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Outline

This lecture:

. Cramér-Chernoff bound
. Hoeffding bound

. Herbst's trick

. Entropy function and its properties

oA W N =

. Bounded differences inequality
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Recommended Reading Materials

1. S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A
Nonasymptotic Theory of Independence Oxford Univ. Press, 2013
(Sections 2.1 — 2.3, 2.6, 6.1 — 6.2)

2. R. V. Handel, Probability in High Dimension. Lecture Notes, 2014 (Section 3.3)

. V
ICHHEI{l  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 31 -ﬂ ﬂ.



Part I: Results and Examples
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Concentration of Measure Phenomenon

Problem (a rough statement)

Given a random variable Y, how “concentrated” is Y (e.g., around its mean)?
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Concentration of Measure Phenomenon

Problem (a rough statement)

Given a random variable Y, how “concentrated” is Y (e.g., around its mean)?
Concentration of Measure Inequalities
Suppose that we can find a deterministic value m, such that
Pr(|Y — m| > t) < D(¢)
where D(t) decreases drastically to 0 in ¢t. We say that Y concentrates around m.

Note: Typically m = E[Y], and D(¢) decreases exponentially: D(t) ~ e=" for some
positive integer k.
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Concentration of Measure Phenomenon

Problem (a rough statement)

Given a random variable Y, how “concentrated” is Y (e.g., around its mean)?

Concentration of Measure Inequalities
Suppose that we can find a deterministic value m, such that
Pr(|Y — m| > t) < D(¢)
where D(t) decreases drastically to 0 in ¢t. We say that Y concentrates around m.

Note: Typically m = E[Y], and D(¢) decreases exponentially: D(t) ~ e=" for some
positive integer k.

Example

1. In statistics, Y can be the estimation/prediction error.

2. In optimization, Y can be the objective error f(z) — f(z*), or the estimate of
gradient Vf(zy).

3. In computer science, Y can be the outcomes of randomized algorithms.

4. Many other applications in information theory, statistical physics, random
matrices, statistical learning theory...

. V
ICHHEIN  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 31 -ﬂ ﬂ-



Example: Sums of Independent Random Variables

A simple example: Yy, = % 2?21 X, where the X; are independent with mean p and
variance o2

> Law of Large Numbers: Pr(|Y,, — p| >¢€) — 0 as n — oo
» Central Limit Theorem: Pr (| Yn — | > %) — 2<I>( — %) as n — oo, where ®
is the standard normal CDF.

> Large Deviations: Under some technical assumptions,
Pr([ Y —pf > ¢) < e~ el)

> Moderate Deviations: Decay rate of Pr(|Y, — p| > €n) when €, — 0 sufficiently
slowly so that €y, /n — oo

In many applications, we want the bounds to be non-asymptotic.

L]
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In This Lecture

Concentration of measure has many manifestations; we will only cover one today:

A General Principle of Concentration of Measure: Functional Inequalities

If X1, ..., Xy are independent random variables, then any function f(z1,-- ,z,) that
is “not too sensitive” to any of the coordinates will concentrate around its mean:

P(If(X1, 0y Xn) = BIf (X1, 00, Xn)]| > £) 5 €6/,

where ¢(f) depends on the sensitivity in its coordinates.

Note: No assumptions on the X; besides independence! (which can be relaxed)

-
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In This Lecture

Definition (Bounded Difference Functions)

A function f : X™ — R has the bounded differences property if for some positive
Cl, -5 Cn,

sup |f(I17 oy Tiy eeey x") - f(ﬂ?l, Ty il],;, haEl l‘")l S Ci.
T1yees Ty T EX
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In This Lecture

Definition (Bounded Difference Functions)

A function f : X™ — R has the bounded differences property if for some positive
Cl, -5 Cn,

sup |f(I17 oy Tiy eeey z") - f(ﬂ?l, Ty x’év haEl l‘”)l S Ci.
T1yees Ty T EX

Theorem (Bounded Differences Inequality)

Let X1, ..., X, be independent random variables, and let f satisfy the bounded
differences property with c;'s. Then

2
P(f (X, o X) = B (X1, XI| > 1) < 2030 (= ).

Zi=1 G
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In This Lecture

Definition (Bounded Difference Functions)

A function f : X™ — R has the bounded differences property if for some positive
Cl, -5 Cn,

sup (@1, Tiy ooy @) — F(@1, oy Ty oy 0)| < i
T1yees Ty T EX

Theorem (Bounded Differences Inequality)

Let X1, ..., X, be independent random variables, and let f satisfy the bounded
differences property with c;'s. Then

2
P(f (X, o X) = B (X1, XI| > 1) < 2030 (= ).

Zi=1 G

To prove this result, we need the following fundamental notions:
o Cramér-Chernoff bound

e Hoeffding bound

e Herbst's trick

e Entropy function and its properties
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Bounded Differences: Example

Example (Chromatic Number of a Random Graph)

Let V. ={1,---,n}, and let G be a random graph such that each pair i,5 € V is
independently connected with probability p. Let

X — 1 (%,j) are connected
Y710 otherwise.

The chromatic number of G is the minimum number of colors needed to color the
vertices such that no two connected vertices have the same color. Writing

chromatic number = f(X11,--+, X4, , Xnn),

we find that f satisfies the bounded difference property with c;; = 1.

In the later lectures, we will see an application of the bounded differences inequality to
statistical learning theory.

.
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Markov’s Inequality

Markov's Inequality

Let Z be a nonnegative random variable. Then Pr(Z > t) < %.

Proof: [ f7(2)1{z > t}dz < [ 2fz()1{z > thdz < [ 2fz(2)dz = 2
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ICLZHEI{]  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 31 -ﬂ ﬂ-




Markov’s Inequality Applied to Functions

Let ¢ denote any nondecreasing and nonnegative function. Let Z be any random
variable. Then Markov's inequality gives
E[¢(2)]

Pr(Z 2 1) < Pr(9(Z) 2 6(1) < =15
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Markov’s Inequality Applied to Functions

Let ¢ denote any nondecreasing and nonnegative function. Let Z be any random
variable. Then Markov's inequality gives

E[¢(2)]
o(t)

Chebyshev’s Inequality: Choose ¢(t) = t2, and replace Z by |Z — E[Z]|. Then

Pr(Z > t) < Pr(9(Z) = ¢(1)) <

< Var[Z]
S

Pr (|2 —E[Z]| > t)

Chernoff Bound: Choose ¢(t) = e* where A\ > 0. Then we have

Pr(Z > t) < e ME[eM].
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Cramér-Chernoff Inequality

Definition (Log-moment-generating function)

The log-moment-generating function 1z (\) of a random variable Z is defined as

$z(A) = logE[e}], A>0.

Clearly the Chernoff bound can be written as Pr(Z > t) < e~ (AM=¥2(3),

-
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Cramér-Chernoff Inequality
Definition (Log-moment-generating function)

The log-moment-generating function 1z (\) of a random variable Z is defined as

$z(A) = logE[e}], A>0.

Clearly the Chernoff bound can be written as Pr(Z > t) < e~ (AM=¥2(3),

Definition (Cramér transform)

The Cramér transform of Z is defined as

¥y (t) = sup At — Pz ().
A>0

Note that %% (t) > 7% (0) = 0.
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Cramér-Chernoff Inequality

Definition (Log-moment-generating function)

The log-moment-generating function 1z (\) of a random variable Z is defined as

$z(A) = logE[e}], A>0.

Clearly the Chernoff bound can be written as Pr(Z > t) < e~ (AM=¥2(3),

Definition (Cramér transform)

The Cramér transform of Z is defined as

¥y (t) = sup At — Pz ().
A>0

Note that %% (t) > 7% (0) = 0.

Theorem (Cramér-Chernoff Inequality)

For any random variable Z, we have

Pr(Z > t) < exp(—vy(1)).
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Sums of Independent Random Variables Revisited
Let Z = X1 + -+ + Xn where {X;} are independent and identically distributed (i.i.d.).

Chebyshev’s Inequality on the Sum: We have Var[Z] = nVar[X], and hence
Chebyshev’s inequality with ¢ = ne gives

< Var[X]'

1
Pr(f‘Z—E[Z]‘Ze> -
n ne
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Sums of Independent Random Variables Revisited
Let Z = X1 + -+ + Xn where {X;} are independent and identically distributed (i.i.d.).

Chebyshev’s Inequality on the Sum: We have Var[Z] = nVar[X], and hence
Chebyshev’s inequality with ¢ = ne gives

< Var[X]'

1
Pr(f‘Z—E[Z]‘Ze> -
n ne

Cramér-Chernoff Inequality on the Sum: We have

n
n

Yz(A\) = logE[eAZ] =logE [e)\ 21:1 Xl} = logE [H e’\X’f}

i=1
= logH]E[eAXi] = log (E[eAX] ) o npx(N),
i=1

where on the second line we used independence and then the identical distribution
property. Then the Cramér-Chernoff Inequality with ¢ = ne gives

Pr(Z > ne) < exp ( - m/)*X(e))
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The Cramér-Chernoff Method

Cramér-Chernoff Inequality

For any random variable Z, we have

Pr(Z > t) < exp(—¢%(1)).

Observation:

1. Given a random variable X, let Z = X — E[X]. If we can provide an lower bound
on the Cramér transform of Z, then we obtain a one-sided concentration
inequality:

Pr(X —E[X] > t) < exp(—v%(t)) < exp [—(lower bound of 17 (t))].
2. Applying the same argument to —Z = X — E[X] gives the other side.
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The Cramér-Chernoff Method

Cramér-Chernoff Inequality

For any random variable Z, we have

Pr(Z > t) < exp(—¢%(1)).

Observation:
1. Given a random variable X, let Z = X — E[X]. If we can provide an lower bound
on the Cramér transform of Z, then we obtain a one-sided concentration
inequality:

Pr(X —E[X] > t) < exp(—v%(t)) < exp [—(lower bound of 17 (t))].
2. Applying the same argument to —Z = X — E[X] gives the other side.

Example (Gaussian random variables concentrate)

Let X ~ N(0,02). Then ¢x(A) = 2°2°, and thus v} (1) = 5. Therefore,

12
Pr(|X|>t)<2exp| ——5 |-
202

That is, Gaussian random variables concentrate around their mean — increasingly so
for small o2.
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Sub-Gaussian Random Variables

Notice that if x(A) < 2527, then % (t) > 5by. This motivates the following.

Definition (Sub-Gaussian Random Variables)

A centered random variable X is said to be sub-Gaussian with parameter o2 if

Yx(A) < )‘22‘72, VA > 0. Denote the set of all such random variables by G(o2).

-
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Sub-Gaussian Random Variables

Notice that if x(A) < 2527, then % (t) > 5by. This motivates the following.

Definition (Sub-Gaussian Random Variables)

A centered random variable X is said to be sub-Gaussian with parameter o2 if

Yx(A) < )‘22”2, VA > 0. Denote the set of all such random variables by G(o2).

Basic Properties of Sub-Gaussian Random Variables

1. Pr(|X| > t) < 2exp (—%) (sub-Gaussian random variables concentrate)

2. If X; € Q(U?) are independent, then Z?:l a; X; € Q(Z?:I afa?).
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Bounded Random Variables are Sub-Gaussian

One of the most important examples of sub-Gaussian random variable is the bounded
random variable.

Theorem (Hoeffding's Lemma)

Let Y be a random variable with E[Y]| = 0, taking values in a bounded interval [a, b].
2 2

Let ¥y (A) = logE[e*Y]. Then ¢/4(A) < L= and Y € g (%)

We will see the proof later in the lecture.
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Hoeffding’s Inequality

Applying sub-Gaussian concentration to the previous slide, we find that for Y € [a, b],

2
Pr(\Yf]E[YH > t) SQexp(f(bi%)g).

Using a similar argument along with the fact that sums of sub-Gaussian variables are
sub-Gaussian, we obtain the following.

Theorem (Hoeffding's Inequality)
Let Z = X1 + - - -+ Xn, where the X; are independent and supported on [a;, b;]. Then

Pr (%‘Zf]E[ZH >e) SQexp(fﬁi_w).

-
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Concentration in Applications: PAC Learnability
Recall the following from the previous lecture.

Proposition

Assume that the hypothesis class H consists of a finite number of functions f(h, -)
taking values in [0, 1]. Then H satisfies the uniform convergence property with

_ log(2[#]/6)

K (Eu 5) 2¢2

Proof: Define &;(h) = f(h, z;), and define Sy, (h) := (1/n) Zl<i<n(£i(h) —E¢&i(h))
for every h € H. Notice that then T

sup [ Sn(h)| = sup | Fu(h) = F(h)].
heH heH

By the union bound and Hoeffding's inequality (with @ = 0 and b = 1), we have

sup |Sp(h € Sn(h € . 2exp (—2ne? R
P(e% ()z)sZp( (B)] > €) < [H] - 2exp (—2ne?)

h
heH

which is upper bounded by § provided that n > %.
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Concentration in Applications: Network Tomography

Source

Loss probability p;y
o Hidden

@ Observed

X1 X2 X3 X4 X5 X6 X7 X8
The problem in the case of n packets and p leaf nodes:
> Xéi) = 1{packet i arrives at node k} fori =1,--- ,nand k=1,--- ,p

> Goal: Given these n independent samples, reconstruct the tree structure.

ICLEHGIN  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 31

e



Concentration in Applications: Network Tomography

Source

Loss probability pr;
o Hidden

@ Observed

X1 X2 X3 X4 X5 X6 X7 X8
The problem in the case of n packets and p leaf nodes:
> Xéi) = 1{packet i arrives at node k} fori =1,--- ,nand k=1,--- ,p
> Goal: Given these n independent samples, reconstruct the tree structure.
Outline of analysis (Ni, 2011):
> Show that the tree can be recovered from the values gi; = Pr(packet reaches z; and z;)
> Show robustness, in that any ¢ with |gu — gu| < € suffices

> Set gy = 1 Zz;l 1{X1‘Ei> =1N Xz(i) = 1}, and bound using Hoeffding's inequality:

Pr(|am — qu| > €) < 2 exp(—2ne?).

2
log &-.

> Apply the union bound to conclude Pr(error) < ¢ if n > 222
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Concentration in Applications: Random Linear Projections

Theorem (Johnson-Lindenstrauss)

Let x1,--- ,Xxp be a collection of points in R%, and let A € R"*% be a random matrix
with independent N(O, %) entries. For any €,0 € (0,1), we have with probability at
least 1 — 6 that

(1 = )lixi — x5lI3 < |Ax: — Ax;13 < (1 = €)llxi — 513
for all i, 4, provided that n >

4 P2
€2(1—e) log il
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Concentration in Applications: Random Linear Projections

Theorem (Johnson-Lindenstrauss)

Let x1,--- ,Xxp be a collection of points in R%, and let A € R"*% be a random matrix
with independent N(O, %) entries. For any €,0 € (0,1), we have with probability at
least 1 — 6 that

(1= o)llxi — x5lI3 < [[Ax; — Ax;13 < (1 - €)llxi — x5

2
for all 4,4, provided that n > ﬁ log &

The idea:
1. Show that E[||Au||2] = ||u||2 for any u
2. Use squared-Gaussian concentration (not covered in this lecture) to show that,
for any u, Pr (’||Au||§ — ||u||§’ > (1+ e)Hqu) < 2exp (%52(1 — e))
3. Apply the union bound to conclude that the analogous event holding for some u
of the form u = x; — x; is at most p2 exp (%62(1 - e)).
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Other Examples of Concentration Inequalities

There are an extensive range of concentration inequalities in the literature; here are
just two more examples to a get a flavor for them (Boucheron et al., 2013).

Theorem (Lipschitz Function of Gaussian RVs)

Let X1, ..., Xn be independent Gaussian N(0,1) random variables, and let f be
L-Lipschitz (i.e., |f(x) — f(x')| < L||x — x'||2 for any x,x’). Then

+2

P(If (X1, ey Xn) = B[f(X1, oo, Xa)]| > 1) < 267322

Theorem (Separately Convex Lipschitz Function of Bounded RVs)

Let X1, ..., X, be independent random variables in [0, 1], and let f : [0,1]" — R be
1-Lipschitz and separately convex (i.e., convex in any given coordinate when the other
ones are fixed). Then

P(F(X1, o Xn) > B (X, Xn)] + 1) < €77
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Summary

We have considered probabilities of the form
P(If(X1, 0, Xn) = BIf(X1, o0y Xn)]| > 2)

In summary, there are several features of the random variables X; that tend to permit
strong concentration guarantees:

> Boundedness
> Sub-Gaussian
> Moments E[| X ¢|] (not covered here; see, e.g., Bernstein's inequalities)

> ...

...and there are several properties of the function f that tend to permit strong
concentration guarantees:

» Bounded differences

» Lipschitz continuous

> ..

Many of the concentration results for sums of independent RVs have counterparts in
sums of random matrices, but this is an ongoing area of research (Tropp, 2015).

-
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Part Il: Proofs
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Bounded Random Variables are Sub-Gaussian

Theorem (Hoeffding's Lemma)

Let Y be a random variable with E[Y] = 0, taking values in a bounded interval [a, b].
2 2

Let Py (X) = logE[e*Y]. Then ¢p(A) < L= and Y e ¢ (%)

-
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Bounded Random Variables are Sub-Gaussian

Theorem (Hoeffding's Lemma)
Let Y be a random variable with E[Y] = 0, taking values in a bounded interval [a, b].

Let y(N) = logE[eAY]. Then v/,(\) < =% and v e g (%)

Outline of proof:
2
1. Prove that Var[Z] < % for any Z bounded on [a, b].
2. Show 9y (0) = 0, ¥,(0) = 0, and %, (X) = Var[Z], where Z is a random
2
variable with PDF fz(z) = e~ %Y (M e fy(2); hence P (A) < % by Step 1.

3. Taylor expand 9y () = ¥y (0) + X%, (0) + %21/1’{,(0) (for some 0 € [0, A]) and

. . A2 (b—a)?
substitute Step 2 to upper bound this by &~ - .

LG
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Entropy of a Random Variable

Definition (Entropy)

Let Z be a nonnegative random variable. The entropy of Z is defined as

Ent(Z) = E[Z log Z] — (E[Z]) log(E[Z]).

Rough intuition: A measure of variation that is scale-independent: Ent[cZ] = Ent|Z]

> Always non-negative by Jensen's inequality; zero if and only if Z is deterministic

Note: Not to be confused with Shannon entropy H(Z) = E[—log fz(Z)]. The two are
related but not equivalent (in fact, Ent(:) is more related to the relative entropy).
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Entropy of a Random Variable

Definition (Entropy)

Let Z be a nonnegative random variable. The entropy of Z is defined as
Ent(Z) = E[Z log Z] — (E[Z]) log(E[Z]).
Rough intuition: A measure of variation that is scale-independent: Ent[cZ] = Ent|Z]
> Always non-negative by Jensen's inequality; zero if and only if Z is deterministic

Note: Not to be confused with Shannon entropy H(Z) = E[—log fz(Z)]. The two are
related but not equivalent (in fact, Ent(:) is more related to the relative entropy).

Definition (Conditional Versions of Ent and E)

Let {X;}7, be independent random variables and f > 0 be any function, and let
Ent) (f(z1, ..., 7)) = Ent[f (@1, ..., Bi—1, Xi, Tit1, .-, Tn)]-
That is, Ent(i)f is the entropy of f with respect to the variable X; only. Similarly,

ED[f(21, ..., zn)] = B[f (21, ., i1, Xi, Tid1, -y Zn)]-
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Bounded Differences Inequality

Theorem (Bounded Differences Inequality)

Let X1, ..., Xy, be independent random variables, and let f satisfy the bounded
differences property for some {c;}?_;. Set 0% = % 2?21 c2. Then
2

P(IF(X1, o X)) = EIf(X1, oy Xa)]| > t) < 26737

L]
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Bounded Differences Inequality

Theorem (Bounded Differences Inequality)

Let X1, ..., Xy, be independent random variables, and let f satisfy the bounded
differences property for some {c;}?_;. Set 0% = % 2?21 c2. Then

2

P(IF(X1, o X)) = EIf(X1, oy Xa)]| > t) < 26737

Outline of proof (Z = f(X1,---, Xyp)):

() 2
1. Show that ?T(e”]) < )‘2 - L (Hoeffding-type Bound)

2. Use Bnt[f(X1, ..., Xn)| < [Z" Ent® (f(X1, ..., Xn))] (Subadditivity of

AZ
Entropy) to deduce that % < %2 1 Zl 1 ci.

3. Deduce that Z — E[Z] is sub-Gaussian with o = 2 3>~ _ ¢2 (Herbst’s Trick)

7,1Z
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Herbst’s Trick

Theorem (Herbst's Trick)

Suppose Z is such that, for some o2 > 0, we have

Ent(e*?) X202
& ) . VA>O. 1
E[er4] — 2 - )

Then Z —EBZ € G(o?); that is,

Po(N) = P(z_5z)(A) =logEM?ED) < Z— x> 0.

-

ICLGHEI{]  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 31



Herbst’s Trick

Theorem (Herbst's Trick)

Suppose Z is such that, for some o2 > 0, we have

Ent(e*?) X202

o7 S 5 W20
Then Z —EBZ € G(o?); that is,
2 2
Yo(N) 1= Y(s_sn (V) = logBA D < 2T vy >0

Outline of proof:
1. Write log-MGF of Z — E[Z] as ¢o(\) = log E[e*%] — AE[Z].

d Yo(N) _ Ent(er?)
ax T A

2. Prove = 27

3. Integrate both sides of Step 2 from 0 to A, and apply (1) to obtain wo)(\A)
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Sub-Additivity of the Entropy

Theorem (Sub-Additivity of the Entropy)
For independent X1,--- , Xy,

Ent (f(X1, ..., Xn)) < E{ZEnt(i) (F(X1, s X))

=1

Outline of proof:
1. Show Ent(Z) = Y7 E[ZUi] where U; = log gt Xils
2. Show E[eUi [ X1, Xic1, Xig1,-, Xn] =1
3. Use variational formula to deduce E[ZU;] < E[Ent(?) (Z)], then average both sides

. V
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Sub-Additivity of the Entropy

Theorem (Sub-Additivity of the Entropy)
For independent X1,--- , Xy,

Ent (f(X1, ..., Xn)) < E{ZEnt(i) (F(X1, s X))

=1

Outline of proof:
1. Show Ent(Z) = Y7 E[ZUi] where U; = log gt Xils
2. Show E[eUi [ X1, Xic1, Xig1,-, Xn] =1
3. Use variational formula to deduce E[ZU;] < E[Ent(?) (Z)], then average both sides

Theorem (Variational Formula for Entropy)

Ent(Z) = sup E[ZX].
X :E[eX]=1

Outline of proof:
1. Use Jensen's inequality to show Ent(Z) — E[ZX] > 0 whenever E[eX] = 1
2. Show that equality holds when X = log %
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Sub-Additivity of the Variance

As a side-note, the variance satisfies a similar property.

Theorem (Efron-Stein Inequality — Sub-Additivity of the Entropy)
For independent Xi,--- , Xy,

Var [f(X1,..., Xn)] < E |:2Var(i)f(X1, Xn)] .

=1

When f(X1,--+, Xz) = 3.7 X;, this becomes Var[ Y7 | X;| <37 | Var[X,],
which in fact holds with equality.

The above (Efron-Stein) inequality can be used to obtain useful concentration results
in some settings, but the entropy is more useful for our purposes.
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Bounded Differences Inequality

Theorem (Bounded Differences Inequality)

Let X1, ..., Xy, be independent random variables, and let f satisfy the bounded
differences property for some {c;}?_;. Set 0% = % 2?21 c2. Then

2

P(IF(X1, o X)) = EIf(X1, oy Xa)]| > t) < 26737

Outline of proof (Z = f(Xy,- - ,Xn)):

(D) (N7
1. Show that Ii]n;(i)iiiZ]) < )‘2 . (Hoeffdmg-type Bound)

[
2. Use Ent(2) <E[Y.7, Ent(i)(Z)] (Subadditivity of Entropy) to deduce that
Ent( >‘4 N
E[ciz §7'4ZZ 1 e

3. Deduce that Z — E[Z] is sub-Gaussian with 0% = % Zl , ¢ (Herbst’s Trick)

. V
NGNSl Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 30/ 31 -ﬂ ﬂ.



References

[1] S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A Nonasymptotic
Theory of Independence, Oxford Univ. Press, 2013.

[2] R. V. Handel, Probability in High Dimension, Lecture Notes, 2014.

[3] J. A. Tropp, An Introduction to Matrix Concentration Inequalities,
http://arxiv.org/abs/1501.01571, 2015.

[4] J. Ni, S. Tatikonda, Network tomography based on additive metrics, IEEE
Transactions on Information Theory, 2011.

3 |
PR ail  Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 31 e




