Advanced Topics in Data Sciences

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 10: Concentration of Measure Inequalities
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-731 (Spring 2016)

IFN TNF
Fonis national sulsse Sorweizerischer Nationalfonds

Outline

This lecture:

1. Cramér-Chernoff bound
2. Hoeffding bound
3. Herbst's trick
4. Entropy function and its properties
5. Bounded differences inequality

Recommended Reading Materials

1. S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence Oxford Univ. Press, 2013 (Sections 2.1 - 2.3, 2.6, 6.1-6.2)
2. R. V. Handel, Probability in High Dimension. Lecture Notes, 2014 (Section 3.3)

Part I: Results and Examples

Concentration of Measure Phenomenon

Problem (a rough statement)
Given a random variable Y, how "concentrated" is Y (e.g., around its mean)?

Concentration of Measure Phenomenon

Problem (a rough statement)

Given a random variable Y, how "concentrated" is Y (e.g., around its mean)?

Concentration of Measure Inequalities

Suppose that we can find a deterministic value m, such that

$$
\operatorname{Pr}(|Y-m|>t) \leq D(t)
$$

where $D(t)$ decreases drastically to 0 in t. We say that Y concentrates around m.
Note: Typically $m=\mathbb{E}[Y]$, and $D(t)$ decreases exponentially: $D(t) \sim e^{-t^{k}}$ for some positive integer k.

Concentration of Measure Phenomenon

Problem (a rough statement)

Given a random variable Y, how "concentrated" is Y (e.g., around its mean)?

Concentration of Measure Inequalities

Suppose that we can find a deterministic value m, such that

$$
\operatorname{Pr}(|Y-m|>t) \leq D(t)
$$

where $D(t)$ decreases drastically to 0 in t. We say that Y concentrates around m.
Note: Typically $m=\mathbb{E}[Y]$, and $D(t)$ decreases exponentially: $D(t) \sim e^{-t^{k}}$ for some positive integer k.

Example

1. In statistics, Y can be the estimation/prediction error.
2. In optimization, Y can be the objective error $f\left(x_{k}\right)-f\left(x^{*}\right)$, or the estimate of gradient $\nabla f\left(x_{k}\right)$.
3. In computer science, Y can be the outcomes of randomized algorithms.
4. Many other applications in information theory, statistical physics, random matrices, statistical learning theory...

Example: Sums of Independent Random Variables

A simple example: $Y_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, where the X_{i} are independent with mean μ and variance σ^{2}

- Law of Large Numbers: $\operatorname{Pr}\left(\left|Y_{n}-\mu\right|>\epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$
- Central Limit Theorem: $\operatorname{Pr}\left(\left|Y_{n}-\mu\right|>\frac{\alpha}{\sqrt{n}}\right) \rightarrow 2 \Phi\left(-\frac{\alpha}{\sigma}\right)$ as $n \rightarrow \infty$, where Φ is the standard normal CDF.
- Large Deviations: Under some technical assumptions, $\operatorname{Pr}\left(\left|Y_{n}-\mu\right|>\epsilon\right) \leq e^{-n \cdot c(\epsilon)}$
- Moderate Deviations: Decay rate of $\operatorname{Pr}\left(\left|Y_{n}-\mu\right|>\epsilon_{n}\right)$ when $\epsilon_{n} \rightarrow 0$ sufficiently slowly so that $\epsilon_{n} \sqrt{n} \rightarrow \infty$

In many applications, we want the bounds to be non-asymptotic.

In This Lecture

Concentration of measure has many manifestations; we will only cover one today:

A General Principle of Concentration of Measure: Functional Inequalities

If X_{1}, \ldots, X_{n} are independent random variables, then any function $f\left(x_{1}, \cdots, x_{n}\right)$ that is "not too sensitive" to any of the coordinates will concentrate around its mean:

$$
P\left(\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right|>t\right) \lesssim e^{-t^{2} / c(f)}
$$

where $c(f)$ depends on the sensitivity in its coordinates.

Note: No assumptions on the X_{i} besides independence! (which can be relaxed)

In This Lecture

Definition (Bounded Difference Functions)

A function $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ has the bounded differences property if for some positive $c_{1}, . ., c_{n}$,

$$
\sup _{\cdot, x_{n}, x_{i}^{\prime} \in \mathcal{X}}\left|f\left(x_{1}, . ., x_{i}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

In This Lecture

Definition (Bounded Difference Functions)

A function $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ has the bounded differences property if for some positive $c_{1}, . ., c_{n}$,

$$
\sup _{x_{1}, \ldots, x_{n}, x_{i}^{\prime} \in \mathcal{X}}\left|f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)\right| \leq c_{i} .
$$

Theorem (Bounded Differences Inequality)

Let X_{1}, \ldots, X_{n} be independent random variables, and let f satisfy the bounded differences property with c_{i} 's. Then

$$
P\left(\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right|>t\right) \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

In This Lecture

Definition (Bounded Difference Functions)

A function $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ has the bounded differences property if for some positive $c_{1}, . ., c_{n}$,

$$
\sup _{x_{1}, \ldots, x_{n}, x_{i}^{\prime} \in \mathcal{X}}\left|f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

Theorem (Bounded Differences Inequality)

Let X_{1}, \ldots, X_{n} be independent random variables, and let f satisfy the bounded differences property with c_{i} 's. Then

$$
P\left(\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right|>t\right) \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

To prove this result, we need the following fundamental notions:

- Cramér-Chernoff bound
- Hoeffding bound
- Herbst's trick
- Entropy function and its properties

Bounded Differences: Example

Example (Chromatic Number of a Random Graph)

Let $V=\{1, \cdots, n\}$, and let G be a random graph such that each pair $i, j \in V$ is independently connected with probability p. Let

$$
X_{i j}= \begin{cases}1 & (i, j) \text { are connected } \\ 0 & \text { otherwise }\end{cases}
$$

The chromatic number of G is the minimum number of colors needed to color the vertices such that no two connected vertices have the same color. Writing

$$
\text { chromatic number }=f\left(X_{11}, \cdots, X_{i j}, \cdots, X_{n n}\right)
$$

we find that f satisfies the bounded difference property with $c_{i j}=1$.

In the later lectures, we will see an application of the bounded differences inequality to statistical learning theory.

Markov’s Inequality

Markov's Inequality

Let Z be a nonnegative random variable. Then $\operatorname{Pr}(Z \geq t) \leq \frac{\mathbb{E}[Z]}{t}$.
Proof: $\int_{0}^{\infty} f_{Z}(z) \mathbf{1}\{z \geq t\} d z \leq \int_{0}^{\infty} \frac{z}{t} f_{Z}(z) \mathbf{1}\{z \geq t\} d z \leq \int_{0}^{\infty} \frac{z}{t} f_{Z}(z) d z=\frac{\mathbb{E}[Z]}{t}$

Markov's Inequality Applied to Functions

Let ϕ denote any nondecreasing and nonnegative function. Let Z be any random variable. Then Markov's inequality gives

$$
\operatorname{Pr}(Z \geq t) \leq \operatorname{Pr}(\phi(Z) \geq \phi(t)) \leq \frac{\mathbb{E}[\phi(Z)]}{\phi(t)}
$$

Markov's Inequality Applied to Functions

Let ϕ denote any nondecreasing and nonnegative function. Let Z be any random variable. Then Markov's inequality gives

$$
\operatorname{Pr}(Z \geq t) \leq \operatorname{Pr}(\phi(Z) \geq \phi(t)) \leq \frac{\mathbb{E}[\phi(Z)]}{\phi(t)}
$$

Chebyshev's Inequality: Choose $\phi(t)=t^{2}$, and replace Z by $|Z-\mathbb{E}[Z]|$. Then

$$
\operatorname{Pr}(|Z-\mathbb{E}[Z]| \geq t) \leq \frac{\operatorname{Var}[Z]}{t^{2}}
$$

Chernoff Bound: Choose $\phi(t)=e^{\lambda t}$ where $\lambda \geq 0$. Then we have

$$
\operatorname{Pr}(Z \geq t) \leq e^{-\lambda t} \mathbb{E}\left[e^{\lambda Z}\right]
$$

Cramér-Chernoff Inequality

Definition (Log-moment-generating function)

The log-moment-generating function $\psi_{Z}(\lambda)$ of a random variable Z is defined as

$$
\psi_{Z}(\lambda)=\log \mathbb{E}\left[e^{\lambda Z}\right], \quad \lambda \geq 0 .
$$

Clearly the Chernoff bound can be written as $\operatorname{Pr}(Z \geq t) \leq e^{-\left(\lambda t-\psi_{Z}(\lambda)\right)}$.

Cramér-Chernoff Inequality

Definition (Log-moment-generating function)

The log-moment-generating function $\psi_{Z}(\lambda)$ of a random variable Z is defined as

$$
\psi_{Z}(\lambda)=\log \mathbb{E}\left[e^{\lambda Z}\right], \quad \lambda \geq 0
$$

Clearly the Chernoff bound can be written as $\operatorname{Pr}(Z \geq t) \leq e^{-\left(\lambda t-\psi_{Z}(\lambda)\right)}$.

Definition (Cramér transform)

The Cramér transform of Z is defined as

$$
\psi_{Z}^{*}(t)=\sup _{\lambda \geq 0} \lambda t-\psi_{Z}(\lambda)
$$

Note that $\psi_{Z}^{*}(t) \geq \psi_{Z}^{*}(0)=0$.

Cramér-Chernoff Inequality

Definition (Log-moment-generating function)

The log-moment-generating function $\psi_{Z}(\lambda)$ of a random variable Z is defined as

$$
\psi_{Z}(\lambda)=\log \mathbb{E}\left[e^{\lambda Z}\right], \quad \lambda \geq 0 .
$$

Clearly the Chernoff bound can be written as $\operatorname{Pr}(Z \geq t) \leq e^{-\left(\lambda t-\psi_{Z}(\lambda)\right)}$.

Definition (Cramér transform)

The Cramér transform of Z is defined as

$$
\psi_{Z}^{*}(t)=\sup _{\lambda \geq 0} \lambda t-\psi_{Z}(\lambda)
$$

Note that $\psi_{Z}^{*}(t) \geq \psi_{Z}^{*}(0)=0$.

Theorem (Cramér-Chernoff Inequality)

For any random variable Z, we have

$$
\operatorname{Pr}(Z \geq t) \leq \exp \left(-\psi_{Z}^{*}(t)\right)
$$

Sums of Independent Random Variables Revisited

Let $Z=X_{1}+\cdots+X_{n}$ where $\left\{X_{i}\right\}$ are independent and identically distributed (i.i.d.).
Chebyshev's Inequality on the Sum: We have $\operatorname{Var}[Z]=n \operatorname{Var}[X]$, and hence Chebyshev's inequality with $t=n \epsilon$ gives

$$
\operatorname{Pr}\left(\frac{1}{n}|Z-\mathbb{E}[Z]| \geq \epsilon\right) \leq \frac{\operatorname{Var}[X]}{n \epsilon^{2}}
$$

Sums of Independent Random Variables Revisited

Let $Z=X_{1}+\cdots+X_{n}$ where $\left\{X_{i}\right\}$ are independent and identically distributed (i.i.d.).
Chebyshev's Inequality on the Sum: We have $\operatorname{Var}[Z]=n \operatorname{Var}[X]$, and hence Chebyshev's inequality with $t=n \epsilon$ gives

$$
\operatorname{Pr}\left(\frac{1}{n}|Z-\mathbb{E}[Z]| \geq \epsilon\right) \leq \frac{\operatorname{Var}[X]}{n \epsilon^{2}}
$$

Cramér-Chernoff Inequality on the Sum: We have

$$
\begin{aligned}
& \psi_{Z}(\lambda)=\log \mathbb{E}\left[e^{\lambda Z}\right]=\log \mathbb{E}\left[e^{\lambda} \sum_{i=1}^{n} X_{i}\right]=\log \mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right] \\
& =\log \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right]=\log \left(\mathbb{E}\left[e^{\lambda X}\right]\right)^{n}=n \psi_{X}(\lambda),
\end{aligned}
$$

where on the second line we used independence and then the identical distribution property. Then the Cramér-Chernoff Inequality with $t=n \epsilon$ gives

$$
\operatorname{Pr}(Z \geq n \epsilon) \leq \exp \left(-n \psi_{X}^{*}(\epsilon)\right)
$$

The Cramér-Chernoff Method

Cramér-Chernoff Inequality

For any random variable Z, we have

$$
\operatorname{Pr}(Z \geq t) \leq \exp \left(-\psi_{Z}^{*}(t)\right)
$$

Observation:

1. Given a random variable X, let $Z=X-\mathbb{E}[X]$. If we can provide an lower bound on the Cramér transform of Z, then we obtain a one-sided concentration inequality:

$$
\operatorname{Pr}(X-\mathbb{E}[X] \geq t) \leq \exp \left(-\psi_{Z}^{*}(t)\right) \leq \exp \left[-\left(\text { lower bound of } \psi_{Z}^{*}(t)\right)\right]
$$

2. Applying the same argument to $-Z=X-\mathbb{E}[X]$ gives the other side.

The Cramér-Chernoff Method

Cramér-Chernoff Inequality

For any random variable Z, we have

$$
\operatorname{Pr}(Z \geq t) \leq \exp \left(-\psi_{Z}^{*}(t)\right)
$$

Observation:

1. Given a random variable X, let $Z=X-\mathbb{E}[X]$. If we can provide an lower bound on the Cramér transform of Z, then we obtain a one-sided concentration inequality:

$$
\operatorname{Pr}(X-\mathbb{E}[X] \geq t) \leq \exp \left(-\psi_{Z}^{*}(t)\right) \leq \exp \left[-\left(\text { lower bound of } \psi_{Z}^{*}(t)\right)\right]
$$

2. Applying the same argument to $-Z=X-\mathbb{E}[X]$ gives the other side.

Example (Gaussian random variables concentrate)

Let $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Then $\psi_{X}(\lambda)=\frac{\lambda^{2} \sigma^{2}}{2}$, and thus $\psi_{X}^{*}(t)=\frac{t^{2}}{2 \sigma^{2}}$. Therefore,

$$
\operatorname{Pr}(|X| \geq t) \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)
$$

That is, Gaussian random variables concentrate around their mean - increasingly so for small σ^{2}.

Sub-Gaussian Random Variables

Notice that if $\psi_{X}(\lambda) \leq \frac{\lambda^{2} \sigma^{2}}{2}$, then $\psi_{X}^{*}(t) \geq \frac{t^{2}}{2 \sigma^{2}}$. This motivates the following.

Definition (Sub-Gaussian Random Variables)

A centered random variable X is said to be sub-Gaussian with parameter σ^{2} if $\psi_{X}(\lambda) \leq \frac{\lambda^{2} \sigma^{2}}{2}, \forall \lambda>0$. Denote the set of all such random variables by $\mathcal{G}\left(\sigma^{2}\right)$.

Sub-Gaussian Random Variables

Notice that if $\psi_{X}(\lambda) \leq \frac{\lambda^{2} \sigma^{2}}{2}$, then $\psi_{X}^{*}(t) \geq \frac{t^{2}}{2 \sigma^{2}}$. This motivates the following.

Definition (Sub-Gaussian Random Variables)

A centered random variable X is said to be sub-Gaussian with parameter σ^{2} if $\psi_{X}(\lambda) \leq \frac{\lambda^{2} \sigma^{2}}{2}, \forall \lambda>0$. Denote the set of all such random variables by $\mathcal{G}\left(\sigma^{2}\right)$.

Basic Properties of Sub-Gaussian Random Variables

1. $\operatorname{Pr}(|X| \geq t) \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)$ (sub-Gaussian random variables concentrate)
2. If $X_{i} \in \mathcal{G}\left(\sigma_{i}^{2}\right)$ are independent, then $\sum_{i=1}^{n} a_{i} X_{i} \in \mathcal{G}\left(\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right)$.

Bounded Random Variables are Sub-Gaussian

One of the most important examples of sub-Gaussian random variable is the bounded random variable.

Theorem (Hoeffding's Lemma)
Let Y be a random variable with $\mathbb{E}[Y]=0$, taking values in a bounded interval $[a, b]$. Let $\psi_{Y}(\lambda)=\log \mathbb{E}\left[e^{\lambda Y}\right]$. Then $\psi_{Y}^{\prime \prime}(\lambda) \leq \frac{(b-a)^{2}}{4}$ and $Y \in \mathcal{G}\left(\frac{(b-a)^{2}}{4}\right)$.

We will see the proof later in the lecture.

Hoeffding's Inequality

Applying sub-Gaussian concentration to the previous slide, we find that for $Y \in[a, b]$,

$$
\operatorname{Pr}(|Y-\mathbb{E}[Y]|>t) \leq 2 \exp \left(-\frac{2 t^{2}}{(b-a)^{2}}\right)
$$

Using a similar argument along with the fact that sums of sub-Gaussian variables are sub-Gaussian, we obtain the following.

Theorem (Hoeffding's Inequality)

Let $Z=X_{1}+\cdots+X_{n}$, where the X_{i} are independent and supported on $\left[a_{i}, b_{i}\right]$. Then

$$
\operatorname{Pr}\left(\frac{1}{n}|Z-\mathbb{E}[Z]|>\epsilon\right) \leq 2 \exp \left(-\frac{2 n \epsilon^{2}}{\frac{1}{n} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

Concentration in Applications: PAC Learnability

Recall the following from the previous lecture.

Proposition

Assume that the hypothesis class \mathcal{H} consists of a finite number of functions $f(h, \cdot)$ taking values in $[0,1]$. Then \mathcal{H} satisfies the uniform convergence property with

$$
n_{\mathcal{H}}(\epsilon, \delta)=\frac{\log (2|\mathcal{H}| / \delta)}{2 \epsilon^{2}}
$$

Proof: Define $\xi_{i}(h)=f\left(h, x_{i}\right)$, and define $S_{n}(h):=(1 / n) \sum_{1 \leq i \leq n}\left(\xi_{i}(h)-\mathbb{E} \xi_{i}(h)\right)$ for every $h \in \mathcal{H}$. Notice that then

$$
\sup _{h \in \mathcal{H}}\left|S_{n}(h)\right|=\sup _{h \in \mathcal{H}}\left|\hat{F}_{n}(h)-F(h)\right| .
$$

By the union bound and Hoeffding's inequality (with $a=0$ and $b=1$), we have

$$
\mathbb{P}\left(\sup _{h \in \mathcal{H}}\left|S_{n}(h)\right| \geq \epsilon\right) \leq \sum_{h \in \mathcal{H}} \mathbb{P}\left(\left|S_{n}(h)\right| \geq \epsilon\right) \leq|\mathcal{H}| \cdot 2 \exp \left(-2 n \epsilon^{2}\right)
$$

which is upper bounded by δ provided that $n \geq \frac{\log (2|\mathcal{H}| / \delta)}{2 \epsilon^{2}}$.

Concentration in Applications: Network Tomography

The problem in the case of n packets and p leaf nodes:

- $X_{k}^{(i)}=\mathbf{1}\{$ packet i arrives at node $k\}$ for $i=1, \cdots, n$ and $k=1, \cdots, p$
- Goal: Given these n independent samples, reconstruct the tree structure.

Concentration in Applications: Network Tomography

The problem in the case of n packets and p leaf nodes:

- $X_{k}^{(i)}=\mathbf{1}$ \{packet i arrives at node $\left.k\right\}$ for $i=1, \cdots, n$ and $k=1, \cdots, p$
- Goal: Given these n independent samples, reconstruct the tree structure.

Outline of analysis ($\mathrm{Ni}, 2011$):

- Show that the tree can be recovered from the values $q_{k l}=\operatorname{Pr}$ (packet reaches x_{k} and x_{l})
- Show robustness, in that any \hat{q} with $\left|\hat{q}_{k l}-q_{k l}\right| \leq \epsilon$ suffices
- Set $\hat{q}_{k l}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left\{X_{k}^{(i)}=1 \cap X_{l}^{(i)}=1\right\}$, and bound using Hoeffding's inequality:

$$
\operatorname{Pr}\left(\left|\hat{q}_{k l}-q_{k l}\right|>\epsilon\right) \leq 2 \exp \left(-2 n \epsilon^{2}\right) .
$$

- Apply the union bound to conclude $\operatorname{Pr}($ error $) \leq \delta$ if $n \geq \frac{1}{2 \epsilon^{2}} \log \frac{p^{2}}{\delta}$.

Concentration in Applications: Random Linear Projections

Theorem (Johnson-Lindenstrauss)

Let $\mathbf{x}_{1}, \cdots, \mathbf{x}_{p}$ be a collection of points in \mathbb{R}^{d}, and let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a random matrix with independent $N\left(0, \frac{1}{\sqrt{n}}\right)$ entries. For any $\epsilon, \delta \in(0,1)$, we have with probability at least $1-\delta$ that

$$
(1-\epsilon)\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2} \leq\left\|\mathbf{A} \mathbf{x}_{i}-\mathbf{A} \mathbf{x}_{j}\right\|_{2}^{2} \leq(1-\epsilon)\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}
$$

for all i, j, provided that $n \geq \frac{4}{\epsilon^{2}(1-\epsilon)} \log \frac{p^{2}}{\delta}$.

Concentration in Applications: Random Linear Projections

Theorem (Johnson-Lindenstrauss)

Let $\mathbf{x}_{1}, \cdots, \mathbf{x}_{p}$ be a collection of points in \mathbb{R}^{d}, and let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a random matrix with independent $N\left(0, \frac{1}{\sqrt{n}}\right)$ entries. For any $\epsilon, \delta \in(0,1)$, we have with probability at least $1-\delta$ that

$$
(1-\epsilon)\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2} \leq\left\|\mathbf{A} \mathbf{x}_{i}-\mathbf{A} \mathbf{x}_{j}\right\|_{2}^{2} \leq(1-\epsilon)\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}
$$

for all i, j, provided that $n \geq \frac{4}{\epsilon^{2}(1-\epsilon)} \log \frac{p^{2}}{\delta}$.

The idea:

1. Show that $\mathbb{E}\left[\|\mathbf{A u}\|_{2}^{2}\right]=\|\mathbf{u}\|_{2}^{2}$ for any \mathbf{u}
2. Use squared-Gaussian concentration (not covered in this lecture) to show that, for any $\mathbf{u}, \operatorname{Pr}\left(\left|\|\mathbf{A} \mathbf{u}\|_{2}^{2}-\|\mathbf{u}\|_{2}^{2}\right|>(1+\epsilon)\|\mathbf{u}\|_{2}^{2}\right) \leq 2 \exp \left(\frac{n}{4} \epsilon^{2}(1-\epsilon)\right)$
3. Apply the union bound to conclude that the analogous event holding for some \mathbf{u} of the form $\mathbf{u}=\mathbf{x}_{i}-\mathbf{x}_{j}$ is at most $p^{2} \exp \left(\frac{n}{4} \epsilon^{2}(1-\epsilon)\right)$.

Other Examples of Concentration Inequalities

There are an extensive range of concentration inequalities in the literature; here are just two more examples to a get a flavor for them (Boucheron et al., 2013).

Theorem (Lipschitz Function of Gaussian RVs)

Let X_{1}, \ldots, X_{n} be independent Gaussian $N(0,1)$ random variables, and let f be L-Lipschitz (i.e., $\left|f(\mathbf{x})-f\left(\mathbf{x}^{\prime}\right)\right| \leq L\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}$ for any $\left.\mathbf{x}, \mathbf{x}^{\prime}\right)$. Then

$$
P\left(\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right|>t\right) \leq 2 e^{-\frac{t^{2}}{2 L^{2}}}
$$

Theorem (Separately Convex Lipschitz Function of Bounded RVs)

Let X_{1}, \ldots, X_{n} be independent random variables in $[0,1]$, and let $f:[0,1]^{n} \rightarrow \mathbb{R}$ be 1-Lipschitz and separately convex (i.e., convex in any given coordinate when the other ones are fixed). Then

$$
P\left(f\left(X_{1}, \ldots, X_{n}\right)>\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]+t\right) \leq e^{-\frac{t^{2}}{2}}
$$

Summary

We have considered probabilities of the form

$$
P\left(\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right|>t\right)
$$

In summary, there are several features of the random variables X_{i} that tend to permit strong concentration guarantees:

- Boundedness
- Sub-Gaussian
- Moments $\mathbb{E}\left[\left|X^{c}\right|\right]$ (not covered here; see, e.g., Bernstein's inequalities)
...and there are several properties of the function f that tend to permit strong concentration guarantees:
- Bounded differences
- Lipschitz continuous
- ...

Many of the concentration results for sums of independent RVs have counterparts in sums of random matrices, but this is an ongoing area of research (Tropp, 2015).

Part II: Proofs

Bounded Random Variables are Sub-Gaussian

Theorem (Hoeffding's Lemma)

Let Y be a random variable with $\mathbb{E}[Y]=0$, taking values in a bounded interval $[a, b]$. Let $\psi_{Y}(\lambda)=\log \mathbb{E}\left[e^{\lambda Y}\right]$. Then $\psi_{Y}^{\prime \prime}(\lambda) \leq \frac{(b-a)^{2}}{4}$ and $Y \in \mathcal{G}\left(\frac{(b-a)^{2}}{4}\right)$.

Bounded Random Variables are Sub-Gaussian

Theorem (Hoeffding's Lemma)

Let Y be a random variable with $\mathbb{E}[Y]=0$, taking values in a bounded interval $[a, b]$. Let $\psi_{Y}(\lambda)=\log \mathbb{E}\left[e^{\lambda Y}\right]$. Then $\psi_{Y}^{\prime \prime}(\lambda) \leq \frac{(b-a)^{2}}{4}$ and $Y \in \mathcal{G}\left(\frac{(b-a)^{2}}{4}\right)$.

Outline of proof:

1. Prove that $\operatorname{Var}[Z] \leq \frac{(b-a)^{2}}{4}$ for any Z bounded on $[a, b]$.
2. Show $\psi_{Y}(0)=0, \psi_{Y}^{\prime}(0)=0$, and $\psi_{Y}^{\prime \prime}(\lambda)=\operatorname{Var}[Z]$, where Z is a random variable with PDF $f_{Z}(z)=e^{-\psi_{Y}(\lambda)} e^{\lambda z} f_{Y}(z)$; hence $\psi_{Y}^{\prime \prime}(\lambda) \leq \frac{(b-a)^{2}}{4}$ by Step 1 .
3. Taylor expand $\psi_{Y}(\lambda)=\psi_{Y}(0)+\lambda \psi_{Y}^{\prime}(0)+\frac{\lambda^{2}}{2} \psi_{Y}^{\prime \prime}(\theta)$ (for some $\theta \in[0, \lambda]$) and substitute Step 2 to upper bound this by $\frac{\lambda^{2}}{2} \cdot \frac{(b-a)^{2}}{4}$.

Entropy of a Random Variable

Definition (Entropy)

Let Z be a nonnegative random variable. The entropy of Z is defined as

$$
\operatorname{Ent}(Z)=\mathbb{E}[Z \log Z]-(\mathbb{E}[Z]) \log (\mathbb{E}[Z])
$$

Rough intuition: A measure of variation that is scale-independent: $\operatorname{Ent}[c Z]=\operatorname{Ent}[Z]$

- Always non-negative by Jensen's inequality; zero if and only if Z is deterministic

Note: Not to be confused with Shannon entropy $H(Z)=\mathbb{E}\left[-\log f_{Z}(Z)\right]$. The two are related but not equivalent (in fact, $\operatorname{Ent}(\cdot)$ is more related to the relative entropy).

Entropy of a Random Variable

Definition (Entropy)

Let Z be a nonnegative random variable. The entropy of Z is defined as

$$
\operatorname{Ent}(Z)=\mathbb{E}[Z \log Z]-(\mathbb{E}[Z]) \log (\mathbb{E}[Z])
$$

Rough intuition: A measure of variation that is scale-independent: $\operatorname{Ent}[c Z]=\operatorname{Ent}[Z]$

- Always non-negative by Jensen's inequality; zero if and only if Z is deterministic

Note: Not to be confused with Shannon entropy $H(Z)=\mathbb{E}\left[-\log f_{Z}(Z)\right]$. The two are related but not equivalent (in fact, $\operatorname{Ent}(\cdot)$ is more related to the relative entropy).

Definition (Conditional Versions of Ent and \mathbb{E})

Let $\left\{X_{i}\right\}_{i=1}^{n}$ be independent random variables and $f \geq 0$ be any function, and let

$$
\operatorname{Ent}^{(i)}\left(f\left(x_{1}, \ldots, x_{n}\right)\right):=\operatorname{Ent}\left[f\left(x_{1}, \ldots, x_{i-1}, X_{i}, x_{i+1}, \ldots, x_{n}\right)\right]
$$

That is, Ent ${ }^{(i)} f$ is the entropy of f with respect to the variable X_{i} only. Similarly,

$$
\mathbb{E}^{(i)}\left[f\left(x_{1}, \ldots, x_{n}\right)\right]:=\mathbb{E}\left[f\left(x_{1}, \ldots, x_{i-1}, X_{i}, x_{i+1}, \ldots, x_{n}\right)\right] .
$$

Bounded Differences Inequality

Theorem (Bounded Differences Inequality)

Let X_{1}, \ldots, X_{n} be independent random variables, and let f satisfy the bounded differences property for some $\left\{c_{i}\right\}_{i=1}^{n}$. Set $\sigma^{2}=\frac{1}{4} \sum_{i=1}^{n} c_{i}^{2}$. Then

$$
P\left(\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right|>t\right) \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}}}
$$

Bounded Differences Inequality

Theorem (Bounded Differences Inequality)

Let X_{1}, \ldots, X_{n} be independent random variables, and let f satisfy the bounded differences property for some $\left\{c_{i}\right\}_{i=1}^{n}$. Set $\sigma^{2}=\frac{1}{4} \sum_{i=1}^{n} c_{i}^{2}$. Then

$$
P\left(\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right|>t\right) \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}}}
$$

Outline of proof $\left(Z=f\left(X_{1}, \cdots, X_{n}\right)\right)$:

1. Show that $\frac{\mathrm{Ent}^{(i)}\left(e^{\lambda Z}\right)}{\mathbb{E}^{(i)}\left[e^{\lambda Z}\right]} \leq \frac{\lambda^{2}}{2} \cdot \frac{c_{i}^{2}}{4}$ (Hoeffding-type Bound)
2. Use Ent $\left[f\left(X_{1}, \ldots, X_{n}\right)\right] \leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Ent}^{(i)}\left(f\left(X_{1}, \ldots, X_{n}\right)\right)\right]$ (Subadditivity of Entropy) to deduce that $\frac{\operatorname{Ent}\left(e^{\lambda Z}\right)}{\mathbb{E}\left[e^{\lambda Z}\right]} \leq \frac{\lambda^{2}}{2} \cdot \frac{1}{4} \sum_{i=1}^{n} c_{i}^{2}$.
3. Deduce that $Z-\mathbb{E}[Z]$ is sub-Gaussian with $\sigma^{2}=\frac{1}{4} \sum_{i=1}^{n} c_{i}^{2}$ (Herbst's Trick)

Herbst's Trick

Theorem (Herbst's Trick)

Suppose Z is such that, for some $\sigma^{2}>0$, we have

$$
\begin{equation*}
\frac{\operatorname{Ent}\left(e^{\lambda Z}\right)}{\mathbb{E}\left[e^{\lambda Z}\right]} \leq \frac{\lambda^{2} \sigma^{2}}{2}, \quad \forall \lambda \geq 0 \tag{1}
\end{equation*}
$$

Then $Z-\mathbb{E} Z \in \mathcal{G}\left(\sigma^{2}\right)$; that is,

$$
\psi_{0}(\lambda):=\psi_{(Z-\mathbb{E} Z)}(\lambda)=\log \mathbb{E} e^{\lambda(Z-\mathbb{B} Z)} \leq \frac{\lambda^{2} \sigma^{2}}{2}, \quad \forall \lambda \geq 0 .
$$

Herbst's Trick

Theorem (Herbst's Trick)

Suppose Z is such that, for some $\sigma^{2}>0$, we have

$$
\begin{equation*}
\frac{\operatorname{Ent}\left(e^{\lambda Z}\right)}{\mathbb{E}\left[e^{\lambda Z}\right]} \leq \frac{\lambda^{2} \sigma^{2}}{2}, \quad \forall \lambda \geq 0 \tag{1}
\end{equation*}
$$

Then $Z-\mathbb{E} Z \in \mathcal{G}\left(\sigma^{2}\right)$; that is,

$$
\psi_{0}(\lambda):=\psi_{(Z-\mathbb{E} Z)}(\lambda)=\log \mathbb{E} e^{\lambda(Z-\mathbb{B} Z)} \leq \frac{\lambda^{2} \sigma^{2}}{2}, \quad \forall \lambda \geq 0 .
$$

Outline of proof:

1. Write log-MGF of $Z-\mathbb{E}[Z]$ as $\psi_{0}(\lambda)=\log \mathbb{E}\left[e^{\lambda Z}\right]-\lambda \mathbb{E}[Z]$.
2. Prove $\frac{d}{d \lambda} \frac{\psi_{0}(\lambda)}{\lambda}=\frac{\operatorname{Ent}\left(e^{\lambda Z}\right)}{\lambda^{2} \mathbb{E}\left[e^{\lambda Z}\right]}$.
3. Integrate both sides of Step 2 from 0 to λ, and apply (1) to obtain $\frac{\psi_{0}(\lambda)}{\lambda} \leq \frac{\lambda \sigma^{2}}{2}$.

Sub-Additivity of the Entropy

Theorem (Sub-Additivity of the Entropy)

For independent X_{1}, \cdots, X_{n},

$$
\operatorname{Ent}\left(f\left(X_{1}, \ldots, X_{n}\right)\right) \leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Ent}^{(i)}\left(f\left(X_{1}, \ldots, X_{n}\right)\right)\right]
$$

Outline of proof:

1. Show $\operatorname{Ent}(Z)=\sum_{i=1}^{n} \mathbb{E}\left[Z U_{i}\right]$ where $U_{i}=\log \frac{\mathbb{E}\left[Z \mid X_{1}, \cdots, X_{i}\right]}{\mathbb{E}\left[Z \mid X_{1}, \cdots, X_{i-1}\right]}$
2. Show $\mathbb{E}\left[e^{U_{i}} \mid X_{1}, \cdots, X_{i-1}, X_{i+1}, \cdots, X_{n}\right]=1$
3. Use variational formula to deduce $\mathbb{E}\left[Z U_{i}\right] \leq \mathbb{E}\left[\operatorname{Ent}^{(i)}(Z)\right]$, then average both sides

Sub-Additivity of the Entropy

Theorem (Sub-Additivity of the Entropy)

For independent X_{1}, \cdots, X_{n},

$$
\operatorname{Ent}\left(f\left(X_{1}, \ldots, X_{n}\right)\right) \leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Ent}^{(i)}\left(f\left(X_{1}, \ldots, X_{n}\right)\right)\right]
$$

Outline of proof:

1. Show $\operatorname{Ent}(Z)=\sum_{i=1}^{n} \mathbb{E}\left[Z U_{i}\right]$ where $U_{i}=\log \frac{\mathbb{E}\left[Z \mid X_{1}, \cdots, X_{i}\right]}{\mathbb{E}\left[Z \mid X_{1}, \cdots, X_{i-1}\right]}$
2. Show $\mathbb{E}\left[e^{U_{i}} \mid X_{1}, \cdots, X_{i-1}, X_{i+1}, \cdots, X_{n}\right]=1$
3. Use variational formula to deduce $\mathbb{E}\left[Z U_{i}\right] \leq \mathbb{E}\left[\operatorname{Ent}^{(i)}(Z)\right]$, then average both sides

Theorem (Variational Formula for Entropy)

$$
\operatorname{Ent}(Z)=\sup _{X: \mathbb{E}\left[e^{X}\right]=1} \mathbb{E}[Z X] .
$$

Outline of proof:

1. Use Jensen's inequality to show $\operatorname{Ent}(Z)-\mathbb{E}[Z X] \geq 0$ whenever $\mathbb{E}\left[e^{X}\right]=1$
2. Show that equality holds when $X=\log \frac{Z}{\mathbb{E}[Z]}$

Sub-Additivity of the Variance

As a side-note, the variance satisfies a similar property.

Theorem (Efron-Stein Inequality - Sub-Additivity of the Entropy)

For independent X_{1}, \cdots, X_{n},

$$
\operatorname{Var}\left[f\left(X_{1}, \ldots, X_{n}\right)\right] \leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Var}^{(i)} f\left(X_{1}, \ldots, X_{n}\right)\right]
$$

When $f\left(X_{1}, \cdots, X_{n}\right)=\sum_{i=1}^{n} X_{i}$, this becomes $\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]$, which in fact holds with equality.

The above (Efron-Stein) inequality can be used to obtain useful concentration results in some settings, but the entropy is more useful for our purposes.

Bounded Differences Inequality

Theorem (Bounded Differences Inequality)

Let X_{1}, \ldots, X_{n} be independent random variables, and let f satisfy the bounded differences property for some $\left\{c_{i}\right\}_{i=1}^{n}$. Set $\sigma^{2}=\frac{1}{4} \sum_{i=1}^{n} c_{i}^{2}$. Then

$$
P\left(\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right|>t\right) \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}}}
$$

Outline of proof $\left(Z=f\left(X_{1}, \cdots, X_{n}\right)\right)$:

1. Show that $\frac{\mathrm{Ent}^{(i)}\left(e^{\lambda Z}\right)}{\mathbb{E}^{(i)}\left[e^{\lambda Z}\right]} \leq \frac{\lambda^{2}}{2} \cdot \frac{c_{i}^{2}}{4}$ (Hoeffding-type Bound)
2. Use $\operatorname{Ent}(Z) \leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Ent}^{(i)}(Z)\right]$ (Subadditivity of Entropy) to deduce that $\frac{\operatorname{Ent}\left(e^{\lambda Z}\right)}{\mathbb{E}\left[e^{\lambda Z}\right]} \leq \frac{\lambda^{2}}{2} \cdot \frac{1}{4} \sum_{i=1}^{n} c_{i}^{2}$.
3. Deduce that $Z-\mathbb{E}[Z]$ is sub-Gaussian with $\sigma^{2}=\frac{1}{4} \sum_{i=1}^{n} c_{i}^{2}$ (Herbst's Trick)

References

[1] S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford Univ. Press, 2013.
[2] R. V. Handel, Probability in High Dimension, Lecture Notes, 2014.
[3] J. A. Tropp, An Introduction to Matrix Concentration Inequalities, http://arxiv.org/abs/1501.01571, 2015.
[4] J. Ni, S. Tatikonda, Network tomography based on additive metrics, IEEE Transactions on Information Theory, 2011.

