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Outline

This lecture:

1. Cramér-Chernoff bound
2. Hoeffding bound
3. Herbst’s trick
4. Entropy function and its properties
5. Bounded differences inequality
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Recommended Reading Materials

1. S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A
Nonasymptotic Theory of Independence Oxford Univ. Press, 2013
(Sections 2.1 – 2.3, 2.6, 6.1 – 6.2)

2. R. V. Handel, Probability in High Dimension. Lecture Notes, 2014 (Section 3.3)
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Part I: Results and Examples
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Concentration of Measure Phenomenon

Problem (a rough statement)
Given a random variable Y , how “concentrated” is Y (e.g., around its mean)?

Concentration of Measure Inequalities
Suppose that we can find a deterministic value m, such that

Pr(|Y −m| > t) ≤ D(t)

where D(t) decreases drastically to 0 in t. We say that Y concentrates around m.

Note: Typically m = E[Y ], and D(t) decreases exponentially: D(t) ∼ e−tk for some
positive integer k.

Example

1. In statistics, Y can be the estimation/prediction error.
2. In optimization, Y can be the objective error f (xk)− f (x∗), or the estimate of

gradient ∇f (xk).
3. In computer science, Y can be the outcomes of randomized algorithms.
4. Many other applications in information theory, statistical physics, random

matrices, statistical learning theory...
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Example: Sums of Independent Random Variables

A simple example: Yn = 1
n
∑n

i=1 Xi , where the Xi are independent with mean µ and
variance σ2

I Law of Large Numbers: Pr(|Yn − µ| > ε)→ 0 as n →∞
I Central Limit Theorem: Pr

(
|Yn − µ| > α√

n

)
→ 2Φ

(
− α
σ

)
as n →∞, where Φ

is the standard normal CDF.
I Large Deviations: Under some technical assumptions,

Pr(|Yn − µ| > ε) ≤ e−n·c(ε)

I Moderate Deviations: Decay rate of Pr(|Yn − µ| > εn) when εn → 0 sufficiently
slowly so that εn

√
n →∞

In many applications, we want the bounds to be non-asymptotic.
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In This Lecture

Concentration of measure has many manifestations; we will only cover one today:

A General Principle of Concentration of Measure: Functional Inequalities
If X1, ...,Xn are independent random variables, then any function f (x1, · · · , xn) that
is “not too sensitive” to any of the coordinates will concentrate around its mean:

P
(
|f (X1, ...,Xn)− E[f (X1, ...,Xn)]| > t

)
. e−t2/c(f ),

where c(f ) depends on the sensitivity in its coordinates.

Note: No assumptions on the Xi besides independence! (which can be relaxed)
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In This Lecture

Definition (Bounded Difference Functions)
A function f : Xn → R has the bounded differences property if for some positive
c1, .., cn ,

sup
x1,...,xn ,x′i∈X

|f (x1, .., xi , ..., xn)− f (x1, ..., x′i , ..., xn)| ≤ ci .

Theorem (Bounded Differences Inequality)
Let X1, ...,Xn be independent random variables, and let f satisfy the bounded
differences property with ci ’s. Then

P
(
|f (X1, ...,Xn)− E[f (X1, ...,Xn)]| > t

)
≤ 2 exp

(
−

2t2∑n
i=1 c2

i

)
.

To prove this result, we need the following fundamental notions:
• Cramér-Chernoff bound
• Hoeffding bound
• Herbst’s trick
• Entropy function and its properties
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Bounded Differences: Example

Example (Chromatic Number of a Random Graph)
Let V = {1, · · · ,n}, and let G be a random graph such that each pair i, j ∈ V is
independently connected with probability p. Let

Xij =
{

1 (i, j) are connected
0 otherwise.

The chromatic number of G is the minimum number of colors needed to color the
vertices such that no two connected vertices have the same color. Writing

chromatic number = f (X11, · · · ,Xij , · · · ,Xnn),

we find that f satisfies the bounded difference property with cij = 1.

In the later lectures, we will see an application of the bounded differences inequality to
statistical learning theory.
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Markov’s Inequality

Markov’s Inequality
Let Z be a nonnegative random variable. Then Pr(Z ≥ t) ≤ E[Z]

t .

Proof:
∫∞

0 fZ (z)1{z ≥ t}dz ≤
∫∞

0
z
t fZ (z)1{z ≥ t}dz ≤

∫∞
0

z
t fZ (z)dz = E[Z]

t

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 31



Markov’s Inequality Applied to Functions

Let φ denote any nondecreasing and nonnegative function. Let Z be any random
variable. Then Markov’s inequality gives

Pr(Z ≥ t) ≤ Pr(φ(Z) ≥ φ(t)) ≤
E[φ(Z)]
φ(t)

.

Chebyshev’s Inequality: Choose φ(t) = t2, and replace Z by |Z − E[Z ]|. Then

Pr
(
|Z − E[Z ]| ≥ t

)
≤

Var[Z ]
t2 .

Chernoff Bound: Choose φ(t) = eλt where λ ≥ 0. Then we have

Pr(Z ≥ t) ≤ e−λtE[eλZ ].
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Cramér-Chernoff Inequality

Definition (Log-moment-generating function)
The log-moment-generating function ψZ (λ) of a random variable Z is defined as

ψZ (λ) = log E[eλZ ], λ ≥ 0.

Clearly the Chernoff bound can be written as Pr(Z ≥ t) ≤ e−(λt−ψZ (λ)).

Definition (Cramér transform)
The Cramér transform of Z is defined as

ψ∗Z (t) = sup
λ≥0

λt − ψZ (λ).

Note that ψ∗Z (t) ≥ ψ∗Z (0) = 0.

Theorem (Cramér-Chernoff Inequality)
For any random variable Z , we have

Pr(Z ≥ t) ≤ exp(−ψ∗Z (t)).
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Sums of Independent Random Variables Revisited

Let Z = X1 + · · ·+ Xn where {Xi} are independent and identically distributed (i.i.d.).

Chebyshev’s Inequality on the Sum: We have Var[Z ] = nVar[X ], and hence
Chebyshev’s inequality with t = nε gives

Pr
( 1

n

∣∣Z − E[Z ]
∣∣ ≥ ε) ≤ Var[X ]

nε2
.

Cramér-Chernoff Inequality on the Sum: We have

ψZ (λ) = log E[eλZ ] = log E
[

eλ
∑n

i=1
Xi
]

= log E
[ n∏

i=1

eλXi
]

= log
n∏

i=1

E
[
eλXi

]
= log

(
E
[
eλX
])n

= nψX (λ),

where on the second line we used independence and then the identical distribution
property. Then the Cramér-Chernoff Inequality with t = nε gives

Pr(Z ≥ nε) ≤ exp
(
− nψ∗X (ε)

)
.
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The Cramér-Chernoff Method

Cramér-Chernoff Inequality
For any random variable Z , we have

Pr(Z ≥ t) ≤ exp(−ψ∗Z (t)).

Observation:
1. Given a random variable X , let Z = X − E[X ]. If we can provide an lower bound

on the Cramér transform of Z , then we obtain a one-sided concentration
inequality:

Pr(X − E[X ] ≥ t) ≤ exp(−ψ∗Z (t)) ≤ exp [−(lower bound of ψ∗Z (t))] .

2. Applying the same argument to −Z = X − E[X ] gives the other side.

Example (Gaussian random variables concentrate)
Let X ∼ N (0, σ2). Then ψX (λ) = λ2σ2

2 , and thus ψ∗X (t) = t2

2σ2 . Therefore,

Pr(|X | ≥ t) ≤ 2 exp
(
−

t2

2σ2

)
.

That is, Gaussian random variables concentrate around their mean – increasingly so
for small σ2.
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Sub-Gaussian Random Variables

Notice that if ψX (λ) ≤ λ2σ2

2 , then ψ∗X (t) ≥ t2

2σ2 . This motivates the following.

Definition (Sub-Gaussian Random Variables)
A centered random variable X is said to be sub-Gaussian with parameter σ2 if
ψX (λ) ≤ λ2σ2

2 , ∀λ > 0. Denote the set of all such random variables by G(σ2).

Basic Properties of Sub-Gaussian Random Variables

1. Pr(|X | ≥ t) ≤ 2 exp
(
− t2

2σ2

)
(sub-Gaussian random variables concentrate)

2. If Xi ∈ G(σ2
i ) are independent, then

∑n
i=1 aiXi ∈ G

(∑n
i=1 a2

i σ
2
i

)
.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 31



Sub-Gaussian Random Variables

Notice that if ψX (λ) ≤ λ2σ2

2 , then ψ∗X (t) ≥ t2

2σ2 . This motivates the following.

Definition (Sub-Gaussian Random Variables)
A centered random variable X is said to be sub-Gaussian with parameter σ2 if
ψX (λ) ≤ λ2σ2

2 , ∀λ > 0. Denote the set of all such random variables by G(σ2).

Basic Properties of Sub-Gaussian Random Variables

1. Pr(|X | ≥ t) ≤ 2 exp
(
− t2

2σ2

)
(sub-Gaussian random variables concentrate)

2. If Xi ∈ G(σ2
i ) are independent, then

∑n
i=1 aiXi ∈ G

(∑n
i=1 a2

i σ
2
i

)
.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 31



Bounded Random Variables are Sub-Gaussian

One of the most important examples of sub-Gaussian random variable is the bounded
random variable.

Theorem (Hoeffding’s Lemma)
Let Y be a random variable with E[Y ] = 0, taking values in a bounded interval [a, b].

Let ψY (λ) = log E[eλY ]. Then ψ′′Y (λ) ≤ (b−a)2

4 and Y ∈ G
(

(b−a)2

4

)
.

We will see the proof later in the lecture.
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Hoeffding’s Inequality

Applying sub-Gaussian concentration to the previous slide, we find that for Y ∈ [a, b],

Pr
(
|Y − E[Y ]| > t

)
≤ 2 exp

(
−

2t2

(b − a)2

)
.

Using a similar argument along with the fact that sums of sub-Gaussian variables are
sub-Gaussian, we obtain the following.

Theorem (Hoeffding’s Inequality)
Let Z = X1 + · · ·+ Xn , where the Xi are independent and supported on [ai , bi ]. Then

Pr
( 1

n

∣∣Z − E[Z ]
∣∣ > ε

)
≤ 2 exp

(
−

2nε2
1
n
∑n

i=1(bi − ai)2

)
.
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Concentration in Applications: PAC Learnability

Recall the following from the previous lecture.

Proposition
Assume that the hypothesis class H consists of a finite number of functions f (h, ·)
taking values in [0, 1]. Then H satisfies the uniform convergence property with

nH(ε, δ) =
log(2|H|/δ)

2ε2
.

Proof: Define ξi(h) = f (h, xi), and define Sn(h) := (1/n)
∑

1≤i≤n(ξi(h)− E ξi(h))
for every h ∈ H. Notice that then

sup
h∈H
|Sn(h)| = sup

h∈H
|F̂n(h)− F(h)|.

By the union bound and Hoeffding’s inequality (with a = 0 and b = 1), we have

P

(
sup
h∈H
|Sn(h)| ≥ ε

)
≤
∑
h∈H

P (|Sn(h)| ≥ ε) ≤ |H| · 2 exp
(
−2nε2

)
,

which is upper bounded by δ provided that n ≥ log(2|H|/δ)
2ε2 .
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Concentration in Applications: Network Tomography

Observed

Hidden

x1 x2 x3 x4 x5 x6 x7 x8

p12

p21

Source

Loss probability p11

The problem in the case of n packets and p leaf nodes:
I X(i)

k = 1{packet i arrives at node k} for i = 1, · · · ,n and k = 1, · · · , p
I Goal: Given these n independent samples, reconstruct the tree structure.

Outline of analysis (Ni, 2011):
I Show that the tree can be recovered from the values qkl = Pr(packet reaches xk and xl)
I Show robustness, in that any q̂ with |q̂kl − qkl | ≤ ε suffices

I Set q̂kl = 1
n

∑n
i=1

1{X(i)
k = 1 ∩ X(i)

l = 1}, and bound using Hoeffding’s inequality:

Pr(|q̂kl − qkl | > ε) ≤ 2 exp(−2nε2).

I Apply the union bound to conclude Pr(error) ≤ δ if n ≥ 1
2ε2 log p2

δ .
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Concentration in Applications: Random Linear Projections

Theorem (Johnson-Lindenstrauss)
Let x1, · · · ,xp be a collection of points in Rd , and let A ∈ Rn×d be a random matrix
with independent N

(
0, 1√

n

)
entries. For any ε, δ ∈ (0, 1), we have with probability at

least 1− δ that

(1− ε)‖xi − xj‖2
2 ≤ ‖Axi −Axj‖2

2 ≤ (1− ε)‖xi − xj‖2
2

for all i, j, provided that n ≥ 4
ε2(1−ε) log p2

δ
.

The idea:
1. Show that E[‖Au‖2

2] = ‖u‖2
2 for any u

2. Use squared-Gaussian concentration (not covered in this lecture) to show that,
for any u, Pr

(∣∣‖Au‖2
2 − ‖u‖2

2

∣∣ > (1 + ε)‖u‖2
2
)
≤ 2 exp

(
n
4 ε

2(1− ε)
)

3. Apply the union bound to conclude that the analogous event holding for some u
of the form u = xi − xj is at most p2 exp

(
n
4 ε

2(1− ε)
)
.
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Other Examples of Concentration Inequalities

There are an extensive range of concentration inequalities in the literature; here are
just two more examples to a get a flavor for them (Boucheron et al., 2013).

Theorem (Lipschitz Function of Gaussian RVs)
Let X1, ...,Xn be independent Gaussian N(0, 1) random variables, and let f be
L-Lipschitz (i.e., |f (x)− f (x′)| ≤ L‖x− x′‖2 for any x,x′). Then

P
(
|f (X1, ...,Xn)− E[f (X1, ...,Xn)]| > t

)
≤ 2e−

t2
2L2 .

Theorem (Separately Convex Lipschitz Function of Bounded RVs)
Let X1, ...,Xn be independent random variables in [0, 1], and let f : [0, 1]n → R be
1-Lipschitz and separately convex (i.e., convex in any given coordinate when the other
ones are fixed). Then

P
(

f (X1, ...,Xn) > E[f (X1, ...,Xn)] + t
)
≤ e−

t2
2 .
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Summary

We have considered probabilities of the form

P
(
|f (X1, ...,Xn)− E[f (X1, ...,Xn)]| > t

)
In summary, there are several features of the random variables Xi that tend to permit
strong concentration guarantees:
I Boundedness
I Sub-Gaussian
I Moments E[|Xc|] (not covered here; see, e.g., Bernstein’s inequalities)
I · · ·

...and there are several properties of the function f that tend to permit strong
concentration guarantees:
I Bounded differences
I Lipschitz continuous
I · · ·

Many of the concentration results for sums of independent RVs have counterparts in
sums of random matrices, but this is an ongoing area of research (Tropp, 2015).
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Part II: Proofs
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Bounded Random Variables are Sub-Gaussian

Theorem (Hoeffding’s Lemma)
Let Y be a random variable with E[Y ] = 0, taking values in a bounded interval [a, b].

Let ψY (λ) = log E[eλY ]. Then ψ′′Y (λ) ≤ (b−a)2

4 and Y ∈ G
(

(b−a)2

4

)
.

Outline of proof:

1. Prove that Var[Z ] ≤ (b−a)2

4 for any Z bounded on [a, b].
2. Show ψY (0) = 0, ψ′Y (0) = 0, and ψ′′Y (λ) = Var[Z ], where Z is a random

variable with PDF fZ (z) = e−ψY (λ)eλz fY (z); hence ψ′′Y (λ) ≤ (b−a)2

4 by Step 1.

3. Taylor expand ψY (λ) = ψY (0) + λψ′Y (0) + λ2

2 ψ
′′
Y (θ) (for some θ ∈ [0, λ]) and

substitute Step 2 to upper bound this by λ2

2 ·
(b−a)2

4 .
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Entropy of a Random Variable

Definition (Entropy)
Let Z be a nonnegative random variable. The entropy of Z is defined as

Ent(Z) = E[Z log Z ]− (E[Z ]) log(E[Z ]).

Rough intuition: A measure of variation that is scale-independent: Ent[cZ ] = Ent[Z ]
I Always non-negative by Jensen’s inequality; zero if and only if Z is deterministic

Note: Not to be confused with Shannon entropy H(Z) = E[− log fZ (Z)]. The two are
related but not equivalent (in fact, Ent(·) is more related to the relative entropy).

Definition (Conditional Versions of Ent and E)
Let {Xi}n

i=1 be independent random variables and f ≥ 0 be any function, and let

Ent(i)(f (x1, ..., xn)) B Ent[f (x1, ..., xi−1,Xi , xi+1, ..., xn)].

That is, Ent(i)f is the entropy of f with respect to the variable Xi only. Similarly,

E(i)[f (x1, ..., xn)] B E[f (x1, ..., xi−1,Xi , xi+1, ..., xn)].
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Bounded Differences Inequality

Theorem (Bounded Differences Inequality)
Let X1, ...,Xn be independent random variables, and let f satisfy the bounded
differences property for some {ci}n

i=1. Set σ2 = 1
4
∑n

i=1 c2
i . Then

P
(
|f (X1, ...,Xn)− E[f (X1, ...,Xn)]| > t

)
≤ 2e−

t2
2σ2 .

Outline of proof (Z = f (X1, · · · ,Xn)):

1. Show that Ent(i)(eλZ )
E(i)[eλZ ]

≤ λ2

2 ·
c2

i
4 (Hoeffding-type Bound)

2. Use Ent
[
f (X1, ...,Xn)

]
≤ E
[∑n

i=1 Ent(i)(f (X1, ...,Xn))
]
(Subadditivity of

Entropy) to deduce that Ent(eλZ )
E[eλZ ] ≤

λ2

2 ·
1
4
∑n

i=1 c2
i .

3. Deduce that Z − E[Z ] is sub-Gaussian with σ2 = 1
4
∑n

i=1 c2
i (Herbst’s Trick)
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Herbst’s Trick

Theorem (Herbst’s Trick)
Suppose Z is such that, for some σ2 > 0, we have

Ent(eλZ )
E[eλZ ]

≤
λ2σ2

2
, ∀λ ≥ 0. (1)

Then Z − EZ ∈ G(σ2); that is,

ψ0(λ) := ψ(Z−EZ)(λ) = log Eeλ(Z−EZ) ≤
λ2σ2

2
, ∀λ ≥ 0.

Outline of proof:
1. Write log-MGF of Z − E[Z ] as ψ0(λ) = log E[eλZ ]− λE[Z ].

2. Prove d
dλ

ψ0(λ)
λ

= Ent(eλZ )
λ2E[eλZ ] .

3. Integrate both sides of Step 2 from 0 to λ, and apply (1) to obtain ψ0(λ)
λ
≤ λσ2

2 .
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Sub-Additivity of the Entropy

Theorem (Sub-Additivity of the Entropy)
For independent X1, · · · ,Xn ,

Ent (f (X1, ...,Xn)) ≤ E
[ n∑

i=1

Ent(i)
(

f (X1, ...,Xn)
)]
.

Outline of proof:
1. Show Ent(Z) =

∑n
i=1 E[ZUi ] where Ui = log E[Z|X1,··· ,Xi ]

E[Z|X1,··· ,Xi−1]
2. Show E[eUi |X1, · · · ,Xi−1,Xi+1, · · · ,Xn ] = 1
3. Use variational formula to deduce E[ZUi ] ≤ E[Ent(i)(Z)], then average both sides

Theorem (Variational Formula for Entropy)

Ent(Z) = sup
X : E[eX ]=1

E[ZX ].

Outline of proof:
1. Use Jensen’s inequality to show Ent(Z)− E[ZX ] ≥ 0 whenever E[eX ] = 1
2. Show that equality holds when X = log Z

E[Z]
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Sub-Additivity of the Variance

As a side-note, the variance satisfies a similar property.

Theorem (Efron-Stein Inequality – Sub-Additivity of the Entropy)
For independent X1, · · · ,Xn ,

Var [f (X1, ...,Xn)] ≤ E
[ n∑

i=1

Var(i)f (X1, ...,Xn)
]
.

When f (X1, · · · ,Xn) =
∑n

i=1 Xi , this becomes Var
[∑n

i=1 Xi
]
≤
∑n

i=1 Var[Xi ],
which in fact holds with equality.

The above (Efron-Stein) inequality can be used to obtain useful concentration results
in some settings, but the entropy is more useful for our purposes.
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Bounded Differences Inequality

Theorem (Bounded Differences Inequality)
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t2
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