $\bar{f}_c(S) := \frac{1}{m} \sum_i \hat{f}_{i,c}(S)$ (7)

Now, we can rewrite the *MinCover* problem as:

$$S = \operatorname*{arg\,min}_{S \subseteq V} |S|$$
 subject to $\overline{f}_c(S) = c.$

Simple trick

MinCover: For any given *c* solve:

 $S = \underset{S \subseteq V}{\operatorname{arg\,min}} |S| \quad \text{subject to} \quad f_i(S) \ge c \text{ for } 1 \le i \le m,$

i.e., find the smallest set S with $f_i(S) \ge c$ for all i.

How can we transform our *multi-objective problem* into the problem with a single objective?

Definition

$$\hat{f}_{i,c}(S) := \min\{f_i(S), c\}$$
 $\bar{f}_c(S) := \frac{1}{m} \sum_i \hat{f}_{i,c}(S)$ (7)

Note: The previous transformations preserve submodularity.

Now, we can rewrite the MinCover problem as:

$$S = \underset{S \subseteq V}{\operatorname{arg\,min}} |S|$$
 subject to $\overline{f}_c(S) = c$.

GPC (Greedy partial cover) algorithm

```
MinCover (for a given c):
```

$$S = \underset{S \subseteq V}{\arg\min} |S| \quad \text{subject to} \quad \bar{f}_c(S) = c.$$
(8)

Greedy Partial Cover
GPC(
$$\overline{f}_c, c$$
):
1: $S \leftarrow \emptyset$
2: while $\overline{f}_c(S) < c$ do
3: $\Delta_j \leftarrow \overline{f}_c(S \cup \{j\}) - \overline{f}_c(S)$
4: $S \leftarrow S \cup \arg \max_j \Delta_j$
5: return S

GPC (Greedy partial cover) algorithm

MinCover (for a given c):

$$S = \underset{S \subseteq V}{\operatorname{arg\,min}} |S| \quad \text{subject to} \quad \bar{f}_c(S) = c. \tag{8}$$

Greedy Partial Cover GPC(\overline{f}_c, c): 1: $S \leftarrow \emptyset$ 2: while $\overline{f}_c(S) < c$ do 3: $\Delta_j \leftarrow \overline{f}_c(S \cup \{j\}) - \overline{f}_c(S)$ 4: $S \leftarrow S \cup \arg \max_j \Delta_j$

5: return S

Theorem (Approximation achieved by the GPC algorithm [5])

Given integer monotonic submodular functions $f_1, ..., f_m$ and a constant c, GPC with input $\overline{f_c}$ finds a set S_l such that $f_i(S_l) \geq c$ for all i, and $|S_l| \leq \alpha k^*$, where k^* is the size of the optimal solution to Problem 8, and

$$\alpha = 1 + \ln\left(\max_{v \in V} \sum_i f_i(\{v\})\right)$$

Outline

This lecture

- 1. Robust submodular function maximization
- 2. Hardness results and performance of the greedy algorithm
- 3. MinCover problem and the Greedy Partial Cover algorithm
- 4. Algorithm overview
- 5. The Saturate algorithm

Constraint relaxation

RSFMax problem:

 $\max_{S \in V} \min_{i} f_i(S), \quad \text{ subject to } |S| \le k$

Problem (Relaxed RSFMax)

RelRSFMax, the relaxed version of the RSFMax problem:

 $\max_{c,S} c, \quad \text{ subject to } \quad f_i(S) \geq c \text{ for } 1 \leq i \leq m \text{ and } |S| \leq \alpha k$

Here, $\alpha \geq 1$ is a parameter relaxing the constraint on |S|. When $\alpha = 1$, RelRSFMax = RSFMax.

Constraint relaxation

RSFMax problem:

 $\max_{S \in V} \min_{i} f_i(S), \quad \text{ subject to } |S| \leq k$

Problem (Relaxed RSFMax)

RelRSFMax, the relaxed version of the RSFMax problem:

 $\max_{c,S} c, \quad \text{ subject to } \quad f_i(S) \ge c \text{ for } 1 \le i \le m \text{ and } |S| \le \alpha k$

Here, $\alpha \geq 1$ is a parameter relaxing the constraint on |S|. When $\alpha = 1$, RelRSFMax = RSFMax.

Algorithm overview

Problem (Relaxed RSFMax)

RelRSFMax, the relaxed version of the RSFMax problem:

 $\max_{c,S} c, \quad \text{ subject to } \quad f_i(S) \geq c \text{ for } 1 \leq i \leq m \text{ and } |S| \leq \alpha k$

MinCover problem: for any given c solve:

 $S_{\textit{c}} = \mathop{\arg\min}_{S} |S| \quad \text{subject to} \quad f_i(S) \geq \textit{c} \text{ for } 1 \leq i \leq m,$

Algorithm overview

Problem (Relaxed RSFMax)

RelRSFMax, the relaxed version of the RSFMax problem:

 $\max_{c,S} c, \quad \text{ subject to } \quad f_i(S) \geq c \text{ for } 1 \leq i \leq m \text{ and } |S| \leq \alpha k$

MinCover problem: for any given c solve:

$$S_c = \underset{S}{\operatorname{arg\,min}} |S|$$
 subject to $f_i(S) \ge c$ for $1 \le i \le m$,

Main idea:

▶ set
$$\alpha = 1 + \ln\left(\max_{v \in V} \sum_i f_i(\{v\})\right)$$
 in *RelRSFMax*

- ▶ for a given *c* solve *MinCover* problem approximately by using the GPC algorithm
- if $S_c \leq \alpha k$ then both S_c and c are feasible solution to *RelRSFMax* problem
- ${}^{\blacktriangleright}$ use binary search to find the solution $S_c \leq lpha k$ with the maximum feasible c

Binary search procedure

Procedure:

- ▶ Maintain a lower bound (c_{min}) for *RelRSFMax* and an upper bound for *RSFMax* (c_{max}); Initialize [c_{min}, c_{max}] = [0, min_i $f_i(V)$]
- Successively improve the upper and lower bounds using a binary search procedure
- Invoke the GPC algorithm with $c = (c_{max} + c_{min})/2$:

Binary search procedure

Procedure:

- ▶ Maintain a lower bound (c_{min}) for *RelRSFMax* and an upper bound for *RSFMax* (c_{max}); Initialize [c_{min}, c_{max}] = [0, min_i $f_i(V)$]
- Successively improve the upper and lower bounds using a binary search procedure
- Invoke the GPC algorithm with $c = (c_{\max} + c_{\min})/2$:
 - $|S_c| > \alpha k$ implies that $c > c^*$, hence c is an upper bound to the RSFMax problem; It is safe to set $c_{max} = c$
 - ▶ $|S_c| \leq \alpha k$ implies that S_c is a feasible solution to the RelRSFMax problem; S_c is then kept as best current solution and we can set $c_{\min} = c$

Binary search procedure

Procedure:

- ▶ Maintain a lower bound (c_{min}) for *RelRSFMax* and an upper bound for *RSFMax* (c_{max}); Initialize [c_{min}, c_{max}] = [0, min_i $f_i(V)$]
- Successively improve the upper and lower bounds using a binary search procedure
- Invoke the GPC algorithm with $c = (c_{max} + c_{min})/2$:
 - ▶ $|S_c| > \alpha k$ implies that $c > c^*$, hence c is an upper bound to the RSFMax problem; It is safe to set $c_{max} = c$
 - ▶ $|S_c| \leq \alpha k$ implies that S_c is a feasible solution to the RelRSFMax problem; S_c is then kept as best current solution and we can set $c_{\min} = c$
- \blacktriangleright Upon convergence, we are thus guaranteed a feasible solution to $\it RelRSFMax$ (c',S') such that:

$$c' \ge c^*$$
 and $|S'| \le \alpha k$

Outline

This lecture

- 1 Robust submodular function maximization
- 2. Hardness results and performance of the greedy algorithm
- 3. MinCover problem and the Greedy Partial Cover algorithm
- 4. Algorithm overview
- 5. The Saturate algorithm

The Saturate algorithm

Saturate

 $\begin{array}{lll} \textbf{Saturate } (f_1, \cdots, f_m, k, \alpha) \textbf{:} \\ 1: \ c_{\min} \leftarrow 0; \ c_{\max} \leftarrow \min_j f_j(V); \ S_{\text{best}} \leftarrow \emptyset \\ 2: \ \textbf{while } (c_{\max} - c_{\min}) > 1/m \ \textbf{do} \\ 3: \ \ c \leftarrow (c_{\min} + c_{\max})/2 \\ 4: \ \ \overline{f}_c(S) \leftarrow \frac{1}{m} \sum_{j=1}^m \min\{f_j(S), c\} \\ 5: \ \ \widehat{S} \leftarrow \text{GPC}(\overline{f}_c, c) \\ 6: \ \ \textbf{if } |\widehat{S}| > \alpha k \ \textbf{then} \\ 7: \ \ c_{\max} \leftarrow c \\ 8: \ \ \textbf{else} \\ 9: \ \ c_{\min} \leftarrow c; \ S_{\text{best}} \leftarrow \widehat{S} \\ 10: \ \textbf{return } S_{\text{best}} \end{array}$

The Saturate algorithm

Saturate

 $\begin{array}{lll} \textbf{Saturate } (f_1, \cdots, f_m, k, \alpha) \textbf{:} \\ 1: \ c_{\min} \leftarrow 0; \ c_{\max} \leftarrow \min_j f_j(V); \ S_{\text{best}} \leftarrow \emptyset \\ 2: \ \textbf{while } (c_{\max} - c_{\min}) > 1/m \ \textbf{do} \\ 3: \ c \leftarrow (c_{\min} + c_{\max})/2 \\ 4: \ \overline{f_c}(S) \leftarrow \frac{1}{m} \sum_{j=1}^m \min\{f_j(S), c\} \\ 5: \ \hat{S} \leftarrow \operatorname{GPC}(\overline{f_c}, c) \\ 6: \ \textbf{if } |\hat{S}| > \alpha k \ \textbf{then} \\ 7: \ c_{\max} \leftarrow c \\ 8: \ \textbf{else} \\ 9: \ c_{\min} \leftarrow c; \ S_{\text{best}} \leftarrow \hat{S} \\ 10: \ \textbf{return } S_{\text{best}} \\ \end{array}$

Theorem (Approximation achieved by the Saturate algorithm [5]) For any integer k, Saturate finds a solution S_{best} such that

$$\min_{i} f_i(S_{\textit{best}}) \ge \max_{|S| \le k} \min_{i} f_i(S) \quad \textit{and} \quad |S_{\textit{best}}| \le \alpha k$$

for
$$\alpha = 1 + \ln\left(\max_{v \in V} \sum_{i} f_i(\{v\})\right)$$
.

The Saturate algorithm

Theorem (Approximation achieved by the Saturate algorithm [5]) For any integer k, Saturate finds a solution S_{best} such that

$$\min_{i} f_i(S_{best}) \ge \max_{|S| \le k} \min_{i} f_i(S) \quad \text{and} \quad |S_{best}| \le \alpha k$$

for
$$\alpha = 1 + \ln\left(\max_{v \in V} \sum_{i} f_i(\{v\})\right)$$
.

Proof.

Let S^* denote an optimal solution to the RSFMax problem. At every iteration of the saturation algorithm it holds that (due to the GPC Theorem)

$$\min_i f_i(S^*) \le c_{\max},$$

and

$$\min_{i} f_i(S_{\text{best}}) \ge c_{\min} \quad \text{and} \quad |S_{\text{best}}| \le \alpha k.$$

Since f_i are integer functions, if $c_{\max} - c_{\min} < \frac{1}{m}$ then it must hold that

$$\min_{i} f_i(S_{\mathsf{best}}) \ge \min_{i} f_i(S^*)$$

Applying Saturate to the example problem

C	f (C)	f (C)	$\mathbf{f}(\mathbf{C})$
<u> </u>	$I_1(5)$	I ₂ (5)	$\min_{\mathbf{i}} \mathbf{I}_{\mathbf{i}}(\mathbf{S})$
Ø	0	0	0
$\{s_1\}$	n	0	0
$\{s_2\}$	0	n	0
$\{t_1\}$	1	1	1
$\{t_2\}$	1	1	1
$\{s_1, s_2\}$	n	n	n
$\{s_1, t_1\}$	n+1	1	1
$\{s_1, t_2\}$	n+1	1	1
$\{s_2, t_1\}$	1	n+1	1
$\{s_2, t_2\}$	1	n+1	1
$\{t_1, t_2\}$	2	2	2

- ▶ The greedy algorithm maximizing $f_{wc}(S) = \min \{f_1(S), f_2(S)\}$ would choose $\{t_1, t_2\}$ obtaining a score of 2
- The optimal solution for k = 2 is $\{s_1, s_2\}$, with a score of n
- What would Saturate choose?

Summary of submodular optimization problems covered

Lec-	Problem	Algorithm	Approxi-	Hardness
ture			mation	
2	Unconstrained SFMax	Greedy	1/2	$(1+\epsilon)1/2$
2	Cardinality constrained	Greedy	1 - 1/e	1 - 1/e
	monotone SFMax			
2	Unconstrained	Pick positive	1	1
	MFMax/MFMin	weights		
2	Cardinality constrained	Sorting	1	1
	MFMax/MFMin			
2	Unconstrained SFMin	Convex	1	1
		methods		
2	TU constrained	Linear pro-	1	1
	MFMax/MFMin	gramming		
4	Robust monotone SFMax	Saturate	Bicriterion:	Bicriterion:
			$(1, \alpha)$	$(1,(1-\epsilon)\alpha)$

where
$$\alpha = 1 + \ln \left(\max_{v \in V} \sum_{i} f_i(\{v\}) \right)$$

- SFMax: Submodular function maximization
- SFMin: Submodular function minimization
- MFMax/MFMin: Modular function maximization/minimization

References |

- B. Bah, S. Becker, V. Cevher, and B. Gözcü. Metric learning with rank and sparsity constraints. In *IEEE Int. Conf. Acoustics, Speech, and Sig. Proc. (ICASSP)*, pages 21–25, May 2014.
- [2] Luca Baldassarre, Yen-Huan Li, Jonathan Scarlett, Baran Gözcü, Ilija Bogunovic, and Volkan Cevher.
 Learning-based compressive subsampling. http://arxiv.org/abs/1510.06188.
- [3] Ilija Bogunovic.
 Robust protection of networks against cascading phenomena.
 PhD thesis, Master Thesis ETH Zürich, 2012, 2012.
- [4] Simon Foucart and Holger Rauhut. *A mathematical introduction to compressive sensing*. Springer, 2013.
- [5] Andreas Krause, H. Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Robust submodular observation selection. *Journal of Machine Learning Research*, pages 2761–2801, Dec. 2008.

References II

- [6] Ali Sadeghian, Bubacarr Bah, and Volkan Cevher. Energy-aware adaptive bi-Lipschitz embeddings.
 In Int. Conf. Samp. Theory and Apps., Bremen, Germany, 2013.
- [7] Laurence A Wolsey.

An analysis of the greedy algorithm for the submodular set covering problem. *Combinatorica*, 2(4):385–393, 1982.

