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Outline

This lecture: Reducing the error bounds to complexity measures of the hypothesis
class

1. Preliminaries
2. Classical VC Theory for Binary Classification
3. Uniform Convergence and Rademacher Complexity
4. A Brief View of Modern Statistical Learning
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Recommended reading materials

Binary Classification:
1. Section 2.2, Section 5.3 in R. Schapire and Y. Freund, Boosting: Foundations

and Algorithms, The MIT Press, 2012.

2. Chapters 1–3 in S. Boucheron et al., “Theory of classification: A survey of some
recent advances,” ESIAM: Probab. Stat., 2005.

Modern Statistical Learning Theory:
1. S. Mendelson, “Learning without Concentration”, Journal of ACM, 2015.
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Preliminaries
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The standard statistical learning model

I Training Data: Dn := {Zi}n
i=1 i.i.d. unknown P on Z

I Hypothesis Class: H a set of hypotheses h

I Loss Function: ` : H×Z → R

I Risk: L(h) B EZ∼P`(h,Z), where Z is independent of Dn

I Empirical Risk Minimization:

ĥn = arg min
h∈H

Ln(h) B arg min
h∈H

1
n

n∑
i=1

`(h,Zi)

Performance Measures
With high probability, we have
1. Generalization Error: L(ĥn) ≤ Ln(ĥn) + ε1

2. Excess Risk: L(ĥn)− infh∈H L(h) ≤ ε2
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Uniform convergence

Definition (Uniform Convergence [1])
A hypothesis class H has the uniform convergence property, if there exists a function
nH(ε, δ), such that for every ε, δ ∈ (0, 1) and any probability distribution P, if
n ≥ nH(ε, δ), we have

sup
h∈H
|Ln(h)− L(h)| ≤ ε,

with probability at least 1− δ.

Proposition [1]
For any ε > 0, if

sup
h∈H
|Ln(h)− L(h)| ≤ ε,

then for any h? ∈ arg minh∈H L(h), we have

1. L(ĥn) ≤ Ln(ĥn) + ε.
2. L(ĥn)− L(h?) ≤ 2ε.
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Recall: Hoeffding’s Lemma

Theorem (Hoeffding’s Lemma [2])
Let Y be a random variable with E[Y ] = 0, taking values in a bounded interval [a, b].

Let ψY (λ) = log E[eλY ]. Then ψ′′Y (λ) ≤ (b−a)2

4 and Y ∈ G
(

(b−a)2

4

)
.

In particular, for all Y ∈ [a, b],

Pr
(
|Y − EY | > t

)
≤ 2 exp

(
−

2t2

(b − a)2

)
.
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Recall: Bounded Difference Inequality

Definition (Bounded Difference Functions)
A function f : Xn → R has the bounded differences property if for some positive
c1, .., cn ,

sup
x1,...,xn ,x′i∈X

|f (x1, .., xi , ..., xn)− f (x1, ..., x′i , ..., xn)| ≤ ci .

Theorem (Bounded Differences Inequality [2])
Let X1, ...,Xn be independent random variables, and let f satisfy the bounded
differences property with ci ’s. Then

P
(
|f (X1, ...,Xn)− Ef (X1, ...,Xn)| > t

)
≤ 2 exp

(
−

2t2∑n
i=1 c2

i

)
.
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Classical VC Theory for Binary Classification
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Binary classification

I Training Data: Dn = {Zi = (Xi ,Yi) : 1 ≤ i ≤ n}

I Hypothesis Class: H a set of classifiers h : X → {0, 1}

I Loss Function: Binary loss `(h,Zi) := 1{Yi,h(Xi)}

I Risk: L(h) B EZ∼P`(h,Z) = P (Y , h(X))

I Empirical Risk: Ln(h) B 1
n
∑n

i=1 1{Yi,h(Xi)}

Key Question
How do we bound suph∈H |Ln(h)− L(h)|?
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VC Theory for Binary Classification

I Single Hypothesis H = {h}: suph∈H |Ln(h)− L(h)| = |Ln(h)− L(h)|.
Hoeffding’s lemma applied to `(h,Zi) = 1{Yi,h(Xi)} implies, with probability at
least 1− δ,

|Ln(h)− L(h)| ≤

√
ln(2/δ)

2n
.

I Finite Hypotheses: Union bound + Hoeffding’s lemma implies, with probability at
least 1− δ,

sup
h∈H
|Ln(h)− L(h)| ≤

√
ln |H|+ ln(2/δ)

2n

I Infinite Hypotheses: VC theory.
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VC Theory for Binary Classification

Key Insight
Instead of considering the number of hypothesis, consider the number of effective
hypothesis.

Examples

1. Linear classifiers.
2. Rectangle classifiers.
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VC Theory for Binary Classification

Definition (Dichotomies [7])
For any finite sample S = 〈x1, ..., xn〉, the set of dichotomies is defined to be all
possible labelings of S by the functions in H:

ΠH(S) B {〈h(x1), ..., h(xn)〉 : h ∈ H}.

Definition (Growth Function [7])

ΠH(n) B max
S∈Xn

|ΠH(S)|

Theorem ([7])
With probability at least 1− δ, we have

sup
h∈H
|Ln(h)− L(h)| ≤

√
32 ln ΠH(n) + ln(16/δ)

n
.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 34



VC Theory for Binary Classification

Definition (Dichotomies [7])
For any finite sample S = 〈x1, ..., xn〉, the set of dichotomies is defined to be all
possible labelings of S by the functions in H:

ΠH(S) B {〈h(x1), ..., h(xn)〉 : h ∈ H}.

Definition (Growth Function [7])

ΠH(n) B max
S∈Xn

|ΠH(S)|

Theorem ([7])
With probability at least 1− δ, we have

sup
h∈H
|Ln(h)− L(h)| ≤

√
32 ln ΠH(n) + ln(16/δ)

n
.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 34



Bounding the Growth Function: The VC Dimension

Definition (Shattering coefficient [7])
The shattering coefficient of a hypothesis class H is defined as

Sn(H) := sup
x1,...,xn∈X

∣∣{(h(xi))1≤i≤n : h ∈ H}
∣∣ .

Definition (Vapnik-Chervonenkis (VC) dimension [7])
The VC dimension of a hypothesis class H, denoted by d, is defined as the largest
integer k such that Sk(H) = 2k . If Sk(H) = 2k for all k, then d B∞.

Lemma (Sauer-Shelah [9])
The growth function is bounded by

ΠH(n) ≤
d∑

i=0

(n
i
)
.

In particular, ΠH(n) ≤
(

en
d

)d
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VC Theory for Binary Classification

Theorem (The VC Bound for Binary Classification [10])
Let H be a hypothesis class with VC dimension d. Assume that n ≥ d. Then with
probability at least 1− δ,

sup
h∈H
|Ln(h)− L(h)| ≤ O

(√
d ln(n/d) + ln(1/δ)

n

)
.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 34



Important Implications 1: Learnability and VC Dimension

Sauer-Shelah lemma implies that there can be only two cases for the growth function
ΠH(n):
I Case1: ΠH(n) = 2n ⇔ d =∞⇔ the function class H is not learnable.

I Case2: ΠH(n) grows polynomially ⇔ d <∞⇔ the function class H is learnable
and the VC bound holds.
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Important Implications 2: Fast Rates

Definition (Realizable/Consistent Hypotheses)
A set of training samples S = {Zi}n

i=1 is said to be consistent with the hypothesis
class H if there is a h ∈ H such that Ln(h) = 0 on S .

Theorem (The VC Bound for Binary Classification [7])
Let H be a hypothesis class with VC dimension d. Let S be a set of training samples
with size n and assume that n ≥ d. Then with probability at least 1− δ,

L(h) ≤ O
(d ln(n/d) + ln(1/δ)

n

)
for every h ∈ H that is consistent with S .
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Drawbacks of VC Theory

Although the VC bound reveals many important phenomena in learning, it has some
serious drawbacks:
1. It is very loose in practice (holds for all data and all distributions).
2. Generalization to regression problems is not straightforward.
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Uniform Convergence and Rademacher Complexity
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Rademacher Complexity: Another Measure of Complexity

Motivation: Consider a binary classification problem. Let the sample be
(x1, y1), ..., (xn , yn), where yi ∈ {1,−1}. We can rewrite the empirical risk
minimization procedure as

max
h∈H

1
n

n∑
i=1

yih(xi).

Definition (Rademacher Complexity, Binary Classification [7])
Let S = 〈x1, ..., xn〉 be a given set of input instances, and let σi be a Rademacher
random variable (−1 or +1 with equal probability). The Rademacher complexity of a
class of binary functions H with respect to S is defined as

E sup
h∈H

1
n

n∑
i=1

σih(xi).

Remark: Rademacher complexity measures how well H can fit pure noise.
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Rademacher Complexity: Another Measure of Complexity

Definition (Rademacher Complexity, General Cases [7])
Let S = 〈z1, ..., zn〉 be a given set of input instances, and let σi be a Rademacher
random variable (−1 or +1 with equal probability). The Rademacher complexity of a
class of binary functions F with respect to S is defined as

RS(F) B E sup
f∈F

1
n

n∑
i=1

σi f (zi).

Remark: Rademacher complexity measures the correlation between F and pure noise.
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Uniform Convergence through Rademacher Complexity

Theorem ([1])
Let F be any family of functions Z → [−1,+1]. Let S = {Zi}n

i=1 be random samples
of size n. Then, with probability at least 1− δ,

sup
f∈F

∣∣∣∣∣Ef (Z)−
1
n

n∑
i=1

f (Zi)

∣∣∣∣∣ ≤ 2ESRS(F) +

√
2 ln(1/δ)

n
.

We also have

sup
f∈F

∣∣∣∣∣Ef (Z)−
1
n

n∑
i=1

f (Zi)

∣∣∣∣∣ ≤ 2RS(F) +

√
2 ln(2/δ)

n
.

Remark: For binary classification, let F = ` ◦ H; that is, let f (Zi) = `(h,Zi). Then
the following holds with probability at least 1− δ:

sup
h∈H
|Ln(h)− L(h)| ≤ RS(H) +

√
2 ln(2/δ)

n
.
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Uniform Convergence through Rademacher Complexity

The same analysis can be applied to bounded and Lipschitz loss, due to the following
important property of Rademacher complexity:

Theorem (Contraction Principle [4])
Suppose that φ : R→ R is a L-Lipschitz function with φ(0) = 0. Then, for any
function class F and any sample S ,

RS(φ ◦F) B E sup
h∈F

1
n

n∑
i=1

σi(φ ◦ f )(zi) ≤ LRS(F).
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Uniform Convergence through Rademacher Complexity

We consider the problem of bounded regression:
I Training Data: Dn = {Zi = (Xi ,Yi) : 1 ≤ i ≤ n}, where Yi ∈ [− 1

2 ,+
1
2 ]

I Hypothesis Class: H a set of regression function h : X → [− 1
2 ,+

1
2 ]

I Loss Function: Squared loss `(h,Zi) := (h(Xi)−Yi)2
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Uniform Convergence through Rademacher Complexity

For bounded regression,

Theorem ([1])
Let F be any family of functions Z → [−1,+1]. Let S = {Zi}n

i=1 be random samples
of size n. Then, with probability at least 1− δ,

sup
f∈F

∣∣∣∣∣Ef (Z)−
1
n

n∑
i=1

f (Zi)

∣∣∣∣∣ ≤ 2RS(F) +

√
2 ln(2/δ)

n
.

+

Contraction Principle

⇓

sup
f∈H
|Ln(h)− L(h)| ≤ 2RS(H) +

√
2 ln(2/δ)

n

with probability at least 1− δ.
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Rademacher Complexity

Advantages of Rademacher complexity:

1. It works for many learning problems.
2. It is tighter than the VC bound, both in practice and theory.
3. It allows us to derive data dependent bounds.
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A Brief View of Modern Statistical Learning
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A Brief View of Modern Statistical Learning

Modern statistical learning theory aims at:
1. Deriving bounds that reveal high-dimensional phenomena, such as distribution

dependent bounds.
2. Getting rid of redundant assumptions (such as boundedness).

To achieve these goals, we need to impose more assumptions on the distribution that
generates the data.
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A Brief View of Modern Statistical Learning

Two parameters that involve the localized Rademacher complexity:

Definition ([6])
Given a function class F and γ > 0. Set

β∗(γ) = inf

{
r > 0 : E sup

f∈F∩rDf∗

∣∣∣∣∣ 1
n

n∑
i=1

σi(f − f ∗)(Xi)

∣∣∣∣∣ ≤ γr

}
where Df∗ = {f : ‖f − f ∗‖ ≤ 1}.

Definition ([6])
Let ξi = f ∗(Xi)−Yi and ψn(s) = supf∈F∩sDf∗

∣∣ 1
n
∑n

i=1 σiξi(f − f ∗)(Xi)
∣∣ .

Given γ, δ > 0. Set

α∗(γ, δ) = inf
{

s > 0 : P
(
ψn(s) ≤ γs2

)
≥ 1− δ

}
.
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A Brief View of Modern Statistical Learning

I Training Data: Dn = {Zi = (Xi ,Yi) : 1 ≤ i ≤ n}, where Yi ∈ R

I Hypothesis Class: F a set of convex regression function f : X → R

I Loss Function: Squared loss `(f ,Zi) := (f (Xi)−Yi)2

Theorem ([6])
Under mild assumptions, there exist constants c1, c2, c3 > 0 such that, with
probability 1− δ − exp(−nc1),

‖f̂ − f ∗‖ ≤ 2 max{α∗(c2, δ/4), β∗(c3)}.
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What’s not covered in this lecture...
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Not covered in this lecture...

1. Bounding the Rademacher complexity: Gaussian complexity, Chaining/Generic
Chaining [8]

2. Missing assumptions in modern statistical learning: Small-ball conditions [6]
3. General convex loss functions [5]
4. Stability analysis [3]
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