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Recommended Reading

» Submodular function maximization, Krause and Golovin, 2012

> An analysis of approximations for maximizing submodular set functions,
Nemhauser, 1978

» Submodular functions and convexity, Lovasz, 1983

> Learning with submodular functions: A convex optimization perspective, Francis
Bach, 2013 (Sections 3 & 10).

v

Lecture 3: Convex analysis and complexity, Mathematics of Data: From Theory
to Computation, 2015.
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Submodular optimization

Recall the definition of submodular functions:

Definition (Submodularity)

A function f : 2V — R is said to be:
> submodular if, for all S C T C V and e € V\T, it holds A(e|S) > A(e|T);
> modular if it always holds that A(e|S) = A(e|T);

where

A(e]S) = f(SuU{e}) —£(5)

-
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Submodular optimization

Recall the definition of submodular functions:

Definition (Submodularity)

A function f : 2V — R is said to be:
> submodular if, for all S C T'C V and e € V\T, it holds A(e|S) > A(e|T);
> modular if it always holds that A(e|S) = A(e|T);

where

Alel8) = f(SU{e}) = f(5)

Several problems in theoretical computer science, game theory, machine learning and
learning-based CS (c.f., lecture 1) can be cast as a submodular optimization problem.

Problem (Submodular Optimization)

Given a submodular function f : 2V — R,

g’lelrllf(S) (SFMin) Igg}(f(S) (SFMax)

. )
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Submodular optimization

Several problems in theoretical computer science, game theory, machine learning and
learning-based CS (c.f., lecture 1) can be cast as a submodular optimization problem.

Problem (Submodular Optimization)

Given a submodular function f : 2V — R,
min f(.5) (SFMin) max f(5) (SFMax)
Sel Sel

In this lecture:
» For I =2V (unconstrained), SFMin can be solved in polynomial time, while
SFMax is NP-Hard?.
» For I = {5 :|S| <k}, and f monotone, SFMax admits a (1 — %)—approximation.
» For I =2V or I = {S:|S| < k}, and f modular, SFMax/SFMin is easy to solve.

> For I decribed by totally unimodular linear constraints, and f modular,
SFMax/SFMin, which in this case is an integer program (IP), can be solved by
linear programming (LP).

Lcannot be solved in polynomial time unless P = NP.

-
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Unconstrained submodular maximization is NP hard

Given a graph G(V, E), for any S C V, the graph cut function f(S) = |6(S)| denotes
the number of edges “cut" in the graph.

16(9)] = {(u,v) € E:ue S,ve VS

Problem (Max cut)

Find S C V such that the number of edges between S and the complementary subset
is as large as possible.

max |6(S)|

SCV

» Max Cut problem is NP-Hard.
» Graph cut function is submodular.
» Hence, SFMax is NP-Hard.

Unconstrained SFMax admits a 1/2-approximation algorithm [2] which is tight; a
(1/2 + €)-approximation requires exponentially many oracle calls [5].

. V
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Modular function maximization

While submodular maximization is hard, modular maximization is extremely easy.

Unconstrained modular maximization

Given constants ci,...,cy, € R,
max f(S) := ¢
ngf( ) g i
i€S

Optimal set S* contains the indices i for which ¢; > 0. This has complexity O(n).

Cardinality Constrained modular maximization

max g @5
|S|<k
€S
Optimal set S* contains the indices 7, among the k largest values of c;, for which

¢; > 0. This can be done by sorting, in O(nlogn), or by Quickselect randomized
algorithm in ©(n) expected time [4].

-
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Submodular maximization in Learning-based CS

LB-CS: Problem statement

Given a set of m training signals x1,...,xm € CP, find an index set 2 of a given
cardinality n such that a related test signal x can reliably be recovered given the
subsampled measurement vector b = P ¥x.

Average energy criterion

Q= arg max i zm:z |<¢7:vxj>|2

Q:|Q=n T
1@1=n """ ea

This is a cardinality constrained modular maximization problem.

. V
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Submodular maximization in Learning-based CS

LB-CS: Problem statement

Given a set of m training signals x1,...,xm € CP, find an index set 2 of a given
cardinality n such that a related test signal x can reliably be recovered given the
subsampled measurement vector b = P ¥x.

Average energy criterion

O = argmax—ZZ| (1, %) 2

Q:|Q|=n
12| j=1 ieQ
This is a cardinality constrained modular maximization problem.
What about generalized case?

Generalized average energy criterion

Q—arg‘gr)r‘lix—z <Z| Y, X5)| )

i€Q

where g : R — R be an increasing concave function with g(0) = 0. This is a cardinality
constrained monotone submodular maximization problem.
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Cardinality constrained submodular maximization

Cardinality constrained monotone submodular function maximization is also NP-hard.

S* € argmax f(S)
[S|<k

Greedy algorithm [9]

1. Initialize Sp = 0

2. Fori=1,...,k
> Find e; = argmax,cy\g, A(elSi—1)
> Set S; = Si_1 U {e}

3. Return Sy

Theorem (Approximation achieved by greedy algorithm [9] )

For any monotone submodular function with f(0) = 0, after ¢ iterations of the greedy
algorithm, it holds that
F(Se) 2 (1= e=/M)f(8")

After k iterations, the greedy algorithm achieves a (1 — 1/¢)-approximation, which is
tight; no algorithm requiring a polynomial number of oracle calls has a better
performance [10].

. V
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Proof of greedy algorithm performance

We can assume w.l.o.g that |S*| = k, since by monotonicity of f adding elements can
only increase the function value. Let S* = {ef,e5,- -, e}, then for all 7 < £,

F(S*) < f(S*US;) by monotonicity

k
= f(Si) + Z A (e]’f\Si U{ef,e3, -, e;—l}) by telescoping sums
j=1

k
< f(S:)+ Z A (ej*\SZ-) by submodularity
j=1
k
< f(S:) + Z A (ei]S;) by definition of the greedy updates
j=1
< f(S0) + K (f(Sir1) — £(S0)) [S*] =k

-
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Proof of greedy algorithm performance

Let Af; := f(S*) = f(Si). Then, Afiyr < (1— 1) Afi,Vi< L.

¢

fsm - s < (1-1) £ (/) = 0)

< e kp(s%) (1—z<e % VzeR)

Rearranging terms yields £(.S;) > (1 — e~ /k)f(5*). o

» When ¢ = k, the above approximation factor becomes 1 — 1/e ~ 0.63

> Running the greedy algorithm for more than k iterations leads to a better
approximation factor, but still with respect to the k-optimal solution. E.g., for

Slide 11/ 26 i
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A related constrained submodular maximization problem

Two related questions:
> Given a fixed k € Z, if we choose k items greedily, how far away is f(S;) from the
optimal function value f(S}) for sets of size k?
> Given a fixed z € Z, z < f(V), if we now run the greedy algorithm until we reach
f(Se) > z, how wasteful is the size of S;, compared to the minimum sized set

achieving f(S) > z.

k= érém{\S\ : f(S) > 2} (Minimum submodular set cover)
cv

Theorem ([15])

Given a normalized (f(0) = 0) monotone submodular integer-valued function f and a
fixed z € Z,z < f(V). Let £ be smallest integer such that f(Sg) > z. Then

¢ < (1 +In E}rlea‘i(f({v})) k*

. V
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Unconstrained submodular minimization

We abuse notation by treating any set function f : 2" — R as a function over {0,1}"
too, where f(1g) = f(S). SFMin can then be equivalently written as:

min s
se{O,l}nf( )
Relax and round approach:
» Relax integer constraints {0,1}™ to [0, 1]™.
> Relax discrete objective f defined over {0,1}™ to a continuous extension f’
defined over [0,1]"; i.e., f'(s) = f(s),Vs € {0,1}".
» Choose a continuous function that can be minimized efficiently and is close to the
original function f.

Definition (Convex closure)

Given any set function f : {0,1}"™ — R, we define Vz € [0, 1] the convex closure of f
as:

f7(z)= min Zoagf(s JJ—ZaS]lS,ZaS—laS>O

aglo,1]2"
SCV SCv

Slide 13/ 26 e
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Lovasz extension

The convex closure f~ (z) = fr.(z) where f, is the Lovasz extension of f iff f is a
submodular function [14].

Definition (Lovéasz extension [7])

Given a normalized (f(@) = 0) set function f : {0,1}"™ — R, its Lovasz extension
fr, :[0,1]™ — R is defined Vs € [0, 1]™ as follows:

n

() =3 i (Fn -+ o 3kd) = Fin, e+ o dka D)

k=1

where sj; > 55, > - > 55,

Observations:

1.
. fr can be computed efficiently in O(nlogn).

0 N O O W N

lions@epfl

fr is an extension of f since f1(s) = f(s),Vs € {0,1}".

. For a fixed ordering of s, f1, is a linear function.

. For modular functions, f;, is a linear function.

. f1 is positively homogenous, i.e., fr(as) = afy(s), Va > 0.
. Let h=f+ g, then hy = fr, + g1

. f1, is a non-decreasing function if f is monotone.

. The Lovész extension has several equivalent definitions (c.f., [1]).

D/
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Lovasz extension

Theorem ([7])

Given a set function f and its Lovasz extension fr,, f1, is convex iff f is submodular.

Proof:
> If f is submodular, f;, = f~ is convex.

> If f1, is convex, then:
> The vector 1 sup + 1anp = 14 + 1 have entries equal to 2 on AN B, 1 on
AAB = A\ BU B\ A, and 0 outside of AU B.

> By definition of LE:
Jfu(Laus + Lanp) = 2(f(AN B) — f(0)) + L(f(AABU AN B) — f(AN B))
=f(ANnB)+ f(AUB)
> fu(La) = f(A) and fL(15) = f(B).
> fu(Laup +1anp) = fo(La +15) < fr(la) + fu(1p).
> It follows that f(A N B) 4+ f(AU B) < f(A) + f(B).

-
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Examples of Lovasz extensions

1. Let f(S) = |S|. fis a modular function. fr(s) =17s.
2. Let f(S) = Lgnsz0(S). fis a submodular function.

fu(s) =spljec+ splyec e+ + sl cc viee = max si,

where sj, > sjy 2 -0 2 5j,.
3. f(S) = Zce(ﬁ dc1gns.0(S), where dg > 0. f is a submodular function.

fr(s) = Z dg max si.

Ge®

L]

ICHHEI{l  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 26



Submodular functions can be minimized in polynomial time

Theorem (SFMin is equivalent to a convex problem)

Given a normalized submodular function f and its Lovasz extension fr,,

min  f(s) = min fp(z)
s€{0,1}" w€[0,1]

where any minimizer s* of the LHS is a minimizer of the RHS, and any minimizer z* of
the RHS, has all its thresholded sets {z* > 0},V0 € (0,1) as minimizers of the LHS.

Proof:
> Since {0,1}™ C [0, 1]™, then f(s*) > f1(z*
> We use an equivalent definition of the Lovasz extension [1]:

n—1

Z@M o DF W 0D + ) S(V)

2 Z(ch*k - LC]ZJrl)f(s*) + acjlf(s*) (%k ~ Tjpyq >0)

Z Zlef(S*)

> f(s") (since f(s*) < f(@) =0 and z;j; < 1)
where xjf‘l >0 > ;cj*n_

For the proof of the second claim, c.f., [1].
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Submodular functions can be minimized in polynomial time

Theorem (SFMin is equivalent to a convex problem)

Given a normalized submodular function f and its Lovasz extension fr,,

min  f(s) = min fp(z)
se{0,1}" w€[0,1]"

where any minimizer s* of the LHS is a minimizer of the RHS, and any minimizer z* of
the RHS, has all its thresholded sets {z* > 0},V0 € (0,1) as minimizers of the LHS.

The convex problem min,c(o, 1) f(%) can be solved for e.g., by the following
algorithms:

> Minimum norm point algorithm [3], O((n3EO + n3logn + n*)F?)
> Frank Wolfe algorithm [1], O((n® EO + n3logn)F?)
» Combinatorial algorithms, e.g., [11], O(n®EO + nS)

> Cutting plane method [6], O(n2log nF - EO + n?log®M) nF) and
O(n3log®n - EO + n*log®Mn)

where F':= max;{|f({¢})],|f(V) — f(V \ 9)|} and EO is the running time of the
evaluation oracle.

. V
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Integer linear programming

Integer linear program Ba

Many important discrete optimization problems
can be formulated as an integer linear program

BY € arg max {678 : MB < c} (IP)
BezZ™

NP-Hard (in general)

Convex Polyhedra
P={BIMB < c}
(BER™, ceR™)

Polytope: A bounded polyhedron

-
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Integer linear programming

Integer linear program

Many important discrete optimization problems
can be formulated as an integer linear program

B € arg max {078 : MB < ¢}
Bez™

NP-Hard (in general)

Relaxation: Linear program

B* € arg max {078 : M3 < ¢}
BER’!H

Obtains an upperbound

(1P)

Convex Polyhedra
P ={BIMB < c}
(BER™, ceR™)

(LP)

Polytope: A bounded polyhedron

3 |
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Integer linear programming

Integer linear program

Many important discrete optimization problems
can be formulated as an integer linear program

B ¢ arg max {678 : MB < ¢}
Bez™

NP-Hard (in general)

Relaxation: Linear program

B* € arg max {078 : M3 < ¢}
BER™

Obtains an upperbound

(1P)

B
Convex Polyhedra
P ={BIMB < c}
(LP) " Observation:
When every vertex of P is integral,

LP has integer optimal solutions.

3 |
N ail  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 26 LG




Integer linear programming

Integer linear program B2
Many important discrete optimization problems
can be formulated as an integer linear program

B € arg max {078 : MB < c} (IP) =

pezm MpB<c 073

NP-Hard (in general) o

B
Relaxation: Linear program Convex Polyhedra
P ={BIMB < c}
B* € arg ;éag’,f,,{eTﬁ tMB < c} (LP)  Observation:

When every vertex of P is integral,
Obtains an upperbound . . .
LP has integer optimal solutions.

> Interior point method performs O (\ﬁlog E]) iterations (I > m) with up to

O(m2l) operations, where € is the absolute solution accuracy, and [ is the
number of constraints.

. V
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A sufficient condition: Total unimodularity

Definition (Total unimodularity)

A matrix M € RX™ is totally unimodular (TU) iff the determinant of every square
submatrix of M is 0, or +1.

> Note that the entries of M are necessarily 0, 1.
> Verifying if a matrix is TU can be done in polynomial time [13].

Theorem (TU Polyhedron is integral)
The polyhedron P = {Mp < c} has integer vertices when M is TU and ¢ is an

integer vector.
Proof:

» Every vertex z is determined by a subsystem M’z = ¢’ where M’ is matrix of full
row rank.

> We can write M’ = [U, V] (up to some permutation of the coordinatres), where

det U = £1.
—1 .
> z is then given by z = {UO C}
> Cramer’s rule: U~1 = (:?:tjg where AdjU is the adjugate matrix of U.

i V
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A sufficient condition: Total unimodularity

Definition (Equivalent definition of TU [12, 8])

A matrix M is TU iff for every subset J of its columns, there exits a partition Jy, J2 of

J such that
1 My =) Myl <LVi=1,-- 1

JEN JEJ2

Operations that preserves TU [8]: If M is TU then,
1. The tranpose of M is TU.
2. (Ml)is TU.

3. Matrix after deleting a row (column) with at most one non-zero entry from M is
TU.

. Matrix after interchanging two rows (columns) in M is TU.
. Matrix after multiplying a row (column) from M by (—1) is TU.
. Matrix after duplicating rows (column) of M is TU.

~N o &

. Matrix after applying a pivot operation on M is TU.

. V
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Examples of TU matrices

1. Given a directed graph, let T be its edge-node incidence matrix, i.e., Ty; = 1 and
Ty; = —1iff ep = (4,7) is an edge in the graph. Then, T is TU.

2. Given an undirected bipartite graph, let E be its edge-node incidence matrix, i.e.,
T¢; =1 and Ty = 1iff ep = (4,7) is an edge in the graph. Then, E is TU.

3. Given an acyclic bipartite graph G(U, V, E), where the degree of any node in U
is at most 2. Let B be its biadjacency matrix, i.e., By =1iff i € U,j € V and
(t,4) € E. Then, Biis TU.

. V
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Example of an integer program with TU constraints

Problem (k-sparse projection)

Recall ||z||o = |supp(z)| where supp(z) = {i: z; # 0}. The projection of a vector
y € R™ over the set of k-sparse vectors is given by:

i e yl3 : llzllo < K}

ERM

= min min{ E (zi — yi)? +E y7 : supp(z) = S}
|S|<kzeRn

min {||z — yl3 < llzllo < k} = min 1 min {||z — y||3 : supp(z) = 5}
TE

i¢S
= min
= mit <k{z it
¢S
2
= [lyll5 — ‘rg‘ax{llsz E vi }
i¢S
= [lyll3 - ‘m‘ax{ E v}
- ies
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Example of an integer program with TU constraints

We can view maxg|<, ZieS y?

se{0,1} s€[0,1]

n n
max { siy? :17s < k} = max {Z siy? 175 <k}
i=1 i=1

Since matrix 17 is TU and k € Z.
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