Advanced Topics in Data Sciences

Prof. Volkan Cevher volkan.cevher@epfl.ch
Lecture 3: Structured sparsity
Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-731 (Spring 2016)

FN NF
erc (fifl

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- This lecture

1. Review of compressive sensing problem
2. Overview of structured sparsity
3. Convex relaxation
4. Fenchel conjugate
5. Examples

Recommended Reading

- Structured sparsity-inducing norms through submodular functions, Bach, 2010.
- A totally unimodular view of structured sparsity, El Halabi and Cevher, 2015.

Signal recovery from linear measurements

Problem statement

Recover an accurate estimate $\hat{\mathbf{x}}$ of a signal $\mathbf{x}^{\natural} \in \mathbb{C}^{p}$, in the sense $\left\|\hat{\mathbf{x}}-\mathbf{x}^{\natural}\right\| \leq \epsilon$, from a set of linear measurements

$$
\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}
$$

where $\mathbf{A} \in \mathbb{C}^{n \times p}$ is a known measurement matrix, and $\mathbf{w} \in \mathbb{C}^{n \times 1}$ an unknown noise.

Signal recovery from linear measurements

Problem statement

Recover an accurate estimate $\hat{\mathbf{x}}$ of a signal $\mathbf{x}^{\natural} \in \mathbb{C}^{p}$, in the sense $\left\|\hat{\mathbf{x}}-\mathbf{x}^{\natural}\right\| \leq \epsilon$, from a set of linear measurements

$$
\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}
$$

where $\mathbf{A} \in \mathbb{C}^{n \times p}$ is a known measurement matrix, and $\mathbf{w} \in \mathbb{C}^{n \times 1}$ an unknown noise.

The following problem is fundamental in signal processing, machine learning, and many other areas.

- Image compression
- Medical resonance imaging (MRI)
- Communications
- Linear regression

Signal recovery from linear measurements

Problem statement

Recover an accurate estimate $\hat{\mathbf{x}}$ of a signal $\mathbf{x}^{\natural} \in \mathbb{C}^{p}$, in the sense $\left\|\hat{\mathbf{x}}-\mathbf{x}^{\natural}\right\| \leq \epsilon$, from a set of linear measurements

$$
\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}
$$

where $\mathbf{A} \in \mathbb{C}^{n \times p}$ is a known measurement matrix, and $\mathbf{w} \in \mathbb{C}^{n \times 1}$ an unknown noise.

The following problem is fundamental in signal processing, machine learning, and many other areas.

- Image compression
- Medical resonance imaging (MRI)
- Communications
- Linear regression

Two regimes of interest:

- $n<p$ (underdetermined): Infinitely many solutions; impossible in general
- $n>p$ (overdetermined): Solvable using classical techniques such as least squares

Least-squares estimation in the linear model

Recall the least-squares (LS) estimator.

LS estimation in the linear model

The LS estimator for \mathbf{x}^{\natural} given \mathbf{A} and \mathbf{b} is defined as

$$
\hat{\mathbf{x}}_{\mathrm{LS}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}\right\} .
$$

- If \mathbf{A} has full column rank, $\hat{\mathbf{x}}_{\mathrm{LS}}=\mathbf{A}^{\dagger} \mathbf{b}$ is uniquely defined.
- In the case that $n<p$, A cannot have full column rank, and we can only conclude that $\hat{\mathbf{x}}_{\text {LS }} \in\left\{\mathbf{A}^{\dagger} \mathbf{b}+\mathbf{h}: \mathbf{h} \in \operatorname{null}(\mathbf{A})\right\}$.

Observation: The estimation error $\left\|\hat{\mathbf{x}}_{\mathrm{LS}}-\mathbf{x}^{\natural}\right\|_{2}$ can be arbitrarily large!

A candidate solution

- There are infinitely many solutions \mathbf{x} such that $\mathbf{b}=\mathbf{A x}$
- Suppose that $\mathbf{w}=0$ (i.e. no noise). Should we just choose the one $\hat{\mathbf{x}}_{\text {candidate }}$ with the smallest norm $\|\mathbf{x}\|_{2}$?

Unfortunately, this still fails when $n<p$

A candidate solution contd.

Proposition ([5])

Suppose that $\mathbf{A} \in \mathbb{R}^{n \times p}$ is a matrix of i.i.d. standard Gaussian random variables, and $\mathbf{w}=\mathbf{0}$. We have

$$
(1-\epsilon)\left(1-\frac{n}{p}\right)\left\|\mathbf{x}^{\natural}\right\|_{2}^{2} \leq\left\|\hat{\mathbf{x}}_{\text {candidate }}-\mathbf{x}^{\natural}\right\|_{2}^{2} \leq(1-\epsilon)^{-1}\left(1-\frac{n}{p}\right)\left\|\mathbf{x}^{\natural}\right\|_{2}^{2}
$$

with probability at least $1-2 \exp \left[-(1 / 4)(p-n) \epsilon^{2}\right]-2 \exp \left[-(1 / 4) p \epsilon^{2}\right]$, for all
$\epsilon>0$ and $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$.

Observation: The estimation error may not diminish unless n is very close to p.
Impact: It is impossible to estimate \mathbf{x}^{\natural} accurately using $\hat{\mathbf{x}}_{\text {candidate }}$ when $n \ll p$ even if $\mathbf{w}=\mathbf{0}$.

- The statistical error $\left\|\hat{\mathbf{x}}_{\text {candidate }}-\mathbf{x}^{\natural}\right\|_{2}^{2}$ can also be arbitrarily large when $\mathbf{w} \neq \mathbf{0}$. Hence, the solution is also not robust.
- We need additional information on x^{\natural} !

A natural signal model

Definition (s-sparse vector)

A vector $\boldsymbol{\alpha} \in \mathbb{R}^{p}$ is s-sparse if it has at most s non-zero entries.

Sparse representations

$\boldsymbol{\alpha}^{\natural}$: sparse transform coefficients

- Basis representations $\boldsymbol{\Phi} \in \mathbb{R}^{p \times p}$
- Wavelets, DCT, ...
- Frame representations $\boldsymbol{\Phi} \in \mathbb{R}^{m \times p}, m>p$
- Gabor, curvelets, shearlets, ...
- Other dictionary representations...

Sparse representations strike back!

- $\mathbf{b} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{n \times p}$, and $n<p$

Sparse representations strike back!

- $\mathbf{b} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{n \times p}$, and $n<p$
- $\boldsymbol{\Psi} \in \mathbb{R}^{p \times p}, \boldsymbol{\alpha}^{\natural} \in \mathbb{R}^{p}$, and $\left\|\boldsymbol{\alpha}^{\natural}\right\|_{0} \leq s<n$

Sparse representations strike back!

- $\mathbf{b} \in \mathbb{R}^{n}, \tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}$, and $\boldsymbol{\alpha}^{\natural} \in \mathbb{R}^{p}$, and $\left\|\boldsymbol{\alpha}^{\natural}\right\|_{0} \leq s<n<p$

Sparse representations strike back!

A fundamental impact:

The matrix $\tilde{\mathbf{A}}$ effectively becomes overcomplete.
We could easily solve for $\boldsymbol{\alpha}^{\natural}$ (and hence \mathbf{x}^{\natural}) if we knew the location of the non-zero entries of \mathbf{x}^{\natural}.

Sparse recovery

Sparse estimators

$$
\begin{gather*}
\hat{\mathbf{x}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{0}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq\|\mathbf{w}\|_{2}\right\} \tag{0}\\
\hat{\mathbf{x}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\|\mathbf{b}-\mathbf{A x}\|_{2}+\rho\|\mathbf{x}\|_{0} \tag{0}
\end{gather*}
$$

where $\|\mathbf{x}\|_{0}:=\mathbb{1}^{T} s, s=\mathbb{1}_{\operatorname{supp}(\mathbf{x})}, \operatorname{supp}(\mathbf{x})=\left\{i \mid x_{i} \neq 0\right\}$.

$$
\|\mathbf{x}\|_{0} \text { over the unit } \ell_{\infty} \text {-ball }
$$

Sparse estimators characteristics:

- Sample complexity: $\mathcal{O}(s)$
- Computational effort: NP-Hard
- Not robust to noise.

Convex relaxation of sparse recovery

Convex sparse estimators

Basis pursuit (BP):

$$
\begin{equation*}
\hat{\mathbf{x}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{1}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq\|\mathbf{w}\|_{2}\right\} \tag{BP}
\end{equation*}
$$

Least absolute shrinkage and selection operator (Lasso):

$$
\begin{equation*}
\hat{\mathbf{x}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}+\rho\|\mathbf{x}\|_{1} \tag{LASSO}
\end{equation*}
$$

where $\|\mathbf{x}\|_{1}:=\mathbb{1}^{T}|\mathbf{x}|$.
Convex estimators characteristics [7]:

- Sample complexity: $\mathcal{O}\left(s \log \left(\frac{p}{s}\right)\right)$
- Computational effort: Polynomial
- Robust to noise.

Why is $\|\mathbf{x}\|_{1}$ a good convex surrogate for $\|\mathbf{x}\|_{0}$?

Convex relaxation of sparse recovery

Convex sparse estimators

Basis pursuit (BP):

$$
\begin{equation*}
\hat{\mathbf{x}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{1}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq\|\mathbf{w}\|_{2}\right\} \tag{BP}
\end{equation*}
$$

Least absolute shrinkage and selection operator (Lasso):

$$
\begin{equation*}
\hat{\mathbf{x}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}+\rho\|\mathbf{x}\|_{1} \tag{LASSO}
\end{equation*}
$$

where $\|\mathbf{x}\|_{1}:=\mathbb{1}^{T}|\mathbf{x}|$.

Convex estimators characteristics [7]:

$$
\|\mathbf{x}\|_{1} \text { is the convex envelope of }\|\mathbf{x}\|_{0}
$$

- Sample complexity: $\mathcal{O}\left(s \log \left(\frac{p}{s}\right)\right)$
- Computational effort: Polynomial
- Robust to noise.

Convex relaxation:
Convex envelope is the largest convex lower bound.

A technicality: Restrict $\mathbf{x}^{\natural} \in[-1,1]^{p}$.

Beyond sparsity towards model-based or structured sparsity

- The following signals can look the same from a sparsity perspective!

Sparse image

Wavelet coefficients of a natural image

Spike train

Background substracted
image

- In reality, these signals have additional structures beyond the simple sparsity

Sparse image

Wavelet coefficients of a natural image

Spike train

Background substracted image

Beyond sparsity towards model-based or structured sparsity

Sparsity model: Union of all s-dimensional canonical subspaces.

Structured sparsity model: A particular union of $m_{s} s$-dimensional canonical subspaces.

Three upshots of structured sparsity: [3]

1. Reduced sample complexity: e.g., $\mathcal{O}\left(s \log \left(\frac{p}{s}\right)\right) \rightarrow \mathcal{O}(s)$ for tree-sparse signals ${ }^{1}$
2. Better noise robustness
3. Better interpretability
[^0]
Structured sparse recovery

We encode the structure over the support by $g(\mathbf{x})=F(\operatorname{supp}(\mathbf{x}))$

Structured sparsity estimators

$$
\begin{gathered}
\hat{\mathbf{x}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{F(\operatorname{supp}(\mathbf{x})):\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq\|\mathbf{w}\|_{2}\right\} \\
\hat{\mathbf{x}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\|\mathbf{b}-\mathbf{A x}\|_{2}+\rho F(\operatorname{supp}(\mathbf{x}))
\end{gathered}
$$

where $F(s):\{0,1\}^{p} \rightarrow \mathbb{R} \cup\{+\infty\}, \operatorname{supp}(\mathbf{x})=\left\{i \mid x_{i} \neq 0\right\}$.
Tractable \& stable recovery:
How to choose a good convex surrogate of g ?

1. Case by case heuristics
2. Convex envelope: given by the biconjugate of g, i.e., the fenchel conjugate of the fenchel conjugate of g.

Lower semi-continuity

Definition

A function $f: \mathbb{R}^{p} \rightarrow \mathbb{R} \cup\{+\infty\}$ is lower semi-continuous (I.s.c.), also called closed, if

$$
\liminf _{\mathbf{x} \rightarrow \mathbf{y}} f(\mathbf{x}) \geq f(\mathbf{y}), \text { for any } \mathbf{y} \in \operatorname{dom}(f)
$$

$$
f(x)= \begin{cases}e^{-x}, & \text { if } x<0 \\ +\infty, & \text { if } x \geq 0\end{cases}
$$

$$
f(x)= \begin{cases}e^{-x}, & \text { if } x \leq 0 \\ +\infty, & \text { if } x>0\end{cases}
$$

Lower semi-continuity

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is lower semi-continuous (I.s.c.) if

$$
\liminf _{\mathbf{x} \rightarrow \mathbf{y}} f(\mathbf{x}) \geq f(\mathbf{y}), \text { for any } \mathbf{y} \in \operatorname{dom}(f)
$$

- Rule of thumb: a lower semi-continuous function only jumps down.

- f is I.s.c iff its epigraph epi $f=\left\{(\mathbf{x}, \alpha): \mathbf{x} \in \mathbb{R}^{p}, \alpha \in \mathbb{R}, f(\mathbf{x}) \leq \alpha\right\}$ is a closed set.
- f is I.s.c iff all its sublevel sets $\left\{\mathbf{x} \in \mathbb{R}^{p}: f(\mathbf{x}) \leq \alpha\right\}$ are closed.

Fenchel conjugate

Definition (Fenchel conjugate)

Let $g: \mathbb{R}^{p} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper function (non-empty domain), its fenchel convex conjugate is defined as follows:

$$
g^{*}(\mathbf{y})=\sup _{\mathbf{x} \in \operatorname{dom}(g)}\left\{\mathbf{y}^{T} \mathbf{x}-g(\mathbf{x})\right\}
$$

where the domain of g is defined as $\operatorname{dom}(g)=\left\{\mathbf{x} \in \mathbb{R}^{p}: g(\mathbf{x}) \neq+\infty\right\}$.

Fenchel conjugate

- For a given direction $\mathbf{y} \in \mathbb{R}^{p}, g^{*}(\mathbf{y})$ is the maximum gap between the linear function $\mathbf{x}^{T} \mathbf{y}$ (dotted line) and $g(\mathbf{x})$.
- Given $x^{\star} \in \arg \max _{\mathbf{x} \in \operatorname{dom}(g)}\left\{\mathbf{y}^{T} \mathbf{x}-g(\mathbf{x})\right\}, x^{\star}$ will lie on the convex envelope.
- g^{*} may be seen as minus the intercept of the tangent to the graph of g with slope \mathbf{y}; i.e., the line $\mathbf{x}^{T} \mathbf{y}-g^{*}(\mathbf{y})$.
- By definition of conjugation, g is always above the lines $\mathbf{x}^{T} \mathbf{y}-g^{*}(\mathbf{y}), \forall \mathbf{y} \in \mathbb{R}^{p}$.

Fenchel conjugate

Definition (Fenchel conjugate)

Let $g: \mathbb{R}^{p} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper function (non-empty domain), its fenchel convex conjugate is defined as follows:

$$
g^{*}(\mathbf{y})=\sup _{\mathbf{x} \in \operatorname{dom}(g)}\left\{\mathbf{y}^{T} \mathbf{x}-g(\mathbf{x})\right\}
$$

where the domain of g is defined as $\operatorname{dom}(g)=\left\{\mathbf{x} \in \mathbb{R}^{p}: g(\mathbf{x}) \neq+\infty\right\}$.

Properties of conjugation [8]:

- As a pointwise supremum of linear functions, g^{*} is always convex and l.s.c, even if g is not.
- If g is convex and I.s.c itself, then its biconjugate is equal to $\mathrm{g} ; g^{* *}=g$.
- The biconjugate $g^{* *}$ is the I.s.c convex envelope of g; i.e., the largest I.s.c convex lower bound on g.

Example: Tight convex relaxation of sparsity

The convex envelope of the ℓ_{0}-"norm", over the unit ℓ_{∞}-ball, is the ℓ_{1}-norm.

Proof:

1. Compute the conjugate $\|\cdot\|_{0}^{*}$ of the ℓ_{0}-"norm", for all $\mathbf{y} \in \mathbb{R}^{p}$:

$$
\begin{aligned}
\|\mathbf{y}\|_{0}^{*} & =\sup _{\|\mathbf{x}\|_{\infty} \leq 1} \mathbf{x}^{T} \mathbf{y}-\|\mathbf{y}\|_{0} \\
& =\sup _{s \in\{0,1\}^{p}} \sup _{\substack{\|\mathbf{x}\| \infty}} \mathbf{1}_{\operatorname{supp}(\mathbf{x})}=s \\
& \mathbf{x}^{T} \mathbf{y}-\mathbb{1}^{T} \boldsymbol{s} \\
& =\max _{s \in\{0,1\}^{p}}|\mathbf{y}|^{T} s-\mathbb{1}^{T} s \\
& =\sum_{\left|y_{i}\right|>1}\left|y_{i}\right|
\end{aligned}
$$

Example: Tight convex relaxation of sparsity

The convex envelope of the ℓ_{0}-"norm", over the unit ℓ_{∞}-ball, is the ℓ_{1}-norm.
Proof:

1. $\|\mathbf{y}\|_{0}^{*}=\sum_{\left|y_{i}\right|>1}\left|y_{i}\right|$.
2. Compute the conjugate $\|\cdot\|_{0}^{* *}$ of $\|\cdot\|_{0}^{*}$, for all $\mathbf{x} \in \mathbb{R}^{p}$ such that $\|\mathbf{x}\|_{\infty} \leq 1$:

$$
\begin{aligned}
\|\mathbf{x}\|_{0}^{* *} & =\sup _{\mathbf{y} \in \mathbb{R}^{p}} \mathbf{x}^{T} \mathbf{y}-\|\mathbf{y}\|_{0}^{*} \\
& =\sup _{\mathbf{y} \in \mathbb{R}^{p}} \mathbf{x}^{T} \mathbf{y}-\sum_{\left|y_{i}\right|>1}\left|y_{i}\right| \\
& =\sum_{i=1}^{p}\left|x_{i}\right|=\|\mathbf{x}\|_{1}
\end{aligned}
$$

How do we compute the biconjugate of structured sparsity models in general?

- Computing the conjugate of $g(\mathbf{x})=F(\operatorname{supp}(\mathbf{x}))$ is NP-Hard.
- Computing both the conjugate and the biconjugate of g becomes tractable, if F is submodular, or linear over an integral polytope domain.

Fenchel conjugate of structured sparsity models

Let $F(s):\{0,1\}^{p} \rightarrow \mathbb{R} \cup\{+\infty\}$ be any set function, then

$$
\begin{aligned}
g^{*}(\mathbf{y}) & =\sup _{\|\mathbf{x}\|_{\infty} \leq 1} \mathbf{x}^{T} \mathbf{y}-F(\operatorname{supp}(\mathbf{x})) \\
& =\sup _{s \in\{0,1\}^{p}} \sup _{\substack{\|\mathbf{x}\|_{\infty} \leq 1 \\
\mathbb{1}_{\operatorname{supp}(\mathbf{x})}=s}} \mathbf{x}^{T} \mathbf{y}-F(s) \\
& =\max _{s \in\{0,1\}^{p}}|\mathbf{y}|^{T} s-F(s)
\end{aligned}
$$

The Fenchel conjugate of general structured sparsity models is a discrete optimization problem which, in general, is NP-Hard.

Fenchel conjugate of submodular structured sparsity models

Let $F(s):\{0,1\}^{p} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a submodular function,

$$
\begin{aligned}
g^{*}(\mathbf{y}) & =\sup _{\|\mathbf{x}\| \infty \leq 1} \mathbf{x}^{T} \mathbf{y}-F(\operatorname{supp}(\mathbf{x})) \\
& =\max _{s \in\{0,1\}^{p}}|\mathbf{y}|^{T} s-F(s) \\
& =\min _{s \in\{0,1\}^{p}}-|\mathbf{y}|^{T} s+F(s)
\end{aligned}
$$

The Fenchel conjugate of submodular structured sparsity models is a submodular minimization problem, and hence is tractable.

Biconjugate of submodular structured sparsity models

Let $F(s):\{0,1\}^{p} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a submodular function,

$$
\begin{aligned}
g^{*}(\mathbf{y}) & =\max _{s \in\{0,1\}^{p}}|\mathbf{y}|^{T} s-F(s) \\
& =\max _{s \in[0,1]^{p}}|\mathbf{y}|^{T} s-F_{L}(s)
\end{aligned}
$$

where F_{L} is the Lovász extension of F.
Recall from Lecture 2:

- The Lovász extension of $F(s)=-|\mathbf{y}|^{T} \boldsymbol{s}, \forall s \in\{0,1\}^{p}$ is $F_{L}(s)=-|\mathbf{y}|^{T} s, \forall s \in[0,1]^{p}$.
- The Lovász extension of $\tilde{F}(s)=-|\mathbf{y}|^{T} s+F(s)$ is $\tilde{F}_{L}(s)=-|\mathbf{y}|^{T} s+F_{L}(s)$.
- $\min _{s \in\{0,1\}^{p}} \tilde{F}(s)=\min _{s \in[0,1]^{p}} \tilde{F}_{L}(s)$

Biconjugate of submodular structured sparsity models

Let $F(s):\{0,1\}^{p} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a submodular function,

$$
\begin{aligned}
g^{*}(\mathbf{y}) & =\max _{s \in\{0,1\}^{p}}|\mathbf{y}|^{T} s-F(s) \\
& =\max _{s \in[0,1]^{p}}|\mathbf{y}|^{T} s-F_{L}(s)
\end{aligned}
$$

where F_{L} is the Lovász extension of F.

Theorem ([2])

Given a monotone submodular function F, the biconjugate of $g(\mathbf{x})=F(\operatorname{supp}(\mathbf{x}))$ is given by $F_{L}(|\mathbf{x}|), \forall \mathbf{x} \in[-1,1]^{p}$.

Example (Sparsity)

Given the modular function $F(s)=\mathbb{1}^{T} \boldsymbol{s}$, the biconjugate of $g(\mathbf{x})=\|\mathbf{x}\|_{0}$ is $F_{L}(|\mathbf{x}|)$. Recall from lecture 2 that $F_{L}(s)=\mathbb{1}^{T} s$, thus $g^{* *}(x)=\mathbb{1}^{T}|\mathbf{x}|=\|\mathbf{x}\|_{1}$.

Fenchel conjugate of TU structured sparsity models

Let $F(s):\{0,1\}^{p} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a linear function over an integral polytope.
In particular, let $F(s)=e^{T} s+\iota_{\{M s \leq \mathrm{c}\}}(s)$ where $e \in \mathbb{R}^{p}, \mathbf{c} \in \mathbb{Z}^{\ell}$ and $M \in \mathbb{R}^{\ell \times p}$ is a totally unimodular (TU) matrix.

$$
\begin{align*}
g^{*}(\mathbf{y}) & =\sup _{\|\mathbf{x}\| \infty \leq 1} \mathbf{x}^{T} \mathbf{y}-F(\operatorname{supp}(\mathbf{x})) \\
& =\max _{s \in\{0,1\}^{p}}|\mathbf{y}|^{T} s-F(s) \\
& =\max _{s \in\{0,1\}^{p}}\left\{|\mathbf{y}|^{T} s-\boldsymbol{e}^{T} s: M \boldsymbol{s} \leq \mathbf{c}\right\} \\
& =\max _{s \in[0,1]^{p}}\left\{|\mathbf{y}|^{T} s-\boldsymbol{e}^{T} \boldsymbol{s}: \mathbf{M} \boldsymbol{s} \leq \mathbf{c}\right\} \tag{cf.,Lecture2}
\end{align*}
$$

The Fenchel conjugate of TU structured sparsity models is a linear program, and hence is tractable.

Biconjugate of TU structured sparsity models

Let $F(s)=e^{T} s+\iota_{\{M s \leq \mathbf{c}\}}(s)$ where $e \in \mathbb{R}^{p}, \mathbf{c} \in \mathbb{Z}^{\ell}$ and $M \in \mathbb{R}^{\ell \times p}$ is a $T U$ matrix.

$$
g^{*}(\mathbf{y})=\max _{s \in[0,1]^{p}}\left\{|\mathbf{y}|^{T} s-e^{T} s: \mathbf{M} s \leq \mathbf{c}\right\}
$$

Theorem ([4])

Given $F(s)=e^{T} s+\iota_{\{M s \leq \mathbf{c}\}}(s)$, the biconjugate of $g(\mathbf{x})=F(\operatorname{supp}(\mathbf{x}))$, $\forall \mathbf{x} \in[-1,1]^{p}$ is given by:

$$
g^{* *}(\mathbf{x})=\min _{s \in[0,1]^{p}}\left\{\boldsymbol{e}^{T} \boldsymbol{s}: \boldsymbol{M} s \leq \mathbf{c}, \boldsymbol{s} \geq|\mathbf{x}|\right\}
$$

if $\exists s \in[0,1]^{p}$ such that $M s \leq \mathbf{c}, s \geq|\mathbf{x}|$, and infinity otherwise.

Example (Sparsity)

Given the function $F(s)=\mathbb{1}^{T} s$, the biconjugate of $g(\mathbf{x})=\|\mathbf{x}\|_{0}$ is given by:

$$
g^{* *}(\mathbf{x})=\min _{s \in[0,1]^{p}}\left\{\mathbb{1}^{T} s: s \geq|\mathbf{x}|\right\}=\mathbb{1}^{T}|\mathbf{x}|=\|\mathbf{x}\|_{1}
$$

Example of TU structure: Tree sparsity

Wavelet coefficients

Wavelet tree

Valid selection of nodes

Invalid selection of nodes

We seek the sparsest signal with a rooted connected tree support. [3]
Objective: $\|\mathbf{x}\|_{0} \equiv \mathbb{1}^{T} s$ s.t. $\mathbb{1}_{\operatorname{supp}(\mathbf{x})}=s$
Linear constraint: A valid support satisfy $s_{\text {parent }} \geq s_{\text {child }}$ over tree \mathcal{T}

$$
T \mathbb{1}_{\operatorname{supp}(\mathbf{x})}:=\boldsymbol{T} s \geq 0
$$

where \boldsymbol{T} is the directed edge-node incidence matrix.
Recall that any directed edge-node incidence matrix is $T U$.

$$
\boldsymbol{T}=\left[\begin{array}{ccccccccc}
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right]
$$

Example of TU structure: Tree sparsity

Wavelet coefficients

Wavelet tree

Valid selection of nodes

Invalid selection of nodes

We seek the sparsest signal with a rooted connected tree support. [3]
Objective: $\|\mathbf{x}\|_{0} \equiv \mathbb{1}^{T} s$ s.t. $\mathbb{1}_{\operatorname{supp}(\mathbf{x})}=s$
Linear constraint: A valid support satisfy $s_{\text {parent }} \geq s_{\text {child }}$ over tree \mathcal{T}

$$
T \mathbb{1}_{\operatorname{supp}(\mathbf{x})}:=\boldsymbol{T} s \geq 0
$$

where T is the directed edge-node incidence matrix.
Recall that any directed edge-node incidence matrix is $T U$.

$$
\boldsymbol{T}=\left[\begin{array}{ccccccccc}
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right]
$$

Biconjugate: Tractable! $\sum_{\mathcal{G} \in \mathfrak{G}_{H}}\left\|x_{\mathcal{G}}\right\|_{\infty}$
This is known as the hierarchical group lasso [10, 6].

Example of TU structure: Tree sparsity

$$
\mathfrak{W}_{H}=\{\{1,2,3\},\{2\},\{3\}\} \quad \text { valid selection of nodes }
$$

We seek the sparsest signal with a rooted connected tree support. [3]
Objective: $\|\mathbf{x}\|_{0} \equiv \mathbb{1}^{T} s$ s.t. $\mathbb{1}_{\operatorname{supp}(\mathbf{x})}=s$
Linear constraint: A valid support satisfy $s_{\text {parent }} \geq s_{\text {child }}$ over tree \mathcal{T}

$$
\boldsymbol{T} \mathbb{1}_{\operatorname{supp}(\mathbf{x})}:=\boldsymbol{T} s \geq 0
$$

where T is the directed edge-node incidence matrix.
Recall that any directed edge-node incidence matrix is $T U$.

$$
\boldsymbol{T}=\left[\begin{array}{ccccccccc}
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right]
$$

Biconjugate: Tractable! $\sum_{\mathcal{G} \in \mathfrak{G}_{H}}\left\|x_{\mathcal{G}}\right\|_{\infty}$
This is known as the hierarchical group lasso [10, 6].

Example of submodular structure: Tree sparsity

$$
\mathfrak{5}_{H}=\{\{1,2,3\},\{2\},\{3\}\} \quad \text { valid selection of nodes }
$$

Tree sparsity can be enforced by a submodular function too:

$$
F(S)=\sum_{G \in \mathfrak{G}_{H}} \mathbb{1}_{G \cap S \neq \emptyset}(S)
$$

Recall that F is submodular, and its Lovász extension $F_{L}(s)=\sum_{G \in \mathfrak{G}_{H}} \max _{k \in G} s_{k}$.

$$
g^{* *}(\mathbf{x})=F_{L}(|\mathbf{x}|)=\sum_{G \in \mathfrak{G}_{H}} \max _{k \in G}\left|x_{k}\right|=\sum_{\mathcal{G} \in \mathfrak{G}_{H}}\left\|x_{\mathcal{G}}\right\|_{\infty}
$$

Tree sparsity example: 1:100-compressive sensing [9, 1]

PSNR: Peak signal-to-noise ratio

References I

[1] Ben Adcock, Anders C. Hansen, Clarice Poon, and Bogdan Roman.
Breaking the coherence barrier: A new theory for compressed sensing. http://arxiv.org/abs/1302.0561, Feb. 2013.
[2] F. Bach.
Structured sparsity-inducing norms through submodular functions.
In NIPS, pages 118-126, 2010.
[3] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde.
Model-based compressive sensing.
Information Theory, IEEE Transactions on, 56(4):1982-2001, 2010.
[4] Marwa El Halabi and Volkan Cevher.
A totally unimodular view of structured sparsity.
In 18th Int. Conf. Artificial Intelligence and Statistics, 2015.
[5] Rémi Gribonval, Volkan Cevher, and Mike E. Davies.
Compressible distributions for high-dimensional statistics.
IEEE Trans. Inf. Theory, 58(8):5016-5034, 2012.
[6] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach.
Proximal methods for hierarchical sparse coding.
J. Mach. Learn. Res., 12:2297-2334, 2011.

References II

[7] Samet Oymak, Christos Thrampoulidis, and Babak Hassibi.
Simple bounds for noisy linear inverse problems with exact side information.
2013.
arXiv:1312.0641v2 [cs.IT].
[8] R.T. Rockafellar.
Convex analysis.
Princeton University Press (Princeton, NJ), 1970.
[9] Quoc Tran-Dinh and Volkan Cevher.
Constrained convex minimization via model-based excessive gap.
In Advances in Neural Information Processing Systems, pages 721-729, 2014.
[10] Peng Zhao, Guilherme Rocha, and Bin Yu.
Grouped and hierarchical model selection through composite absolute penalties.
Department of Statistics, UC Berkeley, Tech. Rep, 703, 2006.

[^0]: ${ }^{1}$ this was proved for a greedy method (CoSaMP). Convex methods in practice require similar number of samples.

