Advanced Topics in Data Sciences

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 10: Concentration of Measure Inequalities

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-731 (Spring 2016)

Outline

This lecture:

- 1. Cramér-Chernoff bound
- 2. Hoeffding bound
- 3. Herbst's trick
- 4. Entropy function and its properties
- 5. Bounded differences inequality

Recommended Reading Materials

- S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence Oxford Univ. Press, 2013 (Sections 2.1 – 2.3, 2.6, 6.1 – 6.2)
- 2. R. V. Handel, Probability in High Dimension. Lecture Notes, 2014 (Section 3.3)

Part I: Results and Examples

Concentration of Measure Phenomenon

Problem (a rough statement)

Given a random variable Y, how "concentrated" is Y (e.g., around its mean)?

Concentration of Measure Phenomenon

Problem (a rough statement)

Given a random variable Y, how "concentrated" is Y (e.g., around its mean)?

Concentration of Measure Inequalities

Suppose that we can find a deterministic value m, such that

$$\Pr(|Y - m| > t) \le D(t)$$

where D(t) decreases drastically to 0 in t. We say that Y concentrates around m.

Note: Typically $m = \mathbb{E}[Y]$, and D(t) decreases exponentially: $D(t) \sim e^{-t^k}$ for some positive integer k.

Concentration of Measure Phenomenon

Problem (a rough statement)

Given a random variable Y, how "concentrated" is Y (e.g., around its mean)?

Concentration of Measure Inequalities

Suppose that we can find a deterministic value m, such that

$$\Pr(|Y - m| > t) \le D(t)$$

where D(t) decreases drastically to 0 in t. We say that Y concentrates around m.

Note: Typically $m = \mathbb{E}[Y]$, and D(t) decreases exponentially: $D(t) \sim e^{-t^k}$ for some positive integer k.

Example

- 1. In statistics, Y can be the estimation/prediction error.
- 2. In optimization, Y can be the objective error $f(x_k) f(x^*)$, or the estimate of gradient $\nabla f(x_k)$.
- 3. In computer science, Y can be the outcomes of randomized algorithms.
- 4. Many other applications in information theory, statistical physics, random matrices, statistical learning theory...

Example: Sums of Independent Random Variables

A simple example: $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$, where the X_i are independent with mean μ and variance σ^2

- ▶ Law of Large Numbers: $Pr(|Y_n \mu| > \epsilon) \rightarrow 0$ as $n \rightarrow \infty$
- ► Central Limit Theorem: $\Pr\left(|Y_n \mu| > \frac{\alpha}{\sqrt{n}}\right) \rightarrow 2\Phi\left(-\frac{\alpha}{\sigma}\right)$ as $n \rightarrow \infty$, where Φ is the standard normal CDF.
- ► Large Deviations: Under some technical assumptions, $\Pr(|Y_n - \mu| > \epsilon) \le e^{-n \cdot c(\epsilon)}$
- ▶ Moderate Deviations: Decay rate of $Pr(|Y_n \mu| > \epsilon_n)$ when $\epsilon_n \to 0$ sufficiently slowly so that $\epsilon_n \sqrt{n} \to \infty$

In many applications, we want the bounds to be *non-asymptotic*.

Concentration of measure has many manifestations; we will only cover one today:

A General Principle of Concentration of Measure: Functional Inequalities If $X_1, ..., X_n$ are independent random variables, then any function $f(x_1, \dots, x_n)$ that is "not too sensitive" to any of the coordinates will concentrate around its mean:

$$P(|f(X_1,...,X_n) - \mathbb{E}[f(X_1,...,X_n)]| > t) \le e^{-t^2/c(f)},$$

where c(f) depends on the sensitivity in its coordinates.

Note: *No assumptions* on the X_i besides independence! (which can be relaxed)

Definition (Bounded Difference Functions)

A function $f:\mathcal{X}^n\to\mathbb{R}$ has the bounded differences property if for some positive $c_1,..,c_n,$

$$\sup_{x_1,...,x_n,x'_i \in \mathcal{X}} |f(x_1,..,x_i,...,x_n) - f(x_1,...,x'_i,...,x_n)| \le c_i.$$

Definition (Bounded Difference Functions)

A function $f:\mathcal{X}^n\to\mathbb{R}$ has the bounded differences property if for some positive $c_1,..,c_n,$

$$\sup_{x_1,...,x_n,x_i' \in \mathcal{X}} |f(x_1,...,x_i,...,x_n) - f(x_1,...,x_i',...,x_n)| \le c_i.$$

Theorem (Bounded Differences Inequality)

Let $X_1, ..., X_n$ be independent random variables, and let f satisfy the bounded differences property with c_i 's. Then

$$P(|f(X_1, ..., X_n) - \mathbb{E}[f(X_1, ..., X_n)]| > t) \le 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right).$$

Definition (Bounded Difference Functions)

A function $f:\mathcal{X}^n\to\mathbb{R}$ has the bounded differences property if for some positive $c_1,..,c_n,$

$$\sup_{x_1,...,x_n,x_i' \in \mathcal{X}} |f(x_1,...,x_i,...,x_n) - f(x_1,...,x_i',...,x_n)| \le c_i.$$

Theorem (Bounded Differences Inequality)

Let $X_1, ..., X_n$ be independent random variables, and let f satisfy the bounded differences property with c_i 's. Then

$$P(|f(X_1, ..., X_n) - \mathbb{E}[f(X_1, ..., X_n)]| > t) \le 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right).$$

To prove this result, we need the following fundamental notions:

- Cramér-Chernoff bound
- Hoeffding bound
- Herbst's trick
- Entropy function and its properties

Bounded Differences: Example

Example (Chromatic Number of a Random Graph)

Let $V = \{1, \dots, n\}$, and let G be a random graph such that each pair $i, j \in V$ is independently connected with probability p. Let

$$X_{ij} = \begin{cases} 1 & (i,j) \text{ are connected} \\ 0 & \text{otherwise.} \end{cases}$$

The chromatic number of G is the minimum number of colors needed to color the vertices such that no two connected vertices have the same color. Writing

chromatic number
$$= f(X_{11}, \cdots, X_{ij}, \cdots, X_{nn}),$$

we find that f satisfies the bounded difference property with $c_{ii} = 1$.

In the later lectures, we will see an application of the bounded differences inequality to statistical learning theory.

Markov's Inequality

Markov's Inequality Let Z be a *nonnegative* random variable. Then $Pr(Z \ge t) \le \frac{\mathbb{E}[Z]}{t}$.

Proof:
$$\int_0^\infty f_Z(z) \mathbf{1}\{z \ge t\} dz \le \int_0^\infty \frac{z}{t} f_Z(z) \mathbf{1}\{z \ge t\} dz \le \int_0^\infty \frac{z}{t} f_Z(z) dz = \frac{\mathbb{E}[Z]}{t}$$

Markov's Inequality Applied to Functions

Let ϕ denote any *nondecreasing* and *nonnegative* function. Let Z be any random variable. Then Markov's inequality gives

$$\Pr(Z \ge t) \le \Pr(\phi(Z) \ge \phi(t)) \le \frac{\mathbb{E}[\phi(Z)]}{\phi(t)}.$$

Markov's Inequality Applied to Functions

Let ϕ denote any nondecreasing and nonnegative function. Let Z be any random variable. Then Markov's inequality gives

$$\Pr(Z \ge t) \le \Pr(\phi(Z) \ge \phi(t)) \le \frac{\mathbb{E}[\phi(Z)]}{\phi(t)}.$$

Chebyshev's Inequality: Choose $\phi(t) = t^2$, and replace Z by $|Z - \mathbb{E}[Z]|$. Then

$$\Pr\left(|Z - \mathbb{E}[Z]| \ge t\right) \le \frac{\operatorname{Var}[Z]}{t^2}$$

Chernoff Bound: Choose $\phi(t)=e^{\lambda t}$ where $\lambda\geq 0.$ Then we have

$$\Pr(Z \ge t) \le e^{-\lambda t} \mathbb{E}[e^{\lambda Z}].$$

lions@epfl

Cramér-Chernoff Inequality

Definition (Log-moment-generating function)

The log-moment-generating function $\psi_Z(\lambda)$ of a random variable Z is defined as

$$\psi_Z(\lambda) = \log \mathbb{E}[e^{\lambda Z}], \quad \lambda \ge 0.$$

Clearly the Chernoff bound can be written as $Pr(Z \ge t) \le e^{-(\lambda t - \psi_Z(\lambda))}$.

Cramér-Chernoff Inequality

Definition (Log-moment-generating function)

The log-moment-generating function $\psi_Z(\lambda)$ of a random variable Z is defined as

$$\psi_Z(\lambda) = \log \mathbb{E}[e^{\lambda Z}], \quad \lambda \ge 0.$$

Clearly the Chernoff bound can be written as $Pr(Z \ge t) \le e^{-(\lambda t - \psi_Z(\lambda))}$.

Definition (Cramér transform)

The Cramér transform of \boldsymbol{Z} is defined as

$$\psi_Z^*(t) = \sup_{\lambda > 0} \lambda t - \psi_Z(\lambda).$$

Note that $\psi_Z^*(t) \ge \psi_Z^*(0) = 0$.

Cramér-Chernoff Inequality

Definition (Log-moment-generating function)

The log-moment-generating function $\psi_Z(\lambda)$ of a random variable Z is defined as

$$\psi_Z(\lambda) = \log \mathbb{E}[e^{\lambda Z}], \quad \lambda \ge 0.$$

Clearly the Chernoff bound can be written as $Pr(Z \ge t) \le e^{-(\lambda t - \psi_Z(\lambda))}$.

Definition (Cramér transform)

The Cramér transform of Z is defined as

$$\psi_Z^*(t) = \sup_{\lambda > 0} \lambda t - \psi_Z(\lambda).$$

Note that $\psi_Z^*(t) \ge \psi_Z^*(0) = 0.$

Theorem (Cramér-Chernoff Inequality)

For any random variable Z, we have

$$\Pr(Z \ge t) \le \exp(-\psi_Z^*(t)).$$

Sums of Independent Random Variables Revisited

Let $Z = X_1 + \cdots + X_n$ where $\{X_i\}$ are independent and identically distributed (i.i.d.).

Chebyshev's Inequality on the Sum: We have Var[Z] = nVar[X], and hence Chebyshev's inequality with $t = n\epsilon$ gives

$$\Pr\left(\frac{1}{n} \left| Z - \mathbb{E}[Z] \right| \ge \epsilon\right) \le \frac{\operatorname{Var}[X]}{n\epsilon^2}.$$

Sums of Independent Random Variables Revisited

Let $Z = X_1 + \cdots + X_n$ where $\{X_i\}$ are independent and identically distributed (i.i.d.).

Chebyshev's Inequality on the Sum: We have Var[Z] = nVar[X], and hence Chebyshev's inequality with $t = n\epsilon$ gives

$$\Pr\left(\frac{1}{n} \left| Z - \mathbb{E}[Z] \right| \ge \epsilon\right) \le \frac{\operatorname{Var}[X]}{n\epsilon^2}.$$

Cramér-Chernoff Inequality on the Sum: We have

$$\psi_{Z}(\lambda) = \log \mathbb{E}[e^{\lambda Z}] = \log \mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right] = \log \mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right]$$
$$= \log \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right] = \log \left(\mathbb{E}\left[e^{\lambda X}\right]\right)^{n} = n\psi_{X}(\lambda),$$

where on the second line we used independence and then the identical distribution property. Then the Cramér-Chernoff Inequality with $t = n\epsilon$ gives

$$\Pr(Z \ge n\epsilon) \le \exp\left(-n\psi_X^*(\epsilon)\right).$$

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch

The Cramér-Chernoff Method

Cramér-Chernoff Inequality

For any random variable Z, we have

```
\Pr(Z \ge t) \le \exp(-\psi_Z^*(t)).
```

Observation:

1. Given a random variable X, let $Z = X - \mathbb{E}[X]$. If we can provide an lower bound on the Cramér transform of Z, then we obtain a one-sided concentration inequality:

 $\Pr(X - \mathbb{E}[X] \ge t) \le \exp(-\psi_Z^*(t)) \le \exp\left[-(\text{lower bound of } \psi_Z^*(t))\right].$

2. Applying the same argument to $-Z = X - \mathbb{E}[X]$ gives the other side.

The Cramér-Chernoff Method

Cramér-Chernoff Inequality

For any random variable Z, we have

$$\Pr(Z \ge t) \le \exp(-\psi_Z^*(t)).$$

Observation:

1. Given a random variable X, let $Z = X - \mathbb{E}[X]$. If we can provide an lower bound on the Cramér transform of Z, then we obtain a one-sided concentration inequality:

$$\Pr(X - \mathbb{E}[X] \ge t) \le \exp(-\psi_Z^*(t)) \le \exp\left[-(\text{lower bound of } \psi_Z^*(t))\right].$$

2. Applying the same argument to $-Z = X - \mathbb{E}[X]$ gives the other side.

Example (Gaussian random variables concentrate) Let $X \sim \mathcal{N}(0, \sigma^2)$. Then $\psi_X(\lambda) = \frac{\lambda^2 \sigma^2}{2}$, and thus $\psi_X^*(t) = \frac{t^2}{2\sigma^2}$. Therefore, $\Pr(|X| \ge t) \le 2 \exp\left(-\frac{t^2}{2\sigma^2}\right)$.

That is, Gaussian random variables concentrate around their mean – increasingly so for small σ^2 .

Sub-Gaussian Random Variables

Notice that if $\psi_X(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}$, then $\psi_X^*(t) \geq \frac{t^2}{2\sigma^2}$. This motivates the following.

Definition (Sub-Gaussian Random Variables)

A *centered* random variable X is said to be *sub-Gaussian* with parameter σ^2 if $\psi_X(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}$, $\forall \lambda > 0$. Denote the set of all such random variables by $\mathcal{G}(\sigma^2)$.

Sub-Gaussian Random Variables

Notice that if $\psi_X(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}$, then $\psi_X^*(t) \geq \frac{t^2}{2\sigma^2}$. This motivates the following.

Definition (Sub-Gaussian Random Variables)

A *centered* random variable X is said to be *sub-Gaussian* with parameter σ^2 if $\psi_X(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}$, $\forall \lambda > 0$. Denote the set of all such random variables by $\mathcal{G}(\sigma^2)$.

Basic Properties of Sub-Gaussian Random Variables

- 1. $\Pr(|X| \ge t) \le 2 \exp\left(-\frac{t^2}{2\sigma^2}\right)$ (sub-Gaussian random variables concentrate)
- 2. If $X_i \in \mathcal{G}(\sigma_i^2)$ are independent, then $\sum_{i=1}^n a_i X_i \in \mathcal{G}\left(\sum_{i=1}^n a_i^2 \sigma_i^2\right)$.

lions@epfl

Bounded Random Variables are Sub-Gaussian

One of the most important examples of sub-Gaussian random variable is the bounded random variable.

Theorem (Hoeffding's Lemma)

Let Y be a random variable with $\mathbb{E}[Y] = 0$, taking values in a bounded interval [a, b]. Let $\psi_Y(\lambda) = \log \mathbb{E}[e^{\lambda Y}]$. Then $\psi''_Y(\lambda) \leq \frac{(b-a)^2}{4}$ and $Y \in \mathcal{G}\left(\frac{(b-a)^2}{4}\right)$.

We will see the proof later in the lecture.

Hoeffding's Inequality

Applying sub-Gaussian concentration to the previous slide, we find that for $Y \in [a, b]$,

$$\Pr\left(|Y - \mathbb{E}[Y]| > t\right) \le 2\exp\left(-\frac{2t^2}{(b-a)^2}\right).$$

Using a similar argument along with the fact that sums of sub-Gaussian variables are sub-Gaussian, we obtain the following.

Theorem (Hoeffding's Inequality)

Let $Z = X_1 + \cdots + X_n$, where the X_i are independent and supported on $[a_i, b_i]$. Then

$$\Pr\left(\frac{1}{n} \left| Z - \mathbb{E}[Z] \right| > \epsilon\right) \le 2 \exp\left(-\frac{2n\epsilon^2}{\frac{1}{n} \sum_{i=1}^n (b_i - a_i)^2}\right).$$

Concentration in Applications: PAC Learnability

Recall the following from the previous lecture.

Proposition

Assume that the hypothesis class ${\cal H}$ consists of a finite number of functions $f(h,\cdot)$ taking values in [0,1]. Then ${\cal H}$ satisfies the uniform convergence property with

$$n_{\mathcal{H}}(\epsilon, \delta) = \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2}.$$

Proof: Define $\xi_i(h) = f(h, x_i)$, and define $S_n(h) := (1/n) \sum_{1 \le i \le n} (\xi_i(h) - \mathbb{E}\xi_i(h))$ for every $h \in \mathcal{H}$. Notice that then

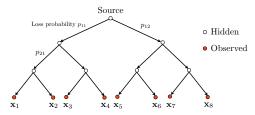
$$\sup_{h \in \mathcal{H}} |S_n(h)| = \sup_{h \in \mathcal{H}} |\hat{F}_n(h) - F(h)|.$$

By the union bound and Hoeffding's inequality (with a = 0 and b = 1), we have

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}|S_n(h)|\geq\epsilon\right)\leq\sum_{h\in\mathcal{H}}\mathbb{P}\left(|S_n(h)|\geq\epsilon\right)\leq|\mathcal{H}|\cdot2\exp\left(-2n\epsilon^2\right),$$

which is upper bounded by δ provided that $n \geq \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2}.$

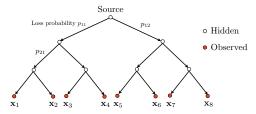
Concentration in Applications: Network Tomography



The problem in the case of n packets and p leaf nodes:

- $X_k^{(i)} = \mathbf{1}\{ \text{packet } i \text{ arrives at node } k \}$ for $i = 1, \cdots, n$ and $k = 1, \cdots, p$
- Goal: Given these n independent samples, reconstruct the tree structure.

Concentration in Applications: Network Tomography



The problem in the case of n packets and p leaf nodes:

- $X_k^{(i)} = \mathbf{1}\{ \text{packet } i \text{ arrives at node } k \}$ for $i = 1, \dots, n$ and $k = 1, \dots, p$
- \blacktriangleright Goal: Given these n independent samples, reconstruct the tree structure.

Outline of analysis (Ni, 2011):

- Show that the tree can be recovered from the values $q_{kl} = \Pr(\text{packet reaches } x_k \text{ and } x_l)$
- \blacktriangleright Show robustness, in that any \hat{q} with $|\hat{q}_{kl}-q_{kl}|\leq\epsilon$ suffices
- ► Set $\hat{q}_{kl} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{X_k^{(i)} = 1 \cap X_l^{(i)} = 1\}$, and bound using Hoeffding's inequality: $\Pr(|\hat{q}_{kl} - q_{kl}| > \epsilon) \le 2 \exp(-2n\epsilon^2).$

• Apply the union bound to conclude $\Pr(\text{error}) \leq \delta$ if $n \geq \frac{1}{2\epsilon^2} \log \frac{p^2}{\delta}$.

lions@epfl

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Concentration in Applications: Random Linear Projections

Theorem (Johnson-Lindenstrauss)

Let $\mathbf{x}_1, \dots, \mathbf{x}_p$ be a collection of points in \mathbb{R}^d , and let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a random matrix with independent $N\left(0, \frac{1}{\sqrt{n}}\right)$ entries. For any $\epsilon, \delta \in (0, 1)$, we have with probability at least $1 - \delta$ that

$$(1-\epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2^2 \le \|\mathbf{A}\mathbf{x}_i - \mathbf{A}\mathbf{x}_j\|_2^2 \le (1-\epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2^2$$

for all i, j, provided that $n \ge \frac{4}{\epsilon^2(1-\epsilon)} \log \frac{p^2}{\delta}$.

Concentration in Applications: Random Linear Projections

Theorem (Johnson-Lindenstrauss)

Let $\mathbf{x}_1, \dots, \mathbf{x}_p$ be a collection of points in \mathbb{R}^d , and let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a random matrix with independent $N\left(0, \frac{1}{\sqrt{n}}\right)$ entries. For any $\epsilon, \delta \in (0, 1)$, we have with probability at least $1 - \delta$ that

$$(1-\epsilon)\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 \le \|\mathbf{A}\mathbf{x}_i - \mathbf{A}\mathbf{x}_j\|_2^2 \le (1-\epsilon)\|\mathbf{x}_i - \mathbf{x}_j\|_2^2$$

for all i, j, provided that $n \ge \frac{4}{\epsilon^2(1-\epsilon)} \log \frac{p^2}{\delta}$.

The idea:

- 1. Show that $\mathbb{E}[\|\mathbf{A}\mathbf{u}\|_2^2] = \|\mathbf{u}\|_2^2$ for any \mathbf{u}
- 2. Use squared-Gaussian concentration (not covered in this lecture) to show that, for any **u**, $\Pr\left(\left|\|\mathbf{A}\mathbf{u}\|_{2}^{2} \|\mathbf{u}\|_{2}^{2}\right| > (1+\epsilon)\|\mathbf{u}\|_{2}^{2}\right) \leq 2\exp\left(\frac{n}{4}\epsilon^{2}(1-\epsilon)\right)$
- 3. Apply the union bound to conclude that the analogous event holding for some **u** of the form $\mathbf{u} = \mathbf{x}_i \mathbf{x}_j$ is at most $p^2 \exp\left(\frac{n}{4}\epsilon^2(1-\epsilon)\right)$.

Other Examples of Concentration Inequalities

There are an extensive range of concentration inequalities in the literature; here are just two more examples to a get a flavor for them (Boucheron *et al.*, 2013).

Theorem (Lipschitz Function of Gaussian RVs)

Let $X_1, ..., X_n$ be independent Gaussian N(0, 1) random variables, and let f be L-Lipschitz (i.e., $|f(\mathbf{x}) - f(\mathbf{x}')| \le L ||\mathbf{x} - \mathbf{x}'||_2$ for any \mathbf{x}, \mathbf{x}'). Then

$$P(|f(X_1,...,X_n) - \mathbb{E}[f(X_1,...,X_n)]| > t) \le 2e^{-\frac{t^2}{2L^2}}.$$

Theorem (Separately Convex Lipschitz Function of Bounded RVs)

Let $X_1, ..., X_n$ be independent random variables in [0, 1], and let $f : [0, 1]^n \to \mathbb{R}$ be 1-Lipschitz and separately convex (i.e., convex in any given coordinate when the other ones are fixed). Then

$$P(f(X_1, ..., X_n) > \mathbb{E}[f(X_1, ..., X_n)] + t) \le e^{-\frac{t^2}{2}}.$$

lions@epfl

Summary

We have considered probabilities of the form

$$P(|f(X_1, ..., X_n) - \mathbb{E}[f(X_1, ..., X_n)]| > t)$$

In summary, there are several features of the random variables X_i that tend to permit strong concentration guarantees:

- Boundedness
- Sub-Gaussian
- Moments $\mathbb{E}[|X^c|]$ (not covered here; see, e.g., Bernstein's inequalities)

...

 \dots and there are several properties of the function f that tend to permit strong concentration guarantees:

- Bounded differences
- Lipschitz continuous
- ...

Many of the concentration results for sums of independent RVs have counterparts in sums of random matrices, but this is an ongoing area of research (Tropp, 2015).

Part II: Proofs

Bounded Random Variables are Sub-Gaussian

Theorem (Hoeffding's Lemma)

Let Y be a random variable with $\mathbb{E}[Y] = 0$, taking values in a bounded interval [a, b]. Let $\psi_Y(\lambda) = \log \mathbb{E}[e^{\lambda Y}]$. Then $\psi''_Y(\lambda) \leq \frac{(b-a)^2}{4}$ and $Y \in \mathcal{G}\left(\frac{(b-a)^2}{4}\right)$.

Bounded Random Variables are Sub-Gaussian

Theorem (Hoeffding's Lemma)

Let Y be a random variable with $\mathbb{E}[Y] = 0$, taking values in a bounded interval [a, b]. Let $\psi_Y(\lambda) = \log \mathbb{E}[e^{\lambda Y}]$. Then $\psi''_Y(\lambda) \leq \frac{(b-a)^2}{4}$ and $Y \in \mathcal{G}\left(\frac{(b-a)^2}{4}\right)$.

Outline of proof:

- 1. Prove that $\operatorname{Var}[Z] \leq \frac{(b-a)^2}{4}$ for any Z bounded on [a, b].
- 2. Show $\psi_Y(0) = 0$, $\psi'_Y(0) = 0$, and $\psi''_Y(\lambda) = \operatorname{Var}[Z]$, where Z is a random variable with PDF $f_Z(z) = e^{-\psi_Y(\lambda)}e^{\lambda z}f_Y(z)$; hence $\psi''_Y(\lambda) \leq \frac{(b-a)^2}{4}$ by Step 1.
- 3. Taylor expand $\psi_Y(\lambda) = \psi_Y(0) + \lambda \psi'_Y(0) + \frac{\lambda^2}{2} \psi''_Y(\theta)$ (for some $\theta \in [0, \lambda]$) and substitute Step 2 to upper bound this by $\frac{\lambda^2}{2} \cdot \frac{(b-a)^2}{4}$.

Entropy of a Random Variable

Definition (Entropy)

Let Z be a nonnegative random variable. The *entropy* of Z is defined as

$$\mathsf{Ent}(Z) = \mathbb{E}[Z \log Z] - (\mathbb{E}[Z]) \log(\mathbb{E}[Z]).$$

Rough intuition: A measure of *variation* that is *scale-independent*: Ent[cZ] = Ent[Z]

▶ Always non-negative by Jensen's inequality; zero if and only if Z is deterministic

Note: Not to be confused with Shannon entropy $H(Z) = \mathbb{E}[-\log f_Z(Z)]$. The two are related but not equivalent (in fact, Ent(·) is more related to the *relative* entropy).

Entropy of a Random Variable

Definition (Entropy)

Let Z be a nonnegative random variable. The *entropy* of Z is defined as

$$\mathsf{Ent}(Z) = \mathbb{E}[Z \log Z] - (\mathbb{E}[Z]) \log(\mathbb{E}[Z]).$$

Rough intuition: A measure of *variation* that is *scale-independent*: Ent[cZ] = Ent[Z]

Always non-negative by Jensen's inequality; zero if and only if Z is deterministic

Note: Not to be confused with Shannon entropy $H(Z) = \mathbb{E}[-\log f_Z(Z)]$. The two are related but not equivalent (in fact, Ent(·) is more related to the *relative* entropy).

Definition (Conditional Versions of Ent and \mathbb{E})

Let $\{X_i\}_{i=1}^n$ be independent random variables and $f \ge 0$ be any function, and let

$$\operatorname{Ent}^{(i)}(f(x_1,...,x_n)) \coloneqq \operatorname{Ent}[f(x_1,...,x_{i-1},X_i,x_{i+1},...,x_n)].$$

That is, $Ent^{(i)}f$ is the entropy of f with respect to the variable X_i only. Similarly,

$$\mathbb{E}^{(i)}[f(x_1,...,x_n)] \coloneqq \mathbb{E}[f(x_1,...,x_{i-1},X_i,x_{i+1},...,x_n)].$$

Bounded Differences Inequality

Theorem (Bounded Differences Inequality)

Let $X_1, ..., X_n$ be independent random variables, and let f satisfy the bounded differences property for some $\{c_i\}_{i=1}^n$. Set $\sigma^2 = \frac{1}{4}\sum_{i=1}^n c_i^2$. Then

$$P(|f(X_1,...,X_n) - \mathbb{E}[f(X_1,...,X_n)]| > t) \le 2e^{-\frac{t^2}{2\sigma^2}}.$$

Bounded Differences Inequality

Theorem (Bounded Differences Inequality)

Let $X_1, ..., X_n$ be independent random variables, and let f satisfy the bounded differences property for some $\{c_i\}_{i=1}^n$. Set $\sigma^2 = \frac{1}{4}\sum_{i=1}^n c_i^2$. Then

$$P(|f(X_1,...,X_n) - \mathbb{E}[f(X_1,...,X_n)]| > t) \le 2e^{-\frac{t^2}{2\sigma^2}}.$$

Outline of proof $(Z = f(X_1, \cdots, X_n))$:

- 1. Show that $\frac{\operatorname{Ent}^{(i)}(e^{\lambda Z})}{\mathbb{E}^{(i)}[e^{\lambda Z}]} \leq \frac{\lambda^2}{2} \cdot \frac{c_i^2}{4}$ (Hoeffding-type Bound)
- 2. Use $\operatorname{Ent}\left[f(X_1, ..., X_n)\right] \leq \mathbb{E}\left[\sum_{i=1}^n \operatorname{Ent}^{(i)}(f(X_1, ..., X_n))\right]$ (Subadditivity of Entropy) to deduce that $\frac{\operatorname{Ent}(e^{\lambda Z})}{\mathbb{E}[e^{\lambda Z}]} \leq \frac{\lambda^2}{2} \cdot \frac{1}{4} \sum_{i=1}^n c_i^2$.

3. Deduce that
$$Z - \mathbb{E}[Z]$$
 is sub-Gaussian with $\sigma^2 = \frac{1}{4} \sum_{i=1}^n c_i^2$ (Herbst's Trick)

Herbst's Trick

Theorem (Herbst's Trick)

Suppose Z is such that, for some $\sigma^2 > 0$, we have

$$\frac{\operatorname{Ent}(e^{\lambda Z})}{\mathbb{E}[e^{\lambda Z}]} \le \frac{\lambda^2 \sigma^2}{2}, \quad \forall \lambda \ge 0.$$
(1)

Then $Z - \mathbb{E}Z \in \mathcal{G}(\sigma^2)$; that is,

$$\psi_0(\lambda) := \psi_{(Z - \mathbb{E}Z)}(\lambda) = \log \mathbb{E}e^{\lambda(Z - \mathbb{E}Z)} \le \frac{\lambda^2 \sigma^2}{2}, \quad \forall \lambda \ge 0.$$

Herbst's Trick

Theorem (Herbst's Trick)

Suppose Z is such that, for some $\sigma^2 > 0$, we have

$$\frac{\operatorname{Ent}(e^{\lambda Z})}{\mathbb{E}[e^{\lambda Z}]} \le \frac{\lambda^2 \sigma^2}{2}, \quad \forall \lambda \ge 0.$$
(1)

Then $Z - \mathbb{E}Z \in \mathcal{G}(\sigma^2)$; that is,

$$\psi_0(\lambda) := \psi_{(Z - \mathbb{E}Z)}(\lambda) = \log \mathbb{E}e^{\lambda(Z - \mathbb{E}Z)} \le \frac{\lambda^2 \sigma^2}{2}, \quad \forall \lambda \ge 0.$$

Outline of proof:

1. Write log-MGF of $Z - \mathbb{E}[Z]$ as $\psi_0(\lambda) = \log \mathbb{E}[e^{\lambda Z}] - \lambda \mathbb{E}[Z]$.

2. Prove
$$\frac{d}{d\lambda} \frac{\psi_0(\lambda)}{\lambda} = \frac{\operatorname{Ent}(e^{\lambda Z})}{\lambda^2 \mathbb{E}[e^{\lambda Z}]}$$
.

3. Integrate both sides of Step 2 from 0 to λ , and apply (1) to obtain $\frac{\psi_0(\lambda)}{\lambda} \leq \frac{\lambda \sigma^2}{2}$.

Sub-Additivity of the Entropy

Theorem (Sub-Additivity of the Entropy)

For independent X_1, \cdots, X_n ,

$$\operatorname{Ent}\left(f(X_{1},...,X_{n})\right) \leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Ent}^{(i)}\left(f(X_{1},...,X_{n})\right)\right].$$

Outline of proof:

- 1. Show $\operatorname{Ent}(Z) = \sum_{i=1}^{n} \mathbb{E}[ZU_i]$ where $U_i = \log \frac{\mathbb{E}[Z|X_1, \cdots, X_i]}{\mathbb{E}[Z|X_1, \cdots, X_{i-1}]}$
- 2. Show $\mathbb{E}[e^{U_i} | X_1, \cdots, X_{i-1}, X_{i+1}, \cdots, X_n] = 1$
- 3. Use variational formula to deduce $\mathbb{E}[ZU_i] \leq \mathbb{E}[\operatorname{Ent}^{(i)}(Z)]$, then average both sides

Sub-Additivity of the Entropy

Theorem (Sub-Additivity of the Entropy)

For independent X_1, \cdots, X_n ,

$$\operatorname{Ent}\left(f(X_{1},...,X_{n})\right) \leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Ent}^{(i)}\left(f(X_{1},...,X_{n})\right)\right].$$

Outline of proof:

1. Show
$$\operatorname{Ent}(Z) = \sum_{i=1}^{n} \mathbb{E}[ZU_i]$$
 where $U_i = \log \frac{\mathbb{E}[Z|X_1, \cdots, X_i]}{\mathbb{E}[Z|X_1, \cdots, X_{i-1}]}$

- 2. Show $\mathbb{E}[e^{U_i} | X_1, \cdots, X_{i-1}, X_{i+1}, \cdots, X_n] = 1$
- 3. Use variational formula to deduce $\mathbb{E}[ZU_i] \leq \mathbb{E}[\operatorname{Ent}^{(i)}(Z)]$, then average both sides

Theorem (Variational Formula for Entropy)

$$\operatorname{Ent}(Z) = \sup_{X : \mathbb{E}[e^X] = 1} \mathbb{E}[ZX].$$

Outline of proof:

- 1. Use Jensen's inequality to show $\operatorname{Ent}(Z) \mathbb{E}[ZX] \ge 0$ whenever $\mathbb{E}[e^X] = 1$
- 2. Show that equality holds when $X = \log \frac{Z}{\mathbb{R}[Z]}$

lions@epfl

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Sub-Additivity of the Variance

As a side-note, the variance satisfies a similar property.

Theorem (Efron-Stein Inequality – Sub-Additivity of the Entropy) For independent X_1, \dots, X_n ,

$$\operatorname{Var}\left[f(X_1,...,X_n)\right] \leq \mathbb{E}\left[\sum_{i=1}^n \operatorname{Var}^{(i)} f(X_1,...,X_n)\right].$$

When $f(X_1, \dots, X_n) = \sum_{i=1}^n X_i$, this becomes $\operatorname{Var}\left[\sum_{i=1}^n X_i\right] \leq \sum_{i=1}^n \operatorname{Var}[X_i]$, which in fact holds with equality.

The above (Efron-Stein) inequality can be used to obtain useful concentration results in some settings, but the entropy is more useful for our purposes.

Bounded Differences Inequality

Theorem (Bounded Differences Inequality)

Let $X_1, ..., X_n$ be independent random variables, and let f satisfy the bounded differences property for some $\{c_i\}_{i=1}^n$. Set $\sigma^2 = \frac{1}{4}\sum_{i=1}^n c_i^2$. Then

$$P(|f(X_1,...,X_n) - \mathbb{E}[f(X_1,...,X_n)]| > t) \le 2e^{-\frac{t^2}{2\sigma^2}}.$$

Outline of proof $(Z = f(X_1, \cdots, X_n))$:

- 1. Show that $\frac{\operatorname{Ent}^{(i)}(e^{\lambda Z})}{\mathbb{E}^{(i)}[e^{\lambda Z}]} \leq \frac{\lambda^2}{2} \cdot \frac{c_i^2}{4}$ (Hoeffding-type Bound)
- 2. Use $\operatorname{Ent}(Z) \leq \mathbb{E}\left[\sum_{i=1}^{n} \operatorname{Ent}^{(i)}(Z)\right]$ (Subadditivity of Entropy) to deduce that $\frac{\operatorname{Ent}(e^{\lambda Z})}{\mathbb{E}[e^{\lambda Z}]} \leq \frac{\lambda^{2}}{2} \cdot \frac{1}{4} \sum_{i=1}^{n} c_{i}^{2}.$
- 3. Deduce that $Z \mathbb{E}[Z]$ is sub-Gaussian with $\sigma^2 = \frac{1}{4} \sum_{i=1}^n c_i^2$ (Herbst's Trick)

References

- S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford Univ. Press, 2013.
- [2] R. V. Handel, Probability in High Dimension, Lecture Notes, 2014.
- [3] J. A. Tropp, An Introduction to Matrix Concentration Inequalities, http://arxiv.org/abs/1501.01571, 2015.
- [4] J. Ni, S. Tatikonda, Network tomography based on additive metrics, IEEE Transactions on Information Theory, 2011.

