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Recommended Reading

» Robust submodular observation selection, Krause, McMahan, Guestrin and
Golovin, 2008

> An analysis of the greedy algorithm for the submodular set covering problem,
Wolsey, 1982

Learning-based compressive subsampling, Baldassarre, Li, Scarlett, Gézcli,
Bogunovic, and Cevher, 2015

v

» Submodular function maximization, Krause and Golovin, 2012
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Robust submodular maximization

Problem (Robust submodular maximization problem - RSFMax)

Given a collection of normalized monotonic submodular functions fi, ..., fm, find a set
S C V, which is robust against the worst possible objective, min; f; (i € {1, ..., m}):

max min f;(S), subject to  |S| < k
SCV i
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Example: Submodular maximization in learning-based CS

LB-CS: Problem statement

Given a set of m training signals x1,...,xm,m € CP, find an index set {2 of a given
cardinality n such that a related test signal x can reliably be recovered given the
subsampled measurement vector b = P ¥x.

Average energy criterion

Q) = argmax — Em:z (%, %)

Q:|Q=n ™
(2= =1 i€Q

This is a cardinality constrained modular maximization problem.

i
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Example: Submodular maximization in learning-based CS

LB-CS: Problem statement

Given a set of m training signals x1,...,xm,m € CP, find an index set {2 of a given
cardinality n such that a related test signal x can reliably be recovered given the
subsampled measurement vector b = P ¥x.

Average energy criterion

Q) = arg max L iz [(ah, ;)|

JQl=n M
Q:|Q|=n =1 ien

This is a cardinality constrained modular maximization problem.
What about worst-case?

Worst-case energy criterion

() = argmax  min E [(1;,%5)]2.
Q:|Q|=n J=1,-..;m%
1€Q
This is an instance of the robust modular maximization problem.

Note: The worst-case criterion may be preferable in some cases, but it tends to be
less robust to “outliers”, e.g., compared to the average criterion.
Ll ]
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Interpretation 1: Linear decoding performance
Capturing energy sounds like a reasonable criterion, but does it actually correspond to

good recovery performance?

Linear decoder
We consider a linear decoder that expands b to a p-dimensional vector by placing
zeros in the entries corresponding to ¢, and then applies the adjoint ¥* = ¥—1:

%= ¥*Plb.

o
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Interpretation 1: Linear decoding performance
Capturing energy sounds like a reasonable criterion, but does it actually correspond to

good recovery performance?

Linear decoder
We consider a linear decoder that expands b to a p-dimensional vector by placing
zeros in the entries corresponding to ¢, and then applies the adjoint ¥* = ¥—1:

%= ¥*Plb.

Theorem

The ¢> estimation error of the above decoder is

A2 2 2
llx —x[lz = [Ixllz — IPo¥x]5.

Worst-case energy criterion

Q=argmax min [Pq®x;||3
Q:|Q|=n j=1,...,m

Note: The previous theorem shows that maximizing the captured energy in the worst
case, amounts to minimizing the error of the linear decoder.

L]
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Interpretation 2: Subsampling pattern providing the best restricted
isometry property (RIP) constant

Worst-case energy criterion

Q=argmax min [Pq®x;||3
Q:|Q|=n J=L-..,m

We have ||Pq¥x;jll2 < ||xj]|l2 (¥ is an orthonormal basis matrix). Thus, defining

X = [x1,...,%Xm] and V := ¥X, we can equivalently write as
Q) = argmin |1 — diag(VIPIPo V)| oo, (1)
Q:|Q|=n

where 1 is the vector of m ones, and diag(-) forms a vector by taking the diagonal
entries of a matrix.

Note: In this form, the optimization problem can also be interpreted as finding the
subsampling pattern providing the best restricted isometry property (RIP) constant [4]
with respect to the training [1, 6].

. V
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Generalization bounds

Capturing as much of the signal energy as possible on the training signals x;
corresponds to minimizing the £2-norm error of the linear decoder.

Will the same be true on a new signal x?

Theorem (Deterministic generalization bound for f = fiuin [2])

Fix § > 0 and € > 0, and suppose that for a set of training signals x1, . ..,Xmy with
||xjll2 = 1, we have a sampling set Q such that

min  |[|Po®x;|3 >1-4. (2)
j=1 m

gooag

Then for any signal x with ||x||2 = 1 such that ||Poe¥(x — x;)||3 < € for some
jeA{l1,...,m}, we have

IPowx(3 >1— (V5+ ve)™. 3)

Exercise: Prove the previous theorem.

. V
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More examples

» Sensor placement for outbreak detection [5]
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Example: Protection of networks against cascading phenomena

Protection mechanism: if a cascade ¢( V., E.) contains a blocking node b, all
descendant nodes of node b in ¢ become protected.

g5 4220 3479 2384
2686 5806 3002 2364 4942

2290

We use F. to denote the number of protected nodes in the cascade c,

F¢(B) := Udescendantsc(b) . (4)
beB

Diminishing returns:

° A={f}

B={ef}
F4)=2

° ° o F(B)=5

[ T FAAUGSH —F(A) [ F(BU{sh —F(B) ]
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Example: Protection of networks against cascading phenomena

Definition (The number of protected nodes)

For a given cascade ¢( Ve, E.) and a set of blocking nodes B, let S. denote the
number of protected nodes in the network,

S.(B) = F.(B) + A, (5)
where A, is the difference between the size of the network and the size of the cascade

¢, ien Ae = |V| = | Vel.

Problem (Robust protection of networks)

Given a directed network G(V, E) and an arbitrary set of cascades C, |C| < m that
can possibly spread in G, find a set of nodes B to block so that
max min Sc(B) s.t. |B| <k, (6)

BCV ¢

i.e., the protection against the worst-possible cascade outcome is maximized.

. V
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Hardness of the RSFMax problem

Problem (Robust submodular maximization problem - RSFMax)

Given a collection of normalized monotonic submodular functions fi, ..., fm, find a set
S C V, which is robust against the worst possible objective, min; f; (i € {1, ..., m}):

max min f;(.S), subject to |S| < k
et fi(8) j IS| <

> Note: f; are all submodular, but fy,c(S) := min; f;(.S) is generally not submodular

» The simple greedy algorithm (which performs near-optimally in the
single-criterion setting) can perform arbitrarily badly

. V
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The simple greedy algorithm

S [ f1(S) [ f2(S) [ min; f; (S)
0 0 0 0
{s1} n 0 0
{82} 0 n 0
{t1} 1 1 1
{t2} 1 1 1
{s1,s2} n n n
{S1,t1} n—1 1 1
{s1,t2} n+1 1 1
{s2,t1} 1 n+1 1
{s2,t2} 1 n+1 1
{tl,tz} 2 2 2

> Given, V = {s1, 2, t1, t2} and k = 2, the greedy algorithm maximizing fu.(S)
would choose obtaining a score of

. V
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The simple greedy algorithm
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{t2} 1 1 1
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{s1, t2} n+1 1 1
{s2,t1} 1 n+1 1
{s2,t2} 1 n+1 1
{t1,t2} 2 2 2

> Given, V = {s1, 82, t1, t2} and k = 2, the greedy algorithm maximizing would
choose obtaining a score of
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The simple greedy algorithm

S [ f1(S) [ f2(S) [ min; f; (S)
1] 0 0 0
{s1} n 0 0
{82} 0 n 0
Iy 1 1 1
{2} 1 1 1
{s1,s2} n n n
{S1,t1} n+1 1 1
{s1,t2} | n+1 1 1
{s2,t1} 1 n+1 1
{s2,t2} 1 n+1 1
{tl,tz} 2 2 2

> Given, V = {s1, s2, t1, t2} and k = 2, the greedy algorithm maximizing
Jwe(S) = min {f1(S), f2(S)} would choose {¢1,t2} obtaining a score of 2

> The optimal solution for k = 2 is {s1, s2}, with a score of n. As, n — oo, the
greedy algorithm performs arbitrarily worse
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Solving the RSFMax problem approximately is NP-hard

Theorem (Hardness of Approximate Solution [5])

If there exists a positive function v(-) > 0 and an algorithm that, for all n and k, in
time polynomial in the size of the problem instance n, is guaranteed to find a set S’ of
size k such that

in f; S’ > in f;(S),
s T = o) ‘rg‘a&mimf( )
then P = NP.

> In other words: there cannot exist any polynomial time approximation algorithm
for the RSFMax problem (unless P = NP).

i V
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Revision: Minimum submodular set cover (MinCover)

MinCover: For any given c solve:

Se = argmin |S| subject to f;(S) > cfor1 <i<m,
SCv

i.e., find the smallest set S with f;(S) > ¢ for all <.

Theorem ([7])

Given a submodular integer-valued function f and a fixed c € Z,c < f(V). Let S; be
the greedy solution and let £ be the smallest integer such that f(S;) > c. Then

0< (1 + lnglea‘)/(f({v})) o+

. V
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Simple trick

MinCover: For any given c solve:

S =argmin|S| subjectto fi(S)>cforl<i<m,
SCV

i.e., find the smallest set S with f;(S) > ¢ for all 4.

How can we transform our multi-objective problem into the problem with a single
objective?

Definition

Jie(8) i= min{f(8), ¢} Jo(8) = = 3 fue(8) ™

Now, we can rewrite the MinCover problem as:

S =argmin|S| subject to f.(S) = c.
SCV

. V
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Simple trick
MinCover: For any given c solve:

S = argmin|S| subject to fj(S) > cfor1 <i<m,
sCv

i.e., find the smallest set S with f;(S) > ¢ for all <.

How can we transform our multi-objective problem into the problem with a single
objective?

Definition

Ji.e(8) := min{fi($), e} 7e(8) : Zfz o(8) (M

Note: The previous transformations preserve submodularity.

Now, we can rewrite the MinCover problem as:

S = argmin|S| subject to f.(S) = c.
sCv

. V
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GPC (Greedy partial cover) algorithm

MinCover (for a given c):

S = argmin |S| subject to f.(S) = c. (8)
sCv

Greedy Partial Cover

GPC(fe, c):

1S+ 0

2: while f:(S) < c do ~
3 Ay fe(SU{F}) — fe(S)
4: S < SUargmax; A;j

5. return S

. V
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GPC (Greedy partial cover) algorithm
MinCover (for a given c):

S = argmin |S| subject to f.(S) = c. (8)
SCv

Greedy Partial Cover

GPC(f., ¢):

1: S+ @_

2: while f:(S) < c do ~
3 Aje F(SULH —F(9)
4: S < SUargmax; A;

5. return S

Theorem (Approximation achieved by the GPC algorithm [5])

Given integer monotonic submodular functions fi, ..., fm and a constant c, GPC with
input f. finds a set S; such that f;(S;) > ¢ for all i, and |S;| < ak*, where k* is the
size of the optimal solution to Problem 8 , and

a=1+In (glg)/{Zfz({ﬂ))

. V
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Constraint relaxation
» RSFMax problem:
max min f;(S), subject to  |S| <k
SeVv i

Problem (Relaxed RSFMax)
RelRSFMax, the relaxed version of the RSFMax problem:

max c, subject to  fi(S) > ¢ for1 < i< m and |S| < ak

C,

Here, o > 1 is a parameter relaxing the constraint on |S|.
When o = 1, RelRSFMax = RSFMax.

0 c” C
. &
ﬁ

Feasible ¢ for RSFMax

v
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Constraint relaxation
» RSFMax problem:

max min f;(S), subject to
SeV i

Problem (Relaxed RSFMax)

RelRSFMax, the relaxed version of the RSFMax problem:

S| <

max c, subject to  f;(S) > ¢ for 1 < i< m and |S| < ak

C,

Here, o > 1 is a parameter relaxing the constraint on |S|.

When o = 1, RelRSFMax = RSFMax.

0 c*

. @
ﬁ
Feasible ¢ for RSFMax
L e
Feasible ¢ for RelIRSFMax
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Algorithm overview

Problem (Relaxed RSFMax)
RelRSFMax, the relaxed version of the RSFMax problem:

L subject to  fi(S) > ¢ for 1 < i< m and |S| < ak

C,

» MinCover problem: for any given c solve:

Sc = argmin |S| subject to  fi(S) > cfor 1 < i< m,
s

. |
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Algorithm overview

Problem (Relaxed RSFMax)
RelRSFMax, the relaxed version of the RSFMax problem:

masc, subject to  fi(S) > ¢ for 1 < i< m and |S| < ak
C,

> MinCover problem: for any given ¢ solve:

S. = argmin |S| subject to fi(S) > cfor1 << m,
S

> Main idea:
»seta=1+In (maxvev Ziﬁ-({v})> in RelRSFMax
> for a given ¢ solve MinCover problem approximately by using the GPC algorithm
> if S. < ak then both S, and ¢ are feasible solution to RelRSFMax problem

> use binary search to find the solution S. < ak with the maximum feasible ¢

. |
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Binary search procedure
O C min C* C max
| | .
® |
ﬁ
Feasible ¢ for RSFMax
< B
Feasible ¢ for ReIRSFMax

Procedure:
> Maintain a lower bound (cmin) for RelRSFMax and an upper bound for RSFMax
(cmax); Initialize [emin, tmax] = [0, min; f;( V)]

> Successively improve the upper and lower bounds using a binary search procedure
> Invoke the GPC algorithm with ¢ = (¢max + ¢min)/2:

3 |
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Binary search procedure
O C min C* C max
| | .
® |
ﬁ
Feasible ¢ for RSFMax
< B
Feasible ¢ for ReIRSFMax

Procedure:
> Maintain a lower bound (cmin) for RelRSFMax and an upper bound for RSFMax
(cmax); Initialize [emin, tmax] = [0, min; f;( V)]
> Successively improve the upper and lower bounds using a binary search procedure
> Invoke the GPC algorithm with ¢ = (¢max + ¢min)/2:
> |S.| > ak implies that ¢ > ¢*, hence c is an upper bound to the RSFMax problem; It
is safe to set cnax = ¢

> |S.| < ak implies that S, is a feasible solution to the RelRSFMax problem; S, is then
kept as best current solution and we can set ¢, = ¢
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Binary search procedure

€
®
A

Feasible ¢ for RSFMax
hit g
Feasible ¢ for RelRSFMax

Procedure:
» Maintain a lower bound (cmin) for RelRSFMax and an upper bound for RSFMax
(cmax); Initialize [emin, ¢max] = [0, min; f;( V)]
> Successively improve the upper and lower bounds using a binary search procedure
> Invoke the GPC algorithm with ¢ = (¢max + ¢min)/2:
> |S.| > ak implies that ¢ > ¢*, hence c is an upper bound to the RSFMax problem; It
is safe to set cnax = ¢
> |S.| < ak implies that S, is a feasible solution to the RelRSFMax problem; S, is then
kept as best current solution and we can set ¢, = ¢
» Upon convergence, we are thus guaranteed a feasible solution to RelRSFMax
(¢’,8") such that:
¢ >c* and |8 <ak

3 |
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The Saturate algorithm

Saturate

Saturate (fi, -, fm, k,a):
1: Cmin < 0; Cmax minjﬁ(v); Shest = 0
2: while (¢max — cmin) > 1/m do
3: C < (Cmin + Cmax)/2

4: fo(8) + % ijzl min{f;(S), c}

5. 8+ GPC(f., c)

6 if |S| > ak then

7: Cmax < C

8: else .
9: Cmin < C; Spest + S

10: return Spest

. V
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The Saturate algorithm

Saturate

Saturate (fi,- - , fm, k, @):
1: Cmin < 0; Cmax mlnjf)(V% SbeSt 0
2: while (Cmax - Cmin) > 1/m do

3: [ (Cmin A Cmax)/2
4 fe(S)« L ;":1 min{f;(9), c}

5. 8+ GPC(f., c)

6 if |S| > ak then

7: Cmax < C

8: else .
9: Cmin < C; Spest + S

10: return Spest

Theorem (Approximation achieved by the Saturate algorithm [5])
For any integer k, Saturate finds a solution Spes; such that
min f;(Spest) > max min f;(S) and |Spest| < ak
i [S|<k i

fora=1+1In (maxvgv ZJ@({’@))

. V
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The Saturate algorithm

Theorem (Approximation achieved by the Saturate algorithm [5])
For any integer k, Saturate finds a solution Spes; such that

mlnﬁ(sbest) > IHl‘aJX mlnf,(S) and  |Spest| < ak

fora=1+1n (maxvev Zifi({v})).

Proof.

Let S* denote an optimal solution to the RSFMax problem. At every iteration of the
saturation algorithm it holds that (due to the GPC Theorem)

m'infi(s*) S Cmax,
1

and
minﬁ(sbest) > Cmin and |Sbest‘ < ak.
1

Since f; are integer functions, if ¢max — Cmin <€ = then it must hold that
minﬁ(sbest) > mlnfL(S*)
1 1

]
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Applying Saturate to the example problem

S [ f(S) [ f2(S) [ min;fi(S)

0 0 0 0
{s1} n 0 0
{s2} 0 n 0
{1} I I 1
{2} I I I
{s1,s2} n n n
{81,t1} n+1 1 1
{sl,tg} n+1 1 1
{82,t1} 1 n+1 1
{s2,t2} 1 n+1 1
{tl,tQ} 2 2 2

> The greedy algorithm maximizing fuc(S) = min {f1(S), f2(S)} would choose
{t1, t2} obtaining a score of 2

> The optimal solution for k = 2 is {s1, s2}, with a score of n

» What would Saturate choose?

. V
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Summary of submodular optimization problems covered

Lec- Problem Algorithm Approxi- Hardness
ture mation
2 Unconstrained SFMax Greedy 1/2 (14+¢€)1/2
2 Cardinality constrained Greedy 1—-1/e 1—-1/e
monotone SFMax
2 Unconstrained Pick positive 1 1
MFMax/MFMin weights
2 Cardinality constrained Sorting 1 1
MFMax/MFMin
2 Unconstrained SFMin Convex 1 1
methods
2 TU constrained Linear pro- 1 1
MFMax/MFMin gramming
4 Robust monotone SFMax Saturate Bicriterion: Bicriterion:
(1,0) (1,1 - 9a)

where oo =1+ In (maxl,e v Zle({U}))

» SFMax: Submodular function maximization

> SFMin: Submodular function minimization

» MFMax/MFMin: Modular function maximization/minimization
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