## Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

### Lecture 12: Constrained convex minimization II

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2015)











#### License Information for Mathematics of Data Slides

This work is released under a <u>Creative Commons License</u> with the following terms:

#### Attribution

The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

#### Non-Commercial

 The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor's permission.

#### ▶ Share ∆like

- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ► Full Text of the License



### Outline

- ► This class:
  - 1. Frank-Wolfe method
  - 2. Universal primal-dual gradient methods
  - 3. ADMM
- Next class
  - 1. Disciplined convex programming

### Recommended reading material

- Martin Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization http://jmlr.org/proceedings/papers/v28/jaggi13-supp.pdf, 2013.
- Alp Yurtsever, Quoc Tran-Dinh and Volkan Cevher, A universal primal-dual convex optimization framework http://infoscience.epfl.ch/record/205073/files/PDUGA\_MAIN\_TEX.pdf, 2015.
- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, *Distributed Optimization* and Statistical Learning via the Alternating Direction Method of Multipliers https://web.stanford.edu/~boyd/papers/pdf/admm\_distr\_stats.pdf, 2011.

#### Motivation

### Motivation

▶ Evaluating the proximal operator is costly for many real world constrained optimization problems. This lecture covers the basics of the proximal-free numerical methods for constrained convex minimization, which use cheaper Fenchel-type oracles as a building block.

Slide 5/47

## Swiss army knife of convex formulations

## A primal problem prototype

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}, \ \mathbf{x} \in \mathcal{X} \right\}, \tag{1}$$

- ▶ f is a proper, closed and convex function
- $\triangleright$   $\mathcal{X}$  and  $\mathcal{K}$  are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n \times p}$  and  $\mathbf{b} \in \mathbb{R}^n$  are known
- An optimal solution  $\mathbf{x}^*$  to (1) satisfies  $f(\mathbf{x}^*) = f^*$ ,  $\mathbf{A}\mathbf{x}^* = \mathbf{b}$  and  $\mathbf{x}^* \in \mathcal{X}$



### Recall the prox-operator

## Prox-operator helps us process nonsmooth terms "efficiently"

$$\operatorname{prox}_g^{\mathcal{X}}(\mathbf{x}) := \underset{\mathbf{z} \in \mathcal{X}}{\operatorname{argmin}} \{ g(\mathbf{z}) + (1/2) \|\mathbf{z} - \mathbf{x}\|^2 \}.$$

Often efficient & has closed form expression:

• if  $g(\mathbf{z}) = \|\mathbf{z}\|_1$  and  $\mathcal{X} = \mathbb{R}^p$ , then prox-operator  $\Leftrightarrow$  soft-thresholding

### Recall the prox-operator

# Prox-operator helps us process nonsmooth terms "efficiently"

$$\operatorname{prox}_g^{\mathcal{X}}(\mathbf{x}) := \underset{\mathbf{z} \in \mathcal{X}}{\operatorname{argmin}} \{ g(\mathbf{z}) + (1/2) \|\mathbf{z} - \mathbf{x}\|^2 \}.$$

Often efficient & has closed form expression:

• if  $g(\mathbf{z}) = \|\mathbf{z}\|_1$  and  $\mathcal{X} = \mathbb{R}^p$ , then prox-operator  $\Leftrightarrow$  soft-thresholding

## Not all nonsmooth functions are proximal-friendly!

If  $g(\mathbf{z}) = \|\mathbf{z}\|_{\star}$  (i.e., the nuclear norm of  $\mathbf{z}$ ) and  $\mathcal{X} = \mathbb{R}^p$ , then

- ▶ prox-operator ⇔ full singular value decomposition!
- ▶ rules out all primal-dual proximal methods for our template



### Recall the prox-operator

# Prox-operator helps us process nonsmooth terms "efficiently"

$$\operatorname{prox}_g^{\mathcal{X}}(\mathbf{x}) := \underset{\mathbf{z} \in \mathcal{X}}{\operatorname{argmin}} \{ g(\mathbf{z}) + (1/2) \|\mathbf{z} - \mathbf{x}\|^2 \}.$$

Often efficient & has closed form expression:

• if  $g(\mathbf{z}) = \|\mathbf{z}\|_1$  and  $\mathcal{X} = \mathbb{R}^p$ , then prox-operator  $\Leftrightarrow$  soft-thresholding

## Not all nonsmooth functions are proximal-friendly!

If  $g(\mathbf{z}) = \|\mathbf{z}\|_{\star}$  (i.e., the nuclear norm of  $\mathbf{z}$ ) and  $\mathcal{X} = \mathbb{R}^p$ , then

- ► prox-operator ⇔ full singular value decomposition!
- rules out all primal-dual proximal methods for our template

Can we avoid the prox-operator for something cheaper as a building block?



## Frank-Wolfe's method: Earliest example

### Problem setting

$$\left| f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \right| \tag{2}$$

### **Assumptions**

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^p)$  (i.e., convex with Lipschitz gradient).
- ▶ Note also that  $Ax b \in \mathcal{K}$  is missing from our prototype problem.

## Frank-Wolfe's method (see [3] for a review)

### Conditional gradient method (CGA)

- 1. Choose  $\mathbf{x}^0 \in \mathcal{X}$ .
- **2.** For k = 0, 1, ... perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x}, \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where  $\gamma_k := \frac{2}{k+2}$  is a given relaxation parameter.



## Frank-Wolfe's method: Earliest example

### Problem setting

$$\left| f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \right| \tag{2}$$

### **Assumptions**

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_r^{1,1}(\mathbb{R}^p)$  (i.e., convex with Lipschitz gradient).
- Note also that  $Ax b \in \mathcal{K}$  is missing from our prototype problem.

## Frank-Wolfe's method (see [3] for a review)

### Conditional gradient method (CGA)

- 1. Choose  $\mathbf{x}^0 \in \mathcal{X}$ . 2. For  $k = 0, 1, \dots$  perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x}, (*) \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where  $\gamma_k := \frac{2}{k+2}$  is a given relaxation parameter.

When  $\mathcal{X} := \{\mathbf{x} \in \mathbb{R}^{n \times p} : \|\mathbf{x}\|_{\star} \leq 1\}$ , (\*) corresponds to rank-1 updates!



## CGA is a special instance of dual averaging subgradient method

### Problem setting

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \in \mathcal{X} \right\},$$

#### **Assumptions**

- X is nonempty, convex, closed and bounded.
- Note that this is a special case of our prototype where K = {0}.

## Dual averaging subgradient method [6, 7]

### Dual averaging subgradient method (DSM)

- **1.** Choose  $\mathbf{x}^0 = \mathbf{0}$ . **2.** For k = 0, 1, ... perform:

$$\begin{cases} \mathbf{x}^{k+1} &:= \mathbf{x}^k + \gamma_k \nabla d(\lambda^k), \\ \lambda^{k+1} &:= \pi_{\beta_k}(\mathbf{x}^{k+1}), \end{cases}$$

where  $\gamma_k := 1$  and  $\beta_{k+1} := \beta_k + \beta_0^2 \beta_k^{-1}$  for some  $\beta_0 > 0$ .

d is the dual function associated to the equality constraint and the mapping  $\pi_{\beta}$  is defined as:

$$\pi_{\beta}(\mathbf{x}) := \arg\min_{\lambda} \{\beta p(\lambda) - \langle \mathbf{x}, \lambda \rangle \}$$

where  $p: \mathbb{R}^n \to \mathbb{R}_+$  is a proximity function, which is strongly convex.

### Conjugation of functions

We need the definition of **Fenchel conjugation** and its basic properties to show the correspondence between CGA and DSM.

#### Definition

Let  $\mathcal Q$  be a predefined Euclidean space and  $Q^*$  be its dual space. Given a proper, closed and convex function  $f:\mathcal Q\to\mathbb R\cup\{+\infty\}$ , the function  $f^*:\mathcal Q^*\to\mathbb R\cup\{+\infty\}$  such that

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathsf{dom}(f)} \left\{ \mathbf{y}^T \mathbf{x} - f(\mathbf{x}) \right\}$$

is called the Fenchel conjugate (or conjugate) of f.

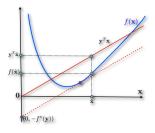


Figure: The conjugate function  $f^*(\mathbf{y})$  is the maximum gap between the linear function  $\mathbf{x}^T\mathbf{y}$  (red line) and  $f(\mathbf{x})$ .

- f\* is a convex and lower, semicontinuous function by construction (as the supremum of affine functions of y).
- ► The conjugate of the conjugate of a convex function f is ... the same function f; i.e.,  $f^{**} = f$  for  $f \in \mathcal{F}(\mathcal{Q})$ .

## Basic properties of the function and its conjugation

## Property 1: Fenchel-Young inequality

Let  $f:\mathcal{Q}\to\mathbb{R}\cup\{+\infty\}$  and  $f^*:Q^*\to\mathbb{R}\cup\{+\infty\}$  be a function and its conjugation; here  $Q^*$  be the dual space of  $\mathcal{Q}$ . Then, the following inequality holds true:

$$f(\mathbf{x}) + f^*(\mathbf{y}) \ge \mathbf{x}^T \mathbf{y}, \quad \forall \mathbf{x} \in Q, \mathbf{y} \in Q^*.$$

### Property 2: Subgradient property

Let  $\mathbf{y} \in \partial f(\mathbf{x})$  for some  $\mathbf{x} \in \mathsf{dom}(f)$ . Then  $\mathbf{y} \in \mathsf{dom}(f^*)$  and vise versa. Moreover, we have

$$\mathbf{u} \in \partial f(\mathbf{x}) \Leftrightarrow \mathbf{x} \in \partial f^*(\mathbf{u}).$$

## Property 3: Duality of strong convexity and Lipschitz smoothness [5]

Let f be a convex and lower semi-continuos function. Then, strong convexity and Lipschitz gradients are dual in the following sense:

f has Lipschitz continuos gradients  $\iff f^*$  is strongly convex

f is strongly convex  $\iff f^*$  has Lipschitz continuos gradients



# Frank-Wolfe's algorithm vs dual averaging subgradient method [10]

## Consider the problem setting

$$f^{\star} := \min_{\mathbf{x}, \mathbf{r} \in \mathbb{R}^p} \left\{ f(\mathbf{r}) : \mathbf{x} = \mathbf{r}, \ \mathbf{x} \in \mathcal{X} \right\},$$

#### **Assumptions**

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^p)$  (i.e., convex with Lipschitz gradient).
- ► The dual function associated to the equality constraint and its gradient are:

$$\begin{cases} d(\lambda) &:= \inf_{\mathbf{x} \in \mathcal{X}} \langle \lambda, \mathbf{x} \rangle - f^*(\lambda) \\ \nabla d(\lambda) &:= \mathbf{x}^*(\lambda) - \nabla f^*(\lambda) \end{cases} \quad where \quad \mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{x}, \lambda \rangle.$$

Let us define  $\mathbf{x}^k := \nabla f^*(\lambda^k)$ , then  $\lambda^k := \nabla f(\mathbf{x}^k)$  by subgradient property. Hence:

$$\mathbf{x}^*(\lambda^k) = \arg\min_{\mathbf{x} \in \mathcal{X}} \langle \nabla f(\mathbf{x}^k), \mathbf{x} \rangle \quad and \quad \nabla d(\lambda^k) = \mathbf{x}^*(\lambda^k) - \mathbf{x}^k.$$

•  $f^*$  is strongly convex by property 3. Choosing  $p = f^*$ , we get:

$$\pi_1(\mathbf{x}) := \arg \max_{\lambda \in \mathbb{R}^n} \{ \langle \mathbf{x}, \lambda \rangle - f^*(\lambda) \} = \nabla f^*(\lambda),$$

or equivalently  $\lambda := \nabla f(\pi_1(\mathbf{x}))$  by the subgradient property.

 $\Longrightarrow$  CGA is equivalent to DSM with eta=1,  $\gamma_k=rac{2}{k+2}$  and  $p=f^*$ . Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfi.ch Slide 12/47



## **Towards Fenchel-type operators**

### Generalized sharp operators [10]

We define the (generalized) sharp operator of a convex function g over  $\mathcal X$  as follows:

$$[\mathbf{x}]_{\mathcal{X},g}^{\sharp} := \operatorname*{argmin}_{\mathbf{z} \in \mathcal{X}} \{g(\mathbf{z}) - \langle \mathbf{x}, \mathbf{z} \rangle \}.$$

### Important special cases:

- 1. If q = 0, then we obtain the so-called linear minimization oracle.
- 2. If  $\mathcal{X} = \text{dom}(g)$ , then  $[\mathbf{x}]_g^{\sharp} = \nabla g^*(\mathbf{x})$ , where  $g^*$  is the Fenchel conjugate of g.

### **Towards Fenchel-type operators**

### Generalized sharp operators [10]

We define the (generalized) sharp operator of a convex function g over  $\mathcal X$  as follows:

$$\left[ [\mathbf{x}]_{\mathcal{X},g}^{\sharp} := \operatorname*{argmin}_{\mathbf{z} \in \mathcal{X}} \left\{ g(\mathbf{z}) - \langle \mathbf{x}, \mathbf{z} \rangle \right\}.$$

#### Important special cases:

- 1. If g = 0, then we obtain the so-called linear minimization oracle.
- 2. If  $\mathcal{X} = \text{dom}(g)$ , then  $[\mathbf{x}]_g^{\sharp} = \nabla g^*(\mathbf{x})$ , where  $g^*$  is the Fenchel conjugate of g.

## Example (Nuclear norm)

Two examples with essentially the same computation:

|    | $g(\mathbf{x})$                          | $\chi$                                                                           | $[\mathbf{x}]_{\mathcal{X},g}^\sharp$  |
|----|------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|
| 1. | 0                                        | $\{\mathbf{x} \in \mathbb{R}^{n \times p} : \ \mathbf{x}\ _{\star} \le \kappa\}$ | $\kappa \mathbf{u} \mathbf{v}^T$       |
| 2. | $\frac{1}{2} \ \mathbf{x}\ _{\star}^{2}$ | $\mathbb{R}^{n \times p}$                                                        | $\ \mathbf{x}\ \mathbf{u}\mathbf{v}^T$ |

- || · || is the spectral norm
- ightharpoonup u and v are the left and right principal singular vectors of x



## Revisiting Frank-Wolfe's method

## Problem setting

$$f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$

#### **Assumptions**

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}^{1,1}_L(\mathbb{R}^p)$  (i.e., convex with Lipschitz gradient).
- ▶ Note that  $Ax b \in \mathcal{K}$  is missing from our prototype problem

### Frank-Wolfe's method (see [3] for a review)

### Conditional gradient method (CGA)

- 1. Choose  $\mathbf{x}^0 \in \mathcal{X}$ .
- **2.** For  $k = 0, 1, \ldots$  perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x} & \equiv [-\nabla f(\mathbf{x}^k)]_{\mathcal{X}}^{\sharp}, \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where  $\gamma_k := \frac{2}{k+2}$  is a given relaxation parameter.

Conditional gradient method replaces the indicator function  $\delta_{\mathcal{X}}$  with g:

$$\hat{\mathbf{x}}^k := \arg\min\{g(\mathbf{x}) + \nabla f(\mathbf{x}^k)^T\mathbf{x}\} = [-\nabla f(\mathbf{x}^k)]_g^{\sharp}.$$



## Revisiting Frank-Wolfe's method

### Problem setting

$$f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$

#### **Assumptions**

- X is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^p)$  (i.e., convex with Lipschitz gradient).

**Next:** Constrained problem  $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}$  and nonsmooth  $f(\mathbf{x})$  with the sharp-operator

## Frank-Wolfe's method (see [3] for a review)

### Conditional gradient method (CGA)

- **1.** Choose  $\mathbf{x}^0 \in \mathcal{X}$ .
- **2.** For  $k = 0, 1, \ldots$  perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x} &\equiv [-\nabla f(\mathbf{x}^k)]_{\mathcal{X}}^{\sharp}, \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where  $\gamma_k := \frac{2}{k+2}$  is a given relaxation parameter.

Conditional gradient method replaces the indicator function  $\delta_{\mathcal{X}}$  with g:

$$\hat{\mathbf{x}}^k := \arg\min\{g(\mathbf{x}) + \nabla f(\mathbf{x}^k)^T \mathbf{x}\} = [-\nabla f(\mathbf{x}^k)]_q^{\sharp}.$$

### Finding an optimal solution

## A plausible algorithmic strategy for $\min_{\mathbf{x} \in \mathcal{X}} \{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \}$ :

A natural minimax formulation:

$$(\mathbf{x}^{\star}, \lambda^{\star}) \in \arg \max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \{ \mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}.$$

**Lagrangian subproblem**:  $\mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda)$ 

- λ is called the Lagrange multiplier.
- ▶ The function  $d(\lambda)$  is called the dual function, and it is concave!
- ▶ The optimal dual objective value is  $d^* = d(\lambda^*)$ .

Our strategy  $\Rightarrow$  Make progress on the dual and obtain the primal solution



### Finding an optimal solution

## A plausible algorithmic strategy for $\min_{\mathbf{x} \in \mathcal{X}} \{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \}$ :

A natural minimax formulation:

$$(\mathbf{x}^{\star}, \lambda^{\star}) \in \arg \max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \{ \mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}.$$

**Lagrangian subproblem**:  $\mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda)$ 

- λ is called the Lagrange multiplier.
- ▶ The function  $d(\lambda)$  is called the dual function, and it is concave!
- ▶ The optimal dual objective value is  $d^* = d(\lambda^*)$ .

Our strategy  $\Rightarrow$  Make progress on the dual and obtain the primal solution

## Challenges for the plausible strategy above

- 1. Establishing its correctness
- 2. Computational efficiency of finding an  $\bar{\epsilon}$ -approximate optimal dual solution  $\lambda_{\bar{\epsilon}}^{\star}$
- 3. Mapping  $\lambda_{\bar{\epsilon}}^{\star} \to \mathbf{x}_{\epsilon}^{\star}$



### Finding an optimal solution

# A plausible algorithmic strategy for $\min_{\mathbf{x} \in \mathcal{X}} \{ f(\mathbf{x}) : \mathbf{A}\mathbf{x} = \mathbf{b} \}$ :

A natural minimax formulation:

$$(\mathbf{x}^{\star}, \lambda^{\star}) \in \arg \max_{\lambda} \min_{\mathbf{x} \in \mathcal{X}} \{ \mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \langle \lambda, \mathbf{A}\mathbf{x} - \mathbf{b} \rangle \}.$$

**Lagrangian subproblem**:  $\mathbf{x}^*(\lambda) \in \arg\min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda)$ 

- λ is called the Lagrange multiplier.
- ▶ The function  $d(\lambda)$  is called the dual function, and it is concave!
- ▶ The optimal dual objective value is  $d^* = d(\lambda^*)$ .

Our strategy  $\Rightarrow$  Make progress on the dual and obtain the primal solution

## Challenges for the plausible strategy above

- 1. Establishing its correctness: Assume  $f^\star > -\infty$  and Slater's condition for  $f^\star = d^\star$
- 2. Computational efficiency of finding an  $\bar{\epsilon}$ -approximate optimal dual solution  $\lambda_{\bar{\epsilon}}^{\star}$
- 3. Mapping  $\lambda_{\bar{\epsilon}}^{\star} \to \mathbf{x}_{\epsilon}^{\star}$



## Efficiency considerations for the dual problem

#### Nonsmooth

Assumption: Bounded subgradients, i.e.,

$$\|\mathbf{v}\|_2 \le G, \quad \forall \mathbf{v} \in \partial d(\lambda), \ \lambda \in \mathbb{R}^n.$$

Method: Subgradient method with worst case complexity  $\mathcal{O}\left(\frac{1}{\epsilon^2}\right)$ .

## Efficiency considerations for the dual problem

#### Nonsmooth

Assumption: Bounded subgradients, i.e.,

$$\|\mathbf{v}\|_2 \le G, \quad \forall \mathbf{v} \in \partial d(\lambda), \ \lambda \in \mathbb{R}^n.$$

Method: Subgradient method with worst case complexity  $\mathcal{O}\left(\frac{1}{\epsilon^2}\right)$ .

## Lipschitz smoothness

Assumption: Lipschitz continuous gradients, i.e.,

$$\|\nabla d(\lambda) - \nabla d(\eta)\|_2 \le L\|\lambda - \eta\|_2, \quad \forall \lambda, \ \eta \in \mathbb{R}^n.$$

Method: Accelerated gradient method with worst case complexity  $\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$ .





## Efficiency considerations for the dual problem

#### Nonsmooth

Assumption: Bounded subgradients, i.e.,

$$\|\mathbf{v}\|_2 \le G, \quad \forall \mathbf{v} \in \partial d(\lambda), \ \lambda \in \mathbb{R}^n.$$

Method: Subgradient method with worst case complexity  $\mathcal{O}\left(\frac{1}{\epsilon^2}\right)$ .

### Hölder smoothness

Assumption: Hölder continuous gradient for some  $\nu \in [0,1]$ , i.e.,

$$M_{\nu}(d) := \sup_{\lambda \neq \eta} \frac{\|\nabla d(\lambda) - \nabla d(\eta)\|_2}{\|\lambda - \eta\|_2^{\nu}}, \quad M_d^* := \inf_{0 \le \nu \le 1} M_{\nu}(d) < +\infty.$$

Method: Universal gradient method [8] with worst case complexity in the sequel

### Lipschitz smoothness

Assumption: Lipschitz continuous gradients, i.e.,

$$\|\nabla d(\lambda) - \nabla d(\eta)\|_2 \le L\|\lambda - \eta\|_2, \quad \forall \lambda, \ \eta \in \mathbb{R}^n.$$

Method: Accelerated gradient method with worst case complexity  $\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$ .



## Brief detour: Exploring the smoothness in depth

Consider the following unconstrained setup in the sequel

$$\min_{\mathbf{x} \in \mathbb{R}^p} g(\mathbf{x})$$

### Definition (Hölder continuity [4])

g is u-Hölder continuous ( $u \in [0,1]$ ) with Hölder constant  $M_{
u} < \infty$  when

$$\|\nabla g(\mathbf{x}) - \nabla g(\mathbf{y})\|_2 \le M_{\nu} \|\mathbf{x} - \mathbf{y}\|_2^{\nu}$$

where, with some abuse of notation,  $\nabla g(\lambda)$  is a (sub)gradient of g.



## Brief detour: Exploring the smoothness in depth

Consider the following unconstrained setup in the sequel

$$\min_{\mathbf{x} \in \mathbb{R}^p} g(\mathbf{x})$$

### Definition (Hölder continuity [4])

g is u-Hölder continuous ( $u \in [0,1]$ ) with Hölder constant  $M_{
u} < \infty$  when

$$\|\nabla g(\mathbf{x}) - \nabla g(\mathbf{y})\|_2 \le M_{\nu} \|\mathbf{x} - \mathbf{y}\|_2^{\nu}$$

where, with some abuse of notation,  $\nabla g(\lambda)$  is a (sub)gradient of g.

## Highlights

- 1.  $\nu = 0$  is the bounded subgradient assumption.
- 2.  $\nu=1$  is the Lipschitz continuous gradients case where  $L=M_{\nu}$ .
- 3. Iteration lowerbound for the Hölder class:  $\mathcal{O}\left(\left(\frac{M_{\nu}\|\mathbf{x}^{0}-\mathbf{x}^{\star}\|^{1+\nu}}{\epsilon}\right)^{\frac{2}{1+3\nu}}\right)$ .



### The Hölder continuity assumption: The challenge

Hölder continuous (sub)gradients ensures the following surrogate for any  $\mathbf{x},\mathbf{y}\in\mathcal{X}$ :

$$g(\mathbf{y}) \le g(\mathbf{x}) + \langle \nabla g(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{M_{\nu}}{1 + \nu} ||\mathbf{x} - \mathbf{y}||^{1 + \nu}$$
 (3)

In practice, smoothness parameters  $\nu$  and  $M_{\nu}$  are not known.



## The Hölder continuity assumption: The challenge

Hölder continuous (sub)gradients ensures the following surrogate for any  $\mathbf{x},\mathbf{y}\in\mathcal{X}$ :

$$g(\mathbf{y}) \le g(\mathbf{x}) + \langle \nabla g(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{M_{\nu}}{1 + \nu} ||\mathbf{x} - \mathbf{y}||^{1 + \nu}$$
 (3)

In practice, smoothness parameters  $\nu$  and  $M_{\nu}$  are not known.

### Nesterov's solution: The basic idea [8]

Suppose that g satisfies (3). Then, for any  $\delta>0$  and

$$M \ge \left[\frac{1-\nu}{1+\nu} \cdot \frac{1}{\delta}\right]^{\frac{1-\nu}{1+\nu}} M_{\nu}^{\frac{2}{1+\nu}}$$

we can use the following basic inexact majorization bound

$$g(\mathbf{y}) \le g(\mathbf{x}) + \langle \nabla g(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{M}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{\delta}{2}.$$



#### Universal primal gradient method (PGM)<sup>1</sup>

- **1.** Choose  $\mathbf{x}^0 \in \mathcal{X}$ ,  $M_{-1} > 0$  and accuracy  $\epsilon > 0$ .
- **2.** For  $k = 0, 1, \ldots$  perform:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - M_k^{-1} \nabla g(\mathbf{x}^k)$$

using line-search to find  $M_k \geq 0.5 M_{k-1}$  that satisfies:

$$g(\mathbf{x}^{k+1}) \leq g(\mathbf{x}^k) + \langle \nabla g(\mathbf{x}^k), \mathbf{x}^{k+1} - \mathbf{x}^k \rangle + \frac{M_k}{2} \|\mathbf{x}^k - \mathbf{x}^{k+1}\|^2 + \frac{\epsilon}{2}$$

## Nesterov's universal gradient method [8]

- Adapt to the unknown  $\nu$  via an line-search strategy
- ullet Universal since they ensure the best possible rate of convergence for each u



<sup>&</sup>lt;sup>1</sup>PGM in [8] uses the Bregman / prox setup.

#### Universal primal gradient method (PGM)<sup>1</sup>

- **1.** Choose  $\mathbf{x}^0 \in \mathcal{X}$ ,  $M_{-1} > 0$  and accuracy  $\epsilon > 0$ .
- **2.** For  $k = 0, 1, \ldots$  perform:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - M_k^{-1} \nabla g(\mathbf{x}^k)$$

using line-search to find  $M_k \geq 0.5 M_{k-1}$  that satisfies:

$$g(\mathbf{x}^{k+1}) \leq g(\mathbf{x}^k) + \langle \nabla g(\mathbf{x}^k), \mathbf{x}^{k+1} - \mathbf{x}^k \rangle + \frac{M_k}{2} \|\mathbf{x}^k - \mathbf{x}^{k+1}\|^2 + \frac{\epsilon}{2}$$

## Nesterov's universal gradient method [8]

- Adapt to the unknown  $\nu$  via an line-search strategy
- ullet Universal since they ensure the best possible rate of convergence for each u

Yes, there is an accelerated version [8].



<sup>&</sup>lt;sup>1</sup>PGM in [8] uses the Bregman / prox setup.

#### Universal primal gradient method (PGM)<sup>1</sup>

- **1.** Choose  $\mathbf{x}^0 \in \mathcal{X}$ ,  $M_{-1} > 0$  and accuracy  $\epsilon > 0$ .
- **2.** For  $k = 0, 1, \ldots$  perform:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - M_k^{-1} \nabla g(\mathbf{x}^k)$$

using line-search to find  $M_k \geq 0.5 M_{k-1}$  that satisfies:

$$g(\mathbf{x}^{k+1}) \leq g(\mathbf{x}^k) + \langle \nabla g(\mathbf{x}^k), \mathbf{x}^{k+1} - \mathbf{x}^k \rangle + \frac{M_k}{2} \|\mathbf{x}^k - \mathbf{x}^{k+1}\|^2 + \frac{\epsilon}{2}$$

## Nesterov's universal gradient method [8]

- Adapt to the unknown  $\nu$  via an line-search strategy
- ullet Universal since they ensure the best possible rate of convergence for each u

Yes, there is an accelerated version [8].

New: Our FISTA variant.



<sup>&</sup>lt;sup>1</sup>PGM in [8] uses the Bregman / prox setup.

## Our universal primal-dual gradient methods: The dual steps

$$\left[\mathbf{x}\right]_{\mathcal{X},g}^{\sharp} := \arg\!\min_{\mathbf{z} \in \mathcal{X}} \left\{ g(\mathbf{z}) - \langle \mathbf{x}, \mathbf{z} \rangle \right\}$$

### Dual steps: The level of inexactness

$$\mathbf{x}^*(\lambda^k) := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) + \langle \mathbf{A}^T \lambda^k, \mathbf{x} \rangle \right\} \equiv \left[ -\mathbf{A}^T \lambda^k \right]_f^\sharp$$

▶ (UniPDGrad) requires 2 linesearch steps on the average with  $\epsilon$ :

$$\lambda^{k+1} := \lambda^k + \frac{1}{M_k} \nabla d(\lambda^k) = \lambda_k + \frac{1}{M_k} \left( \mathbf{A} \mathbf{x}^* (\lambda^k) - \mathbf{b} \right).$$

• (AccUniPDGrad) requires 1 linesearch step on the average with  $\epsilon/t_k$ :

$$\left\{ \begin{array}{ll} t_k & := 0.5 \left(1 + \sqrt{1 + 4t_{k-1}^2}\right) \\ \hat{\lambda}^k & := \lambda^k + \frac{t_{k-1}-1}{t_k} \left(\lambda^k - \hat{\lambda}^{k-1}\right) \\ \lambda^{k+1} & := \hat{\lambda}^k + \frac{1}{M_k} \left(\mathbf{A}\mathbf{x}^*(\hat{\lambda}^k) - \mathbf{b}\right). \end{array} \right.$$

## Our universal primal-dual gradient methods: The primal steps

## Primal steps: Characterized by weighted averaging

$$\boxed{\mathbf{x}^*(\lambda^k) := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) + \langle \mathbf{A}^T \lambda^k, \mathbf{x} \rangle \right\} \equiv \left[ -\mathbf{A}^T \lambda^k \right]_f^\sharp}$$

(UniPDGrad): 
$$\bar{\mathbf{x}}^k := \left(\sum_{i=0}^k \frac{1}{M_i}\right)^{-1} \sum_{i=0}^k \frac{1}{M_i} \mathbf{x}^*(\lambda^i).$$

$$\text{(AccUniPDGrad):} \qquad \bar{\mathbf{x}}^k := \bigg(\sum_{i=0}^k \frac{t_i}{M_i}\bigg)^{-1} \sum_{i=0}^k \frac{t_i}{M_i} \mathbf{x}^*(\lambda^i).$$

## Summary of the algorithms and convergence guarantees - I

### Universal primal-dual gradient method (UniPDGrad)

Initialization: Choose  $\lambda^0 \in \mathbb{R}^n$  and  $\epsilon > 0$ . Estimate a value  $M_{-1} < 2M_{\epsilon}$ . Iteration: For  $k = 0, 1, \ldots$  perform:

- 1. Primal step:  $\mathbf{x}^*(\lambda^k) = [-\mathbf{A}^T \lambda^k]_f^{\sharp}$
- 2. Dual gradient:  $\nabla d(\lambda^k) = \mathbf{A}^T \mathbf{x}^* (\lambda^k) \mathbf{b}$
- 3. Line-search: Find  $M_k \in [0.5M_{k-1},2M_{\epsilon}]$  from line-search condition and:  $\lambda^{k+1} = \lambda^k + M_{\iota}^{-1} \nabla d(\lambda^k)$
- 4. Primal averaging:  $\bar{\mathbf{x}}^k := S_k^{-1} \sum_{j=0}^k M_j^{-1} \mathbf{x}^*(\lambda^j)$  where  $S_k = \sum_{j=0}^k M_j^{-1}$ .

# Theorem [10]

 $ar{\mathbf{x}}^k$  obtained by **UniPDGrad** satisfy:

$$\begin{cases} -\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| \|\lambda^*\| \le & f(\bar{\mathbf{x}}^k) - f^* \le \|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| \|\lambda^0\| + \frac{\epsilon}{2}, \\ \|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| & \le \frac{4M_{\epsilon}\|\lambda^0 - \lambda^*\|}{k+1} + \sqrt{\frac{2M_{\epsilon}\epsilon}{k+1}}. \end{cases}$$



## Summary of the algorithms and convergence guarantees - II

#### Accelerated universal primal-dual gradient method (AccUniPDGrad)

**Initialization:** Choose  $\lambda^0 \in \mathbb{R}^n$ ,  $\epsilon > 0$ . Set  $t_0 = 1$ . Estimate a value  $M_{-1} < 2M_{\epsilon}$ . **Iteration:** For  $k = 0, 1, \ldots$  perform:

- 1. Primal step:  $\mathbf{x}^*(\hat{\lambda}^k) = [-\mathbf{A}^T \hat{\lambda}^k]_f^{\sharp}$ ,
- 2. Dual gradient:  $\nabla d(\hat{\lambda}^k) = \mathbf{A}^T \mathbf{x}^* (\hat{\lambda}^k) \mathbf{b}$ ,
- 3. Line-search: Find  $M_k \in [M_{k-1}, 2M_{\epsilon}]$  from line-search condition and:  $\lambda^{k+1} = \hat{\lambda}^k + M_i^{-1} \nabla d(\hat{\lambda}^k),$
- 4.  $t_{k+1} = 0.5[1 + \sqrt{1 + 4t_k^2}],$ 5.  $\hat{\lambda}_{k+1} = \lambda_{k+1} + \frac{t_k 1}{t_{k+1}} (\lambda_{k+1} \lambda_k),$
- 6. Primal averaging:  $\mathbf{\bar{x}}^k := S_k^{-1} \sum_{j=0}^k t_j M_j^{-1} \mathbf{x}^*(\lambda^j)$  where  $S_k = \sum_{j=0}^k t_j M_j^{-1}$ .

## Theorem [10]

 $\bar{\mathbf{x}}^k$  and  $\lambda^k$  obtained by **AccUniProx** satisfy:

$$\begin{cases} -\|\mathbf{A}\bar{\mathbf{x}}^{k} - \mathbf{b}\| \|\lambda^{\star}\| \leq & f(\bar{\mathbf{x}}^{k}) - f^{\star} & \leq \|\mathbf{A}\bar{\mathbf{x}}^{k} - \mathbf{b}\| \|\lambda^{0}\| + \frac{\epsilon}{2}, \\ \|\mathbf{A}\bar{\mathbf{x}}^{k} - \mathbf{b}\| & \leq \frac{16M_{\epsilon}\|\lambda^{0} - \lambda^{\star}\|}{(k+2)^{\frac{1+3\nu}{1+\nu}}} + \sqrt{\frac{8M_{\epsilon}\epsilon}{(k+2)^{\frac{1+3\nu}{1+\nu}}}}. \end{cases}$$



# Number of iterations to reach $\epsilon$ : Optimality

### The worst-case iteration complexity [10]

To achieve  $\bar{\mathbf{x}}^k$  such that  $|f(\bar{\mathbf{x}}^k) - f^\star| \le \epsilon$  and  $\|\mathbf{A}\bar{\mathbf{x}}^k - \mathbf{b}\| \le \epsilon$  is:

$$\left\{ \begin{array}{ll} \text{For (UniPDGrad):} & \mathcal{O}\left(D_{\Lambda^\star}^2\inf_{0\leq\nu\leq1}\left(\frac{M_\nu}{\epsilon}\right)^{\frac{2}{1+\nu}}\right), & \text{optimal for }\nu=0 \\ \\ \text{For (AccUniPDGrad):} & \mathcal{O}\left(D_{\Lambda^\star}^{\frac{2+2\nu}{1+3\nu}}\inf_{0\leq\nu\leq1}\left(\frac{M_\nu}{\epsilon}\right)^{\frac{2}{1+3\nu}}\right), & \text{optimal for }\nu\in[0,1] \end{array} \right.$$

where  $D_{\Lambda^*} := \|\lambda^0 - \lambda^*\|$ .

### Scalability example: Quantum tomography with Pauli operators - I

#### Problem formulation

Let  $\mathbf{X}^{\natural} \in \mathcal{S}_{+}^{p}$  be a density matrix which characterizes a q-qubit quantum system, where  $p = 2^{q}$ . Using Pauli operators  $\mathcal{A}$  [2], we can deduce the state from  $\mathbf{b} = \mathcal{A}(\mathbf{X}) \in \mathcal{C}^{n}$  based on the following convex optimization formulation:

$$\varphi^* := \min_{\mathbf{X} \in \mathcal{S}_+^p} \left\{ \frac{1}{2} \| \mathcal{A}(\mathbf{X}) - \mathbf{b} \|_2^2 : \mathsf{tr}(\mathbf{X}) = 1 \right\}. \tag{4}$$

The recovery is also robust to noise.



### Scalability example: Quantum tomography with Pauli operators - I

#### Problem formulation

Let  $\mathbf{X}^{\natural} \in \mathcal{S}_{+}^{p}$  be a density matrix which characterizes a q-qubit quantum system, where  $p = 2^{q}$ . Using Pauli operators  $\mathcal{A}$  [2], we can deduce the state from  $\mathbf{b} = \mathcal{A}(\mathbf{X}) \in \mathcal{C}^{n}$  based on the following convex optimization formulation:

$$\varphi^* := \min_{\mathbf{X} \in \mathcal{S}_+^p} \left\{ \frac{1}{2} \| \mathcal{A}(\mathbf{X}) - \mathbf{b} \|_2^2 : \mathsf{tr}(\mathbf{X}) = 1 \right\}. \tag{4}$$

The recovery is also robust to noise.

Perfect scalability test: tuning free constraint + Lipschitz continuous gradient

### Setup

Synthetic random pure quantum state (e.g., rank-1  $\mathbf{X}^{\natural}$ ) with:

- q=14 qubits, that corresponds to  $2^{28}=268'435'456$  dimensional problem.
- $n := 2p \log(p) = 138'099$  number of Pauli measurements.
- Input parameters  $\lambda^0 = \mathbf{0}^n$  and  $\epsilon = 2 \cdot 10^{-4}$ .



### Scalability example: Quantum tomography with Pauli operators - II

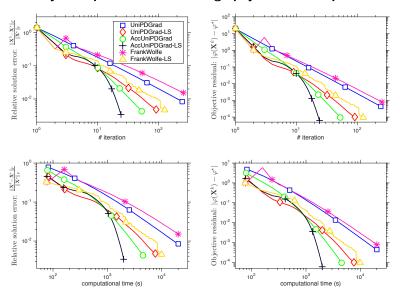


Figure: The performance of (Acc)UniPDGrad and Frank-Wolfe algorithms for (4).



# Scalability example: Phase retrieval with matrix lifting - I

#### Phase retrieval

Phase retrieval problem aims to recover a signal  $\mathbf{x}^{\natural} \in \mathcal{C}^p$  from n phaseless linear measurements where  $\mathbf{a}_i \in \mathcal{C}^p$  are known vectors:

$$b_i = \left| \langle \mathbf{a}_i, \mathbf{x}^{\natural} \rangle \right|^2.$$

# Scalability example: Phase retrieval with matrix lifting - I

#### Phase retrieval

Phase retrieval problem aims to recover a signal  $\mathbf{x}^{\natural} \in \mathcal{C}^p$  from n phaseless linear measurements where  $\mathbf{a}_i \in \mathcal{C}^p$  are known vectors:

$$b_i = \left| \langle \mathbf{a}_i, \mathbf{x}^{\dagger} \rangle \right|^2.$$

# Problem in the lifted dimensions [1]

We can equivalently express  $b_i$  as:

$$b_i = \operatorname{trace}\left(\mathbf{a}_i\mathbf{X}^{\natural}\mathbf{a}_i^H\right), \quad \text{where } \mathbf{X}^{\natural} = \mathbf{x}^{\natural}(\mathbf{x}^{\natural})^H.$$

This leads to the following linear observation model of the lifted matrix  $X^{\natural}$ :

$$\mathbf{b} = \mathcal{A}(\mathbf{X}^{\natural}), \quad \text{where } \mathcal{A}(\mathbf{X}) = \text{diag}\left(\mathbf{A}\mathbf{X}\mathbf{A}^{H}\right) \quad \text{and} \quad \mathcal{A}^{H}(\lambda) = \mathbf{A}^{H}\mathbf{D}(\lambda)\mathbf{A}.$$

# Scalability example: Phase retrieval with matrix lifting - II

#### Problem formulation

$$f^* := \min_{\mathbf{X} \in \mathcal{S}_+^{p^2}} \left\{ \frac{1}{2} \| \mathcal{A}(\mathbf{X}) - \mathbf{b} \|_2^2 : \| \mathbf{X} \|_* \le \kappa \right\}.$$
 (5)

# Setup [9]

Real images of different size as input vector  $\mathbf{x}^{\natural}$ :

- ▶ EPFL campus  $800 \times 1280$  pixels,  $p \approx 10^6$ , lifted dimension  $p^2 \approx 10^{12}$ .
- ▶ Milky Way  $1080 \times 1920$  pixels,  $p \approx 2 \cdot 10^6$ , lifted dimension  $p^2 \approx 4 \cdot 10^{12}$ .
- We measure the magnitude of the diffraction pattern of the signal  $\mathbf{x}^{\natural} \in \mathbb{R}^p$  modulated by 20 different random waveform  $\mathbf{d}_l \in \mathbb{C}^p, \ 1 \leq l \leq 20$ :

$$(b_l)_i = \Big| \sum_{i=1}^p x_i^{\natural} (d_l)_i^* \exp(-j2\pi ki/p) \Big|.$$

Input parameters  $\lambda^0 = \mathbf{0}^n$ ,  $\epsilon = 2 \cdot 10^{-2}$  and  $\kappa = \text{mean}(\mathbf{b})$ .



# Scalability example: Phase retrieval with matrix lifting - III

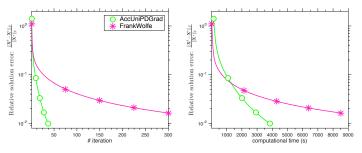


Figure: The performance of (Acc)UniPDGrad and Frank-Wolfe algorithms for (5).

### Scalability example: Phase retrieval with matrix lifting - IV



Figure: EPFL campus  $800 \times 1280$  estimate after 37 iterations of AccUniPDGrad.

## Scalability example: Phase retrieval with matrix lifting - V

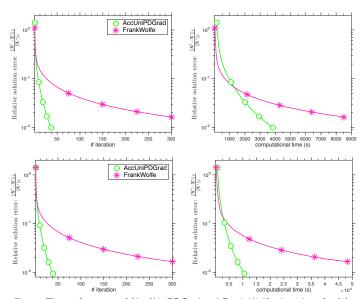


Figure: The performance of (Acc)UniPDGrad and Frank-Wolfe algorithms for (5).



# Scalability example: Phase retrieval with matrix lifting - VI



Figure: Milky Way  $1080 \times 1920$  estimate after 39 iterations of AccUniPDGrad.

### Flexibility example: Matrix completion with MovieLens dataset - I

#### Problem formulation

Let  $\Omega \subseteq \{1, \cdots, p\} \times \{1, \cdots, q\}$  be a subset of indexes and  $\mathbf{M}_{\Omega} = (\mathbf{M}_{ij})_{(i,j) \in \Omega}$  be the observed entries of a missed matrix  $\mathbf{M}$ .  $\mathcal{P}_{\Omega}$  is the projection on the subset  $\Omega$ .

$$f^* := \min_{\mathbf{X} \in \mathbb{R}^{p \times q}} \left\{ \frac{1}{2} \| \mathcal{P}_{\Omega}(\mathbf{X}) - \mathbf{M}_{\Omega} \|_{2}^{2} : \| \mathbf{X} \|_{\star} \le \kappa \right\}$$
 (6)

We can also solve another robust version against outliers:

$$f^{\star} := \min_{\mathbf{X} \in \mathbb{R}^{p \times q}} \left\{ \frac{1}{2} \| \mathcal{P}_{\Omega}(\mathbf{X}) - \mathbf{M}_{\Omega} \|_{1}^{2} : \| \mathbf{X} \|_{\star} \le \kappa \right\}. \tag{7}$$

Note that Frank-Wolfe cannot solve (7).



#### Flexibility example: Matrix completion with MovieLens dataset - II

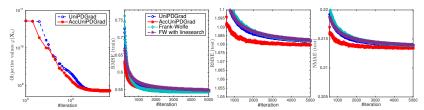


Figure: The performance of UniProx and AccUniProx algorithms for (6) and (7).

# Setup [10]

- ▶ MovieLens 100k dataset: 100'000 ratings from 943 users on 1682 movies
- ▶ Input parameters  $\lambda^0 = \mathbf{0}^n$ ,  $\epsilon = 2 \cdot 10^{-2}$  and  $\kappa = 9975/2$ .

#### Performance measures

$$\mathsf{RMSE} = \frac{\|\mathcal{P}_{\Omega}(\mathbf{X}) - \mathbf{M}_{\Omega}\|_2}{\sqrt{n}} \qquad and \qquad \mathsf{NMAE} = \frac{\|\mathcal{P}_{\Omega}(\mathbf{X}) - \mathbf{M}_{\Omega}\|_1}{4n}$$



### The general constraint case

### Handling to the constraint $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}$

the universal dual accelerated gradient method:

$$\left\{ \begin{array}{ll} t_k & := 0.5 \left(1 + \sqrt{1 + 4t_{k-1}^2}\right) \\ \hat{\lambda}^k & := \bar{\lambda}^k + \frac{t_{k-1} - 1}{t_k} \left(\bar{\lambda}^k - \hat{\lambda}^{k-1}\right) \\ \lambda^{k+1} & := \hat{\lambda}^k + \frac{1}{M_k} \left(\mathbf{A}\mathbf{x}^*(\hat{\lambda}^k) - \mathbf{b}\right). \end{array} \right.$$



### The general constraint case

#### Handling to the constraint $\mathbf{A}\mathbf{x} - \mathbf{b} \in \mathcal{K}$

Only one prox change in the universal dual accelerated gradient method:

$$\left\{ \begin{array}{ll} t_k & := 0.5 \left(1 + \sqrt{1 + 4t_{k-1}^2}\right) \\ \hat{\lambda}^k & := \bar{\lambda}^k + \frac{t_{k-1}-1}{t_k} \left(\bar{\lambda}^k - \hat{\lambda}^{k-1}\right) \\ \lambda^{k+1} & := \operatorname{prox}_{M_k^{-1}h} \left(\hat{\lambda}^k + \frac{1}{M_k} \left(\mathbf{A}\mathbf{x}^*(\hat{\lambda}^k) - \mathbf{b}\right)\right). \end{array} \right.$$

Here, h is defined by  $h(\lambda) := \sup_{\mathbf{r} \in \mathcal{K}} \langle \lambda, \mathbf{r} \rangle$ .



### Flexibility example II: Matrix completion with MovieLens dataset

#### Problem formulation

Let  $\Omega\subseteq\{1,\cdots,p\} imes\{1,\cdots,q\}$  be a subset of indexes and  $\mathbf{M}_\Omega=(\mathbf{M}_{ij})_{(i,j)\in\Omega}$  be the observed entries of a missed matrix  $\mathbf{M}$ .  $\mathcal{P}_\Omega$  is the projection on the subset  $\Omega$ .

$$f^{\star} := \min_{\mathbf{X} \in \mathbb{R}^{p \times q}} \left\{ \frac{1}{2} \| \mathcal{P}_{\Omega}(\mathbf{X}) - \mathbf{M}_{\Omega} \|_{2}^{2} : \| \mathbf{X} \|_{\star} \le \kappa \right\}$$
(8)

We can also solve another robust version against outliers:

$$f^{\star} := \min_{\mathbf{X} \in \mathbb{R}^{p \times q}} \left\{ \frac{1}{2} \| \mathcal{P}_{\Omega}(\mathbf{X}) - \mathbf{M}_{\Omega} \|_{1}^{2} : \| \mathbf{X} \|_{\star} \le \kappa \right\}. \tag{9}$$

Note that Frank-Wolfe cannot solve (9).

#### Problem formulation

Following formulation may be easier to tune with an expected perturbation level au:

$$f^{\star} := \min_{\mathbf{X} \in \mathbb{R}^{p \times q}} \left\{ \frac{1}{2} \|\mathbf{X}\|_{\star}^{2} : \|\mathcal{P}_{\Omega}(\mathbf{X}) - \mathbf{M}_{\Omega}\|_{1} \le \tau \right\}.$$
 (10)

Note that Frank-Wolfe cannot solve (10)



### Flexibility example II: Matrix completion with MovieLens dataset

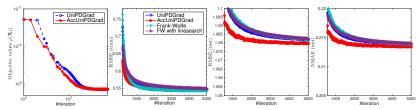


Figure: The performance of UniProx and AccUniProx algorithms for (8) and (9).

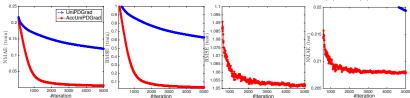


Figure: The performance of UniProx and AccUniProx algorithms for (10).

### Setup [10]

- $\kappa = 9975/2.$
- $\tau = 4 \times$  NMAE  $\times \#$  of test samples



# Outline

Yet another template from source separation



#### Bonus: ADMM<sup>2</sup>

# Primal problem with a specific decomposition structure

$$f^{\star} := \min_{\mathbf{x} := (\mathbf{u}, \mathbf{v})} \left\{ f(\mathbf{x}) := g(\mathbf{u}) + h(\mathbf{v}) : \mathbf{B}\mathbf{u} + \mathbf{C}\mathbf{v} = \mathbf{b}, \ \mathbf{u} \in \mathcal{U}, \ \mathbf{v} \in \mathcal{V} \right\}$$

- $\mathcal{X} := \mathcal{U} \times \mathcal{V}$  nonempty, closed, convex and bounded.
- A := [B, C].

#### The Fenchel dual problem

$$d^* := \max_{\lambda \in \mathbb{R}^n} \left\{ d(\lambda) := -g_{\mathcal{U}}^*(-\mathbf{B}^T \lambda) - h_{\mathcal{V}}^*(-\mathbf{C}^T \lambda) + \langle \mathbf{b}, \lambda \rangle \right\}$$

•  $g_{\mathcal{U}}^*$  and  $h_{\mathcal{U}}^*$  are the Fenchel conjugate of  $g_{\mathcal{U}}:=g+\delta_{\mathcal{U}}$  and  $h_{\mathcal{V}}:=h+\delta_{\mathcal{V}}$ , resp.

#### The dual function

$$d(\lambda) := \underbrace{\min_{\mathbf{u} \in \mathcal{U}} \left\{ g(\mathbf{u}) + \langle \mathbf{B}^T \lambda, \mathbf{u} \rangle \right\}}_{d^1(\lambda)} + \underbrace{\min_{\mathbf{v} \in \mathcal{V}} \left\{ h(\mathbf{v}) + \langle \mathbf{C}^T \lambda, \mathbf{v} \rangle \right\}}_{d^2(\lambda)} - \langle \mathbf{b}, \lambda \rangle.$$

<sup>&</sup>lt;sup>2</sup>Q. Tran-Dinh and V. Cevher, Splitting the Smoothed Primal-dual Gap: Optimal Alternating Direction Methods Tech. Report, 2015, (http://arxiv.org/pdf/1507.03734.pdf) / (http://lions.epfl.ch/publications)





# Standard ADMM as the dual Douglas-Rachford method

We can derive ADMM via the Douglas-Rachford splitting on the dual:

$$0 \in \mathbf{B} \partial g_{\mathcal{U}}^*(-\mathbf{B}^T \lambda) + \mathbf{C} \partial h^*_{\mathcal{V}}(-\mathbf{C}^T \lambda) + c,$$

which is the optimality condition of the dual problem.

#### Douglas-Rachford splitting method

$$\begin{cases} \mathbf{z}_g^k &:= \operatorname{prox}_{\eta_k^{-1} g_{\mathcal{U}}^*(-\mathbf{B}^T \cdot)}(\lambda^k) \\ \mathbf{z}_h^k &:= \operatorname{prox}_{\eta_k^{-1} h_{\mathcal{V}}^*(-\mathbf{C}^T \cdot)}(2\mathbf{z}_g^k - \lambda^k) \\ \lambda^{k+1} &:= \lambda^k + (\mathbf{z}_g^k - \mathbf{z}_h^k). \end{cases}$$

#### Standard ADMM

$$\begin{cases} \mathbf{u}^{k+1} &:= \operatorname*{arg\,min}_{\mathbf{u} \in \mathcal{U}} \left\{ g(\mathbf{u}) + \langle \lambda^k, \mathbf{B} \mathbf{u} \rangle + \frac{\eta_k}{2} \| \mathbf{B} \mathbf{u} + \mathbf{C} \mathbf{v}^k - \mathbf{b} \|^2 \right\} \\ \mathbf{v}^{k+1} &:= \operatorname*{arg\,min}_{\mathbf{v} \in \mathcal{V}} \left\{ h(\mathbf{v}) + \langle \lambda^k, \mathbf{C} \mathbf{v} \rangle + \frac{\eta_k}{2} \| \mathbf{B} \mathbf{u}^{k+1} + \mathbf{C} \mathbf{v} - \mathbf{b} \|^2 \right\} \\ \lambda^{k+1} &:= \lambda^k + \eta_k \left( \mathbf{B} \mathbf{u}^{k+1} + \mathbf{C} \mathbf{v}^{k+1} - \mathbf{b} \right). \end{cases}$$

Here,  $\eta_k > 0$  is a given penalty parameter.



# Splitting the smoothed gap

# Smoothing the gap

▶ The dual components  $d^1$  and  $d^2$  are nonsmooth. We smooth one, e.g.,  $d^1$ , using:

$$d_{\gamma}^{1}(\lambda) := \min_{\mathbf{u} \in \mathcal{U}} \left\{ g(\mathbf{u}) + \frac{\gamma}{2} \|\mathbf{B}(\mathbf{u} - \mathbf{u}_{c})\|^{2} + \langle \lambda, \mathbf{B} \mathbf{u} \rangle \right\}$$

▶ Recall: We also approximate f by  $f_\beta$  as:

$$f_{\beta}(\mathbf{x}) := f(\mathbf{x}) + \frac{1}{2\beta} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 \to f(\mathbf{x})$$
 as  $\mathbf{x}$  becomes feasible

# Three key properties of $d^1_{\gamma}$

- $d_{\gamma}^1$  is concave and smooth.
- $\nabla d_{\gamma}^1$  is Lipschitz continuous with  $L := \gamma^{-1}$ .
- $d_{\gamma}^1$  approximates  $d^1$  as:

$$d^1_{\gamma}(\lambda) - \gamma D_{\mathcal{U}} \le d^1(\lambda) \le d^1_{\gamma}(\lambda),$$

where  $D_{\mathcal{U}} := \max \left\{ (1/2) \| \mathbf{B}(\mathbf{u} - \mathbf{u}_c) \|^2 : \mathbf{u} \in \mathcal{U} \right\}$ .

# Our ADMM scheme: D-R on the smoothed gap

Our new ADMM scheme consists of three steps:
 ADMM step, acceleration step, and primal averaging.

### **Step 1:** The main ADMM steps

$$\begin{cases} \hat{\mathbf{u}}^{k+1} &:= \operatorname*{arg\,min}_{\mathbf{u} \in \mathcal{U}} \left\{ g_{\gamma_{k+1}}(\mathbf{u}) + \langle \hat{\boldsymbol{\lambda}}^k, \mathbf{B} \mathbf{u} \rangle + \frac{\rho_k}{2} \| \mathbf{B} \mathbf{u} + \mathbf{C} \hat{\mathbf{v}}^k - \mathbf{b} \|^2 \right\} \\ \hat{\mathbf{v}}^{k+1} &:= \operatorname*{arg\,min}_{\mathbf{v} \in \mathcal{V}} \left\{ h(\mathbf{v}) + \langle \hat{\boldsymbol{\lambda}}^k, \mathbf{C} \mathbf{v} \rangle + \frac{\eta_k}{2} \| \mathbf{B} \hat{\mathbf{u}}^{k+1} + \mathbf{C} \mathbf{v} - \mathbf{b} \|^2 \right\} \\ \lambda^{k+1} &:= \hat{\lambda}^k + \eta_k \left( \mathbf{B} \hat{\mathbf{u}}^{k+1} + \mathbf{C} \hat{\mathbf{v}}^{k+1} - \mathbf{b} \right). \end{cases}$$

where  $g_{\gamma}(\cdot) := g(\cdot) + \frac{\gamma}{2} \|\mathbf{B}(\cdot - \mathbf{u}_c)\|^2$ .

### The dual accelerated and primal averaging steps

• Step 2: [Dual acceleration]  $\hat{\lambda}^k$  is computed as:

$$\hat{\lambda}^k := (1 - \tau_k)\lambda_k + \frac{\tau_k}{\beta_k} (\mathbf{B}\mathbf{u}^k + \mathbf{C}\mathbf{v}^k - \mathbf{b}).$$

**Step 3:** [Averaging] The primal iteration  $\mathbf{x}^k := (\mathbf{u}^k, \mathbf{v}^k)$  is updated as:

$$\mathbf{u}^{k+1} := (1 - \tau_k)\mathbf{u}^k + \tau_k\hat{\mathbf{u}}^{k+1} \quad \text{and} \quad \mathbf{v}^{k+1} := (1 - \tau_k)\mathbf{v}^k + \tau_k\hat{\mathbf{v}}^{k+1}.$$

# How do we update parameters?

# Duality gap and smoothed gap functions

- ▶ The duality gap:  $G(\mathbf{w}) := f(\mathbf{x}) d(\lambda)$ , where  $\mathbf{w} := (\mathbf{x}, \lambda)$ .
- The smoothed gap:  $G_{\gamma\beta}(\mathbf{w}):=f_{\beta}(\mathbf{x})-d_{\gamma}(\lambda)$  with  $d_{\gamma}:=d_{\gamma}^1+d^2.$

# Model-based gap reduction

The gap reduction model provides conditions to derive parameter update rules:

$$G_{\gamma_{k+1}\beta_{k+1}}(\mathbf{w}^{k+1}) \le (1 - \tau_k)G_{\gamma_k\beta_k}(\mathbf{w}^k) + \tau_k(\eta_k + \rho_k)D_{\mathcal{X}}$$

where  $\gamma_{k+1} < \gamma_k$ ,  $\beta_{k+1} < \beta_k$  and  $D_{\mathcal{X}} := \max_{\mathbf{a}, \mathbf{v}} \left\{ (1/2) \| \mathbf{B} \mathbf{u} + \mathbf{C} \mathbf{v} - \mathbf{b} \|^2 \right\}$ .

#### Update rules

- ► The smoothness parameters:  $\gamma_{k+1} := \frac{2\gamma_0}{k+3}$  and  $\beta_k := \frac{9(k+3)}{\gamma_0(k+1)(k+7)}$ .
- ▶ The penalty parameters:  $\eta_k := \frac{\gamma_0}{k+3}$  and  $\rho_k := \frac{3\gamma_0}{(k+3)(k+4)}$ .
- ▶ The step-size  $\tau_k := \frac{3}{k+4} \implies \mathcal{O}\left(\frac{1}{k}\right)$ .



### Convergence guarantee & Other cases of interest

#### Convergence rate guarantee

Rate on the primal objective residual and constraint feasibility:

$$\begin{split} f(\mathbf{x}^k) - f^\star &\quad \leq \frac{2\gamma_0 D_{\mathcal{U}}}{k+2} + \frac{3\gamma_0 D_{\mathcal{X}}}{2(k+3)} \left(1 + \frac{6}{k+2}\right) &\quad \Rightarrow \quad \mathcal{O}\left(\frac{1}{k}\right) \\ \|\mathbf{A}\mathbf{x}^k - \mathbf{b}\| &\quad \leq \frac{18D_d^*}{\gamma_0(k+2)} + \frac{6}{k+2} \sqrt{D_{\mathcal{U}} + \frac{3(k+8)}{2(k+3)} D_{\mathcal{X}}} &\quad \Rightarrow \quad \mathcal{O}\left(\frac{1}{k}\right) \end{split}$$

where  $D_d^*$  is the diameter of the dual solution set  $\Lambda^*$ .

- ▶ Lower bound:  $-D_{J}^{*}\|\mathbf{A}\mathbf{x}^{k} \mathbf{b}\| \leq f(\mathbf{x}^{k}) f^{*}$ .
- Rate on the dual objective residual:

$$d^{\star} - d(\lambda^k) \leq \frac{18(D_d^{\star})^2}{\gamma_0(k+2)} + \frac{6D_d^{\star}}{k+2} \sqrt{D_{\mathcal{U}} + \frac{3(k+8)}{2(k+3)}D_{\mathcal{X}}} \quad \Rightarrow \quad \mathcal{O}\left(\frac{1}{k}\right).$$

# Special cases: cf., http://lions.epfl.ch/publications

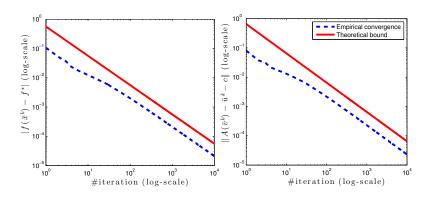
- Full-column rank or orthogonality of A: Using smoothing term  $(\gamma/2)\|\mathbf{u}-\mathbf{u}_c\|^2$ .
- Strong convexity of g: We do not need to smooth  $d^1$ .
- ▶ Decomposability of g and  $\mathcal{U}$ : Using smoothing term

$$(\gamma/2)\sum_{s}^{s} \|\mathbf{B}_{i}(\mathbf{u}_{i}-\mathbf{u}_{c,i})\|^{2}.$$

#### A comparison to the theoretical bounds

# A stylized example: Square-root LASSO

$$f^{\star} := \min_{\mathbf{u} \in \mathcal{U}, \mathbf{v} \in \mathcal{V}} \left\{ f(\mathbf{x}) := \left\| \mathbf{u} \right\|_2 + \kappa \left\| \mathbf{v} \right\|_1 : \mathbf{B}(\mathbf{v}) - \mathbf{u} = c \right\}.$$



▶ See the preprint for more examples, enhancements, ...



#### References |

[1] E.J. Candès, T. Strohmer, and V. Voroninski.

Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming.

IEE Trans. Signal Processing, 60(5):2422-2432, 2012.

- [2] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert. Quantum state tomography via compressed sensing. *Physical Review Letters*, 105(15):150401(0-4), 2010.
- [3] M. Jaggi. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. JMLR W&CP, 28(1):427–435, 2013.
- [4] A. Nemirovskii and D. Yudin.
   Problem Complexity and Method Efficiency in Optimization.
   Wiley Interscience, 1983.
- [5] Y. Nesterov.

  Smooth minimization of non-smooth

Smooth minimization of non-smooth functions. *Math. Program.*, 103(1):127–152, 2005.

#### References II

[6] Y. Nesterov.

Dual extrapolation and its applications to solving variational inequalities and related problems.

Math. Program., 109(2-3):319-344, 2007.

[7] Y. Nesterov.

Primal-dual subgradient methods for convex problems.

Math. Program., 120(1, Ser. B):221-259, 2009.

[8] Y. Nesterov.

Universal gradient methods for convex optimization problems.

Math. Program., xx:1-24, 2014.

[9] A. Yurtsever, Y. P. Hsieh, and V. Cevher. Scalable convex methods for phase retrieval. In under review, 2015.

[10] A. Yurtsever, Q. Tran-Dinh, and V. Cevher.

Universal primal-dual proximal-gradient methods.

Tech. Report. (LIONS, EPFL), Available at: http://arxiv.org/pdf/1502.03123.pdf., 2015.