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1. Robust submodular function maximization
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3. MinCover problem and the Greedy Partial Cover algorithm
4. Algorithm overview
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Recommended Reading

I Robust submodular observation selection, Krause, McMahan, Guestrin and
Golovin, 2008

I An analysis of the greedy algorithm for the submodular set covering problem,
Wolsey, 1982

I Learning-based compressive subsampling, Baldassarre, Li, Scarlett, Gözcü,
Bogunovic, and Cevher, 2015

I Submodular function maximization, Krause and Golovin, 2012

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 31



Robust submodular maximization

Problem (Robust submodular maximization problem - RSFMax)
Given a collection of normalized monotonic submodular functions f1, ..., fm , find a set
S ⊆ V , which is robust against the worst possible objective, mini fi (i ∈ {1, ...,m}):

max
S⊆V

min
i

fi(S), subject to |S | ≤ k
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Example: Submodular maximization in learning-based CS

LB-CS: Problem statement
Given a set of m training signals x1, . . . ,xm ∈ Cp, find an index set Ω of a given
cardinality n such that a related test signal x can reliably be recovered given the
subsampled measurement vector b = PΩΨx.

Average energy criterion

Ω̂ = arg max
Ω : |Ω|=n

1
m

m∑
j=1

∑
i∈Ω

|〈ψi ,xj〉|2

This is a cardinality constrained modular maximization problem.

What about worst-case?

Worst-case energy criterion

Ω̂ = arg max
Ω : |Ω|=n

min
j=1,...,m

∑
i∈Ω

|〈ψi ,xj〉|2.

This is an instance of the robust modular maximization problem.

Note: The worst-case criterion may be preferable in some cases, but it tends to be
less robust to “outliers”, e.g., compared to the average criterion.
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Interpretation 1: Linear decoding performance
Capturing energy sounds like a reasonable criterion, but does it actually correspond to
good recovery performance?

Linear decoder
We consider a linear decoder that expands b to a p-dimensional vector by placing
zeros in the entries corresponding to Ωc, and then applies the adjoint Ψ∗ = Ψ−1:

x̂ = Ψ∗PT
Ωb.

Theorem
The `2 estimation error of the above decoder is

‖x− x̂‖2
2 = ‖x‖2

2 − ‖PΩΨx‖2
2.

Worst-case energy criterion

Ω̂ = arg max
Ω : |Ω|=n

min
j=1,...,m

‖PΩΨxj‖2
2

Note: The previous theorem shows that maximizing the captured energy in the worst
case, amounts to minimizing the error of the linear decoder.
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Interpretation 2: Subsampling pattern providing the best restricted
isometry property (RIP) constant

Worst-case energy criterion

Ω̂ = arg max
Ω : |Ω|=n

min
j=1,...,m

‖PΩΨxj‖2
2

We have ‖PΩΨxj‖2 ≤ ‖xj‖2 (Ψ is an orthonormal basis matrix). Thus, defining
X := [x1, . . . ,xm ] and V := ΨX, we can equivalently write as

Ω̂ = arg min
Ω : |Ω|=n

‖1− diag(VT PT
ΩPΩV)‖∞, (1)

where 1 is the vector of m ones, and diag(·) forms a vector by taking the diagonal
entries of a matrix.

Note: In this form, the optimization problem can also be interpreted as finding the
subsampling pattern providing the best restricted isometry property (RIP) constant [4]
with respect to the training [1, 6].
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Generalization bounds

Capturing as much of the signal energy as possible on the training signals xj
corresponds to minimizing the `2-norm error of the linear decoder.

Will the same be true on a new signal x?

Theorem (Deterministic generalization bound for f = fmin [2])
Fix δ > 0 and ε > 0, and suppose that for a set of training signals x1, . . . ,xm with
‖xj‖2 = 1, we have a sampling set Ω such that

min
j=1,...,m

‖PΩΨxj‖2
2 ≥ 1− δ. (2)

Then for any signal x with ‖x‖2 = 1 such that ‖PΩc Ψ(x− xj)‖2
2 ≤ ε for some

j ∈ {1, . . . ,m}, we have

‖PΩΨx‖2
2 ≥ 1−

(√
δ +
√
ε
)2
. (3)

Exercise: Prove the previous theorem.
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More examples
I Sensor placement for outbreak detection [5]

I Protection of networks against cascading phenomena [3]
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Example: Protection of networks against cascading phenomena
Protection mechanism: if a cascade c(Vc,Ec) contains a blocking node b, all
descendant nodes of node b in c become protected.

We use Fc to denote the number of protected nodes in the cascade c,

Fc(B) :=

∣∣∣∣∣⋃
b∈B

descendantsc(b)

∣∣∣∣∣ . (4)

Diminishing returns:
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Example: Protection of networks against cascading phenomena

Definition (The number of protected nodes)
For a given cascade c(Vc,Ec) and a set of blocking nodes B, let Sc denote the
number of protected nodes in the network,

Sc(B) = Fc(B) + λc, (5)

where λc is the difference between the size of the network and the size of the cascade
c, i.e., λc = |V | − |Vc|.

Problem (Robust protection of networks)
Given a directed network G(V ,E) and an arbitrary set of cascades C, |C| ≤ m that
can possibly spread in G, find a set of nodes B to block so that

max
B⊆V

min
c

Sc(B) s.t. |B| ≤ k, (6)

i.e., the protection against the worst-possible cascade outcome is maximized.
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Hardness of the RSFMax problem

Problem (Robust submodular maximization problem - RSFMax)
Given a collection of normalized monotonic submodular functions f1, ..., fm , find a set
S ⊆ V , which is robust against the worst possible objective, mini fi (i ∈ {1, ...,m}):

max
S⊆V

min
i

fi(S), subject to |S | ≤ k

I Note: fi are all submodular, but fwc(S) := mini fi(S) is generally not submodular
I The simple greedy algorithm (which performs near-optimally in the
single-criterion setting) can perform arbitrarily badly
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The simple greedy algorithm

S f1(S) f2(S) mini fi(S)
∅ 0 0 0
{s1} n 0 0
{s2} 0 n 0
{t1} 1 1 1
{t2} 1 1 1
{s1, s2} n n n
{s1, t1} n − 1 1 1
{s1, t2} n + 1 1 1
{s2, t1} 1 n + 1 1
{s2, t2} 1 n + 1 1
{t1, t2} 2 2 2

I Given, V = {s1, s2, t1, t2} and k = 2, the greedy algorithm maximizing fwc(S)
would choose obtaining a score of

I The optimal solution for k = 2 is {s1, s2}, with a score of n. As, n →∞, the
greedy algorithm performs arbitrarily worse
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I Given, V = {s1, s2, t1, t2} and k = 2, the greedy algorithm maximizing
fwc(S) = min {f1(S), f2(S)} would choose {t1, t2} obtaining a score of 2

I The optimal solution for k = 2 is {s1, s2}, with a score of n. As, n →∞, the
greedy algorithm performs arbitrarily worse
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Solving the RSFMax problem approximately is NP-hard

Theorem (Hardness of Approximate Solution [5])
If there exists a positive function γ(·) > 0 and an algorithm that, for all n and k, in
time polynomial in the size of the problem instance n, is guaranteed to find a set S ′ of
size k such that

min
i

fi(S ′) ≥ γ(n) max
|S|≤k

min
i

fi(S),

then P = NP.

I In other words: there cannot exist any polynomial time approximation algorithm
for the RSFMax problem (unless P = NP).
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Revision: Minimum submodular set cover (MinCover)

MinCover: For any given c solve:

Sc = arg min
S⊆V

|S | subject to fi(S) ≥ c for 1 ≤ i ≤ m,

i.e., find the smallest set S with fi(S) ≥ c for all i.

Theorem ([7])
Given a submodular integer-valued function f and a fixed c ∈ Z, c ≤ f (V ). Let Sl be
the greedy solution and let ` be the smallest integer such that f (Sl) ≥ c. Then

` ≤
(

1 + ln max
v∈V

f ({v})
)

k?
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Simple trick

MinCover: For any given c solve:

S = arg min
S⊆V

|S | subject to fi(S) ≥ c for 1 ≤ i ≤ m,

i.e., find the smallest set S with fi(S) ≥ c for all i.

How can we transform our multi-objective problem into the problem with a single
objective?

Definition

f̂i,c(S) := min{fi(S), c} f̄c(S) :=
1
m

∑
i

f̂i,c(S) (7)

Now, we can rewrite the MinCover problem as:

S = arg min
S⊆V

|S | subject to f̄c(S) = c.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 31



Simple trick

MinCover: For any given c solve:

S = arg min
S⊆V

|S | subject to fi(S) ≥ c for 1 ≤ i ≤ m,

i.e., find the smallest set S with fi(S) ≥ c for all i.

How can we transform our multi-objective problem into the problem with a single
objective?

Definition

f̂i,c(S) := min{fi(S), c} f̄c(S) :=
1
m

∑
i

f̂i,c(S) (7)

Note: The previous transformations preserve submodularity.

Now, we can rewrite the MinCover problem as:

S = arg min
S⊆V

|S | subject to f̄c(S) = c.
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GPC (Greedy partial cover) algorithm

MinCover (for a given c):

S = arg min
S⊆V

|S | subject to f̄c(S) = c. (8)

Greedy Partial Cover
GPC(f̄c, c):
1: S ← ∅
2: while f̄c(S) < c do
3: ∆j ← f̄c(S ∪ {j})− f̄c(S)
4: S ← S ∪ arg maxj ∆j

5: return S
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MinCover (for a given c):

S = arg min
S⊆V

|S | subject to f̄c(S) = c. (8)

Greedy Partial Cover
GPC(f̄c, c):
1: S ← ∅
2: while f̄c(S) < c do
3: ∆j ← f̄c(S ∪ {j})− f̄c(S)
4: S ← S ∪ arg maxj ∆j

5: return S

Theorem (Approximation achieved by the GPC algorithm [5])
Given integer monotonic submodular functions f1, ..., fm and a constant c, GPC with
input f̄c finds a set Sl such that fi(Sl) ≥ c for all i, and |Sl | ≤ αk∗, where k∗ is the
size of the optimal solution to Problem 8 , and

α = 1 + ln
(

max
v∈V

∑
i

fi({v})
)
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Constraint relaxation
I RSFMax problem:

max
S∈V

min
i

fi(S), subject to |S | ≤ k

Problem (Relaxed RSFMax)
RelRSFMax, the relaxed version of the RSFMax problem:

max
c,S

c, subject to fi(S) ≥ c for 1 ≤ i ≤ m and |S | ≤ αk

Here, α ≥ 1 is a parameter relaxing the constraint on |S |.
When α = 1, RelRSFMax = RSFMax.

0 cc*

Feasible c for RSFMax
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Algorithm overview

Problem (Relaxed RSFMax)
RelRSFMax, the relaxed version of the RSFMax problem:

max
c,S

c, subject to fi(S) ≥ c for 1 ≤ i ≤ m and |S | ≤ αk

I MinCover problem: for any given c solve:

Sc = arg min
S

|S | subject to fi(S) ≥ c for 1 ≤ i ≤ m,
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Algorithm overview

Problem (Relaxed RSFMax)
RelRSFMax, the relaxed version of the RSFMax problem:

max
c,S

c, subject to fi(S) ≥ c for 1 ≤ i ≤ m and |S | ≤ αk

I MinCover problem: for any given c solve:

Sc = arg min
S

|S | subject to fi(S) ≥ c for 1 ≤ i ≤ m,

I Main idea:
I set α = 1 + ln

(
maxv∈V

∑
i

fi({v})
)

in RelRSFMax

I for a given c solve MinCover problem approximately by using the GPC algorithm
I if Sc ≤ αk then both Sc and c are feasible solution to RelRSFMax problem
I use binary search to find the solution Sc ≤ αk with the maximum feasible c
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Binary search procedure

0 cc*

Feasible c for RSFMax

c min c max

Feasible c for RelRSFMax

Procedure:
I Maintain a lower bound (cmin) for RelRSFMax and an upper bound for RSFMax
(cmax); Initialize [cmin, cmax] = [0,mini fi(V )]

I Successively improve the upper and lower bounds using a binary search procedure
I Invoke the GPC algorithm with c = (cmax + cmin)/2:

I |Sc| > αk implies that c > c∗, hence c is an upper bound to the RSFMax problem; It
is safe to set cmax = c

I |Sc| ≤ αk implies that Sc is a feasible solution to the RelRSFMax problem; Sc is then
kept as best current solution and we can set cmin = c

I Upon convergence, we are thus guaranteed a feasible solution to RelRSFMax
(c′,S ′) such that:

c′ ≥ c∗ and |S ′| ≤ αk
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The Saturate algorithm

Saturate
Saturate (f1, · · · , fm , k, α):
1: cmin ← 0; cmax ← minj fj(V ); Sbest ← ∅
2: while (cmax − cmin) > 1/m do
3: c ← (cmin + cmax)/2
4: f̄c(S)← 1

m
∑m

j=1 min{fj(S), c}
5: Ŝ ← GPC(f̄c, c)
6: if |Ŝ | > αk then
7: cmax ← c
8: else
9: cmin ← c; Sbest ← Ŝ
10: return Sbest
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Saturate
Saturate (f1, · · · , fm , k, α):
1: cmin ← 0; cmax ← minj fj(V ); Sbest ← ∅
2: while (cmax − cmin) > 1/m do
3: c ← (cmin + cmax)/2
4: f̄c(S)← 1

m
∑m

j=1 min{fj(S), c}
5: Ŝ ← GPC(f̄c, c)
6: if |Ŝ | > αk then
7: cmax ← c
8: else
9: cmin ← c; Sbest ← Ŝ
10: return Sbest

Theorem (Approximation achieved by the Saturate algorithm [5])
For any integer k, Saturate finds a solution Sbest such that

min
i

fi(Sbest) ≥ max
|S|≤k

min
i

fi(S) and |Sbest| ≤ αk

for α = 1 + ln
(

maxv∈V
∑

i fi({v})
)
.
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The Saturate algorithm

Theorem (Approximation achieved by the Saturate algorithm [5])
For any integer k, Saturate finds a solution Sbest such that

min
i

fi(Sbest) ≥ max
|S|≤k

min
i

fi(S) and |Sbest| ≤ αk

for α = 1 + ln
(

maxv∈V
∑

i fi({v})
)
.

Proof.
Let S∗ denote an optimal solution to the RSFMax problem. At every iteration of the
saturation algorithm it holds that (due to the GPC Theorem)

min
i

fi(S∗) ≤ cmax,

and
min

i
fi(Sbest) ≥ cmin and |Sbest| ≤ αk.

Since fi are integer functions, if cmax − cmin <
1
m then it must hold that

min
i

fi(Sbest) ≥ min
i

fi(S∗)

�
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Applying Saturate to the example problem

S f1(S) f2(S) mini fi(S)
∅ 0 0 0
{s1} n 0 0
{s2} 0 n 0
{t1} 1 1 1
{t2} 1 1 1
{s1, s2} n n n
{s1, t1} n + 1 1 1
{s1, t2} n + 1 1 1
{s2, t1} 1 n + 1 1
{s2, t2} 1 n + 1 1
{t1, t2} 2 2 2

I The greedy algorithm maximizing fwc(S) = min {f1(S), f2(S)} would choose
{t1, t2} obtaining a score of 2

I The optimal solution for k = 2 is {s1, s2}, with a score of n
I What would Saturate choose?
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Summary of submodular optimization problems covered

Lec-
ture

Problem Algorithm Approxi-
mation

Hardness

2 Unconstrained SFMax Greedy 1/2 (1 + ε)1/2
2 Cardinality constrained

monotone SFMax
Greedy 1− 1/e 1− 1/e

2 Unconstrained
MFMax/MFMin

Pick positive
weights

1 1

2 Cardinality constrained
MFMax/MFMin

Sorting 1 1

2 Unconstrained SFMin Convex
methods

1 1

2 TU constrained
MFMax/MFMin

Linear pro-
gramming

1 1

4 Robust monotone SFMax Saturate Bicriterion:
(1, α)

Bicriterion:
(1, (1− ε)α)

where α = 1 + ln
(

maxv∈V
∑

i fi({v})
)

I SFMax: Submodular function maximization
I SFMin: Submodular function minimization
I MFMax/MFMin: Modular function maximization/minimization
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