
Advanced Topics in Data Sciences

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 1: Course Overview and Introduction to Submodularity
Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2015)



License Information for Mathematics of Data Slides

I This work is released under a Creative Commons License with the following terms:
I Attribution

I The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

I Non-Commercial
I The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees may not use the work for commercial purposes – unless they get the licensor’s
permission.

I Share Alike
I The licensor permits others to distribute derivative works only under a license identical
to the one that governs the licensor’s work.

I Full Text of the License

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 35

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode


Outline

I This lecture
1. Overview of the course
2. Recap of compressive sensing
3. Subsampled measurement matrices
4. Structured sparsity
5. Learning-based subsampling
6. Submodularity: Definitions, Properties, and Examples
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Prerequesites

Students are expected to have a good understanding of the basics of the following
areas of mathematics:

I Probability
I Linear algebra
I Calculus

Familiarity with convex sets and convex functions will also be highly beneficial.
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Further Information

The hours of the course are as follows:
I Lectures on Fridays, 14:15-16:00 in ELG116
I Office hours by appointment only – contact Prof. Volkan Cevher at
volkan.cevher@epfl.ch

The grading of the course is based on the following:
I Part of the grade will be based on attendance (1 point).
I Each student will be asked to scribe one or two lectures (2 points).
I Each student will complete a project and present it (3 points).
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Course Objectives

The broad goal of this course is to present theory and methods for addressing key
challenges in modern data sciences.

The content of the course is split into three related areas:
I Discrete optimization (weeks 1–4)
I Convex optimization (weeks 5–8)
I Statistical learning theory (weeks 9–12)
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Questions?

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 35



Part I: Learning-based Compressive Subsampling

Recommended reading:
I An introduction to compressive sampling, Candès and Wakin, 2008
I Learning-based compressive subsampling, Baldassarre, Li, Scarlett, Gözcü,
Bogunovic, and Cevher, 2012
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Signal recovery from linear measurements

The following problem is fundamental in signal processing, machine learning, and
many other areas.

Estimation from linear measurements: Problem statement
Recover an accurate estimate x̂ of a signal x ∈ Cp from a set of linear measurements
of the form

b = Ax + w,

where A ∈ Cn×p is a known measurement matrix, and w ∈ Cn×1 is additive noise.

Examples:
I Image compression
I Medical resonance imaging (MRI)
I Communications
I Linear regression

Two regimes of interest:
I n > p (overdetermined): Solvable using classical techniques such as least squares
I n < p (underdetermined): Infinitely many solutions; impossible in general
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A natural signal model

Definition (s-sparse vector)
A vector α ∈ Rp is s-sparse if it has at
most s non-zero entries.

Rp

x\

Sparse representations
α\: sparse transform coefficients

I Basis representations Φ ∈ Rp×p

I Wavelets, DCT, ...
I Frame representations

Φ ∈ Rm×p, m > p
I Gabor, curvelets, shearlets, ...

I Other dictionary representations...

= � ↵\x\
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Sparse representations strike back!

b x\A

I b ∈ Rn , A ∈ Rn×p, and n < p

A fundamental impact:
The matrix Ã effectively becomes overcomplete.
We could easily solve for α\ (and hence x\) if we knew the location of the non-zero
entries of x\.
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The matrix Ã effectively becomes overcomplete.
We could easily solve for α\ (and hence x\) if we knew the location of the non-zero
entries of x\.

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 35



Sparse recovery via the Lasso

Definition (Least absolute shrinkage and selection operator (Lasso))

α̂lasso := arg min
α∈Rp

∥∥b− Ãα
∥∥2

2
+ ρ ‖α‖1

with some ρ ≥ 0.

The second term in the objective function is called the regularizer.

Here ρ is called the regularization parameter. It is used to trade off the objectives:
I Minimize ‖b− Ãα‖2

2, so that the solution is consistent with the observations
I Minimize ‖α‖1, so that the solution has the desired sparsity structure

The problem is efficiently solvable via convex optimization.
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Compressible signals
Real signals may not be exactly sparse, but approximately sparse, or compressible.

Roughly speaking, a vector α := (α1, . . . , αp)T ∈ Rp is compressible if the number of
its significant components, |{k : |αk | ≥ t, 1 ≤ k ≤ p}|, is small.

I Cameraman@MIT.
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I Solid curve: Sorted wavelet coefficients of
the cameraman image.

I Dashed curve: Expected order statistics of
generalized Pareto distribution with shape
parameter 1.67.
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Performance guarantees

Theorem (Existence of a stable solution in polynomial time [?])
This Lasso can be solved in polynomial time in terms of the inputs n and p. If the
signal x\ is s-sparse and the noise w is Gaussian with variance σ2, then choosing

ρ =
√

16σ2 log p
n yields an error of

∥∥α̂lasso − α\
∥∥

2
≤

8σ
µ(A)

√
s ln p

n
,

with probability at least 1− c1 exp(−c2nρ2), where c1 and c2 are absolute constants,
and µ(A) > 0 encodes the difficulty of the problem.

I Hence, the number of measurements required is O
(

s ln p
)
– this may be much

smaller than p.
I µ(A) can be made large, for example, by letting the entries of A be
i.i.d. Gaussian
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Structured sparsity

Real-world signals tend not to have arbitrary sparsity patterns, but instead tend to
follow more specific patterns (e.g., clustering; tree structures)

 

 

Typical measurement matrix constructions (e.g., i.i.d. Gaussian) and decoding
algorithms (e.g., basis pursuit) do not exploit these more refined structures
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Subsampled measurement matrices

Subsampled measurement matrices
Subsampled measurement matrices take the form [?]

A = PΩΨ,

where:
I Ψ ∈ Cp×p: orthonormal/unitary measurement basis matrix
I PΩ : Cp → Cn : subsampling matrix such that [PΩx]l = xΩl (i.e., keep only the
rows indexed by Ω)

Motivation:
I Improved computational efficiency (e.g., Hadamard or Fourier Ψ)
I Applications where measurements must be in a certain basis (e.g., Fourier in MRI)

Fundamental question: How do we choose the “best” Ω?
I This naturally leads to discrete optimization problems.
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Learning-based compressive subsampling

The idea of the learning-based compressive subsampling (LB-CS) framework [?] is to
learn Ω based on a set of training signals.

LB-CS: Problem statement
Given a set of m training signals x1, . . . ,xm ∈ Cp, find an index set Ω of a given
cardinality n such that a related test signal x can reliably be recovered given the
subsampled measurement vector b = PΩΨx.

A natural approach is to choose the indices that have the highest energy in some sense.
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Optimizing the energy captured (I)

General optimization template
We study the following class of problems:

Ω̂ = arg max
Ω : |Ω|=n

F(Ω),

where
F(Ω) := f

(
‖PΩΨx1‖2

2, . . . , ‖PΩΨxm‖2
2
)

for some function f .

Observe that ‖PΩΨxj‖2
2 is precisely the energy in xj captured by the subsamples

corresponding to Ω. It will be convenient to write

‖PΩΨxj‖2
2 =
∑
i∈Ω

|〈ψi ,xj〉|2,

where ψi is the i-th row of Ψ
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Optimizing the energy captured (II)

Average energy
Using favg(α1, . . . , αm) := 1

m
∑m

j=1 αi yields

Ω̂ = arg max
Ω : |Ω|=n

1
m

m∑
j=1

∑
i∈Ω

|〈ψi ,xj〉|2,

Generalized average energy
Using fgen(α1, . . . , αm) := 1

m
∑m

j=1 g(αj) yields

Ω̂ = arg max
Ω : |Ω|=n

1
m

m∑
j=1

g
(∑

i∈Ω

|〈ψi ,xj〉|2
)
.

Here we let g : [0, 1]→ R be an increasing concave function with g(0) = 0.

Worst-case energy
Using fmin(α1, . . . , αm) := minj=1,...,m αj yields

Ω̂ = arg max
Ω : |Ω|=n

min
j=1,...,m

∑
i∈Ω

|〈ψi ,xj〉|2.
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Interpretations

The preceding choices of f can be interpreted as follows:
I f = favg: Choose the indices maximizing the average energy captured in the
training signals x1, . . . ,xm ;

I f = fgen: Instead of maximizing the average energy, maximize the average of
some suitably-designed function g(·);

I f = fmin: Choose the indices maximizing the worst-case energy captured in the
training signals x1, . . . ,xm .

The worst-case criterion fmin may be preferable in some cases, but it tends to be less
robust to “outliers”, e.g., compared to favg.
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Linear decoding performance

Capturing energy sounds like a reasonable criterion, but does it actually correspond to
good recovery performance? The answer is yes for a particular choice of decoder.

Linear decoder
We consider a linear decoder that expands b to a p-dimensional vector by placing
zeros in the entries corresponding to Ωc, and then applies the adjoint Ψ∗ = Ψ−1:

x̂ = Ψ∗PT
Ωb.

Exercise: Show that this decoder is equivalent to least-squares decoding. (Recall that
the observations are given by b = PΩΨx)

Theorem
The `2 estimation error of the above decoder is

‖x− x̂‖2
2 = ‖x‖2

2 − ‖PΩΨx‖2
2.

Exercise: Prove this theorem. (Recall that Ψ is assumed to be unitary)

Note: This theorem shows that maximizing the captured energy amounts to
minimizing the error of the linear decoder.
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Example: Natural Images
As an illustration, let’s apply this approach to subsampling natural images in the
Hadamard, discrete cosine transform (DCT), and wavelet domains.

The performance of learning-based (with favg) and adaptive (best possible samples
image-by-image) subsampling:

Hadamard DCT Wavelets
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The learned subsampling patterns:
Hadamard DCT Wavelets
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Incorporating constraints

So far, we have considered simply selecting the best k indices Ω ⊆ {1, . . . , p}. In some
cases, we might want to impose constraints on Ω.

LB-CS with Constraints: Problem statement
Given a set of m training signals x1, . . . ,xm ∈ Cp and a constraint set A (containing
subsets of {1, . . . , p} of cardinality n), find an index set Ω ∈ A such that a related
test signal x can reliably be recovered given b = PΩΨx.

Examples:
I Multi-level sampling: Split the indices into K disjoint groups G1, . . . ,GK ; set

A =
{

Ω : Ω contains nk indices from Gk , ∀k = 1, . . . ,K
}

where n1, . . . ,nK are integers such that
∑K

k=1 nk = n.
I For example, G1 might contain the lowest frequencies, and GK the highest frequencies.

I Rooted-connected tree structure: The indices form a rooted-connected subtree
of the Wavelet tree [?].
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Optimizing the energy captured with constraints

General optimization template with constraints
We study the following class of problems:

Ω̂ = arg max
Ω∈A

F(Ω),

where
F(Ω) := f

(
‖PΩΨx1‖2

2, . . . , ‖PΩΨxm‖2
2
)

for some function f .

Notes:
I Everything is the same as before, except we have included the constraint Ω ∈ A.
I The choices f = favg, fgen, fmin are still all suitable; however, the optimization
problem may become more difficult depending on the choice of A.

I For the two examples of A on the previous slide, we can still efficiently solve
exactly for favg, and approximately for fgen [?].
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Preview of results

Later in the course, we will explore the following theoretical results:
I Discrete optimization guarantees:

I The optimization of favg can be solved exactly by exploiting modularity
I The optimization of fgen can be solved approximately by exploiting submodularity
I The optimization of fmin can be solved approximately via the robust submodular
optimization framework

I Statistical generalization bound: If the training images and test signal are drawn
independently from a common unknown distribution, then under the favg
criterion, the average energy captured in the test signal is within√

2
m

(
log |A|+ log

2
η

)
of the best possible – note that this approaches zero as m increases. This result
is proved via an empirical risk minimization perspective.
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Part II: Introduction to Submodularity

Recommended reading:
I Submodular function maximization, Krause and Golovin, 2012
I Submodular functions and convexity, Lovász, 1983
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Definition of Submodularity

Let V = {1, . . . ,n} be the ground set, and let 2V be the set of all subsets of V .
For a function f : 2V → R, set S ⊂ V , and element e ∈ V\S , define the discrete
derivative/difference

∆(e|S) = f (S ∪ {e})− f (S)

Definition (Submodularity)
A function f : 2V → R is said to be:
I submodular if, for all S ⊆ T ⊆ V and e ∈ V\{e}, it holds ∆(e|S) ≥ ∆(e|T);
I modular if it always holds that ∆(e|S) = ∆(e|T);
I supermodular if it always holds that ∆(e|S) ≤ ∆(e|T).

The Intuition: “Diminishing returns” – adding to a smaller set gains you more than
adding to a larger set.

Definition (Monotonicity)
A function f : 2V → R is said to be monotone if, for all S ⊆ T ⊆ V , it holds that
f (S) ≤ f (T).
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Equivalent definitions of submodularity

Theorem
For any function f : 2V → R, all of the following are equivalent:
I ∆(e|S) ≥ ∆(e|T) for all S ⊆ T , e
I f (S) + f (T) ≥ f (S ∪ T) + f (S ∩ T) for all S ,T
I ∆(e|S) ≥ ∆(e|A ∪ {e′}) for all S , e, e′

I f (T) ≤ f (S) +
∑

e∈T\S ∆(e|S) for all S ⊆ T

See [?] for more equivalent definitions.

A visual description of the second of these:

A A \ B

A \ B

B\A

B\A
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A A \ B

A \ B

B\A

B\A
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Relations to convexity and concavity

Submodular functions share some properties of concave functions:
I Diminishing returns
I Any local maximum within a factor of 1

2 of globally optimal

...but they also share some properties with convex functions:
I Unconstrained minimization is “easy” (though constrained minimization is
extremely hard!)

I The Lovász extension [?] is convex

They also fail to share some of the nicest properties of each; in particular, the
maximum or minimum of two submodular functions is not submodular in general.
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Properties of submodular functions

Properties of submodular functions
Let f1 and f2 be submodular functions.

1. Linear combinations: If c1, c2 are positive, then f (S) = c1f1(S) + c2f2(S) is
submodular.

2. Concave of modular: If g : 2V → R is modular and h : R→ R is concave, then
f (S) = h(g(S)) is submodular.

3. Residual: f (S) = f1(S ∪ B)− f1(B) is submodular for any B.
4. Conditioning: f (S) = f1(S ∩A) is submodular for any A.
5. Reflection: f (S) = f1(V\S) is submodular.
6. Truncation: f (S) = min{c, f (S)} is submodular for any c ∈ R.
7. Minimum: Although f (S) = min{f1(S), f2(S)} is not submodular in general, it is

submodular when either f1 − f2 or f2 − f1 is monotone.
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Examples of submodular functions (I)

Example 1: Let X be a matrix, let V be the indices of its columns, and let XS be the
submatrix formed by keeping only the columns indexed by S . Then r(S) = rank(XS)
is monotone submodular.

Example 2: Coverage functions are monotone submodular:

Activated

Deactivated

f (S) = Area covered by activating all sensors in S

Advanced Topics in Data Sciences | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 35



Examples of submodular functions (II)

Example 3: Some examples from graph theory:
I For a bipartite graph {A,B}, let S ⊂ A. The the number of neighbors Γ(S) of S
is a monotone submodular function.

I For an undirected graph G = (V ,E), let S ⊂ E. Then the number of connected
components c(S) of S is supermodular.

I For an undirected graph G = (V ,E), associate with each edge e a capacity
c(e) ≥ 0. For S ⊂ V , let δS be the number of edges in E with exactly one end
in S . Then f (S) =

∑
e∈δS c(e) is submodular.
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Examples of submodular functions (III)

Information-theoretic definitions
Given a joint PMF PXY with marginals PX , PY , and PY |X , define

H(X) =
∑

x

PX (x) log
1

PX (x)
,

H(Y |X) =
∑
x,y

PXY (x, y) log
1

PY |X (y|x)
=
∑

x

PX (x)H(Y |X = x),

I (X ; Y ) =
∑
x,y

PXY (x, y) log
PXY (x, y)

PX (x)PY (y)
= H(Y )−H(Y |X) = H(X)−H(X |Y ).

Example 4: Some examples from information theory:
I Let X = (X1, . . . ,Xn) be a random vector, and let XS = {Xi}i∈S . Then the
entropy f (S) = H(XS) is monotone submodular.1

I Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be (possibly dependent) random
vectors. If the Xi are conditionally independent given Y, then the mutual
information I (XS ; Y) is monotone submodular.

1For continuous random variables (with the above summations replaced by integrals), monotonicity may not
hold, but the submodularity property remains.
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Examples of submodular functions (IV)

Example 5: Some examples from learning-based CS:
I Our index selection rule for the average energy criterion was

f (Ω) =
1
m

m∑
j=1

∑
i∈Ω

|〈ψi ,xj〉|2.

This is a modular function.
I Our index selection rule for the generalized average energy criterion was

f (Ω) =
1
m

m∑
j=1

g
(∑

i∈Ω

|〈ψi ,xj〉|2
)
.

This is a monotone submodular function whenever g(·) is concave and increasing.
I Our index selection rule for the worst-case energy criterion was

f (Ω) = min
j=1,...,m

∑
i∈Ω

|〈ψi ,xj〉|2.

This is not submodular in general, but it falls under the setting of robust
submodular optimization [?], which we will study later.
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