Compressive Sensing

Volkan Cevher volkan.cevher@epfl.ch

and Applications

Justin Romberg jrom@ece.gatech.edu

Acknowledgements

- Rice DSP Group (Slides)
 - Richard Baraniuk
 - Mark Davenport,
 - Marco Duarte,
 - Chinmay Hegde,
 - Jason Laska,
 - Shri Sarvotham,
 - Mona Sheikh
 - Stephen Schnelle...

Mike Wakin, Petros Boufounos, Dror Baron

Outline

- Introduction to Compressive Sensing (CS)
 - motivation
 - basic concepts
- CS Theoretical Foundation
 - geometry of sparse and compressible signals
 - coded acquisition
 - restricted isometry property (RIP)
 - structured matrices and random convolution
 - signal recovery algorithms
 - structured sparsity
- CS in Action
- Summary

Sensing

Digital Revolution

12MP

25fps/1080p

4KHz

Multi touch

Digital Revolution

1977 - 5hours

12MP

25fps/1080p

4KHz

<30mins

Major Trends

higher resolution / denser sampling

12MP

25fps/1080p

4KHz

200,000fps

192,000Hz

Major Trends

large numbers of sensors

Major Trends

higher resolution / denser sampling large numbers of sensors

increasing # of modalities / mobility

acoustic, RF, visual, IR, UV, x-ray, gamma ray, ...

Major Trends in Sensing

higher resolution / denser sampling

X

large numbers of sensors

X

increasing # of modalities / mobility

Major Trends in Sensing

Digital Data Acquisition

Foundation: Shannon/Nyquist sampling theorem

"if you sample densely enough (at the Nyquist rate), you can perfectly reconstruct the original analog data"

time space

Sensing by Sampling

- Long-established paradigm for digital data acquisition
 - uniformly sample data at Nyquist rate (2x Fourier bandwidth)

Sensing by Sampling

- Long-established paradigm for digital data acquisition
 - uniformly sample data at Nyquist rate (2x Fourier bandwidth)

Sensing by Sampling

- Long-established paradigm for digital data acquisition
 - uniformly sample data at Nyquist rate (2x Fourier bandwidth)
 - *compress* data

Sparsity / Compressibility

N pixels

 $K \ll N$ large wavelet coefficients

(blue = 0)

N wideband signal samples

 $K \ll N$ large Gabor (TF) coefficients

Sample / Compress

- Long-established paradigm for digital data acquisition
 - uniformly sample data at Nyquist rate
 - *compress* data

What's Wrong with this Picture?

Why go to all the work to acquire
 N samples only to discard all but
 K pieces of data?

What's Wrong with this Picture?

Compressive Sensing

- Directly acquire "compressed" data
- Replace samples by more general "measurements"

$$K \approx M \ll N$$

Compressive Sensing

Theory I Geometrical Perspective

Sampling

• Signal x is K-sparse in basis/dictionary Ψ – WLOG assume sparse in space domain $\Psi = I$

Sampling

- Signal x is K-sparse in basis/dictionary Ψ WLOG assume sparse in space domain $\Psi = I$
- Samples

Compressive Sampling

• When data is sparse/compressible, can directly acquire a *condensed representation* with no/little information loss through linear *dimensionality reduction* $y = \Phi x$

Projection Φ
 not full rank...

... and so loses information in general

• Ex: Infinitely many x's map to the same y

 Projection Φ not full rank...

... and so loses information in general

• But we are only interested in **sparse** vectors x

 Projection Φ not full rank...

... and so loses information in general

- But we are only interested in sparse vectors
- Φ is effectively $M \times K$

 Projection Φ not full rank...

... and so loses information in general

- But we are only interested in sparse vectors
- Design Φ so that each of its MxK submatrices are full rank

- Goal: Design Φ so that its Mx2K submatrices are full rank
 - difference $x_1 x_2$ between two K-sparse vectors is 2K sparse in general
 - preserve information in K-sparse signals
 - Restricted Isometry Property (RIP) of order 2K

Unfortunately...

- Goal: Design Φ so that its
 Mx2K submatrices are full rank
 (Restricted Isometry Property RIP)
- Unfortunately, a combinatorial,
 NP-complete design problem

Insight from the 80's [Kashin, Gluskin]

100

- Draw Φ at random
 - iid Gaussian
 - iid Bernoulli ± 1

. . .

- Then Φ has the RIP with high probability as long as $M = O(K \log(N/K)) \ll N$
 - Mx2K submatrices are full rank
 - stable embedding for sparse signals
 - extends to compressible signals

Compressive Data Acquisition

- Measurements y = random linear combinations of the entries of x
- WHP does not distort structure of sparse signals
 - no information loss

Compressive Sensing Recovery

1. Sparse / compressible $\,x\,$ not sufficient alone

2. Projection Φ

information preserving (restricted isometry property - RIP)

3. Decoding algorithms

tractable

Compressive Sensing Recovery

- Recovery:
 (ill-posed inverse problem)
- ℓ_2 fast

given
$$y = \Phi x$$

find x (sparse)

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

$$\widehat{x} = (\Phi^T \Phi)^{-1} \Phi^T y$$
 pseudoinverse

Compressive Sensing Recovery

Recovery:

 (ill-posed inverse problem)

given $y = \Phi x$ find x (sparse)

• ℓ_2 fast, wrong

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

 \boldsymbol{x}

$$\widehat{x} = (\Phi^T \Phi)^{-1} \Phi^T y$$
 pseudoinverse

Why ℓ_2 Doesn't Work

for signals sparse in the space/time domain

$$\widehat{x} = \arg\min_{y = \Phi x'} ||x'||_2$$

least squares, minimum ℓ_2 solution is almost never sparse

null space of Φ translated to x (random angle)

• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x

•
$$\ell_2$$
 fast, wrong

\(\ell_0 \)

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$$

number of nonzero entries

"find sparsest ${\mathcal X}$ in translated nullspace"

• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x

- ℓ_2 fast, wrong
- ℓ_0 correct: only M=2Kmeasurements required to reconstruct K-sparse signal

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$$

$$\uparrow$$

$$number of$$

$$nonzero$$

$$entries$$

• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x

•
$$\ell_2$$
 fast, wrong

• ℓ_0 correct: only M=2Kmeasurements required to reconstruct K-sparse signal

slow: NP-hard algorithm

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$$

$$\uparrow$$

$$number of$$

$$nonzero$$

$$entries$$

Recovery:
 (ill-posed inverse problem)

given find $y = \Phi x$ x (sparse)

· \(\ell_2 \)

fast, wrong

 $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$

• ℓ_0

correct, slow

 $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$

\(\ell_1 \)

correct, efficient mild oversampling

[Candes, Romberg, Tao; Donoho]

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_1$$

linear program

number of measurements required

$$M = O(K \log(N/K)) \ll N$$

Why ℓ_1 Works

for signals sparse in the space/time domain

$$\widehat{x} = \arg\min_{y = \Phi x'} \|x'\|_1$$

 $\begin{array}{l} \text{minimum} \ \ell_1 \ \text{solution} \\ = \ \text{sparsest solution} \\ \text{(with high probability) if} \end{array}$

$$M = O(K \log(N/K)) \ll N$$

Universality

 Random measurements can be used for signals sparse in any basis

$$x = \Psi \alpha$$

Universality

 Random measurements can be used for signals sparse in any basis

$$y = \Phi x = \Phi \Psi \alpha$$

Universality

 Random measurements can be used for signals sparse in any basis

$$y = \Phi x = \Phi \Psi \alpha = \Phi' \alpha$$

Compressive Sensing

- Directly acquire "compressed" data
- Replace N samples by M random projections

$$M = O(K \log(N/K))$$

Compressive Sensing

Theory II Stable Embedding

Johnson-Lindenstrauss Lemma

• JL Lemma: random projection stably embeds a cloud of Q points who provided $M = O(\log Q)$

- Proved via concentration inequality
- Same techniques link JLL to RIP [Baraniuk, Davenport, DeVore, Wakin, Constructive Approximation, 2008]

Connecting JL to RIP

Consider effect of random JL Φ on each K-plane

- construct covering of points Q on unit sphere
- JL: isometry for each point with high probability
- union bound → isometry for all points q in Q
- extend to isometry for all x in K-plane

Connecting JL to RIP

Consider effect of random JL Φ on each K-plane

- construct covering of points Q on unit sphere
- JL: isometry for each point with high probability
- union bound → isometry for all points q in Q
- extend to isometry for all x in K-plane
- union bound → isometry for all K-planes

Favorable JL Distributions

Gaussian

$$\phi_{i,j} \sim \mathcal{N}igg(\mathtt{0},rac{1}{M}igg)$$

Bernoulli/Rademacher [Achlioptas]

$$\phi_{i,j} := \left\{ egin{array}{ll} + rac{1}{\sqrt{M}} & ext{with probability} & rac{1}{2}, \ -rac{1}{\sqrt{M}} & ext{with probability} & rac{1}{2} \end{array}
ight.$$

"Database-friendly" [Achlioptas]

$$\phi_{i,j} := \left\{ egin{array}{ll} + \sqrt{rac{3}{M}} & ext{with probability} & rac{1}{6}, \ 0 & ext{with probability} & rac{2}{3}, \ -\sqrt{rac{3}{M}} & ext{with probability} & rac{1}{6}, \ \end{array}
ight.$$

Random Orthoprojection to R^M [Gupta, Dasgupta]

RIP as a "Stable" Embedding

• RIP of order 2K implies: for all K-sparse $x_{\rm 1}$ and $x_{\rm 2}$

$$(1 - \delta_{2K}) \le \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \le (1 + \delta_{2K})$$

Structured Random Matrices

- There are more structured (but still random) compressed sensing matrices
- We can randomly sample in a domain whose basis vectors are *incoherent* with the sparsity basis
- Example: sparse in time, sample in frequency

frequency

Structured Random Matrices

• Signal is sparse in the wavelet domain, measured with *noiselets* (Coifman et al. '01)

2D noiselet

wavelet domain

noiselet domain

Stable recovery from

$$M = O(K \log^4 N)$$

measurements

Random Convolution

 A natural way to implement compressed sensing is through random convolution

- Applications include active imaging (radar, sonar,...)
- Many recent theoretical results

(R 08, Bajwa, Haupt et al 08, Rauhut 09)

Random Convolution Theory

Convolution with a random pulse, then subsample

$$\Phi = R_{\Omega} F^* \Sigma F, \quad \Sigma = \operatorname{diag}(\{\sigma_{\omega}\})$$

(each σ_{ω} has unit magnitude and random phase)

Stable recovery from

$$M = O(K \log^5 N)$$

measurements

after convolution

Coded Aperture Imaging

· Allows high-levels of light and high resolution

(Marcia and Willett 08, also Brady, Portnoy and others)

Super-resolved Imaging

(Marcia and Willet 08)

Stability

- Recovery is robust against noise and modeling error
- Suppose we observe

$$y = \Phi x_0 + e, \quad \|e\|_2 \le \epsilon$$

Relax the recovery algorithm, solve

$$\min_{x} \|x\|_{\ell_1} \quad \text{subject to} \quad \|y - \Phi x\|_2 \le \epsilon$$

The recovery error obeys

$$||x^* - x_0||_2 \lesssim \epsilon + \frac{||x_{0,K} - x_0||_{\ell_1}}{\sqrt{K}}$$

measurement error + approximation error

 $x_{0,K} =$ best K-term approximation

Geometrical Viewpoint, Noiseless

good

• Consider and " ℓ_1 -descent vectors" h for feasible x:

$$||x_0+h||_{\ell_1} < ||x_0||_{\ell_1}$$

• x_0 is the solution if

$$\Phi h \neq 0$$

for all such descent vectors

Geometrical Viewpoint, Noise

- ullet Solution will be within ϵ of H
- Need that not too much of the ℓ_1 ball near x_0 is feasible

Compressive Sensing

Recovery Algorithms

CS Recovery Algorithms

- Convex optimization:
 - noise-free signals
 - Linear programming (Basis pursuit)
 - FPC
 - Bregman iteration, ...
 - noisy signals
 - Basis Pursuit De-Noising (BPDN)
 - Second-Order Cone Programming (SOCP)
 - Dantzig selector
 - GPSR, ...
- Iterative greedy algorithms
 - Matching Pursuit (MP)
 - Orthogonal Matching Pursuit (OMP)
 - StOMP
 - CoSaMP
 - Iterative Hard Thresholding (IHT), ...

software @ dsp.rice.edu/cs

L1 with equality constraints = linear programming

The standard L1 recovery program

$$\min_{x} \|x\|_{\ell_1} \quad \text{s.t.} \quad y = \Phi x$$

is equivalent to the linear program

$$\min_{x,t} \sum_{i} t_i \quad \text{s.t.} \quad -t_i \le x_i \le t_i, \quad \Phi x = y$$

There has been a tremendous amount of progress in solving linear programs in the last 15 years

SOCP

Standard LP recovery

$$\min \|x\|_1$$
 subject to $y = \Phi x$

Noisy measurements

$$y = \Phi x + n$$

Second-Order Cone Program

$$\min \|x\|_1$$
 subject to $\|y - \Phi x\|_2 \le \epsilon$

Convex, quadratic program

Other Flavors of L1

Quadratic relaxation (called LASSO in statistics)

$$\min_{x} \|x\|_{\ell_1} + \lambda \|y - \Phi x\|_2^2$$

Dantzig selector (residual correlation constraints)

$$\min_{x} \|x\|_{\ell_1} \quad \text{s.t.} \quad \|\Phi^T(y - \Phi x)\|_{\infty}$$

L1 Analysis (Ψ is an overcomplete frame)

$$\min_{x} \|\Psi^T x\|_{\ell_1} \quad \text{s.t.} \quad \|y - \Phi x\|_2 \le \epsilon$$

Solving L1

- "Classical" (mid-90s) interior point methods
 - main building blocks due to Nemirovski
 - second-order, series of local quadratic approximations
 - boils down to a series of linear systems of equations
 - formulation is very general (and hence adaptable)
- Modern progress (last 5 years) has been on "first order" methods
 - Main building blocks due to Nesterov (mid 80s)
 - iterative, require applications of Φ and Φ ^T at each iteration
 - convergence in 10s-100s of iterations typically
- Many software packages available
 - Fixed-point continuation (Rice)
 - Bregman iteration-based methods (UCLA)
 - NESTA (Caltech)
 - GPSR (Wisconsin)
 - SPGL1 (UBC).....

Matching Pursuit

Greedy algorithm

Key ideas:

(1) measurements y composed of sum of K columns of Φ

(2) identify which K columns sequentially according to size of contribution to \mathcal{Y}

Matching Pursuit

• For each column ϕ_i compute

$$\widehat{x}_i = \langle y, \phi_i \rangle$$

• Choose largest $|\widehat{x}_i|$ (greedy)

• Update estimate \widehat{x} by adding in \widehat{x}_i

• Form residual measurement $y'=y-x_i\phi_i$ and iterate until convergence

Orthogonal Matching Pursuit

 Same procedure as Matching Pursuit

- Except at each iteration:
 - remove selected column $\,\phi_i$
 - re-orthogonalize the remaining columns of Φ
- Converges in K iterations

CoSAMP

- Needell and Tropp, 2008
- Very simple greedy algorithm, provably effective

Algorithm 2.1: CoSaMP Recovery Algorithm

```
CoSaMP(\Phi, u, s)
Input: Sampling matrix \Phi, noisy sample vector \boldsymbol{u}, sparsity level s
Output: An s-sparse approximation a of the target signal
a^0 \leftarrow 0
                                                                                                          { Trivial initial approximation }
v \leftarrow u
                                                                                                { Current samples = input samples }
k \leftarrow 0
repeat
     k \leftarrow k+1
     oldsymbol{y} \leftarrow oldsymbol{\Phi}^* oldsymbol{v}
                                                                                                                             { Form signal proxy }

\Omega \leftarrow \operatorname{supp}(\boldsymbol{y}_{2s}) 

T \leftarrow \Omega \cup \operatorname{supp}(\boldsymbol{a}^{k-1})

                                                                                                               { Identify large components }
                                                                                                                                  { Merge supports }
     egin{aligned} oldsymbol{b}|_T &\leftarrow oldsymbol{\Phi}_T^\dagger oldsymbol{u} \ oldsymbol{b}|_{T^c} &\leftarrow oldsymbol{0} \end{aligned}
                                                                                                { Signal estimation by least-squares }
     egin{aligned} oldsymbol{a}^k &\leftarrow oldsymbol{b}_s \ oldsymbol{v} &\leftarrow oldsymbol{u} - oldsymbol{\Phi} oldsymbol{a}^k \end{aligned}
                                                                                           { Prune to obtain next approximation }
                                                                                                                  { Update current samples }
until halting criterion true
```

From Sparsity to Model-based (structured) Sparsity

Sparse Models

Gabor atoms: chirps/tones

pixels: background subtracted images

Sparse Models

 Sparse/compressible signal model captures simplistic primary structure

sparse image

Beyond Sparse Models

- Sparse/compressible signal model captures simplistic primary structure
- Modern compression/processing algorithms capture richer secondary coefficient structure

wavelets: natural images

Gabor atoms: chirps/tones

pixels: background subtracted images

Signal Priors

• Sparse signal: only K out of N coordinates nonzero

- model: union of all K-dimensional subspaces

aligned w/ coordinate axes

Signal Priors

- Sparse signal: only K out of N coordinates nonzero
 - model: union of all K-dimensional subspaces aligned w/ coordinate axes
- Structured sparse signal: reduced set of subspaces (or model-sparse)
 - model: a particular union of subspaces
 ex: clustered or dispersed sparse patterns

Restricted Isometry Property (RIP)

• Model: K-sparse

$$(1 - \delta_{2K}) \le \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \le (1 + \delta_{2K})$$

RIP: stable embedding

Random subGaussian (iid Gaussian, Bernoulli) matrix < > RIP w.h.p.

Restricted Isometry Property (RIP)

- Model: *K*-sparse
 - + significant coefficients
 lie on a rooted subtree
 (a known model for piecewise smooth signals)
- Tree-RIP: stable embedding

Restricted Isometry Property (RIP)

• Model: *K*-sparse

Note the difference:

RIP: stable embedding

Model-Sparse Signals

 Defn: A K-sparse signal model comprises a particular (reduced) set of K-dim canonical subspaces

- Structured subspaces
 - <> fewer measurements
 - <> improved recovery perf.
 - <> faster recovery

CS Recovery

Iterative Hard Thresholding (IHT)

[Nowak, Figueiredo; Kingsbury, Reeves; Daubechies, Defrise, De Mol; Blumensath, Davies; ...]

Given $y = \Phi x$, recover a sparse x

initialize:
$$\hat{x}_0 = 0$$
, $r = y$, $i = 0$

iteration:

•
$$i \leftarrow i + 1$$

•
$$b \leftarrow \hat{x}_{i-1} + \Phi^T r$$

• $\hat{x}_i \leftarrow \mathsf{thresh}(b,K)$

•
$$r \leftarrow y - \Phi \widehat{x}_i$$

update signal estimate

prune signal estimate (best *K*-term approx)

update residual

return: $\widehat{x} \leftarrow \widehat{x}_i$

Model-based CS Recovery

Iterative Model Thresholding

[VC, Duarte, Hegde, Baraniuk; Baraniuk, VC, Duarte, Hegde]

Given $y = \Phi x$, recover a model sparse $x \in \mathcal{M}$

initialize: $\hat{x}_0 = 0$, r = y, i = 0

iteration:

- $i \leftarrow i + 1$
- $b \leftarrow \widehat{x}_{i-1} + \Phi^T r$
- $\widehat{x}_i \leftarrow \mathcal{M}(b,K)$
- $r \leftarrow y \Phi \widehat{x}_i$

update signal estimate

prune signal estimate (best *K*-term model approx)

update residual

return: $\widehat{x} \leftarrow \widehat{x}_i$

Tree-Sparse Signal Recovery

target signal

L1-minimization (MSE=0.751)

Tree-sparse CoSaMP (MSE=0.037)

Tree-Sparse Signal Recovery

Number samples for correct recovery with noise

 Piecewise cubic signals + wavelets

 Plot the number of samples to reach the noise level

Clustered Sparsity

- (K,C) sparse signals (1-D)
 - K-sparse within at most C clusters

For stable recovery

$$M = \mathcal{O}\left(K + C\log(N/C)\right)$$

- Model approximation using dynamic programming
- Includes
 block sparsity
 as a special case

Clustered Sparsity

- Model clustering of significant pixels in space domain using graphical model (MRF)
- Ising model approximation via graph cuts

[VC, Duarte, Hedge, Baraniuk]

target

Ising-model recovery

CoSaMP recovery

LP (FPC) recovery

Clustered Sparsity

20%
Compression
No
performance
loss in tracking

Neuronal Spike Trains

- Model the firing process of a single neuron via 1D Poisson process with spike trains
 - stable recovery

$$M = \mathcal{O}\left(K\log(N/K - \Delta)\right)$$

- integer program
 efficient & provable solution due to total unimodularity of linear constraint
- dynamic program

Performance of Recovery

Using model-based IHT and CoSaMP

$$M = \mathcal{O}(\log |\mathcal{M}_K|)$$

 $|\mathcal{M}_K|$: # of subspaces

Model-sparse signals

[Baraniuk, VC, Duarte, Hegde]

$$||x-\widehat{x}||_{\ell_2} \leq C_1 \frac{||x-x_{\mathcal{M}_K}||_{\ell_1}}{K^{1/2}} + C_2 ||n||_2$$
 CS recovery signal *K*-term noise model approx error

Model-compressible signals w/restricted amplification property

$$\|x-\widehat{x}\|_{\ell_2} \leq C_1 \log\left(\frac{N}{K}\right) \frac{\|x-x_{\mathcal{M}_K}\|_{\ell_1}}{K^{1/2}} + C_2 \|n\|_2$$
CS recovery
signal K-term
noise

CS recovery error

signal K-term model approx error

Compressive Sensing In Action

Cameras

"Single-Pixel" CS Camera

w/ Kevin Kelly

"Single-Pixel" CS Camera

- Flip mirror array M times to acquire M measurements
- Sparsity-based (linear programming) recovery

First Image Acquisition

target 65536 pixels

11000 measurements (16%)

1300 measurements (2%)

Second Image Acquisition

4096 pixels

500 random measurements

CS Low-Light Imaging with PMT

true color low-light imaging 256 x 256 image with 10:1 compression

[Nature Photonics, April 2007]

Hyperspectral Imaging

Georgia Tech Analog Imager

- Robucci and Hasler 07
- Transforms image in analog, reads out transform coefficients

Georgia Tech Analog Imager

.35um CMOS process

Compressive Sensing Acquisition

Compressive Sensing In Action

A/D Converters

Analog-to-Digital Conversion

- Nyquist rate limits reach of today's ADCs
- "Moore's Law" for ADCs:
 - technology Figure of Merit incorporating sampling rate and dynamic range doubles every 6-8 years
- DARPA Analog-to-Information (A2I) program
 - wideband signals have high Nyquist rate but are often sparse/compressible
 - develop new ADC technologies to exploit
 - new tradeoffs among
 Nyquist rate, sampling rate,
 dynamic range, ...

ADC State of the Art (2005)

The bad news starts at 1 GHz...

ADC State of the Art

From 2008...

Analog-to-Information Conversion

 Sample near signal's (low) "information rate" rather than its (high) Nyquist rate

 Practical hardware: randomized demodulator (CDMA receiver)

Example: Frequency Hopper

Nyquist rate sampling

20x sub-Nyquist sampling

Multichannel Random Demodulation

- Random demodulator being built at part of DARPA A2I program (Emami, Hoyos, Massoud)
- Multiple (8) channels, operating with different mixing sequences
- Effective BW/chan = 2.5 GHz
 Sample rate/chan = 50 MHz
- Applications: radar pulse detection, communications surveillance, geolocation

Compressive Sensing In Action

Data Processing

Information Scalability

 Many applications involve signal inference and not reconstruction

detection < classification < estimation < reconstruction

fairly computationally intense

Information Scalability

 Many applications involve signal inference and not reconstruction

detection < classification < estimation < reconstruction

 Good news: CS supports efficient learning, inference, processing directly on compressive measurements

 Random projections ~ sufficient statistics for signals with concise geometrical structure

Low-dimensional signal models

N pixels

 $K \ll N$ large wavelet coefficients

(blue = 0)

sparse signals

structured sparse signals

parameter manifolds

Matched Filter

- Detection/classification with K unknown articulation parameters
 - Ex: position and pose of a vehicle in an image
 - Ex: time delay of a radar signal return
- Matched filter: joint parameter estimation and detection/classification
 - compute sufficient statistic for each potential target and articulation
 - compare "best" statistics to detect/classify

Matched Filter Geometry

Detection/classification with K unknown articulation parameters

THE PROPERTY OF THE PROPERTY O

data

- Images are points in ${f R}^N$
- Classify by finding closest target template to data for each class (AWG noise)
 - distance or inner product

from
generative model
or
training data (points)

 \mathbf{R}^N

Matched Filter Geometry

 Detection/classification with K unknown articulation parameters

- Images are points in ${f R}^N$
- Classify by finding closest target template to data
- As template articulation parameter changes, points map out a K-dim nonlinear manifold
- Matched filter classification
 - = closest manifold search

articulation parameter space (—)

data

CS for Manifolds

· Theorem:

 $M = O(K \log N)$ random measurements stably embed manifold whp

[Baraniuk, Wakin, FOCM '08] related work:
[Indyk and Naor, Agarwal et al., Dasgupta and Freund]

- Stable embedding
- Proved via concentration inequality arguments (JLL/CS relation)

CS for Manifolds

• Theorem:

 $M = O(K \log N)$ random measurements stably embed manifold whp

- Enables parameter
 estimation and MF
 detection/classification
 directly on compressive
 measurements
 - K very small in many applications (# articulations)

Example: Matched Filter

- Detection/classification with K=3 unknown articulation parameters
 - 1. horizontal translation
 - 2. vertical translation
 - 3. rotation

Smashed Filter

 Detection/classification with K=3 unknown articulation parameters (manifold structure)

• Dimensionally reduced matched filter directly on compressive measurements $M = O(K \log N)$

Smashed Filter

- Random shift and rotation (K=3 dim. manifold)
- Noise added to measurements
- Goal: identify most likely position for each image class identify most likely class using nearest-neighbor test

Compressive Sensing

Summary

CS Hallmarks

- CS changes the rules of the data acquisition game
 - exploits a priori signal sparsity information

Stable

acquisition/recovery process is numerically stable

Universal

- same random projections / hardware can be used for any compressible signal class (generic)
- Asymmetrical (most processing at decoder)
 - conventional: smart encoder, dumb decoder
 - CS: dumb encoder, smart decoder
- Random projections weakly encrypted

CS Hallmarks

Democratic

- each measurement carries the same amount of information
- robust to measurement loss and quantization simple encoding
- Ex: wireless streaming application with data loss
 - conventional: complicated (unequal) error protection of compressed data
 - DCT/wavelet low frequency coefficients
 - CS: merely stream additional measurements and reconstruct using those that arrive safely (fountain-like)