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Review of compressive sensing problem
Overview of structured sparsity
Convex relaxation

Fenchel conjugate

Examples
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Recommended Reading

» Structured sparsity-inducing norms through submodular functions, Bach, 2010.

> A totally unimodular view of structured sparsity, El Halabi and Cevher, 2015.
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Signal recovery from linear measurements

Problem statement

Recover an accurate estimate X of a signal x € CP, in the sense ||x — x| < ¢, from a
set of linear measurements
b = Ax" + w,

where A € C"X? is a known measurement matrix, and w € C"*1 an unknown noise.

-
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Signal recovery from linear measurements

Problem statement

Recover an accurate estimate X of a signal x € CP, in the sense ||x — x| < ¢, from a
set of linear measurements
b = Ax" + w,

where A € C"X? is a known measurement matrix, and w € C"*1 an unknown noise.

The following problem is fundamental in signal processing, machine learning, and
many other areas.

> Image compression
> Medical resonance imaging (MRI)
> Communications

> Linear regression
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Signal recovery from linear measurements

Problem statement

Recover an accurate estimate X of a signal x € CP, in the sense ||x — x| < ¢, from a
set of linear measurements
b = Ax" + w,

where A € C"X? is a known measurement matrix, and w € C"*1 an unknown noise.

The following problem is fundamental in signal processing, machine learning, and
many other areas.

> Image compression
> Medical resonance imaging (MRI)
> Communications

> Linear regression

Two regimes of interest:
> n < p (underdetermined): Infinitely many solutions; impossible in general

» n > p (overdetermined): Solvable using classical techniques such as least squares
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Least-squares estimation in the linear model

Recall the least-squares (LS) estimator.

LS estimation in the linear model
The LS estimator for x% given A and b is defined as

Xis € arg min {ilb - Ax|I3} .
X

> If A has full column rank, X5 = Afbis uniquely defined.

> In the case that n < p, A cannot have full column rank, and we can only
conclude that %5 € {ATb+h:h € null(A)}.

Observation: The estimation error qus — xf H2 can be arbitrarily large!

-
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A candidate solution

> There are infinitely many solutions x such that b = Ax

> Suppose that w = 0 (i.e. no noise). Should we just choose the one Xcandidate
with the smallest norm ||x||5?

x% +h, h € null(A)

Unfortunately, this still fails when n < p
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A candidate solution contd.

Proposition ([5])
Suppose that A € R"*P js a matrix of i.i.d. standard Gaussian random variables, and
w = 0. We have

=9 (1= 2) [ = et =3 < 1= 07 (1= 2 ]

with probability at least 1 — 2 exp [—(1/4)(;) — n)eQ] — 2exp [—(1/4)1)62} , for all
€ >0 and x € RP.

Observation: The estimation error may not diminish unless n is very close to p.

Impact: It is impossible to estimate x1 accurately using Xcandidate When n < p even
if w=0.

.. N 2 . .
» The statistical error chandidate — xb HQ can also be arbitrarily large when w # 0.
Hence, the solution is also not robust.

» We need additional information on x!!
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A natural signal model

Definition (s-sparse vector)

A vector a € R? is s-sparse if it has at
most s non-zero entries.

RP

X0

Sparse representations

all: sparse transform coefficients

> Basis representations ® € RPXP
> Wavelets, DCT, ...

> Frame representations
® cR™P m>p
> Gabor, curvelets, shearlets, ...

» Other dictionary representations...
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Sparse representations strike back!

b

»beR, AERY™P, and n < p
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Sparse representations strike back!

b
i . .
m

I
-

»beR" AcR"™P and n<p
» U cRPXP, af € RP, and |al]jo < s < n
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Sparse representations strike back!

b

» beR” A eR"P, and af € RP, and ||ah|\0 <s<n<p
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Sparse representations strike back!

A fundamental impact:
The matrix A effectively becomes overcomplete.

We could easily solve for af (and hence x) if we knew the location of the non-zero
entries of x9.
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Sparse recovery

Sparse estimators
X € arg min 1 [|x]| : ||b — Ax]|, < ||lw P
rg min {lxllo < b — Axly < wil,} (Po)
% € arg min [Ib— Axl, + p Ixllg (P)
xERP
where ||x|jo :=1Ts,5 = Ilsupp(x),supp(x) = {i|z # 0}.
|||l over the unit £oo-ball

Sparse estimators characteristics: Il
» Sample complexity: O(s)
» Computational effort: NP-Hard

» Not robust to noise.
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Convex relaxation of sparse recovery

Convex sparse estimators
Basis pursuit (BP):

X € arg min 1 [|x]|; : ||b — Ax]|, < ||w
g min { |l : | Iy < lwll, }

Least absolute shrinkage and selection operator (Lasso):

X € arg min ||b — Ax||, + p [|x]|;
xERP

where ||x||1 := 17|x].

Convex estimators characteristics [7]:
> oV ya
Sample complexity: O(slog(%))

» Computational effort: Polynomial

» Robust to noise.

Why is ||x||; a good convex surrogate for ||x||,?
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Convex relaxation of sparse recovery

Convex sparse estimators
Basis pursuit (BP):

% € arg min { x|, : b~ Axll, < [[wil,} (BP)

Least absolute shrinkage and selection operator (Lasso):

%X € arg min ||b — Ax||, + p[|x]|; (LASSO)
x€RP
where ||x||1 := 17|x].

. L |Ix]|; is the convex envelope of ||x||,
Convex estimators characteristics [7]:

> Sample complexity: O(slog(Z2)) .
» Computational effort: Polynomial
> Robust to noise.

Convex relaxation:

Convex envelope is the /argest convex
lower bound.

[I<[l

A technicality: Restrict x € [—1,1]7.
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Beyond sparsity towards model-based or structured sparsity

> The following signals can look the same from a sparsity perspective!

| I

Sparse image Wavelet coefficients Spike train Background substracted
of a natural image image

> In reality, these signals have additional structures beyond the simple sparsity

.. af |
| .

Sparse image Wavelet coefficients Spike train Background substracted
of a natural image image
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Beyond sparsity towards model-based or structured sparsity

Sparsity model: Union of all s-dimensional
canonical subspaces.

RP

Structured sparsity model: A particular
union of ms s-dimensional canonical
subspaces.

Three upshots of structured sparsity: [3]

1. Reduced sample complexity: e.g., O(slog(2)) — O(s) for tree-sparse signals 1
2. Better noise robustness

3. Better interpretability

Lthis was proved for a greedy method (CoSaMP). Convex methods in practice require similar number of samples.

3 |
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Structured sparse recovery

We encode the structure over the support by g(x) = F(supp(x))

Structured sparsity estimators
X i F c|b — A <
X € arg i { (supp(x)) : || x|y HWHQ}

o € g vty b — Ax|l, + pF(supp(x))
where F(s) : {0,1}? — R U {400}, supp(x) = {7|z; # 0}.

Tractable & stable recovery:
How to choose a good convex surrogate of g?
1. Case by case heuristics

2. Convex envelope: given by the biconjugate of g, i.e., the fenchel conjugate of the
fenchel conjugate of g.

. |
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Lower semi-continuity

Definition

A function f : RP — RU {400} is lower semi-continuous (l.s.c.), also called closed, if

liminf f(x) > f(y), for any y € dom(f).
X—y

e ifz <O _f e ifz<0
f(‘”)_{+oo, ifz>0 f(‘”)_{+oo, ifz>0

WL_ +x$_

. )
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Lower semi-continuity

Definition
A function f : R™ — R U {400} is lower semi-continuous (l.s.c.) if

liminf f(x) > f(y), for any y € dom(f).
Xy

> Rule of thumb: a lower semi-continuous function only jumps down.

I

x)

._\OT not l.e.c

T €2 x

> fis Ls.ciff its epigraph epif = {(x,a) : x € R?,a € R, f(x) < a} is a closed set.
> fis L.s.c iff all its sublevel sets {x € R : f(x) < o} are closed.
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Fenchel conjugate

Definition (Fenchel conjugate)

Let g : R? — R U {+o0o} be a proper function (non-empty domain), its fenchel convex
conjugate is defined as follows:

gy)= swp {y"x-g(x}
xEdom(g)

where the domain of g is defined as dom(g) = {x € R? : g(x) # +00}.

L]
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Fenchel conjugate

A0, -9 ()

> For a given direction y € R?, g*(y) is the maximum gap between the linear
function x Ty (dotted line) and g(x).

> Given z* € argmaxyegom(g) {yTx — g(x)}, 2* will lie on the convex envelope.

> ¢g* may be seen as minus the intercept of the tangent to the graph of g with
slope y; i.e., the line xTy — ¢g*(y).

> By definition of conjugation, g is always above the lines xTy — g*(y),Vy € RP.

(L]
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Fenchel conjugate

Definition (Fenchel conjugate)

Let g : R? — RU {+o0} be a proper function (non-empty domain), its fenchel convex
conjugate is defined as follows:

)= suwp {y"x-g(x)}
xE€dom(g)

where the domain of g is defined as dom(g) = {x € R? : g(x) # +o0}.

Properties of conjugation [8]:
> As a pointwise supremum of linear functions, g* is always convex and I.s.c, even
if g is not.
> If g is convex and |.s.c itself, then its biconjugate is equal to g; g** = g.

> The biconjugate g** is the /.s.c convex envelope of g; i.e., the largest |.s.c convex
lower bound on g.
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Example: Tight convex relaxation of sparsity

The convex envelope of the £p-"“"norm”, over the unit £--ball, is the £1-norm.

Proof:
1. Compute the conjugate || - ||§ of the £o-"norm”, for all
y € RP:
Iyllg = sup x"y—|lyllo
[x]loo <1
= sup sup xTyfILTs

s€{0,1}P  Ixlloc <1
lsupp(x) = ¢

max |y|Ts—1Ts
s€{0,1}7

> lwil

lyi|>1

S S
Hard Thresholding
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ICLHEI]  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 32 -ﬂ Hu




Example: Tight convex relaxation of sparsity

The convex envelope of the £p-"“norm”, over the unit £-c-ball, is the £1-norm.
Proof:

1 ”y”S = E|yi‘>1 |yz|

2. Compute the conjugate || - [|§* of || - ||§, for all x € R? such that [|x|loc < 1:

Il = sup x"y — [lylls
yERP
= sup x"y — Z |yi
ERP
Y lyi|>1
p
= lal = Ixls
=1

How do we compute the biconjugate of structured sparsity models in general?
» Computing the conjugate of g(x) = F(supp(x)) is NP-Hard.

» Computing both the conjugate and the biconjugate of g becomes tractable, if F
is submodular, or linear over an integral polytope domain.

3 |
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Fenchel conjugate of structured sparsity models

Let F(s):{0,1}? — RU {400} be any set function, then

9*(y) = sup x"y— F(supp(x))
lIxlloo <1
= sup sup xTy — F(s)
s€{0,1}? ix[lcc <1
Lsupp(x) = ¢

T
ax S — S
L lyl F(s)

The Fenchel conjugate of general structured sparsity models is a discrete optimization
problem which, in general, is NP-Hard.
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Fenchel conjugate of submodular structured sparsity models

Let F(s):{0,1}? — RU {400} be a submodular function,

g*(y)= sup x"y— F(supp(x))

lIxlloo<1
= max |y|Ts— F(s)
s€{0,1}P

. T
= min - s+ F(s
min —lyl"s+ F(s)

The Fenchel conjugate of submodular structured sparsity models is a submodular
minimization problem, and hence is tractable.

L]
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Biconjugate of submodular structured sparsity models

Let F(s):{0,1}? — RU {400} be a submodular function,

g*(y) = max |y|Ts— F(s)
s€{0,1}P

= max_|y|Ts— Fy(s)
s€[0,1]P

where F, is the Lovasz extension of F.

Recall from Lecture 2:
> The Lovasz extension of F(s) = —|y|Ts,Vs € {0,1}7 is
Fi(s) = —ly| s, Vs € [0, 1]7.
» The Lovasz extension of F(s) = —|y|Ts+ F(s) is F(s) = —|y|Ts + F1(s).

> minge 0,130 F(s) = minge (o170 F(s)

-
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Biconjugate of submodular structured sparsity models

Let F(s): {0,1}? — RU {400} be a submodular function,

max |y|Ts— F(s)

I (Y) s€{0,1}»

max_|y|Ts — Fy(s)
s€[0,1]P

where Fj, is the Lovasz extension of F.

Theorem ([2])

Given a monotone submodular function F', the biconjugate of g(x) = F(supp(x)) is
given by Fr(|x|),Vx € [—1,1]P.

Example (Sparsity)

Given the modular function F(s) = 17's, the biconjugate of g(x) = ||x||o is FL(|x]).
Recall from lecture 2 that F(s) = 17s, thus ¢**(z) = 17 |x| = ||x|1.
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Fenchel conjugate of TU structured sparsity models

Let F(s) : {0,1}? — RU {+o0} be a linear function over an integral polytope.

In particular, let F(s) = eTs+ t{Ms<c}(8) where e € RP,c € Z% and M € R®*P is a
totally unimodular (TU) matrix.

g (y) = ” iupquy — F(supp(x))
Xl oo

max |y|Ts— F(s)
s€{0,1}P

T
= max s—els: Ms<c
se{om{ly\ }

max {|Y| s—els: Ms< c} (cf., Lecture 2)
s€[0,1]P

The Fenchel conjugate of TU structured sparsity models is a linear program, and
hence is tractable.

-
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Biconjugate of TU structured sparsity models
Let F(s) = eTs+ t{Ms<c}(8) where e € RP,c € z% and M € R®*P is a TU matrix.

g*(y) = max {ly|Ts—eTs: Ms<c}
(CRIK

Theorem ([4])
Given F(s) = eTs+ t{Ms<c}(8), the biconjugate of g(x) = F(supp(x)),
Vx € [—1,1]? is given by:

g*(x) = min {eTs: Ms<c,s>|x|}
s€[0,1]P

if s € [0, 1]P such that M's < c, s > |x|, and infinity otherwise.

Example (Sparsity)
Given the function F(s) = 17s, the biconjugate of g(x) = ||x||o is given by:

g"*(x) = min {17s:s> x|} =17|x| = [Ix|
sel0,1]P
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Example of TU structure: Tree sparsity

Wavelet coefficients Wavelet tree Valid selection of nodes Invalid selection of nodes

We seek the sparsest signal with a rooted connected tree support. [3]

Objective: [x[lo =17Ts st Tguppx) = 8

Linear constraint: A valid support satisfy Sparent > Schild over tree T

1-1 0 O
T1, =Ts>0 01 -10

supp (x) — 01 o0
. . L . T=|{oo o 1
where T is the directed edge-node incidence matrix. 00 o 1
Recall that any directed edge-node incidence matrix is TU. 00 0 0
0 0 0 0
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Example of TU structure: Tree sparsity

Wavelet coefficients Wavelet tree Valid selection of nodes Invalid selection of nodes
We seek the sparsest signal with a rooted connected tree support. [3]

Objective: [x[lo =17Ts st Tguppx) = 8

Linear constraint: A valid support satisfy Sparent > Schild over tree T

1-1 0 O 0O 0 0O 0
— 01 -10 0 000 0
‘ Tﬂsupp(x) T TSZO ‘ 0 1 0O -1 0 0 0O 0
. . L . T=|oo o 1 -1000 o0
where T is the directed edge-node incidence matrix.
0 0 0 1 0 —-10 0 0
Recall that any directed edge-node incidence matrix is TU. 00 0 0 0 01-10
0 0 0 0 0 10 —1

Biconjugate: Tractable! del"’/l [|zg ]| oo

This is known as the hierarchical group lasso [10, 6].
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Example of TU structure: Tree sparsity

We seek the sparsest signal with a rooted connected tree support. [3]

Objective: [x[lo =175 st. Tguppx) = 8

Linear constraint: A valid support satisfy Sparent > Schilg over tree T

1-10 0 0 000 0
01 -10 0 000 0O
‘ Tlsupp(x) == Ts 20 ‘ 01 0-10 000 0
. . . . T=]oo o 1 -1000 0

where T is the directed edge-node incidence matrix.
00 0 1 0 —-100 0
Recall that any directed edge-node incidence matrix is TU. 00 0 0 0 01-10
0Oo0o O 0O o o010 -1

Biconjugate: Tractable! del"w l7g |l oo

This is known as the hierarchical group lasso [10, 6].
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Example of submodular structure: Tree sparsity

Tree sparsity can be enforced by a submodular function too:

F($)= Y Tonse(S)

Geby

Recall that F' is submodular, and its Lovasz extension F(s) = ZGGW)H maxge G Sk-

g7 e) = Fr(x) = ) maxlay = ) flagloe

Geby Geby
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Tree sparsity example: 1:100-compressive sensing [9, 1]

World [1Gpix] Lac Léman World [10Mpix]

sparse

tree-sparse

PNSR = 31.83db PNSR = 32.48db

PSNR: Peak signal-to-noise ratio
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