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Motivation

Benefits of Doubt

Not to be absolutely certain is,
I think, one of the essential things
in rationality B. Russell (1947)

Real-world problems are uncertain
Measurement errors
Incomplete, ambiguous data
Model? Features?
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Benefits of Doubt

Not to be absolutely certain is,
I think, one of the essential things
in rationality B. Russell (1947)

If uncertainty is part of your problem . . .

Ignore/remove it
Costly
Complicated
Not always possible

Live with it
Quantify it: probabilities
Compute it: Bayesian inference
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Motivation

Benefits of Doubt

Not to be absolutely certain is,
I think, one of the essential things
in rationality B. Russell (1947)

If uncertainty is part of your problem . . .

Ignore/remove it
Costly
Complicated
Not always possible

Exploit it
Experimental design
Robust decision making
Multimodal data integration
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Motivation

Image Reconstruction
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Motivation

Reconstruction is Ill Posed
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Motivation

Image Statistics

Whatever images are . . .

they are not Gaussian!

Image gradient super-Gaussian (“sparse”)

Use sparsity prior distribution P(u)
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Motivation

Posterior Distribution

Likelihood P(y |u): Data fit

Prior P(u): Signal properties
Posterior distribution P(u |y ):
Consistent information summary

P(y |u)
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Motivation

Posterior Distribution

Likelihood P(y |u): Data fit
Prior P(u): Signal properties
Posterior distribution P(u |y ):
Consistent information summary

P(u |y ) =
P(y |u)⇥ P(u)

P(y )
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Motivation

Estimation

Maximum a Posteriori (MAP) Estimation

u⇤ = argmax
u

P(y |u)P(u)
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Motivation

Estimation

Maximum a Posteriori (MAP) Estimation

There are many solutions. Why settle for any single one?
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Motivation

Bayesian Inference

Use All Solutions
Weight each solution by our uncertainty
Average over them. Integrate, don’t prune

(EPFL) Graphical Models 26/9/2011 9 / 28



Motivation

Bayesian Experimental Design

Posterior: Uncertainty in
reconstruction
Experimental design:
Find poorly determined
directions
Sequential search with
interjacent partial
measurements
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Motivation

Structure of Course

Graphical Models [⇡ 6 weeks]
Probabilistic database. Expert system
Query for making optimal decisions
Graph separation $ conditional independence
) (More) efficient computation (dynamic programming)

Approximate Inference [⇡ 6 weeks]
Bayesian inference is never really tractable
Variational relaxations (convex duality)
Propagation algorithms
Sparse Bayesian models
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Motivation

Course Goals

This course is not:
Exhaustive (but we will give pointers)
Playing with data until it works
Purely theoretical analysis of methods

This course is:
Computer scientist’s view on Bayesian machine learning:
Layers above and below formulae

Understand concepts (what to do and why)
Understand approximations, relaxations, generic algorithmic
schemata (how to do, above formulae)
Safe implementation on a computer (how to do, below formulae)

Red line through models, algorithms.
Exposing roots in specialized computational mathematics
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Probability. Decisions. Estimation

Why Probability?

Remember sleeping through Statistics 101
(p-value, t-test, . . . )? Forget that impression!
Probability leads to beautiful, useful insights and algorithms.
Not much would work today without probabilistic algorithms,
decisions from incomplete knowledge.

Numbers, functions, moving bodies ) Calculus
Predicates, true/false statements ) Predicate logic
Uncertain knowledge about numbers, predicates, . . . ) Probability

Machine learning? Have to speak probability!
Crash course here. But dig further, it’s worth it:

Grimmett, Stirzaker: Probability and Random Processes
Pearl: Probabilistic Reasoning in Intelligent Systems
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Probability. Decisions. Estimation

Why Probability?

Reasons to use probability (forget “classical” straightjacket)
We really don’t / cannot know (exactly)
It would be too complicated/costly to find out
It would take too long to compute
Nondeterministic processes (given measurement resolution)
Subjective beliefs, interpretations
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Probability. Decisions. Estimation

Probability over Finite/Countable Sets
You know databases?
You know probability!

Probability distribution P:
Joint table/hypercube (· � 0;

P
· = 1)

Random variable F : Index of table
Event E : Part of table
Probability P(E): Sum over cells in E
Marginal distribution P(F ): Projection
of table (sum over others)

Marginalization (Sum Rule)
Not interested in variable(s) right now?
) Marginalize over them!

Box
Fruit red blue
apple 1/10 9/20
orange 3/10 3/20

(EPFL) Graphical Models 26/9/2011 15 / 28



Probability. Decisions. Estimation

Probability over Finite/Countable Sets
You know databases?
You know probability!

Probability distribution P:
Joint table/hypercube (· � 0;

P
· = 1)

Random variable F : Index of table
Event E : Part of table
Probability P(E): Sum over cells in E
Marginal distribution P(F ): Projection
of table (sum over others)

Marginalization (Sum Rule)
Not interested in variable(s) right now?
) Marginalize over them!

Box
Fruit red blue
apple 1/10 9/20
orange 3/10 3/20

P(F ) =
X

B=r ,b

P(F , B)
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Probability. Decisions. Estimation

Probability over Finite/Countable Sets (II)

Conditional probability:
Factorization of table

Chop out part you’re sure about
(don’t marginalize: you know!)
Renormalize to 1 (/ marginal)

Conditioning (Product Rule)
Observed some variable/event?
) Condition on it!
Joint = Conditional ⇥ Marginal

Information propagation (B!F)

Predict
Marginalize

Box
Fruit red blue
apple 1/10 9/20
orange 3/10 3/20
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Probability. Decisions. Estimation

Probability over Finite/Countable Sets (III)

Bayes Formula

P(B|F )P(F ) = P(F , B) = P(F |B)P(B)

Box
Fruit red blue
apple 1/10 9/20
orange 3/10 3/20
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Probability. Decisions. Estimation

Probability over Finite/Countable Sets (III)

Bayes Formula

P(B|F ) =
P(F |B)P(B)

P(F )

Inversion of information flow
Causal ! diagnostic
(diseases ! symptoms)
Inverse problem

Box
Fruit red blue
apple 1/10 9/20
orange 3/10 3/20
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Probability. Decisions. Estimation

Probability over Finite/Countable Sets (III)

Bayes Formula

P(B|F ) =
P(F |B)P(B)

P(F )

Inversion of information flow
Causal ! diagnostic
(diseases ! symptoms)
Inverse problem

Box
Fruit red blue
apple 1/10 9/20
orange 3/10 3/20

Chain rule of probability

P(X1, . . . , Xn) = P(X1)P(X2|X1)P(X3|X1, X2) . . . P(Xn|X1, . . . , Xn�1)

Holds in any ordering
Starting point for Bayesian networks [next lecture]
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Probability. Decisions. Estimation

Probability over Continuous Variables
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Probability. Decisions. Estimation

Probability over Continuous Variables (II)

Caveat: Null sets [P({x = 5}) = 0; P({x 2 N}) = 0]
Every observed event is a null set!
P(y |x) = P(y , x)/P(x) cannot work for P(x) = 0
Define conditional density as P(y |x) s.t.

P(y |x 2 A) =

Z

A
P(y |x)P(x) dx for all eventsA

Most cases in practice:
Look at y 7! P(y , x) (“plug in x”)
Recognize density / normalize

Another (technical) caveat: Not all subsets can be events.
) Events: “Nice” subsets (measurable)
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Probability. Decisions. Estimation

Expectation. Moments of a Distribution

Expectation

E[f (x )] =

Z
f (x )P(x ) dx or

X

x

f (x )P(x )
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Probability. Decisions. Estimation

Expectation. Moments of a Distribution

Expectation

E[f (x )] =

Z
f (x )P(x ) dx or

X

x

f (x )P(x )

P(x ) complicated. How does x ⇠ P(x ) behave?
Moments: Essential behaviour of distribution

Mean (1st order)

E[x ] =

Z
xP(x ) dx

Covariance (2nd order)

Cov[x , y ] = E[xy

T ]� E[x ](E[y ])T

= E[vxv

T
y ], vx = x � E[x ]−3 −2 −1 0 1 2 3 4 5
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Probability. Decisions. Estimation

Decision Theory in 30 Seconds

Recipe for optimal decisions
1 Choose a loss function L

(depends on problem, your valuation, susceptibility)
2 Model actions (A), outcomes (O). Compute P(O|A)
3 Compute risks (expected losses) R(A) =

R
L(O)P(O|A) dO

4 Go for A⇤ = argminA R(A)

Special case: Pricing of A (option, bet, car)
Choose �R(A) + Margin
Next best measurement? Next best scientific experiment?
Harder if timing plays a role (optimal control, etc)
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Probability. Decisions. Estimation

Maximum Likelihood Estimation
Bayesian inversion hard. In simple cases, with enough data:

Maximum Likelihood Estimation
Observed {xi}. Interested in cause ✓

Construct sampling model P(x |✓)
Likelihood L(✓) = P(D|✓) =

Q
i P(xi |✓):

Should be high close to “true” ✓0

Maximum likelihood estimator:
✓⇤ = argmax L(✓) = argmax log L(✓) = argmax

P
i log P(xi |✓)
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Probability. Decisions. Estimation

Maximum Likelihood Estimation
Bayesian inversion hard. In simple cases, with enough data:

Maximum Likelihood Estimation
Observed {xi}. Interested in cause ✓

Construct sampling model P(x |✓)
Likelihood L(✓) = P(D|✓) =

Q
i P(xi |✓):

Should be high close to “true” ✓0

Maximum likelihood estimator:
✓⇤ = argmax L(✓) = argmax log L(✓) = argmax

P
i log P(xi |✓)

Method of choice for simple ✓, lots of data.
Well understood asymptotically
Knowledge about ✓ besides D? Not used
Breaks down if ✓ “larger” than D
And another problem . . .
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Probability. Decisions. Estimation

Overfitting

Overfitting Problem (Estimation)
For finite D, more and more complicated models fit D better and better.
With huge brain, you just learn by heart.
Generalization only comes with a limit on complexity!
Marginalization solves this problem, but even Bayesian estimation
(”half-way marginalization”) embodies complexity control.
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Bayesian Terminology

Probabilistic Model

Model
Concise description of joint distribution (generative process) of all
variables of interest

Encoding assumptions:
What are the entities?
How do they relate?
Variables have different roles.
Roles may change depending
on what model is used for
Model specifies variables and their (in)dependencies
) Graphical models [next lecture]
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Bayesian Terminology

The Linear Model (Polynomial Fitting)
Fit data with polynomial (degree k )

Prior P(w )
Restrictions on w

Prior knowledge
) Prefer smaller kwk
Likelihood P(y |w )

Posterior

P(w |y ) =
P(y |w )P(w )

P(y )

Linear Model

y = X w + "

y Responses (observed)
X Design (controlled)
w Weights (query)
" Noise (nuisance)
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Restrictions on w

Prior knowledge
) Prefer smaller kwk
Likelihood P(y |w )

Posterior

P(w |y ) =
P(y |w )P(w )

P(y )

Linear Model

y = X w + "

y Responses (observed)
X Design (controlled)
w Weights (query)
" Noise (nuisance)

Prediction: y⇤ = x

T
⇤ E[w |y ]

Marginal likelihood

P(y ) = P(y |k) =

Z
P(y |w )P(w ) dw
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Bayesian Terminology

The Linear Model (Polynomial Fitting)
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Bayesian Terminology

Model Selection

Posterior P(w |y , k = 3) Marginal Likelihood P(y |k)
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Simpler hypotheses considered as well
) Occam’s razor
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Bayesian Terminology

Model Averaging

Don’t know polynomial order k ) Marginalize out

E[y⇤|y ] =
X

k�1

P(k |y )x (k)
⇤

T
E[w |y , k ]
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