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Introduction

Sparsity: A Fundamental Concept

. . . as simple as possible, but not simpler.

What do you mean with simple?

Classical (Gaussian)
All specified elements
Use each of them a little

Sparsity
As few elements as possible
If at all, use them big
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Introduction

Sparsity: A Fundamental Concept

. . . as simple as possible, but not simpler.

What do you mean with simple?

Classical (Gaussian)
All specified elements
Use each of them very little

Sparsity
As few elements as possible
If at all, use them big

Classical linear framework: Shapes the way we think
Nyquist/Shannon limit. Point spread function
Aliasing. Ringing. Signal-to-noise ratio
Linear measurements? Linear reconstruction!
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Introduction

Sparsity: A Fundamental Concept

. . . as simple as possible, but not simpler.

What do you mean with simple?

Classical (Gaussian)
All specified elements
Use each of them very little

Sparsity
As few elements as possible
If at all, use them big

Sparsity: A concept as basic as classical linear reconstruction
Profound implications for how we (should) think about
modelling, reconstruction, acquisition of real-world signals
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Introduction

Many Faces of Sparsity

Image modelling
Processing
Reconstruction
Acquisition (sampling)
Computational neuroscience

Relaxation of combinatorial
optimization

Maximally sparse reconstruction
Learning dependency structure

Meinshausen, Buehlmann
Graphical Lasso

Sparse coding
Olshausen, Field
Learning image priors
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Introduction

Image Reconstruction
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Introduction

Reconstruction is Ambiguous
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Introduction

Least Squares Estimation

Least Squares Estimation (Linear Model)

u∗ = argminu ‖y − X u‖2 s.t. ‖u‖2 small
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Introduction

Least Squares Estimation

Least Squares Estimation (Linear Model)

Simple. Fast. Well understood
Arbitrary decision (why squares?)
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Introduction

Image Statistics
Whatever images are . . .

they are not Gaussian!

Small noisy steps
Gaussian random walker
through pixel-land

Tiptoeing, edge jumping
Gaussian won’t do
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Introduction

Image Statistics
Whatever images are . . .

they are not Gaussian!

Spatial smoothness: Image gradient super-Gaussian, sparse

Capture image properties in prior distribution P(u)
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Sparsity. Super-Gaussianity

Sparsity Priors courtesy Florian Steinke
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Sparsity. Super-Gaussianity

Best of Both Worlds

P(u) ∝
∏q

i=1
ti(si), s = Bu , ti(si) = e−τi |si |2/2

Gaussian Prior P(u)

Simple. Fast
Well understood

Sparsity Prior P(u)

Better prior for
real-world signals
(images)

Latent Gaussian Representations

Gaussian scale mixtures ti(si) =
∫
γi≥0 e−|si |2/(2γi )fi(γi)dγi

Super-Gaussian potentials ti(si) = maxγi≥0 e−|si |2/(2γi )gi(γi)
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Sparsity. Super-Gaussianity

Gaussian Scale Mixtures

Mixture of Gaussians? K -means, EM, . . .

P(X ) =
∑K

j=1
πjN(X |µj , σ

2)

ti(si) unimodal: Means are not the issue

What makes ti(si) non-Gaussian:
More mass close to origin
More mass in tails (far from origin)
Less mass at moderate distance

⇒ Mass at different scales
Why not mix over the scales?
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Sparsity. Super-Gaussianity

Gaussian Scale Mixtures

X =
√
γY : Y ∼ N(0,1), γ ∼ f (γ)I{γ≥0}

Many distributions you know are
scale mixtures

Gaussian [:-)].

Spike and slab

Exponential power (α ≤ 2)
Student’s t
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Gaussian Scale Mixtures
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scale mixtures
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P(X ) = πN(X |0, γ1) + (1− π)N(X |0, γ2), γ1 � γ2
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Gaussian Scale Mixtures

X =
√
γY : Y ∼ N(0,1), γ ∼ f (γ)I{γ≥0}

Many distributions you know are
scale mixtures
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Exponential power (α ≤ 2)
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α
, α ∈ (0,2], τ > 0
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Sparsity. Super-Gaussianity

Gaussian Scale Mixtures

X =
√
γY : Y ∼ N(0,1), γ ∼ f (γ)I{γ≥0}

Many distributions you know are
scale mixtures

Gaussian [:-)]. Spike and slab
Exponential power (α ≤ 2)
Student’s t
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Duality between P(X ) and f (γ) West, Biometrika 87

For the Laplace:

τ

2
e−τ |s| = E[N(|s||0, γ)], γ ∼ (τ2/2)e−(τ

2/2)γ

=

∫
γ≥0

N(s|0, γ)f (γ)dγ

(EPFL) Graphical Models 28/11/2011 15 / 30



Sparsity. Super-Gaussianity

Super-Gaussian Potentials

t(s) = max
γ≥0

e−|s|
2/(2γ)g(γ)

t(s) even and positive: Let’s look at |s|2 7→ 2 log t(s)
What’s that for a Gaussian t(s) = N(|s||0, σ2)?
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Super-Gaussian Potentials

t(s) = max
γ≥0

e−|s|
2/(2γ)g(γ)

t(s) even and positive: Let’s look at |s|2 7→ 2 log t(s)
What’s that for a Gaussian t(s) = N(|s||0, σ2)?
A linear (affine) function

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

Gaussian

0 2 4 6 8 10 12
−14

−12

−10

−8

−6

−4

−2

0

 

 

Gaussian

(EPFL) Graphical Models 28/11/2011 16 / 30



Sparsity. Super-Gaussianity

Super-Gaussian Potentials

t(s) = max
γ≥0

e−|s|
2/(2γ)g(γ)

Sparsity potentials are super-Gaussian

|s|2 7→ 2 log t(s) is convex

Affine→ convex:
Shift mass to center and tails

Scale mixtures are super-Gaussian Palmer et.al.,
NIPS 2005

(EPFL) Graphical Models 28/11/2011 17 / 30



Sparsity. Super-Gaussianity

Super-Gaussian Potentials

t(s) = max
γ≥0

e−|s|
2/(2γ)g(γ)

Sparsity potentials are super-Gaussian

|s|2 7→ 2 log t(s) is convex

Affine→ convex:
Shift mass to center and tails
Scale mixtures are super-Gaussian Palmer et.al.,

NIPS 2005

(EPFL) Graphical Models 28/11/2011 17 / 30



Sparsity. Super-Gaussianity

Scale Mixtures are Super-Gaussian

Gaussian scale mixture : t(s) =
∫
≥0

e−|s|
2/(2γ)f (γ)dγ

t(s) even and positive: F9

x := |s|2 ⇒ t(s) = eg(x)

Super-Gaussian? |s|2 7→ 2 log t(s) is convex.
Show that g(x) is convex
Log-convexity: Closed under summation Boyd, Vandenberghe, 2002

ψ(x , γ) convex ∀γ ∈ C ⇒ log
∫
C

eψ(x ,γ) dγ convex

Apply to g(x):

g(x) = log
∫
≥0

e−x/(2γ)f (γ)dγ = log
∫
≥0

e−x/(2γ)+log f (γ) dγ
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Sparsity. Super-Gaussianity

Group Sparsity

ti(si) = max
γi≥0

e−|si |2/(2γi )gi(γi)

ti(si) depends on absolute value |si | only
Can just as well plug in vector norm ‖si‖

Useful for complex values: |si | = ‖(<si ,=si)
T‖

Useful to structure sparsity: Joint penalization of groups
⇒ `1 − `2 norms, group Lasso, and all that . . .
Latent Gaussian representations: Just parameter tying
e−‖si‖2/(2γi ) ∝ N(si |0, γi1)
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Sparsity. Super-Gaussianity

Sparsity vs. Super-Gaussianity

Sparse s
Many/most si = 0

Super-Gaussian s
Super-Gaussian statistics
Soft sparsity, statistical
sparsity, power law decay, . . .
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P(s) super-Gaussian: s ∼ P(s) no zeros in general
(only if P(s) degenerate)
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Sparsity. Super-Gaussianity

Where Are We?

Real-world signals are not Gaussian.
Gaussian assumptions made for convenience only.
Super-Gaussian distributions:
Trade-off between realistic and tractable/simple
Latent Gaussian representations:

Gaussian scale mixtures
Super-Gaussian potentials

Group potentials:
Simple way to structure sparsity
“Sparse” may mean super-Gaussian
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Variational Bayesian Inference Relaxations

Variational Approximations

P(u |y ) = Z−1P(y |u)
∏

i
ti(si), Z =

∫
P(y |u)

∏
i
ti(si)du

Bayesian integration over P(u |y ) intractable

Integration tractable for Gaussians Q(u |y )
⇒ Approximate P(u |y ) by Q(u |y )!
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ti(si)du

Bayesian integration over P(u |y ) intractable
Integration tractable for Gaussians Q(u |y )
⇒ Approximate P(u |y ) by Q(u |y )!

Variational approximation
Apply variational principle to fit master function log Z

Super-Gaussian bounding
Expectation propagation
Variational mean field Bayes [not here]
Gaussian KL minimization [not here]
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Variational Bayesian Inference Relaxations

Super-Gaussian Potentials

t(s) = max
γ≥0

e−|s|
2/(2γ)e−h(γ)/2

t(s) even and positive: Let’s look at |s|2 7→ 2 log t(s)
What’s that for a Gaussian t(s) = N(|s||0, σ2)?
A linear (affine) function
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Variational Bayesian Inference Relaxations

Super-Gaussian Potentials

t(s) = max
γ≥0

e−|s|
2/(2γ)e−h(γ)/2

Sparsity potentials are super-Gaussian

|s|2 7→ 2 log t(s) is convex

t(s) = maxγ≥0 . . . . Why?
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Variational Bayesian Inference Relaxations

Convex (Fenchel) Duality

Super-Gaussian:
t(s) even, |s|2 7→ log t(s) convex.

Convex function: Maximum of its affine lower bounds
Super-Gaussian function: Maximum of its Gaussian lower bounds
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Variational Bayesian Inference Relaxations

Super-Gaussian Potentials

P(u |y ) =
P(y |u)× P(u)

P(y )

Sparsity potentials are super-Gaussian

|si |2 7→ 2 log ti(si) is convex

Convex (Fenchel) duality

2 log ti(si) = max
πi
|si |2πi − f ∗(πi)
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Variational Bayesian Inference Relaxations

Super-Gaussian Bounding

P(u |y ) =
P(y |u)× P(u)

P(y )

Sparsity potentials are super-Gaussian

ti(si) = max
γi≥0

e−|si |2/(2γi )−hi (γi )/2,

h(γ) :=
∑

i
hi(γi), Γ = diagγ
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Variational Bayesian Inference Relaxations

Super-Gaussian Bounding

P(u |y ) =
P(y |u)× P(u)

P(y )

Exact representation

log Z

= log
∫

P(y |u)max
γ

e−(s
HΓ−1s+h(γ))/2 du

ti(si) =

max
γi≥0

e−|si |2/(2γi )−hi (γi )/2
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Super-Gaussian Bounding

P(u |y ) =
P(y |u)× P(u)

P(y )

Lower bound

log Z

= log
∫

P(y |u)max
γ

e−(s
HΓ−1s+h(γ))/2 du

≥ max
γ

log
∫
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Variational Bayesian Inference Relaxations

Super-Gaussian Bounding

P(u |y ) =
P(y |u)× P(u)

P(y )

Lower bound

log Z

≥ max
γ

log
∫

P(y |u)e−(s
HΓ−1s+h(γ))/2 du

= max
γ

log ZQ(γ)− h(γ)/2

Gaussian approximation

Q(u |y ) = ZQ
−1P(y |u)e−sHΓ−1s/2, s = Bu

ti(si) =

max
γi≥0

e−|si |2/(2γi )−hi (γi )/2
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Variational Bayesian Inference Relaxations

Super-Gaussian Bounding

P(u |y ) =
P(y |u)× P(u)

P(y )

Variational problem: Q(u |y ) ≈ P(u |y )

minγ {φ(γ) = −2 log ZQ + h(γ)}

Gaussian approximation

Q(u |y ) = Z−1
Q P(y |u)e−sHΓ−1s/2, s = Bu ,

ZQ =

∫
P(y |u)e−sHΓ−1s/2 du

ti(si) =

max
γi≥0

e−|si |2/(2γi )−hi (γi )/2
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Variational Bayesian Inference Relaxations

Super-Gaussian Bounding

P(u |y ) =
P(y |u)× P(u)

P(y )

What did we do?
Start with tight single potential bounds: ti(si) = maxγi≥0 . . .
⇒ Auxiliary variables γ � 0

Plug into target function log Z . Interchange
∫
. . . du ↔ maxγ

⇒ Global lower bound on log Z
Lower bounds are log partition functions of Gaussians Q(u |y )
⇒ Approximation family Q = {Q(u |y )}
Divergence Q(u |y )↔ P(u |y )? Maximize lower bound!
⇒ φ(γ) = −2 log ZQ + h(γ)
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Variational Bayesian Inference Relaxations

MAP Estimation and Variational Inference

(EPFL) Graphical Models 28/11/2011 29 / 30



Variational Bayesian Inference Relaxations

Coordinate Descent Algorithm

Simple algorithm: Update single variables γj

repeat
for j ∈ {1, . . . ,q} do

Update γj , based on marginal Q(sj |y )
Gaussian propagation of pseudo-evidence change

end for
Refresh representation

until convergence

Representation of Q(u |y ): Backbone for Gaussian propagation.
Moderate size problems: Cholesky representation Seeger, JMLR 2008

Large scale problems?
This algorithm is not scalable. Can do much better . . .
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