Probabilistic Graphical Models

Introduction. Basic Probability and Bayes

Volkan Cevher, Matthias Seeger
Ecole Polytechnique Fédérale de Lausanne

26/9/2011

Outline

(9) Motivation
(2) Probability. Decisions. Estimation
(3) Bayesian Terminology

Benefits of Doubt

> Not to be absolutely certain is, I think, one of the essential things in rationality

Real-world problems are uncertain

- Measurement errors
- Incomplete, ambiguous data
- Model? Features?

Benefits of Doubt

> Not to be absolutely certain is, I think, one of the essential things in rationality

If uncertainty is part of your problem ...

Ignore/remove it

- Costly
- Complicated
- Not always possible

Benefits of Doubt

> Not to be absolutely certain is, I think, one of the essential things in rationality

If uncertainty is part of your problem ...

Ignore/remove it

- Costly
- Complicated
- Not always possible

Live with it

- Quantify it: probabilities
- Compute it: Bayesian inference

Benefits of Doubt

> Not to be absolutely certain is, I think, one of the essential things in rationality

If uncertainty is part of your problem ...

Ignore/remove it

- Costly
- Complicated
- Not always possible

Exploit it

- Experimental design
- Robust decision making
- Multimodal data integration

Image Reconstruction

Measurement

Ideal Image u

Design

Image Statistics

Whatever images are ...

they are not Gaussian!

- Image gradient super-Gaussian ("sparse")

Use sparsity prior distribution $P(\boldsymbol{u})$

Posterior Distribution

- Likelihood $P(\boldsymbol{y} \mid \boldsymbol{u})$: Data fit

$$
P(\boldsymbol{y} \mid \boldsymbol{u})
$$

Posterior Distribution

- Likelihood $P(\boldsymbol{y} \mid \boldsymbol{u})$: Data fit
- Prior $P(\boldsymbol{u})$: Signal properties

$$
P(\boldsymbol{y} \mid \boldsymbol{u}) \times P(\boldsymbol{u})
$$

Posterior Distribution

- Likelihood $P(\boldsymbol{y} \mid \boldsymbol{u})$: Data fit
- Prior $P(\boldsymbol{u})$: Signal properties
- Posterior distribution $P(\boldsymbol{u} \mid \boldsymbol{y})$:

Consistent information summary

Estimation

Maximum a Posteriori (MAP) Estimation
$\boldsymbol{u}_{*}=\operatorname{argmax}_{\boldsymbol{u}} P(\boldsymbol{y} \mid \boldsymbol{u}) P(\boldsymbol{u})$

Estimation

Maximum a Posteriori (MAP) Estimation

- There are many solutions. Why settle for any single one?

Bayesian Inference

Use All Solutions

- Weight each solution by our uncertainty
- Average over them. Integrate, don't prune

Bayesian Experimental Design

Prior P(u)

Data $P(y \mid u)$

- Posterior: Uncertainty in reconstruction
- Experimental design: Find poorly determined directions
- Sequential search with interjacent partial measurements

Structure of Course

Graphical Models [≈ 6 weeks]

- Probabilistic database. Expert system
- Query for making optimal decisions
- Graph separation \leftrightarrow conditional independence \Rightarrow (More) efficient computation (dynamic programming)

Approximate Inference [≈ 6 weeks]

- Bayesian inference is never really tractable
- Variational relaxations (convex duality)
- Propagation algorithms
- Sparse Bayesian models

Course Goals

This course is not:

- Exhaustive (but we will give pointers)
- Playing with data until it works
- Purely theoretical analysis of methods

This course is:

- Computer scientist's view on Bayesian machine learning: Layers above and below formulae
- Understand concepts (what to do and why)
- Understand approximations, relaxations, generic algorithmic schemata (how to do, above formulae)
- Safe implementation on a computer (how to do, below formulae)
- Red line through models, algorithms.

Exposing roots in specialized computational mathematics

Why Probability?

- Remember sleeping through Statistics 101 (p-value, t-test, ...)? Forget that impression!
- Probability leads to beautiful, useful insights and algorithms. Not much would work today without probabilistic algorithms, decisions from incomplete knowledge.
- Numbers, functions, moving bodies \Rightarrow Calculus
- Predicates, true/false statements \Rightarrow Predicate logic
- Uncertain knowledge about numbers, predicates, $\ldots \Rightarrow$ Probability
- Machine learning? Have to speak probability! Crash course here. But dig further, it's worth it:
- Grimmett, Stirzaker: Probability and Random Processes
- Pearl: Probabilistic Reasoning in Intelligent Systems

Why Probability?

Reasons to use probability (forget "classical" straightjacket)

- We really don't / cannot know (exactly)
- It would be too complicated/costly to find out
- It would take too long to compute
- Nondeterministic processes (given measurement resolution)
- Subjective beliefs, interpretations

Probability over Finite/Countable Sets

You know databases?
You know probability!

- Probability distribution P : Joint table/hypercube $\left(\cdot \geq 0 ; \sum \cdot=1\right)$
- Random variable F : Index of table

- Event \mathcal{E} : Part of table Probability $P(\mathcal{E})$: Sum over cells in \mathcal{E}
- Marginal distribution $P(F)$: Projection of table (sum over others)

	Box	
Fruit	red	blue
apple	$1 / 10$	$9 / 20$
orange	$3 / 10$	$3 / 20$

Probability over Finite/Countable Sets

You know databases?
You know probability!

- Probability distribution P : Joint table/hypercube $\left(\cdot \geq 0 ; \sum \cdot=1\right)$
- Random variable F : Index of table
- Event \mathcal{E} : Part of table Probability $P(\mathcal{E})$: Sum over cells in \mathcal{E}
- Marginal distribution $P(F)$: Projection of table (sum over others)

Marginalization (Sum Rule)

Not interested in variable(s) right now? \Rightarrow Marginalize over them!

	Box	
Fruit	red	blue
apple	$1 / 10$	$9 / 20$
orange	$3 / 10$	$3 / 20$

$$
P(F)=\sum_{B=r, b} P(F, B)
$$

Probability over Finite/Countable Sets (II)

- Conditional probability: Factorization of table
- Chop out part you're sure about (don't marginalize: you know!)
- Renormalize to 1 (/ marginal)

	Box	
Fruit	red	blue
apple	$1 / 10$	$9 / 20$
orange	$3 / 10$	$3 / 20$

Probability over Finite/Countable Sets (II)

- Conditional probability: Factorization of table
- Chop out part you're sure about (don't marginalize: you know!)
- Renormalize to 1 (/ marginal)

Conditioning (Product Rule)

Observed some variable/event?
\Rightarrow Condition on it!
Joint $=$ Conditional \times Marginal

	Box	
Fruit	red	blue
apple	$1 / 10$	$9 / 20$
orange	$3 / 10$	$3 / 20$

$$
P(F, B)=P(F \mid B) P(B)
$$

Probability over Finite/Countable Sets (II)

- Conditional probability: Factorization of table
- Chop out part you're sure about (don't marginalize: you know!)
- Renormalize to 1 (/ marginal)

Conditioning (Product Rule)

Observed some variable/event?
\Rightarrow Condition on it!
Joint $=$ Conditional \times Marginal

	Box	
Fruit	red	blue
apple	$1 / 10$	$9 / 20$
orange	$3 / 10$	$3 / 20$

- Information propagation $(\mathrm{B} \rightarrow \mathrm{F})$

$$
P(F, B)=P(F \mid B) P(B)
$$

- Predict
- Marginalize

$$
P(F)=\sum_{B} P(F \mid B) P(B)
$$

Probability over Finite/Countable Sets (III)

Bayes Formula

$$
P(B \mid F) P(F)=P(F, B)=P(F \mid B) P(B)
$$

(

Fruit	Box	
aplue		
apple	$1 / 10$	$9 / 20$
orange	$3 / 10$	$3 / 20$

Probability over Finite/Countable Sets (III)

Bayes Formula

$$
P(B \mid F)=\frac{P(F \mid B) P(B)}{P(F)}
$$

- Inversion of information flow
- Causal \rightarrow diagnostic (diseases \rightarrow symptoms)
- Inverse problem

Probability over Finite/Countable Sets (III)

Bayes Formula

$$
P(B \mid F)=\frac{P(F \mid B) P(B)}{P(F)}
$$

- Inversion of information flow
- Causal \rightarrow diagnostic (diseases \rightarrow symptoms)
- Inverse problem

Chain rule of probability

$$
P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

- Holds in any ordering
- Starting point for Bayesian networks [next lecture]

Probability over Continuous Variables

Distribution

$$
P(d x)=p(x) d x
$$

x

Probability over Continuous Variables (II)

- Caveat: Null sets $[P(\{x=5\})=0 ; P(\{x \in \mathbb{N}\})=0]$
- Every observed event is a null set! $P(y \mid x)=P(y, x) / P(x)$ cannot work for $P(x)=0$
- Define conditional density as $P(y \mid x)$ s.t.

$$
P(y \mid x \in \mathcal{A})=\int_{\mathcal{A}} P(y \mid x) P(x) d x \quad \text { for all events } \mathcal{A}
$$

- Most cases in practice:
- Look at $y \mapsto P(y, x)$ ("plug in x ")
- Recognize density / normalize

Probability over Continuous Variables (II)

- Caveat: Null sets $[P(\{x=5\})=0 ; P(\{x \in \mathbb{N}\})=0]$
- Every observed event is a null set! $P(y \mid x)=P(y, x) / P(x)$ cannot work for $P(x)=0$
- Define conditional density as $P(y \mid x)$ s.t.

$$
P(y \mid x \in \mathcal{A})=\int_{\mathcal{A}} P(y \mid x) P(x) d x \quad \text { for all events } \mathcal{A}
$$

- Most cases in practice:
- Look at $y \mapsto P(y, x)$ ("plug in x ")
- Recognize density / normalize
- Another (technical) caveat: Not all subsets can be events. \Rightarrow Events: "Nice" subsets (measurable)

Expectation. Moments of a Distribution

Expectation

$$
\mathrm{E}[f(\boldsymbol{x})]=\int f(\boldsymbol{x}) P(\boldsymbol{x}) d \boldsymbol{x} \text { or } \sum_{\boldsymbol{x}} f(\boldsymbol{x}) P(\boldsymbol{x})
$$

Expectation. Moments of a Distribution

Expectation

$$
\mathrm{E}[f(\boldsymbol{x})]=\int f(\boldsymbol{x}) P(\boldsymbol{x}) d \boldsymbol{x} \quad \text { or } \sum_{\boldsymbol{x}} f(\boldsymbol{x}) P(\boldsymbol{x})
$$

- $P(\boldsymbol{x})$ complicated. How does $\boldsymbol{x} \sim P(\boldsymbol{x})$ behave?
- Moments: Essential behaviour of distribution
- Mean (1st order)

$$
\mathrm{E}[\boldsymbol{x}]=\int \boldsymbol{x} P(\boldsymbol{x}) d \boldsymbol{x}
$$

- Covariance (2nd order)

$$
\begin{aligned}
\operatorname{Cov}[\boldsymbol{x}, \boldsymbol{y}] & =\mathrm{E}\left[\boldsymbol{x} \boldsymbol{y}^{T}\right]-\mathrm{E}[\boldsymbol{x}](\mathrm{E}[\boldsymbol{y}])^{T} \\
& =\mathrm{E}\left[\boldsymbol{v}_{x} \boldsymbol{v}_{y}^{T}\right], \boldsymbol{v}_{x}=\boldsymbol{x}-\mathrm{E}[\boldsymbol{x}]^{2}
\end{aligned}
$$

Expectation. Moments of a Distribution

Expectation

$$
\mathrm{E}[f(\boldsymbol{x})]=\int f(\boldsymbol{x}) P(\boldsymbol{x}) d \boldsymbol{x} \quad \text { or } \sum_{\boldsymbol{x}} f(\boldsymbol{x}) P(\boldsymbol{x})
$$

- $P(\boldsymbol{x})$ complicated. How does $\boldsymbol{x} \sim P(\boldsymbol{x})$ behave?
- Moments: Essential behaviour of distribution
- Mean (1st order)

$$
\mathrm{E}[\boldsymbol{x}]=\int \boldsymbol{x} P(\boldsymbol{x}) d \boldsymbol{x}
$$

- Covariance (2nd order)

$$
\operatorname{Cov}[\boldsymbol{x}]=\operatorname{Cov}[\boldsymbol{x}, \boldsymbol{x}]
$$

Decision Theory in 30 Seconds

Recipe for optimal decisions

- Choose a loss function L (depends on problem, your valuation, susceptibility)
(2) Model actions (A), outcomes (O). Compute $P(O \mid A)$
(3) Compute risks (expected losses) $R(A)=\int L(O) P(O \mid A) d O$
(c) Go for $A_{*}=\operatorname{argmin}_{A} R(A)$
- Special case: Pricing of A (option, bet, car) Choose - $R(A)+$ Margin
- Next best measurement? Next best scientific experiment?
- Harder if timing plays a role (optimal control, etc)

Maximum Likelihood Estimation

Bayesian inversion hard. In simple cases, with enough data:

Maximum Likelihood Estimation

Observed $\left\{x_{i}\right\}$. Interested in cause θ

- Construct sampling model $P(x \mid \theta)$
- Likelihood $L(\theta)=P(D \mid \theta)=\prod_{i} P\left(x_{i} \mid \theta\right)$:

Should be high close to "true" θ_{0}

- Maximum likelihood estimator:
$\theta_{*}=\operatorname{argmax} L(\theta)=\operatorname{argmax} \log L(\theta)=\operatorname{argmax} \sum_{i} \log P\left(x_{i} \mid \theta\right)$

Maximum Likelihood Estimation

Bayesian inversion hard. In simple cases, with enough data:

Maximum Likelihood Estimation

Observed $\left\{x_{i}\right\}$. Interested in cause θ

- Construct sampling model $P(x \mid \theta)$
- Likelihood $L(\theta)=P(D \mid \theta)=\prod_{i} P\left(x_{i} \mid \theta\right)$:

Should be high close to "true" θ_{0}

- Maximum likelihood estimator:
$\theta_{*}=\operatorname{argmax} L(\theta)=\operatorname{argmax} \log L(\theta)=\operatorname{argmax} \sum_{i} \log P\left(x_{i} \mid \theta\right)$
- Method of choice for simple θ, lots of data.

Well understood asymptotically

- Knowledge about θ besides D ? Not used
- Breaks down if θ "larger" than D
- And another problem ...

Overfitting

Overfitting Problem (Estimation)

For finite D, more and more complicated models fit D better and better. With huge brain, you just learn by heart.
Generalization only comes with a limit on complexity!
Marginalization solves this problem, but even Bayesian estimation ("half-way marginalization") embodies complexity control.

Probabilistic Model

Model

Concise description of joint distribution (generative process) of all variables of interest

- Encoding assumptions: What are the entities? How do they relate?
- Variables have different roles. Roles may change depending
 on what model is used for
- Model specifies variables and their (in)dependencies \Rightarrow Graphical models [next lecture]

The Linear Model (Polynomial Fitting)

Fit data with polynomial (degree k)

- Prior P(w)
- Restrictions on w
- Prior knowledge
\Rightarrow Prefer smaller $\|\boldsymbol{w}\|$
- Likelihood $P(\boldsymbol{y} \mid \boldsymbol{w})$
- Posterior

$$
P(\boldsymbol{w} \mid \boldsymbol{y})=\frac{P(\boldsymbol{y} \mid \boldsymbol{w}) P(\boldsymbol{w})}{P(\boldsymbol{y})}
$$

Linear Model

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{w}+\boldsymbol{\varepsilon}
$$

\boldsymbol{y} Responses (observed)
\boldsymbol{X} Design (controlled)
\boldsymbol{w} Weights (query)
ε Noise (nuisance)

The Linear Model (Polynomial Fitting)

Fit data with polynomial (degree k)

- Prior P(w)
- Restrictions on w
- Prior knowledge
\Rightarrow Prefer smaller $\|\boldsymbol{w}\|$
- Likelihood $P(\boldsymbol{y} \mid \boldsymbol{w})$
- Posterior

$$
P(\boldsymbol{w} \mid \boldsymbol{y})=\frac{P(\boldsymbol{y} \mid \boldsymbol{w}) P(\boldsymbol{w})}{P(\boldsymbol{y})}
$$

Linear Model

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{w}+\boldsymbol{\varepsilon}
$$

\boldsymbol{y} Responses (observed)
\boldsymbol{X} Design (controlled)
\boldsymbol{w} Weights (query)
ε Noise (nuisance)

- Prediction: $y_{*}=\boldsymbol{x}_{*}^{T} \mathrm{E}[\boldsymbol{w} \mid \boldsymbol{y}]$
- Marginal likelihood

$$
P(\boldsymbol{y})=P(\boldsymbol{y} \mid k)=\int P(\boldsymbol{y} \mid \boldsymbol{w}) P(\boldsymbol{w}) d \boldsymbol{w}
$$

The Linear Model (Polynomial Fitting)

The Linear Model (Polynomial Fitting)

Model Selection

Posterior $P(\boldsymbol{w} \mid \boldsymbol{y}, k=3)$

Marginal Likelihood $P(\boldsymbol{y} \mid k)$

- Simpler hypotheses considered as well \Rightarrow Occam's razor

Model Averaging

Don't know polynomial order $k \Rightarrow$ Marginalize out

$$
\mathrm{E}\left[y_{*} \mid \boldsymbol{y}\right]=\sum_{k \geq 1} P(k \mid \boldsymbol{y}) \boldsymbol{x}_{*}^{(k) T} \mathrm{E}[\boldsymbol{w} \mid \boldsymbol{y}, k]
$$

