Advanced Topics in Data Sciences

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 3: Structured sparsity

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-731 (Spring 2016)

License Information for Mathematics of Data Slides

- This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

This lecture

- 1. Review of compressive sensing problem
- 2. Overview of structured sparsity
- 3. Convex relaxation
- 4. Fenchel conjugate
- 5. Examples

Recommended Reading

- Structured sparsity-inducing norms through submodular functions, Bach, 2010.
- A totally unimodular view of structured sparsity, El Halabi and Cevher, 2015.

Signal recovery from linear measurements

Problem statement

Recover an accurate estimate $\hat{\mathbf{x}}$ of a signal $\mathbf{x}^{\natural} \in \mathbb{C}^{p}$, in the sense $\|\hat{\mathbf{x}} - \mathbf{x}^{\natural}\| \leq \epsilon$, from a set of linear measurements

$$\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w},$$

where $\mathbf{A} \in \mathbb{C}^{n \times p}$ is a *known* measurement matrix, and $\mathbf{w} \in \mathbb{C}^{n \times 1}$ an *unknown* noise.

Signal recovery from linear measurements

Problem statement

Recover an accurate estimate $\hat{\mathbf{x}}$ of a signal $\mathbf{x}^{\natural} \in \mathbb{C}^p$, in the sense $\|\hat{\mathbf{x}} - \mathbf{x}^{\natural}\| \leq \epsilon$, from a set of linear measurements

$$\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w},$$

where $\mathbf{A} \in \mathbb{C}^{n \times p}$ is a *known* measurement matrix, and $\mathbf{w} \in \mathbb{C}^{n \times 1}$ an *unknown* noise.

The following problem is fundamental in signal processing, machine learning, and many other areas.

- Image compression
- Medical resonance imaging (MRI)
- Communications
- Linear regression

Signal recovery from linear measurements

Problem statement

Recover an accurate estimate $\hat{\mathbf{x}}$ of a signal $\mathbf{x}^{\natural} \in \mathbb{C}^{p}$, in the sense $\|\hat{\mathbf{x}} - \mathbf{x}^{\natural}\| \leq \epsilon$, from a set of linear measurements

$$\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w},$$

where $\mathbf{A} \in \mathbb{C}^{n \times p}$ is a *known* measurement matrix, and $\mathbf{w} \in \mathbb{C}^{n \times 1}$ an *unknown* noise.

The following problem is fundamental in signal processing, machine learning, and many other areas.

- Image compression
- Medical resonance imaging (MRI)
- Communications
- Linear regression

Two regimes of interest:

- n < p (underdetermined): Infinitely many solutions; impossible in general
- n > p (overdetermined): Solvable using classical techniques such as least squares

lions@epfl

Least-squares estimation in the linear model

Recall the least-squares (LS) estimator.

LS estimation in the linear model The LS estimator for \mathbf{x}^{\natural} given A and b is defined as $\hat{\mathbf{x}}_{\text{LS}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} \right\}.$

- For the full column rank, $\hat{\mathbf{x}}_{LS} = \mathbf{A}^{\dagger}\mathbf{b}$ is uniquely defined.
- ► In the case that n < p, A cannot have full column rank, and we can only conclude that $\hat{\mathbf{x}}_{LS} \in \left\{ \mathbf{A}^{\dagger}\mathbf{b} + \mathbf{h} : \mathbf{h} \in \mathrm{null}(\mathbf{A}) \right\}$.

Observation: The estimation error $\|\hat{\mathbf{x}}_{LS} - \mathbf{x}^{\sharp}\|_2$ can be *arbitrarily large*!

lions@epfl

A candidate solution

- There are infinitely many solutions \mathbf{x} such that $\mathbf{b} = \mathbf{A}\mathbf{x}$
- Suppose that ${\bf w}=0$ (i.e. no noise). Should we just choose the one $\hat{\bf x}_{candidate}$ with the smallest norm $\|{\bf x}\|_2?$

Unfortunately, this still fails when n < p

A candidate solution contd.

Proposition ([5])

Suppose that $A \in \mathbb{R}^{n \times p}$ is a matrix of i.i.d. standard Gaussian random variables, and w = 0. We have

$$(1-\epsilon)\left(1-\frac{n}{p}\right)\left\|\mathbf{x}^{\sharp}\right\|_{2}^{2} \leq \left\|\hat{\mathbf{x}}_{\text{candidate}}-\mathbf{x}^{\sharp}\right\|_{2}^{2} \leq (1-\epsilon)^{-1}\left(1-\frac{n}{p}\right)\left\|\mathbf{x}^{\sharp}\right\|_{2}^{2}$$

It probability at least $1-2\exp\left[-(1/4)(p-n)\epsilon^{2}\right]-2\exp\left[-(1/4)p\epsilon^{2}\right]$, for all > 0 and $\mathbf{x}^{\sharp} \in \mathbb{R}^{p}$.

Observation: The estimation error may *not* diminish unless *n* is very close to *p*. **Impact:** It is impossible to estimate \mathbf{x}^{\natural} accurately using $\hat{\mathbf{x}}_{candidate}$ when $n \ll p$ even

if $\mathbf{w} = \mathbf{0}$.

wi e :

lions@epfl

- ► The statistical error $\|\hat{\mathbf{x}}_{candidate} \mathbf{x}^{\natural}\|_{2}^{2}$ can also be arbitrarily large when $\mathbf{w} \neq \mathbf{0}$. Hence, the solution is also not robust.
- We need additional information on x¹!

A natural signal model

Definition (*s*-sparse vector)

A vector $\boldsymbol{\alpha} \in \mathbb{R}^p$ is *s*-sparse if it has at most s non-zero entries.

 \mathbb{R}^{p}

Sparse representations

- α^{\natural} : *sparse* transform coefficients
 - Basis representations $\mathbf{\Phi} \in \mathbb{R}^{p imes p}$
 - Wavelets, DCT, ...
 - Frame representations $\mathbf{\Phi} \in \mathbb{R}^{m \times p}, \ m > p$
 - Gabor, curvelets, shearlets, ...
 - Other dictionary representations...

•
$$\mathbf{b} \in \mathbb{R}^n$$
, $\mathbf{A} \in \mathbb{R}^{n \times p}$, and $n < p$

- $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times p}$, and n < p
- $\Psi \in \mathbb{R}^{p imes p}$, $\pmb{lpha}^{
 atural} \in \mathbb{R}^{p}$, and $\|\pmb{lpha}^{
 atural}\|_{0} \leq s < n$

A fundamental impact:

The matrix $\tilde{\mathbf{A}}$ effectively becomes *overcomplete*.

We could easily solve for α^{\natural} (and hence x^{\natural}) if we knew *the location of the non-zero* entries of x^{\natural} .

Sparse recovery

Sparse estimators $\begin{aligned} \hat{\mathbf{x}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_0 : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \|\mathbf{w}\|_2 \right\} \qquad (\mathcal{P}_0) \\ \hat{\mathbf{x}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 + \rho \|\mathbf{x}\|_0 \qquad (\mathcal{P}'_0) \end{aligned}$ where $\|\mathbf{x}\|_0 := \mathbb{1}^T s$, $s = \mathbb{1}_{supp(\mathbf{x})}$, $supp(\mathbf{x}) = \{i | x_i \neq 0\}$.

 $\|\mathbf{x}\|_0$ over the unit ℓ_∞ -ball

Sparse estimators characteristics:

- Sample complexity: $\mathcal{O}(s)$
- Computational effort: NP-Hard
- Not robust to noise.

Convex relaxation of sparse recovery

Convex sparse estimators

Basis pursuit (BP):

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_1 : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \|\mathbf{w}\|_2 \right\}$$
(BP)

Least absolute shrinkage and selection operator (Lasso):

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^p} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 + \rho \|\mathbf{x}\|_1$$
(LASSO)

where $\|\mathbf{x}\|_1 := \mathbb{1}^T |\mathbf{x}|$.

Convex estimators characteristics [7]:

- Sample complexity: $\mathcal{O}(s \log(\frac{p}{s}))$
- Computational effort: Polynomial
- Robust to noise.

Why is $\|\mathbf{x}\|_1$ a good convex surrogate for $\|\mathbf{x}\|_0$?

lions@epfl

Convex relaxation of sparse recovery

Convex sparse estimators

Basis pursuit (BP):

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \|\mathbf{x}\|_1 : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 \le \|\mathbf{w}\|_2 \right\}$$
(BP)

Least absolute shrinkage and selection operator (Lasso):

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 + \rho \|\mathbf{x}\|_1$$
(LASSO)

where $\|\mathbf{x}\|_1 := \mathbb{1}^T |\mathbf{x}|$.

Convex estimators characteristics [7]:

- Sample complexity: $\mathcal{O}(s \log(\frac{p}{s}))$
- Computational effort: Polynomial
- Robust to noise.

Convex relaxation:

Convex envelope is the *largest* convex lower bound.

 $\|\mathbf{x}\|_1$ is the *convex envelope* of $\|\mathbf{x}\|_0$

A technicality: Restrict $\mathbf{x}^{\natural} \in [-1, 1]^{p}$.

Beyond sparsity towards model-based or *structured* sparsity

The following signals can look the same from a sparsity perspective!

Sparse image

Wavelet coefficients of a natural image

Spike train

Background substracted image

In reality, these signals have additional structures beyond the simple sparsity

Sparse image

Wavelet coefficients of a natural image

Spike train

Background substracted image

Beyond sparsity towards model-based or *structured* sparsity

Sparsity model: Union of *all s*-dimensional canonical subspaces.

Structured sparsity model: A *particular* union of m_s *s*-dimensional canonical subspaces.

Three upshots of structured sparsity: [3]

- 1. Reduced sample complexity: e.g., $\mathcal{O}(s \log(\frac{p}{s})) \to \mathcal{O}(s)$ for tree-sparse signals ¹
- 2. Better noise robustness
- 3. Better interpretability

lions@epfl

 1 this was proved for a greedy method (CoSaMP). Convex methods in practice require similar number of samples.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Structured sparse recovery

We encode the structure over the support by $g(\mathbf{x}) = F(\operatorname{supp}(\mathbf{x}))$

Structured sparsity estimators

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ F(\operatorname{supp}(\mathbf{x})) : \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2} \leq \|\mathbf{w}\|_{2} \right\}$$

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|_2 + \rho F(\operatorname{supp}(\mathbf{x}))$$

where $F(s): \{0,1\}^p \to \mathbb{R} \cup \{+\infty\}, \operatorname{supp}(\mathbf{x}) = \{i | x_i \neq 0\}.$

Tractable & stable recovery:

How to choose a good convex surrogate of g?

- 1. Case by case heuristics
- 2. *Convex envelope:* given by the *biconjugate* of *g*, i.e., the fenchel conjugate of the fenchel conjugate of *g*.

Lower semi-continuity

Definition

A function $f : \mathbb{R}^p \to \mathbb{R} \cup \{+\infty\}$ is lower semi-continuous (l.s.c.), also called closed, if

 $\liminf_{\mathbf{x} \to \mathbf{y}} f(\mathbf{x}) \geq f(\mathbf{y}), \ \text{ for any } \mathbf{y} \in \mathsf{dom}(f).$

Lower semi-continuity

Definition

```
A function f:\mathbb{R}^n\to\mathbb{R}\cup\{+\infty\} is lower semi-continuous (l.s.c.) if
```

```
\liminf_{\mathbf{x} \to \mathbf{y}} f(\mathbf{x}) \geq f(\mathbf{y}), \text{ for any } \mathbf{y} \in \mathsf{dom}(f).
```

• Rule of thumb: a lower semi-continuous function only jumps down.

- ▶ f is l.s.c iff its epigraph $epif = \{(\mathbf{x}, \alpha) : \mathbf{x} \in \mathbb{R}^p, \alpha \in \mathbb{R}, f(\mathbf{x}) \le \alpha\}$ is a *closed* set.
- f is l.s.c iff all its sublevel sets $\{\mathbf{x} \in \mathbb{R}^p : f(\mathbf{x}) \leq \alpha\}$ are *closed*.

lions@epfl

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Fenchel conjugate

Definition (Fenchel conjugate)

Let $g: \mathbb{R}^p \to \mathbb{R} \cup \{+\infty\}$ be a *proper* function (non-empty domain), its fenchel convex conjugate is defined as follows:

$$g^{*}(\mathbf{y}) = \sup_{\mathbf{x} \in \mathsf{dom}(g)} \left\{ \mathbf{y}^{T} \mathbf{x} - g(\mathbf{x}) \right\}$$

where the domain of g is defined as $dom(g) = \{ \mathbf{x} \in \mathbb{R}^p : g(\mathbf{x}) \neq +\infty \}.$

Fenchel conjugate

- For a given direction $\mathbf{y} \in \mathbb{R}^p$, $g^*(\mathbf{y})$ is the maximum gap between the linear function $\mathbf{x}^T \mathbf{y}$ (dotted line) and $g(\mathbf{x})$.
- Given $x^* \in \arg \max_{\mathbf{x} \in \mathsf{dom}(g)} \{ \mathbf{y}^T \mathbf{x} g(\mathbf{x}) \}$, x^* will lie on the convex envelope.
- ▶ g^* may be seen as minus the intercept of the tangent to the graph of g with slope y; i.e., the line $\mathbf{x}^T \mathbf{y} g^*(\mathbf{y})$.
- By definition of conjugation, g is always above the lines $\mathbf{x}^T \mathbf{y} g^*(\mathbf{y}), \forall \mathbf{y} \in \mathbb{R}^p$.

Fenchel conjugate

Definition (Fenchel conjugate)

Let $g: \mathbb{R}^p \to \mathbb{R} \cup \{+\infty\}$ be a *proper* function (non-empty domain), its fenchel convex conjugate is defined as follows:

$$g^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathsf{dom}(g)} \left\{ \mathbf{y}^T \mathbf{x} - g(\mathbf{x}) \right\}$$

where the domain of g is defined as $dom(g) = \{ \mathbf{x} \in \mathbb{R}^p : g(\mathbf{x}) \neq +\infty \}.$

Properties of conjugation [8]:

- As a pointwise supremum of linear functions, g^* is always *convex* and *l.s.c*, even if g is not.
- If g is convex and l.s.c itself, then its biconjugate is equal to g; $g^{**} = g$.
- The biconjugate g^{**} is the *l.s.c convex envelope* of g; i.e., the largest l.s.c convex lower bound on g.

Example: Tight convex relaxation of sparsity

The convex envelope of the ℓ_0 -"norm", over the unit ℓ_∞ -ball, is the ℓ_1 -norm.

Proof:

1. Compute the conjugate $\|\cdot\|_0^*$ of the $\ell_0\text{-"norm", for all }\mathbf{y}\in\mathbb{R}^p\text{:}$

$$\begin{split} \|\mathbf{y}\|_{0}^{*} &= \sup_{\|\mathbf{x}\|_{\infty} \leq 1} \mathbf{x}^{T} \mathbf{y} - \|\mathbf{y}\|_{0} \\ &= \sup_{s \in \{0,1\}^{p}} \sup_{\substack{\|\mathbf{x}\|_{\infty} \leq 1\\ \mathbf{1}_{supp}(\mathbf{x}) = s}} \mathbf{x}^{T} \mathbf{y} - \mathbb{1}^{T} s \\ &= \max_{s \in \{0,1\}^{p}} |\mathbf{y}|^{T} s - \mathbb{1}^{T} s \\ &= \sum_{|y_{i}| > 1} |y_{i}| \end{split}$$

Hard Thresholding

Example: Tight convex relaxation of sparsity

The convex envelope of the $\ell_0\text{-}"norm",$ over the unit $\ell_\infty\text{-ball},$ is the $\ell_1\text{-norm}.$ Proof:

- 1. $\|\mathbf{y}\|_0^* = \sum_{|y_i|>1} |y_i|.$
- 2. Compute the conjugate $\|\cdot\|_0^{**}$ of $\|\cdot\|_0^*$, for all $\mathbf{x} \in \mathbb{R}^p$ such that $\|\mathbf{x}\|_{\infty} \leq 1$:

$$\|\mathbf{x}\|_{0}^{**} = \sup_{\mathbf{y} \in \mathbb{R}^{p}} \mathbf{x}^{T} \mathbf{y} - \|\mathbf{y}\|_{0}^{*}$$
$$= \sup_{\mathbf{y} \in \mathbb{R}^{p}} \mathbf{x}^{T} \mathbf{y} - \sum_{|y_{i}| > 1} |y_{i}|$$
$$= \sum_{i=1}^{p} |x_{i}| = \|\mathbf{x}\|_{1}$$

How do we compute the biconjugate of structured sparsity models in general?

- Computing the conjugate of $g(\mathbf{x}) = F(\operatorname{supp}(\mathbf{x}))$ is *NP-Hard*.
- Computing both the conjugate and the biconjugate of g becomes tractable, if F is submodular, or linear over an integral polytope domain.

Fenchel conjugate of structured sparsity models

Let $F(s): \{0,1\}^p \to \mathbb{R} \cup \{+\infty\}$ be any set function, then

$$g^{*}(\mathbf{y}) = \sup_{\|\mathbf{x}\|_{\infty} \le 1} \mathbf{x}^{T} \mathbf{y} - F(\operatorname{supp}(\mathbf{x}))$$
$$= \sup_{s \in \{0,1\}^{p}} \sup_{\substack{\|\mathbf{x}\|_{\infty} \le 1\\ 1_{\operatorname{supp}(\mathbf{x})} = s}} \mathbf{x}^{T} \mathbf{y} - F(s)$$
$$= \max_{s \in \{0,1\}^{p}} |\mathbf{y}|^{T} s - F(s)$$

The Fenchel conjugate of general structured sparsity models is a discrete optimization problem which, in general, is *NP-Hard*.

lions@epfl

Fenchel conjugate of submodular structured sparsity models

Let $F(s): \{0,1\}^p \rightarrow \mathbb{R} \cup \{+\infty\}$ be a submodular function,

$$g^{*}(\mathbf{y}) = \sup_{\|\mathbf{x}\|_{\infty} \leq 1} \mathbf{x}^{T} \mathbf{y} - F(\operatorname{supp}(\mathbf{x}))$$
$$= \max_{s \in \{0,1\}^{p}} |\mathbf{y}|^{T} s - F(s)$$
$$= \min_{s \in \{0,1\}^{p}} - |\mathbf{y}|^{T} s + F(s)$$

The Fenchel conjugate of submodular structured sparsity models is a *submodular minimization* problem, and hence is tractable.

Biconjugate of submodular structured sparsity models

Let $F(s): \{0,1\}^p \to \mathbb{R} \cup \{+\infty\}$ be a submodular function,

$$g^{*}(\mathbf{y}) = \max_{s \in \{0,1\}^{p}} |\mathbf{y}|^{T} s - F(s)$$
$$= \max_{s \in [0,1]^{p}} |\mathbf{y}|^{T} s - F_{L}(s)$$

where F_L is the Lovász extension of F.

Recall from Lecture 2:

- ► The Lovász extension of $F(s) = -|\mathbf{y}|^T s, \forall s \in \{0, 1\}^p$ is $F_L(s) = -|\mathbf{y}|^T s, \forall s \in [0, 1]^p$.
- The Lovász extension of $\tilde{F}(s) = -|\mathbf{y}|^T s + F(s)$ is $\tilde{F}_L(s) = -|\mathbf{y}|^T s + F_L(s)$.
- $\min_{s \in \{0,1\}^p} \tilde{F}(s) = \min_{s \in [0,1]^p} \tilde{F}_L(s)$

Biconjugate of submodular structured sparsity models

Let $F(s): \{0,1\}^p \to \mathbb{R} \cup \{+\infty\}$ be a submodular function,

$$g^{*}(\mathbf{y}) = \max_{s \in \{0,1\}^{p}} |\mathbf{y}|^{T} s - F(s)$$
$$= \max_{s \in [0,1]^{p}} |\mathbf{y}|^{T} s - F_{L}(s)$$

where F_L is the Lovász extension of F.

Theorem ([2])

Given a monotone submodular function F, the biconjugate of $g(\mathbf{x}) = F(\operatorname{supp}(\mathbf{x}))$ is given by $F_L(|\mathbf{x}|), \forall \mathbf{x} \in [-1, 1]^p$.

Example (Sparsity)

Given the modular function $F(s) = \mathbb{1}^T s$, the biconjugate of $g(\mathbf{x}) = \|\mathbf{x}\|_0$ is $F_L(|\mathbf{x}|)$. Recall from lecture 2 that $F_L(s) = \mathbb{1}^T s$, thus $g^{**}(x) = \mathbb{1}^T |\mathbf{x}| = \|\mathbf{x}\|_1$.

Fenchel conjugate of TU structured sparsity models

Let $F(s): \{0,1\}^p \to \mathbb{R} \cup \{+\infty\}$ be a *linear* function over an *integral* polytope.

In particular, let $F(s) = e^T s + \iota_{\{Ms \leq \mathbf{c}\}}(s)$ where $e \in \mathbb{R}^p, \mathbf{c} \in \mathbb{Z}^\ell$ and $M \in \mathbb{R}^{\ell \times p}$ is a totally unimodular (TU) matrix.

$$g^{*}(\mathbf{y}) = \sup_{\|\mathbf{x}\|_{\infty} \leq 1} \mathbf{x}^{T} \mathbf{y} - F(\operatorname{supp}(\mathbf{x}))$$
$$= \max_{s \in \{0,1\}^{p}} |\mathbf{y}|^{T} s - F(s)$$
$$= \max_{s \in \{0,1\}^{p}} \{ |\mathbf{y}|^{T} s - e^{T} s : Ms \leq \mathbf{c} \}$$
$$= \max_{s \in [0,1]^{p}} \{ |\mathbf{y}|^{T} s - e^{T} s : Ms \leq \mathbf{c} \}$$
(cf., Lecture 2)

The Fenchel conjugate of TU structured sparsity models is a *linear program*, and hence is tractable.

Biconjugate of TU structured sparsity models

Let
$$F(s) = e^T s + \iota_{\{Ms \leq \mathbf{c}\}}(s)$$
 where $e \in \mathbb{R}^p, \mathbf{c} \in \mathbb{Z}^\ell$ and $M \in \mathbb{R}^{\ell \times p}$ is a TU matrix.
$$g^*(\mathbf{y}) = \max_{s \in [0,1]^p} \{|\mathbf{y}|^T s - e^T s : Ms \leq \mathbf{c}\}$$

Theorem ([4]) Given $F(s) = e^T s + \iota_{\{Ms \leq c\}}(s)$, the biconjugate of $g(\mathbf{x}) = F(\operatorname{supp}(\mathbf{x}))$, $\forall \mathbf{x} \in [-1, 1]^p$ is given by:

$$g^{**}(\mathbf{x}) = \min_{s \in [0,1]^p} \{ e^T s : Ms \leq \mathbf{c}, s \geq |\mathbf{x}| \}$$

if $\exists s \in [0,1]^p$ such that $Ms \leq \mathbf{c}, s \geq |\mathbf{x}|$, and infinity otherwise.

Example (Sparsity)

Given the function $F(s) = \mathbb{1}^T s$, the biconjugate of $g(\mathbf{x}) = ||\mathbf{x}||_0$ is given by:

$$g^{**}(\mathbf{x}) = \min_{s \in [0,1]^p} \{ \mathbb{1}^T s : s \ge |\mathbf{x}| \} = \mathbb{1}^T |\mathbf{x}| = \|\mathbf{x}\|_1$$

Example of TU structure: Tree sparsity

We seek the sparsest signal with a rooted connected tree support. [3]

Objective: $\|\mathbf{x}\|_0 \equiv \mathbb{1}^T s$ s.t. $\mathbb{1}_{supp}(\mathbf{x}) = s$ Linear constraint: A valid support satisfy $s_{parent} \ge s_{child}$ over tree \mathcal{T}

$$T\mathbb{1}_{\mathrm{supp}(\mathbf{x})} := Ts \ge 0$$

where T is the directed edge-node incidence matrix. Recall that *any* directed edge-node incidence matrix is TU.

	[1	-1	0	0	0	0	0	0	0
	0	1	-1	0	0	0	0	0	0
	0	1	0	-1	0	0	0	0	0
T =	0	0	0	1	-1	0	0	0	0
	0	0	0	1	0	-1	0	0	0
	0	0	0	0	0	0	1	-1	0
	0	0	0	0	0	0	1	0	-1

Example of TU structure: Tree sparsity

We seek the sparsest signal with a rooted connected tree support. [3]

 $\begin{array}{lll} \textbf{Objective:} & \|\mathbf{x}\|_0 \equiv \mathbbm{1}^T s & \text{s.t.} & \mathbbm{1}_{\mathrm{supp}(\mathbf{x})} = s \\ \textbf{Linear constraint:} & \textbf{A valid} \text{ support satisfy } s_{\mathsf{parent}} \geq s_{\mathsf{child}} \text{ over tree } \mathcal{T} \end{array}$

$$T\mathbb{1}_{\mathrm{supp}(\mathbf{x})} := Ts \ge 0$$

where T is the directed edge-node incidence matrix. Recall that *any* directed edge-node incidence matrix is TU.

Biconjugate: Tractable! $\sum_{\mathcal{G} \in \mathfrak{G}_H} \|x_{\mathcal{G}}\|_{\infty}$

This is known as the hierarchical group lasso [10, 6].

Example of TU structure: Tree sparsity

We seek the sparsest signal with a rooted connected tree support. [3]

Objective: $\|\mathbf{x}\|_0 \equiv \mathbb{1}^T s$ s.t. $\mathbb{1}_{supp(\mathbf{x})} = s$ Linear constraint: A valid support satisfy $s_{parent} \ge s_{child}$ over tree \mathcal{T}

$$T\mathbb{1}_{\mathrm{supp}(\mathbf{x})} := Ts \ge 0$$

where T is the directed edge-node incidence matrix. Recall that *any* directed edge-node incidence matrix is TU.

Biconjugate: Tractable! $\sum_{\mathcal{G} \in \mathfrak{G}_{H}} \|x_{\mathcal{G}}\|_{\infty}$

This is known as the hierarchical group lasso [10, 6].

	1	-1	0	0	0	0	0	0	0
	0	1	-1	0	0	0	0	0	0
	0	1	0	-1	0	0	0	0	0
T =	0	0	0	1	-1	0	0	0	0
	0	0	0	1	0	-1	0	0	0
	0	0	0	0	0	0	1	-1	0
	0	0	0	0	0	0	1	0	-1

lions@epfl

Example of submodular structure: Tree sparsity

Tree sparsity can be enforced by a submodular function too:

$$F(S) = \sum_{G \in \mathfrak{G}_H} \mathbb{1}_{G \cap S \neq \emptyset}(S)$$

Recall that F is submodular, and its Lovász extension $F_L(s) = \sum_{G \in \mathfrak{G}_H} \max_{k \in G} s_k$.

$$g^{**}(\mathbf{x}) = F_L(|\mathbf{x}|) = \sum_{G \in \mathfrak{G}_H} \max_{k \in G} |x_k| = \sum_{\mathcal{G} \in \mathfrak{G}_H} \|x_{\mathcal{G}}\|_{\infty}$$

lions@epfl

Tree sparsity example: 1:100-compressive sensing [9, 1]

PSNR: Peak signal-to-noise ratio

References |

 Ben Adcock, Anders C. Hansen, Clarice Poon, and Bogdan Roman. Breaking the coherence barrier: A new theory for compressed sensing. http://arxiv.org/abs/1302.0561, Feb. 2013.

[2] F. Bach.

Structured sparsity-inducing norms through submodular functions. In NIPS, pages 118–126, 2010.

- [3] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde. Model-based compressive sensing. Information Theory, IEEE Transactions on, 56(4):1982–2001, 2010.
- Marwa El Halabi and Volkan Cevher.
 A totally unimodular view of structured sparsity.
 In 18th Int. Conf. Artificial Intelligence and Statistics, 2015.
- [5] Rémi Gribonval, Volkan Cevher, and Mike E. Davies. Compressible distributions for high-dimensional statistics. *IEEE Trans. Inf. Theory*, 58(8):5016–5034, 2012.
- [6] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. J. Mach. Learn. Res., 12:2297–2334, 2011.

References II

[7] Samet Oymak, Christos Thrampoulidis, and Babak Hassibi.
 Simple bounds for noisy linear inverse problems with exact side information.
 2013.
 arXiv:1312.0641v2 [cs.IT].

- [8] R.T. Rockafellar. *Convex analysis.* Princeton University Press (Princeton, NJ), 1970.
- Quoc Tran-Dinh and Volkan Cevher. Constrained convex minimization via model-based excessive gap. In Advances in Neural Information Processing Systems, pages 721–729, 2014.

[10] Peng Zhao, Guilherme Rocha, and Bin Yu. Grouped and hierarchical model selection through composite absolute penalties. Department of Statistics, UC Berkeley, Tech. Rep, 703, 2006.

