
Advanced Topics in Data Sciences

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 3: Structured sparsity
Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

EE-731 (Spring 2016)



License Information for Mathematics of Data Slides

I This work is released under a Creative Commons License with the following terms:
I Attribution

I The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

I Non-Commercial
I The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees may not use the work for commercial purposes – unless they get the licensor’s
permission.

I Share Alike
I The licensor permits others to distribute derivative works only under a license identical
to the one that governs the licensor’s work.

I Full Text of the License

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 32

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode


Outline

I This lecture
1. Review of compressive sensing problem
2. Overview of structured sparsity
3. Convex relaxation
4. Fenchel conjugate
5. Examples

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 32



Recommended Reading

I Structured sparsity-inducing norms through submodular functions, Bach, 2010.
I A totally unimodular view of structured sparsity, El Halabi and Cevher, 2015.
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Signal recovery from linear measurements

Problem statement
Recover an accurate estimate x̂ of a signal x\ ∈ Cp, in the sense ‖x̂− x\‖ ≤ ε, from a
set of linear measurements

b = Ax\ + w,

where A ∈ Cn×p is a known measurement matrix, and w ∈ Cn×1 an unknown noise.

The following problem is fundamental in signal processing, machine learning, and
many other areas.
I Image compression
I Medical resonance imaging (MRI)
I Communications
I Linear regression

Two regimes of interest:
I n < p (underdetermined): Infinitely many solutions; impossible in general
I n > p (overdetermined): Solvable using classical techniques such as least squares
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Least-squares estimation in the linear model

Recall the least-squares (LS) estimator.

LS estimation in the linear model
The LS estimator for x\ given A and b is defined as

x̂LS ∈ arg min
x∈Rp

{
‖b−Ax‖2

2
}
.

I If A has full column rank, x̂LS = A†b is uniquely defined.
I In the case that n < p, A cannot have full column rank, and we can only
conclude that x̂LS ∈

{
A†b + h : h ∈ null (A)

}
.

Observation: The estimation error
∥∥x̂LS − x\

∥∥
2
can be arbitrarily large!
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A candidate solution

I There are infinitely many solutions x such that b = Ax
I Suppose that w = 0 (i.e. no noise). Should we just choose the one x̂candidate
with the smallest norm ‖x‖2?

x\ + h, h 2 null(A)

x̂candidate

x\

Unfortunately, this still fails when n < p
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A candidate solution contd.

Proposition ([5])
Suppose that A ∈ Rn×p is a matrix of i.i.d. standard Gaussian random variables, and
w = 0. We have

(1− ε)
(

1−
n
p

)∥∥x\
∥∥2

2
≤
∥∥x̂candidate − x\

∥∥2
2
≤ (1− ε)−1

(
1−

n
p

)∥∥x\
∥∥2

2

with probability at least 1− 2 exp
[
−(1/4)(p − n)ε2

]
− 2 exp

[
−(1/4)pε2

]
, for all

ε > 0 and x\ ∈ Rp.

Observation: The estimation error may not diminish unless n is very close to p.

Impact: It is impossible to estimate x\ accurately using x̂candidate when n � p even
if w = 0.

I The statistical error
∥∥x̂candidate − x\

∥∥2
2
can also be arbitrarily large when w , 0.

Hence, the solution is also not robust.
I We need additional information on x\!
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A natural signal model

Definition (s-sparse vector)
A vector α ∈ Rp is s-sparse if it has at
most s non-zero entries.

Rp

x\

Sparse representations
α\: sparse transform coefficients

I Basis representations Φ ∈ Rp×p

I Wavelets, DCT, ...
I Frame representations

Φ ∈ Rm×p, m > p
I Gabor, curvelets, shearlets, ...

I Other dictionary representations...

= � ↵\x\
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Sparse representations strike back!

b x\A

I b ∈ Rn , A ∈ Rn×p, and n < p

A fundamental impact:
The matrix Ã effectively becomes overcomplete.
We could easily solve for α\ (and hence x\) if we knew the location of the non-zero
entries of x\.
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Sparse recovery

Sparse estimators

x̂ ∈ arg min
x∈Rp

{
‖x‖0 : ‖b−Ax‖2 ≤ ‖w‖2

}
(P0)

x̂ ∈ arg min
x∈Rp

‖b−Ax‖2 + ρ ‖x‖0 (P ′0)

where ‖x‖0 := 1T s, s = 1supp(x), supp(x) = {i|xi , 0}.

Sparse estimators characteristics:
I Sample complexity: O(s)
I Computational effort: NP-Hard
I Not robust to noise.

‖x‖0 over the unit `∞-ball
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Convex relaxation of sparse recovery

Convex sparse estimators
Basis pursuit (BP):

x̂ ∈ arg min
x∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ ‖w‖2

}
(BP)

Least absolute shrinkage and selection operator (Lasso):

x̂ ∈ arg min
x∈Rp

‖b−Ax‖2 + ρ ‖x‖1 (LASSO)

where ‖x‖1 := 1T |x|.

Convex estimators characteristics [7]:

I Sample complexity: O(s log( p
s ))

I Computational effort: Polynomial
I Robust to noise.

Convex relaxation:
Convex envelope is the largest convex
lower bound.

‖x‖1 is the convex envelope of ‖x‖0

A technicality: Restrict x\ ∈ [−1, 1]p.

Why is ‖x‖1 a good convex surrogate for ‖x‖0?
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Beyond sparsity towards model-based or structured sparsity

I The following signals can look the same from a sparsity perspective!

Sparse image Wavelet coefficients Spike train Background substracted
of a natural image image

I In reality, these signals have additional structures beyond the simple sparsity

�

Sparse image Wavelet coefficients Spike train Background substracted
of a natural image image

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 32



Beyond sparsity towards model-based or structured sparsity

Sparsity model: Union of all s-dimensional
canonical subspaces.

Structured sparsity model: A particular
union of ms s-dimensional canonical
subspaces.

Rp✓
p

s

◆

Rp

ms

Three upshots of structured sparsity: [3]

1. Reduced sample complexity: e.g., O(s log( p
s ))→ O(s) for tree-sparse signals 1

2. Better noise robustness
3. Better interpretability

1this was proved for a greedy method (CoSaMP). Convex methods in practice require similar number of samples.
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Structured sparse recovery

We encode the structure over the support by g(x) = F(supp(x))

Structured sparsity estimators

x̂ ∈ arg min
x∈Rp

{
F(supp(x)) : ‖b−Ax‖2 ≤ ‖w‖2

}
x̂ ∈ arg min

x∈Rp
‖b−Ax‖2 + ρF(supp(x))

where F(s) : {0, 1}p → R ∪ {+∞}, supp(x) = {i|xi , 0}.

Tractable & stable recovery:
How to choose a good convex surrogate of g?
1. Case by case heuristics
2. Convex envelope: given by the biconjugate of g, i.e., the fenchel conjugate of the

fenchel conjugate of g.
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Lower semi-continuity

Definition
A function f : Rp → R ∪ {+∞} is lower semi-continuous (l.s.c.), also called closed, if

lim inf
x→y

f (x) ≥ f (y), for any y ∈ dom(f ).

f (x) =
{

e−x , if x < 0
+∞, if x ≥ 0 f (x) =

{
e−x , if x ≤ 0
+∞, if x > 0
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Lower semi-continuity

Definition
A function f : Rn → R ∪ {+∞} is lower semi-continuous (l.s.c.) if

lim inf
x→y

f (x) ≥ f (y), for any y ∈ dom(f ).

I Rule of thumb: a lower semi-continuous function only jumps down.

f(x)

xx1 x2

l.s.c
not l.s.c

Monday, June 2, 14

I f is l.s.c iff its epigraph epif = {(x, α) : x ∈ Rp, α ∈ R, f (x) ≤ α} is a closed set.
I f is l.s.c iff all its sublevel sets {x ∈ Rp : f (x) ≤ α} are closed.
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Fenchel conjugate

Definition (Fenchel conjugate)
Let g : Rp → R ∪ {+∞} be a proper function (non-empty domain), its fenchel convex
conjugate is defined as follows:

g∗(y) = sup
x∈dom(g)

{
yT x− g(x)

}
where the domain of g is defined as dom(g) = {x ∈ Rp : g(x) , +∞}.
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Fenchel conjugate

xT y

x

g(x)

(0,�g⇤(y))

I For a given direction y ∈ Rp, g∗(y) is the maximum gap between the linear
function xT y (dotted line) and g(x).

I Given x? ∈ arg maxx∈dom(g)
{

yT x− g(x)
}
, x? will lie on the convex envelope.

I g∗ may be seen as minus the intercept of the tangent to the graph of g with
slope y; i.e., the line xT y− g∗(y).

I By definition of conjugation, g is always above the lines xT y− g∗(y), ∀y ∈ Rp.
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Fenchel conjugate

Definition (Fenchel conjugate)
Let g : Rp → R ∪ {+∞} be a proper function (non-empty domain), its fenchel convex
conjugate is defined as follows:

g∗(y) = sup
x∈dom(g)

{
yT x− g(x)

}
where the domain of g is defined as dom(g) = {x ∈ Rp : g(x) , +∞}.

Properties of conjugation [8]:
I As a pointwise supremum of linear functions, g∗ is always convex and l.s.c, even
if g is not.

I If g is convex and l.s.c itself, then its biconjugate is equal to g; g∗∗ = g.
I The biconjugate g∗∗ is the l.s.c convex envelope of g; i.e., the largest l.s.c convex
lower bound on g.
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Example: Tight convex relaxation of sparsity

The convex envelope of the `0-“norm”, over the unit `∞-ball, is the `1-norm.

Proof:
1. Compute the conjugate ‖ · ‖∗0 of the `0-“norm”, for all

y ∈ Rp:

‖y‖∗0 = sup
‖x‖∞≤1

xT y− ‖y‖0

= sup
s∈{0,1}p

sup
‖x‖∞ ≤ 1

1supp(x) = s

xT y− 1T s

= max
s∈{0,1}p

|y|T s − 1T s

=
∑
|yi |>1

|yi |
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Example: Tight convex relaxation of sparsity

The convex envelope of the `0-“norm”, over the unit `∞-ball, is the `1-norm.
Proof:
1. ‖y‖∗0 =

∑
|yi |>1 |yi |.

2. Compute the conjugate ‖ · ‖∗∗0 of ‖ · ‖∗0, for all x ∈ Rp such that ‖x‖∞ ≤ 1:

‖x‖∗∗0 = sup
y∈Rp

xT y− ‖y‖∗0

= sup
y∈Rp

xT y−
∑
|yi |>1

|yi |

=
p∑

i=1

|xi | = ‖x‖1

How do we compute the biconjugate of structured sparsity models in general?
I Computing the conjugate of g(x) = F(supp(x)) is NP-Hard.
I Computing both the conjugate and the biconjugate of g becomes tractable, if F
is submodular, or linear over an integral polytope domain.
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Fenchel conjugate of structured sparsity models

Let F(s) : {0, 1}p → R ∪ {+∞} be any set function, then

g∗(y) = sup
‖x‖∞≤1

xT y− F(supp(x))

= sup
s∈{0,1}p

sup
‖x‖∞ ≤ 1

1supp(x) = s

xT y− F(s)

= max
s∈{0,1}p

|y|T s − F(s)

The Fenchel conjugate of general structured sparsity models is a discrete optimization
problem which, in general, is NP-Hard.
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Fenchel conjugate of submodular structured sparsity models

Let F(s) : {0, 1}p → R ∪ {+∞} be a submodular function,

g∗(y) = sup
‖x‖∞≤1

xT y− F(supp(x))

= max
s∈{0,1}p

|y|T s − F(s)

= min
s∈{0,1}p

−|y|T s + F(s)

The Fenchel conjugate of submodular structured sparsity models is a submodular
minimization problem, and hence is tractable.
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Biconjugate of submodular structured sparsity models

Let F(s) : {0, 1}p → R ∪ {+∞} be a submodular function,

g∗(y) = max
s∈{0,1}p

|y|T s − F(s)

= max
s∈[0,1]p

|y|T s − FL(s)

where FL is the Lovász extension of F .

Recall from Lecture 2:
I The Lovász extension of F(s) = −|y|T s, ∀s ∈ {0, 1}p is

FL(s) = −|y|T s, ∀s ∈ [0, 1]p.
I The Lovász extension of F̃(s) = −|y|T s + F(s) is F̃L(s) = −|y|T s + FL(s).
I mins∈{0,1}p F̃(s) = mins∈[0,1]p F̃L(s)
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Biconjugate of submodular structured sparsity models

Let F(s) : {0, 1}p → R ∪ {+∞} be a submodular function,

g∗(y) = max
s∈{0,1}p

|y|T s − F(s)

= max
s∈[0,1]p

|y|T s − FL(s)

where FL is the Lovász extension of F .

Theorem ([2])
Given a monotone submodular function F , the biconjugate of g(x) = F(supp(x)) is
given by FL(|x|),∀x ∈ [−1, 1]p.

Example (Sparsity)
Given the modular function F(s) = 1T s, the biconjugate of g(x) = ‖x‖0 is FL(|x|).
Recall from lecture 2 that FL(s) = 1T s, thus g∗∗(x) = 1T |x| = ‖x‖1.
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Fenchel conjugate of TU structured sparsity models

Let F(s) : {0, 1}p → R ∪ {+∞} be a linear function over an integral polytope.

In particular, let F(s) = eT s + ι{Ms≤c}(s) where e ∈ Rp, c ∈ Z` and M ∈ R`×p is a
totally unimodular (TU) matrix.

g∗(y) = sup
‖x‖∞≤1

xT y− F(supp(x))

= max
s∈{0,1}p

|y|T s − F(s)

= max
s∈{0,1}p

{|y|T s − eT s : Ms ≤ c}

= max
s∈[0,1]p

{|y|T s − eT s : Ms ≤ c} (cf., Lecture 2)

The Fenchel conjugate of TU structured sparsity models is a linear program, and
hence is tractable.
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Biconjugate of TU structured sparsity models

Let F(s) = eT s + ι{Ms≤c}(s) where e ∈ Rp, c ∈ Z` and M ∈ R`×p is a TU matrix.

g∗(y) = max
s∈[0,1]p

{|y|T s − eT s : Ms ≤ c}

Theorem ([4])
Given F(s) = eT s + ι{Ms≤c}(s), the biconjugate of g(x) = F(supp(x)),
∀x ∈ [−1, 1]p is given by:

g∗∗(x) = min
s∈[0,1]p

{eT s : Ms ≤ c, s ≥ |x|}

if ∃s ∈ [0, 1]p such that Ms ≤ c, s ≥ |x|, and infinity otherwise.

Example (Sparsity)
Given the function F(s) = 1T s, the biconjugate of g(x) = ‖x‖0 is given by:

g∗∗(x) = min
s∈[0,1]p

{1T s : s ≥ |x|} = 1T |x| = ‖x‖1
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Example of TU structure: Tree sparsity

1

2

3 4

5 6

7

8 9

1

2

3 4

5 6

7

8 9

Wavelet coefficients Wavelet tree Valid selection of nodes Invalid selection of nodes

We seek the sparsest signal with a rooted connected tree support. [3]

Objective: ‖x‖0 ≡ 1T s s.t. 1supp(x) = s
Linear constraint: A valid support satisfy sparent ≥ schild over tree T

T1supp(x) := Ts ≥ 0

where T is the directed edge-node incidence matrix.
Recall that any directed edge-node incidence matrix is TU.

T =


1 −1 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0

0 0 0 1 −1 0 0 0 0

0 0 0 1 0 −1 0 0 0

0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 1 0 −1



Biconjugate: Tractable!
∑
G∈GH

‖xG‖∞
This is known as the hierarchical group lasso [10, 6].
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Example of TU structure: Tree sparsity
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0 0 0 1 −1 0 0 0 0

0 0 0 1 0 −1 0 0 0

0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 1 0 −1


Biconjugate: Tractable!

∑
G∈GH

‖xG‖∞
This is known as the hierarchical group lasso [10, 6].
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Example of submodular structure: Tree sparsity

1

2

3 4

5 6

7

8 9

GH = {{1, 2, 3}, {2}, {3}} valid selection of nodes

Tree sparsity can be enforced by a submodular function too:

F(S) =
∑

G∈GH

1G∩S,∅(S)

Recall that F is submodular, and its Lovász extension FL(s) =
∑

G∈GH
maxk∈G sk .

g∗∗(x) = FL(|x|) =
∑

G∈GH

max
k∈G
|xk | =

∑
G∈GH

‖xG‖∞
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Tree sparsity example: 1:100-compressive sensing [9, 1]

World [1Gpix] Lac Léman World [10Mpix]

sparse tree-sparse

PNSR = 31.83db PNSR = 32.48db

PSNR: Peak signal-to-noise ratio
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