Probabilistic Graphical Models

Introduction. Basic Probability and Bayes

Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne

26/9/2011

- A 🖻 🕨

-

Benefits of Doubt

Not to be absolutely certain is, I think, one of the essential things in rationality B. Russell (1947)

Real-world problems are uncertain

- Measurement errors
- Incomplete, ambiguous data
- Model? Features?

26/9/2011 3 / 28

Benefits of Doubt

Not to be absolutely certain is, I think, one of the essential things in rationality B. Russell (1947)

If uncertainty is part of your problem

Ignore/remove it

- Costly
- Complicated
- Not always possible

26/9/2011 3 / 28

Benefits of Doubt

Not to be absolutely certain is, I think, one of the essential things in rationality B. Russell (1947)

If uncertainty is part of your problem

Ignore/remove it	Live with it
 Costly 	 Quantify it: probabilities
 Complicated 	Compute it: Bayesian inference
 Not always possible 	

Benefits of Doubt

Not to be absolutely certain is, I think, one of the essential things in rationality B. Russell (1947)

If uncertainty is part of your problem

Ignore/remove it	Exploit it
 Costly 	 Experimental design
 Complicated 	 Robust decision making
Not always possible	 Multimodal data integration

Image Reconstruction

(EPFL)

26/9/2011 4 / 28

- (E

Reconstruction is III Posed

Image Statistics

Whatever images are ...

they are not Gaussian!

• Image gradient super-Gaussian ("sparse")

Use sparsity prior distribution $P(\boldsymbol{u})$

(Е	Ρ	F	L)

Posterior Distribution

• Likelihood *P*(*y*|*u*): Data fit

 $P(\boldsymbol{y}|\boldsymbol{u})$

• • • • • • • • • • • •

Posterior Distribution

- Likelihood *P*(*y*|*u*): Data fit
- Prior *P*(*u*): Signal properties

 $P(\boldsymbol{y}|\boldsymbol{u}) \times P(\boldsymbol{u})$

(EPFL)

Posterior Distribution

- Likelihood *P*(*y*|*u*): Data fit
- Prior *P*(*u*): Signal properties
- Posterior distribution P(u|y): Consistent information summary

$$P(\boldsymbol{u}|\boldsymbol{y}) = rac{P(\boldsymbol{y}|\boldsymbol{u}) imes P(\boldsymbol{u})}{P(\boldsymbol{y})}$$

Estimation

Maximum a Posteriori (MAP) Estimation

$$\boldsymbol{u}_* = \operatorname{argmax}_{\boldsymbol{u}} P(\boldsymbol{y}|\boldsymbol{u}) P(\boldsymbol{u})$$

(EPFL)

Estimation

Maximum a Posteriori (MAP) Estimation

• There are many solutions. Why settle for any single one?

(EPFL)	(Е	Ρ	F	L)	
--------	---	---	---	---	----	--

Graphical Models

• • • • • • • • • • • •

Bayesian Inference

Use All Solutions

- Weight each solution by our uncertainty
- Average over them. Integrate, don't prune

(EPFL)

Graphical Models

26/9/2011 9 / 28

Bayesian Experimental Design

- Posterior: Uncertainty in reconstruction
- Experimental design: Find poorly determined directions
- Sequential search with interjacent partial measurements

Structure of Course

Graphical Models [\approx 6 weeks]

- Probabilistic database. Expert system
- Query for making optimal decisions
- Graph separation ↔ conditional independence
 ⇒ (More) efficient computation (dynamic programming)

Approximate Inference [\approx 6 weeks]

- Bayesian inference is never really tractable
- Variational relaxations (convex duality)
- Propagation algorithms
- Sparse Bayesian models

This course is not:

- Exhaustive (but we will give pointers)
- Playing with data until it works
- Purely theoretical analysis of methods

This course is:

- Computer scientist's view on Bayesian machine learning: Layers above and below formulae
 - Understand concepts (what to do and why)
 - Understand approximations, relaxations, generic algorithmic schemata (how to do, above formulae)
 - Safe implementation on a computer (how to do, below formulae)
- Red line through models, algorithms.
 Exposing roots in specialized computational mathematics

- A 🖻 🕨

Why Probability?

- Remember sleeping through Statistics 101 (p-value, t-test, ...)? Forget that impression!
- Probability leads to beautiful, useful insights and algorithms. Not much would work today without probabilistic algorithms, decisions from incomplete knowledge.
 - Numbers, functions, moving bodies \Rightarrow Calculus
 - Predicates, true/false statements \Rightarrow Predicate logic
 - Uncertain knowledge about numbers, predicates, ... ⇒ Probability
- Machine learning? Have to speak probability! Crash course here. But dig further, it's worth it:
 - Grimmett, Stirzaker: Probability and Random Processes
 - Pearl: Probabilistic Reasoning in Intelligent Systems

Why Probability?

Reasons to use probability (forget "classical" straightjacket)

- We really don't / cannot know (exactly)
- It would be too complicated/costly to find out
- It would take too long to compute
- Nondeterministic processes (given measurement resolution)
- Subjective beliefs, interpretations

Probability. Decisions. Estimation

Probability over Finite/Countable Sets

You know databases? You know probability!

- Probability distribution *P*: Joint table/hypercube (· ≥ 0; ∑ · = 1)
- Random variable F: Index of table
- Event *E*: Part of table
 Probability *P*(*E*): Sum over cells in *E*
- Marginal distribution *P*(*F*): Projection of table (sum over others)

	Box	
Fruit	red	b lue
a pple	1/10	9/20
orange	3/10	3/20

Probability. Decisions. Estimation

Probability over Finite/Countable Sets

You know databases? You know probability!

- Probability distribution *P*: Joint table/hypercube (· ≥ 0; ∑ · = 1)
- Random variable F: Index of table
- Event *E*: Part of table
 Probability *P*(*E*): Sum over cells in *E*
- Marginal distribution *P*(*F*): Projection of table (sum over others)

Marginalization (Sum Rule)

Not interested in variable(s) right now? \Rightarrow Marginalize over them!

	Box	
Fruit	red	b lue
a pple	1/10	9/20
o range	3/10	3/20

$$\mathsf{P}(\mathsf{F}) = \sum_{\mathsf{B}=\mathsf{r},\mathsf{b}} \mathsf{P}(\mathsf{F},\mathsf{B})$$

Probability over Finite/Countable Sets (II)

- Conditional probability: Factorization of table
 - Chop out part you're sure about (don't marginalize: you know!)
 - Renormalize to 1 (/ marginal)

	Box	
Fruit	red	b lue
a pple	1/10	9/20
o range	3/10	3/20

Probability over Finite/Countable Sets (II)

- Conditional probability: Factorization of table
 - Chop out part you're sure about (don't marginalize: you know!)
 - Renormalize to 1 (/ marginal)

Conditioning (Product Rule)

Observed some variable/event?

- \Rightarrow Condition on it!
- Joint = Conditional × Marginal

	B	ох
Fruit	red	b lue
a pple	1/10	9/20
o range	3/10	3/20

P(F,B) = P(F|B)P(B)

Probability over Finite/Countable Sets (II)

- Conditional probability: Factorization of table
 - Chop out part you're sure about (don't marginalize: you know!)
 - Renormalize to 1 (/ marginal)

Conditioning (Product Rule)

Observed some variable/event? \Rightarrow Condition on it!

Joint = Conditional × Marginal

- Information propagation $(B \rightarrow F)$
 - Predict
 - Marginalize

 Box

 Fruit
 red
 blue

 apple
 1/10
 9/20

 orange
 3/10
 3/20

P(F,B) = P(F|B)P(B)

$$P(F) = \sum_{B} P(F|B)P(B)$$

Probability. Decisions. Estimation

Probability over Finite/Countable Sets (III)

Bayes Formula

P(B|F)P(F) = P(F,B) = P(F|B)P(B)

	Box	
F ruit	red	b lue
a pple	1/10	9/20
o range	3/10	3/20

< 47 ▶

- A 🖻 🕨

Probability over Finite/Countable Sets (III)

Bayes Formula

$$P(B|F) = rac{P(F|B)P(B)}{P(F)}$$

- Inversion of information flow
- Causal → diagnostic (diseases → symptoms)
- Inverse problem

2/5		3/5	
	B	ох	
 ·.			
Fruit	red	blue	
Fruit apple	red 1/10	b lue 9/20	

★ ∃ >

Probability over Finite/Countable Sets (III)

Bayes Formula

$$P(B|F) = rac{P(F|B)P(B)}{P(F)}$$

- Inversion of information flow
- Causal → diagnostic (diseases → symptoms)
- Inverse problem

2/5		3/5	
	B	ox]
Fruit	B red	ox b lue	
Fruit apple	B red 1/10	ox b lue 9/20	

Chain rule of probability

 $P(X_1,...,X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1,X_2)...P(X_n|X_1,...,X_{n-1})$

- Holds in any ordering
- Starting point for Bayesian networks [next lecture]

(EPFL)

Probability. Decisions. Estimation

Probability over Continuous Variables

Probability over Continuous Variables (II)

- Caveat: Null sets $[P(\{x = 5\}) = 0; P(\{x \in \mathbb{N}\}) = 0]$
- Every observed event is a null set! P(y|x) = P(y,x)/P(x) cannot work for P(x) = 0
- Define conditional density as P(y|x) s.t.

$$P(y|x \in A) = \int_{A} P(y|x)P(x) dx$$
 for all events A

- Most cases in practice:
 - Look at $y \mapsto P(y, x)$ ("plug in x")
 - Recognize density / normalize

Probability over Continuous Variables (II)

- Caveat: Null sets $[P(\{x = 5\}) = 0; P(\{x \in \mathbb{N}\}) = 0]$
- Every observed event is a null set! P(y|x) = P(y,x)/P(x) cannot work for P(x) = 0
- Define conditional density as P(y|x) s.t.

$$P(y|x \in A) = \int_{A} P(y|x)P(x) dx$$
 for all events A

- Most cases in practice:
 - Look at $y \mapsto P(y, x)$ ("plug in x")
 - Recognize density / normalize
- Another (technical) caveat: Not all subsets can be events.
 - \Rightarrow Events: "Nice" subsets (measurable)

Expectation. Moments of a Distribution

Expectation

$$E[f(\boldsymbol{x})] = \int f(\boldsymbol{x}) P(\boldsymbol{x}) \, d\boldsymbol{x} \quad \text{or } \sum_{\boldsymbol{x}} f(\boldsymbol{x}) P(\boldsymbol{x})$$

Expectation. Moments of a Distribution

Expectation

$$E[f(\boldsymbol{x})] = \int f(\boldsymbol{x}) P(\boldsymbol{x}) \, d\boldsymbol{x} \quad \text{or } \sum_{\boldsymbol{x}} f(\boldsymbol{x}) P(\boldsymbol{x})$$

- $P(\mathbf{x})$ complicated. How does $\mathbf{x} \sim P(\mathbf{x})$ behave?
- Moments: Essential behaviour of distribution
- Mean (1st order)

$$\mathrm{E}[\boldsymbol{x}] = \int \boldsymbol{x} \boldsymbol{P}(\boldsymbol{x}) \, d\boldsymbol{x}$$

• Covariance (2nd order) $\operatorname{Cov}[\boldsymbol{x}, \boldsymbol{y}] = \operatorname{E}[\boldsymbol{x} \boldsymbol{y}^{T}] - \operatorname{E}[\boldsymbol{x}](\operatorname{E}[\boldsymbol{y}])^{T}$ $= \operatorname{E}[\boldsymbol{v}_{x} \boldsymbol{v}_{y}^{T}], \ \boldsymbol{v}_{x} = \boldsymbol{x} - \operatorname{E}[\boldsymbol{x}]$

Expectation. Moments of a Distribution

Expectation

$$E[f(\boldsymbol{x})] = \int f(\boldsymbol{x}) P(\boldsymbol{x}) \, d\boldsymbol{x} \quad \text{or } \sum_{\boldsymbol{x}} f(\boldsymbol{x}) P(\boldsymbol{x})$$

- $P(\mathbf{x})$ complicated. How does $\mathbf{x} \sim P(\mathbf{x})$ behave?
- Moments: Essential behaviour of distribution
- Mean (1st order)

$$\mathbf{E}[\boldsymbol{x}] = \int \boldsymbol{x} \boldsymbol{P}(\boldsymbol{x}) \, d\boldsymbol{x}$$

• Covariance (2nd order)

$$\mathrm{Cov}[\boldsymbol{x}] = \mathrm{Cov}[\boldsymbol{x}, \boldsymbol{x}]$$

Decision Theory in 30 Seconds

Recipe for optimal decisions

- Choose a loss function L (depends on problem, your valuation, susceptibility)
- Model actions (A), outcomes (O). Compute P(O|A)
- Sompute risks (expected losses) $R(A) = \int L(O)P(O|A) dO$
- Go for $A_* = \operatorname{argmin}_A R(A)$
 - Special case: Pricing of A (option, bet, car) Choose -R(A) + Margin
 - Next best measurement? Next best scientific experiment?
 - Harder if timing plays a role (optimal control, etc)

Probability. Decisions. Estimation Maximum Likelihood Estimation

Bayesian inversion hard. In simple cases, with enough data:

Maximum Likelihood Estimation

Observed $\{x_i\}$. Interested in cause θ

- Construct sampling model $P(x|\theta)$
- Likelihood $L(\theta) = P(D|\theta) = \prod_i P(x_i|\theta)$: Should be high close to "true" θ_0
- Maximum likelihood estimator:

 $\theta_* = \operatorname{argmax} L(\theta) = \operatorname{argmax} \log L(\theta) = \operatorname{argmax} \sum_i \log P(x_i | \theta)$

Probability. Decisions. Estimation Maximum Likelihood Estimation

Bayesian inversion hard. In simple cases, with enough data:

Maximum Likelihood Estimation

Observed $\{x_i\}$. Interested in cause θ

- Construct sampling model $P(x|\theta)$
- Likelihood $L(\theta) = P(D|\theta) = \prod_i P(x_i|\theta)$: Should be high close to "true" θ_0
- Maximum likelihood estimator:

 $\theta_* = \operatorname{argmax} L(\theta) = \operatorname{argmax} \log L(\theta) = \operatorname{argmax} \sum_i \log P(x_i | \theta)$

- Method of choice for simple θ, lots of data.
 Well understood asymptotically
- Knowledge about θ besides D? Not used
- Breaks down if θ "larger" than D
- And another problem ...

Overfitting

Overfitting Problem (Estimation)

For finite *D*, more and more complicated models fit *D* better and better. With huge brain, you just learn by heart. Generalization only comes with a limit on complexity! Marginalization solves this problem, but even Bayesian estimation ("half-way marginalization") embodies complexity control.

(EPFL)

Probabilistic Model

Model

Concise description of joint distribution (generative process) of all variables of interest

- Encoding assumptions: What are the entities? How do they relate?
- Variables have different roles. Roles may change depending on what model is used for

Variable

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Model specifies variables and their (in)dependencies
 - \Rightarrow Graphical models [next lecture]

The Linear Model (Polynomial Fitting)

Fit data with polynomial (degree k)

- Prior P(w)
 - Restrictions on w
 - Prior knowledge
 - \Rightarrow Prefer smaller $\|\boldsymbol{w}\|$
- Likelihood $P(\mathbf{y}|\mathbf{w})$
- Posterior

$$P(\boldsymbol{w}|\boldsymbol{y}) = rac{P(\boldsymbol{y}|\boldsymbol{w})P(\boldsymbol{w})}{P(\boldsymbol{y})}$$

Linear Model

$$oldsymbol{y} = oldsymbol{X}oldsymbol{w} + arepsilon$$

- Responses (observed) V
- Χ Design

 ε

- **w** Weights Noise
 - (query) (nuisance)

(controlled)

The Linear Model (Polynomial Fitting)

Fit data with polynomial (degree k)

- Prior P(w)
 - Restrictions on *w*
 - Prior knowledge
 - \Rightarrow Prefer smaller $\| \boldsymbol{w} \|$
- Likelihood P(y|w)
- Posterior

$$P(\boldsymbol{w}|\boldsymbol{y}) = rac{P(\boldsymbol{y}|\boldsymbol{w})P(\boldsymbol{w})}{P(\boldsymbol{y})}$$

- Prediction: $y_* = \boldsymbol{x}_*^T E[\boldsymbol{w}|\boldsymbol{y}]$
- Marginal likelihood

Linear Model

$$oldsymbol{y} = oldsymbol{X}oldsymbol{w} + arepsilon$$

(controlled)

< ∃ ►

- y Responses (observed)
- **X** Design

Noise

- w Weights (query)
 - (nuisance)

$$P(\mathbf{y}) = P(\mathbf{y}|k) = \int P(\mathbf{y}|\mathbf{w})P(\mathbf{w}) d\mathbf{w}$$

 ε

The Linear Model (Polynomial Fitting)

The Linear Model (Polynomial Fitting)

Model Selection

 Simpler hypotheses considered as well ⇒ Occam's razor

Model Averaging

Don't know polynomial order $k \Rightarrow$ Marginalize out

(EPFL)

Graphical Models