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Outline

I This lecture
1. Submodular Function Maximization
2. Performance of the Greedy Algorithm
3. Submodular Function Minimization
4. Lovász extension
5. Interger programming
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Recommended Reading

I Submodular function maximization, Krause and Golovin, 2012
I An analysis of approximations for maximizing submodular set functions,
Nemhauser, 1978

I Submodular functions and convexity, Lovász, 1983
I Learning with submodular functions: A convex optimization perspective, Francis
Bach, 2013 (Sections 3 & 10).

I Lecture 3: Convex analysis and complexity, Mathematics of Data: From Theory
to Computation, 2015.
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Submodular optimization

Recall the definition of submodular functions:

Definition (Submodularity)
A function f : 2V → R is said to be:
I submodular if, for all S ⊆ T ⊆ V and e ∈ V\T , it holds ∆(e|S) ≥ ∆(e|T);
I modular if it always holds that ∆(e|S) = ∆(e|T);

where
∆(e|S) = f (S ∪ {e})− f (S)
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Submodular optimization

Recall the definition of submodular functions:

Definition (Submodularity)
A function f : 2V → R is said to be:
I submodular if, for all S ⊆ T ⊆ V and e ∈ V\T , it holds ∆(e|S) ≥ ∆(e|T);
I modular if it always holds that ∆(e|S) = ∆(e|T);

where
∆(e|S) = f (S ∪ {e})− f (S)

Several problems in theoretical computer science, game theory, machine learning and
learning-based CS (c.f., lecture 1) can be cast as a submodular optimization problem.

Problem (Submodular Optimization)
Given a submodular function f : 2V → R,

min
S∈I

f (S) (SFMin) max
S∈I

f (S) (SFMax)
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Submodular optimization

Several problems in theoretical computer science, game theory, machine learning and
learning-based CS (c.f., lecture 1) can be cast as a submodular optimization problem.

Problem (Submodular Optimization)
Given a submodular function f : 2V → R,

min
S∈I

f (S) (SFMin) max
S∈I

f (S) (SFMax)

In this lecture:
I For I = 2V (unconstrained), SFMin can be solved in polynomial time, while
SFMax is NP-Hard1.

I For I = {S : |S | ≤ k}, and f monotone, SFMax admits a (1− 1
e )-approximation.

I For I = 2V or I = {S : |S | ≤ k}, and f modular, SFMax/SFMin is easy to solve.
I For I decribed by totally unimodular linear constraints, and f modular,
SFMax/SFMin, which in this case is an integer program (IP), can be solved by
linear programming (LP).

1cannot be solved in polynomial time unless P = NP.
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Unconstrained submodular maximization is NP hard

Given a graph G(V ,E), for any S ⊆ V , the graph cut function f (S) = |δ(S)| denotes
the number of edges “cut" in the graph.

|δ(S)| = |{(u, v) ∈ E : u ∈ S , v ∈ V \ S}|

Problem (Max cut)
Find S ⊆ V such that the number of edges between S and the complementary subset
is as large as possible.

max
S⊆V

|δ(S)|

I Max Cut problem is NP-Hard.
I Graph cut function is submodular.
I Hence, SFMax is NP-Hard.

Unconstrained SFMax admits a 1/2-approximation algorithm [2] which is tight; a
(1/2 + ε)-approximation requires exponentially many oracle calls [5].
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Modular function maximization

While submodular maximization is hard, modular maximization is extremely easy.

Unconstrained modular maximization
Given constants c1, . . . , cn ∈ R,

max
S⊆V

f (S) :=
∑
i∈S

ci

Optimal set S? contains the indices i for which ci > 0. This has complexity O(n).

Cardinality Constrained modular maximization

max
|S|≤k

∑
i∈S

ci .

Optimal set S? contains the indices i, among the k largest values of ci , for which
ci > 0. This can be done by sorting, in O(n log n), or by Quickselect randomized
algorithm in Θ(n) expected time [4].
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Submodular maximization in Learning-based CS

LB-CS: Problem statement
Given a set of m training signals x1, . . . ,xm ∈ Cp, find an index set Ω of a given
cardinality n such that a related test signal x can reliably be recovered given the
subsampled measurement vector b = PΩΨx.

Average energy criterion

Ω̂ = arg max
Ω : |Ω|=n

1
m

m∑
j=1

∑
i∈Ω

|〈ψi ,xj〉|2

This is a cardinality constrained modular maximization problem.

What about generalized case?

Generalized average energy criterion

Ω̂ = arg max
Ω : |Ω|=n

1
m

m∑
j=1

g
(∑

i∈Ω

|〈ψi ,xj〉|2
)
.

where g : R→ R be an increasing concave function with g(0) = 0. This is a cardinality
constrained monotone submodular maximization problem.
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Cardinality constrained submodular maximization
Cardinality constrained monotone submodular function maximization is also NP-hard.

S? ∈ arg max
|S|≤k

f (S)

Greedy algorithm [9]
1. Initialize S0 = ∅
2. For i = 1, . . . , k

I Find ei = arg maxe∈V\Si−1
∆(e|Si−1)

I Set Si = Si−1 ∪ {ei}

3. Return Sk

Theorem (Approximation achieved by greedy algorithm [9] )
For any monotone submodular function with f (∅) = 0, after ` iterations of the greedy
algorithm, it holds that

f (S`) ≥ (1− e−`/k)f (S?)

After k iterations, the greedy algorithm achieves a (1− 1/e)-approximation, which is
tight; no algorithm requiring a polynomial number of oracle calls has a better
performance [10].
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Proof of greedy algorithm performance

We can assume w.l.o.g that |S?| = k, since by monotonicity of f adding elements can
only increase the function value. Let S? = {e?1 , e?2 , · · · , e?k }, then for all i < `,

f (S?) ≤ f (S? ∪ Si) by monotonicity

= f (Si) +
k∑

j=1

∆
(

e?j |Si ∪ {e?1 , e?2 , · · · , e?j−1}
)

by telescoping sums

≤ f (Si) +
k∑

j=1

∆
(

e?j |Si
)

by submodularity

≤ f (Si) +
k∑

j=1

∆ (ei |Si) by definition of the greedy updates

≤ f (Si) + k (f (Si+1)− f (Si)) |S?| = k
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Proof of greedy algorithm performance

Let ∆fi := f (S∗)− f (Si). Then, ∆fi+1 ≤
(

1− 1
k

)
∆fi ,∀i < `.

f (S?)− f (S`) ≤
(

1−
1
k

)`
f (S?) (f (∅) = 0)

≤ e−l/k f (S∗) (1− x ≤ e−x , ∀x ∈ R)

Rearranging terms yields f (Sl) ≥ (1− e−l/k)f (S∗). �

I When ` = k, the above approximation factor becomes 1− 1/e ≈ 0.63
I Running the greedy algorithm for more than k iterations leads to a better
approximation factor, but still with respect to the k-optimal solution. E.g., for
` = 5k, f (S5k) ≥ 0.9933 max|S|≤k f (S)
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A related constrained submodular maximization problem

Two related questions:
I Given a fixed k ∈ Z, if we choose k items greedily, how far away is f (Sk) from the
optimal function value f (S?k ) for sets of size k?

I Given a fixed z ∈ Z, z ≤ f (V ), if we now run the greedy algorithm until we reach
f (S`) ≥ z, how wasteful is the size of Sl , compared to the minimum sized set
achieving f (S) ≥ z.

k? = min
S⊆V
{|S | : f (S) ≥ z} (Minimum submodular set cover)

Theorem ([15])
Given a normalized (f (∅) = 0) monotone submodular integer-valued function f and a
fixed z ∈ Z, z ≤ f (V ). Let ` be smallest integer such that f (S`) ≥ z. Then

` ≤
(

1 + ln max
v∈V

f ({v})
)

k?
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Unconstrained submodular minimization

We abuse notation by treating any set function f : 2V → R as a function over {0, 1}n

too, where f (1S) = f (S). SFMin can then be equivalently written as:

min
s∈{0,1}n

f (s)

Relax and round approach:
I Relax integer constraints {0, 1}n to [0, 1]n .
I Relax discrete objective f defined over {0, 1}n to a continuous extension f ′
defined over [0, 1]n ; i.e., f ′(s) = f (s), ∀s ∈ {0, 1}n .

I Choose a continuous function that can be minimized efficiently and is close to the
original function f .

Definition (Convex closure)
Given any set function f : {0, 1}n → R, we define ∀x ∈ [0, 1]n the convex closure of f
as:

f−(x) = min
α∈[0,1]2n

{∑
S⊆V

αS f (S) : x =
∑
S⊆V

αS1S ,
∑
S⊆V

αS = 1, αS ≥ 0

}
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Lovász extension
The convex closure f−(x) = fL(x) where fL is the Lovász extension of f iff f is a
submodular function [14].

Definition (Lovász extension [7])
Given a normalized (f (∅) = 0) set function f : {0, 1}n → R, its Lovász extension
fL : [0, 1]n → R is defined ∀s ∈ [0, 1]n as follows:

fL(s) =
n∑

k=1

sjk

(
f ({j1, · · · , jk})− f ({j1, · · · , jk−1})

)
where sj1 ≥ sj1 ≥ · · · ≥ sjn .

Observations:
1. fL is an extension of f since fL(s) = f (s), ∀s ∈ {0, 1}n .
2. fL can be computed efficiently in O(n log n).
3. For a fixed ordering of s, fL is a linear function.
4. For modular functions, fL is a linear function.
5. fL is positively homogenous, i.e., fL(αs) = αfL(s), ∀α > 0.
6. Let h = f + g, then hL = fL + gL.
7. fL is a non-decreasing function if f is monotone.
8. The Lovász extension has several equivalent definitions (c.f., [1]).
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Lovász extension

Theorem ([7])
Given a set function f and its Lovász extension fL, fL is convex iff f is submodular.

Proof:
I If f is submodular, fL = f− is convex.
I If fL is convex, then:

I The vector 1A∪B + 1A∩B = 1A + 1B have entries equal to 2 on A ∩ B, 1 on
A∆B = A \ B ∪ B \ A, and 0 outside of A ∪ B.

I By definition of LE:

fL(1A∪B + 1A∩B) = 2(f (A ∩ B)− f (∅)) + 1(f (A∆B ∪ A ∩ B)− f (A ∩ B))
= f (A ∩ B) + f (A ∪ B)

I fL(1A) = f (A) and fL(1B) = f (B).
I fL(1A∪B + 1A∩B) = fL(1A + 1B) ≤ fL(1A) + fL(1B).
I It follows that f (A ∩ B) + f (A ∪ B) ≤ f (A) + f (B).
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Examples of Lovász extensions

1. Let f (S) = |S |. f is a modular function. fL(s) = 1T s.
2. Let f (S) = 1G∩S,∅(S). f is a submodular function.

fL(s) = sj11j1∈G + sj21j2∈G,j1<G + · · ·+ sjn1jn∈G,V\jn<G = max
k∈G

sk ,

where sj1 ≥ sj1 ≥ · · · ≥ sjn .
3. f (S) =

∑
G∈G dG1G∩S,∅(S), where dG > 0. f is a submodular function.

fL(s) =
∑
G∈G

dG max
k∈G

sk .
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Submodular functions can be minimized in polynomial time

Theorem (SFMin is equivalent to a convex problem)
Given a normalized submodular function f and its Lovász extension fL,

min
s∈{0,1}n

f (s) = min
x∈[0,1]n

fL(x)

where any minimizer s? of the LHS is a minimizer of the RHS, and any minimizer x? of
the RHS, has all its thresholded sets {x? ≥ θ}, ∀θ ∈ (0, 1) as minimizers of the LHS.

Proof:
I Since {0, 1}n ⊆ [0, 1]n , then f (s?) ≥ fL(x?).
I We use an equivalent definition of the Lovász extension [1]:

fL(x?) =
n−1∑
k=1

(x?
jk
− x?

jk+1
)f ({j1, · · · , jk}) + x?

jn f (V )

≥
n−1∑
k=1

(x?
jk
− x?

jk+1
)f (s?) + x?

jn f (s?) (xjk − xjk+1 ≥ 0)

≥ xj1 f (s?)

≥ f (s?) (since f (s?) ≤ f (∅) = 0 and xj1 ≤ 1)
where x?

j1
≥ · · · ≥ x?

jn .
For the proof of the second claim, c.f., [1].

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 26



Submodular functions can be minimized in polynomial time

Theorem (SFMin is equivalent to a convex problem)
Given a normalized submodular function f and its Lovász extension fL,

min
s∈{0,1}n

f (s) = min
x∈[0,1]n

fL(x)

where any minimizer s? of the LHS is a minimizer of the RHS, and any minimizer x? of
the RHS, has all its thresholded sets {x? ≥ θ}, ∀θ ∈ (0, 1) as minimizers of the LHS.

The convex problem minx∈[0,1]n fL(x) can be solved for e.g., by the following
algorithms:
I Minimum norm point algorithm [3], O((n3EO + n3 log n + n4)F2)
I Frank Wolfe algorithm [1], O((n3EO + n3 log n)F2)
I Combinatorial algorithms, e.g., [11], O(n5EO + n6)
I Cutting plane method [6], O(n2 log nF · EO + n3logO(1)nF) and

O(n3log2n · EO + n4logO(1)n)
where F := maxi{|f ({i})|, |f (V )− f (V \ i)|} and EO is the running time of the
evaluation oracle.
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Integer linear programming

Integer linear program
Many important discrete optimization problems
can be formulated as an integer linear program

β\ ∈ arg max
β∈Zm

{θTβ : Mβ ≤ c} (IP)

NP-Hard (in general)

Relaxation: Linear program

β? ∈ arg max
β∈Rm

{θTβ : Mβ ≤ c} (LP)

Obtains an upperbound

�1

�2

M�  c �\ ✓T�\

✓

Convex Polyhedra
P = {β|Mβ ≤ c}

(β ∈ Rm , c ∈ Rm)

Polytope: A bounded polyhedron
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Integer linear programming

Integer linear program
Many important discrete optimization problems
can be formulated as an integer linear program
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When every vertex of P is integral,
LP has integer optimal solutions.

I Interior point method performs O
(√

l log l
ε

)
iterations (l > m) with up to

O(m2l) operations, where ε is the absolute solution accuracy, and l is the
number of constraints.
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A sufficient condition: Total unimodularity

Definition (Total unimodularity)
A matrix M ∈ Rl×m is totally unimodular (TU) iff the determinant of every square
submatrix of M is 0, or ±1.

I Note that the entries of M are necessarily 0,±1.
I Verifying if a matrix is TU can be done in polynomial time [13].

Theorem (TU Polyhedron is integral)
The polyhedron P = {Mβ ≤ c} has integer vertices when M is TU and c is an
integer vector.

Proof:
I Every vertex z is determined by a subsystem M ′z = c′ where M ′ is matrix of full
row rank.

I We can write M ′ = [U ,V ] (up to some permutation of the coordinatres), where
det U = ±1.

I z is then given by z =
[

U−1c′
0

]
I Cramer’s rule: U−1 = AdjU

det U where AdjU is the adjugate matrix of U.
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A sufficient condition: Total unimodularity

Definition (Equivalent definition of TU [12, 8])
A matrix M is TU iff for every subset J of its columns, there exits a partition J1, J2 of
J such that

|
∑
j∈J1

Mij −
∑
j∈J2

Mij | ≤ 1, ∀i = 1, · · · , l

Operations that preserves TU [8]: If M is TU then,
1. The tranpose of M is TU.
2. (M,I) is TU.
3. Matrix after deleting a row (column) with at most one non-zero entry from M is

TU.
4. Matrix after interchanging two rows (columns) in M is TU.
5. Matrix after multiplying a row (column) from M by (−1) is TU.
6. Matrix after duplicating rows (column) of M is TU.
7. Matrix after applying a pivot operation on M is TU.
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Examples of TU matrices

1. Given a directed graph, let T be its edge-node incidence matrix, i.e., T`i = 1 and
T`j = −1 iff e` = (i, j) is an edge in the graph. Then, T is TU.

2. Given an undirected bipartite graph, let E be its edge-node incidence matrix, i.e.,
T`i = 1 and T`j = 1 iff e` = (i, j) is an edge in the graph. Then, E is TU.

3. Given an acyclic bipartite graph G(U ,V ,E), where the degree of any node in U
is at most 2. Let B be its biadjacency matrix, i.e., Bij = 1 iff i ∈ U , j ∈ V and
(i, j) ∈ E. Then, B is TU.
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Example of an integer program with TU constraints

Problem (k-sparse projection)
Recall ‖x‖0 = |supp(x)| where supp(x) = {i : xi , 0}. The projection of a vector
y ∈ Rn over the set of k-sparse vectors is given by:

min
x∈Rn
{‖x − y‖2

2 : ‖x‖0 ≤ k}

min
x∈Rn
{‖x − y‖2

2 : ‖x‖0 ≤ k} = min
|S|≤k

min
x∈Rn
{‖x − y‖2

2 : supp(x) = S}

= min
|S|≤k

min
x∈Rn
{
∑
i∈S

(xi − yi)2 +
∑
i<S

y2
i : supp(x) = S}

= min
|S|≤k

{
∑
i<S

y2
i }

= ‖y‖2
2 − max
|S|≤k

{‖y‖2
2 −
∑
i<S

y2
i }

= ‖y‖2
2 − max
|S|≤k

{
∑
i∈S

y2
i }
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Example of an integer program with TU constraints

We can view max|S|≤k
∑

i∈S y2
i as an integer program over TU constraints:

max
s∈{0,1}

{
n∑

i=1

siy2
i : 1T s ≤ k} = max

s∈[0,1]
{

n∑
i=1

siy2
i : 1T s ≤ k}

Since matrix 1T is TU and k ∈ Z.
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