
Handout Probabilistic Graphical Models:

Derivation of Conjugate Gradients Algorithm

Volkan Cevher, Matthias Seeger

Abstract

The idea behind the conjugate gradients algorithm, as shown in the lecture, is to
maintain conjugate search directions, so that improvements realized in some iteration
are not lost later on. This idea alone leads to the famous algorithm, but the derivation is
too convolved to present in a lecture. I provide it here. I’d probably not have written this
note, were there a readable, yet still concise derivation out there. I took the motivation
of CG from [1], but filled in the gaps.

Recall the setting. A is symmetric positive definite. CG minimizes the quadratic

q(x) =
1

2
xTAx − bTx, g(x) = ∇q(x) = Ax − b, x ∈ Rn.

We start with some x0. In iteration k, starting from xk−1, we pick a search direction dk,
possibly using the gradient gk−1 = g(xk−1), then search along that line for the minimum
point: xk = xk−1 + αkdk. Be careful not to confuse search directions and gradients. They
are the same only in the method of steepest descent, which CG is certainly different from
(except for A = I). Annoyingly for students, CG is called conjugate gradients, it should be
called conjugate directions.

Remember why steepest descent is not a good idea. Since

dq(xk−1 + αdk)

dα
= g(xk−1 + αdk)Tdk = 0

at α = αk (line minimum), then gT
k dk = 0. Now, if dk = −gk−1, this means that subsequent

search directions are orthogonal. And this is a really bad idea for minimizing q(x) if A has
eigenvalues of widely different sizes (remember the zig-zagging problem from the lecture).
A much better idea is to select dk in a way that renders new gradients, anywhere along the
line searched, orthogonal to old directions:

0 = g(xk + αdk+1)
Tdk = gT

k dk + αdT
k+1Adk.

Since gT
k dk = 0 in any case (line minimization condition), we therefore need conjugate

(rather than orthogonal) directions: dT
j Adk = 0 for j 6= k.

If somebody gave us a conjugate set of directions, starting with d1 = −g0, we were done.
However, at least to me, it is not at all obvious how to obtain such a basis in a feasible
way. The conjugate gradients algorithm is a neat method for doing just that, with a single
matrix-vector multiplication (MVM) with A per iteration, requiring O(n) storage only. And
all that is needed in order to derive it, is stated above. It is still a bit of magic, so please



read on. By the way, CG is really a cornerstone of numerical mathematics. If its three-term
recurrence is interpreted differently, the Lanczos algorithm is obtained, the most important
method for computing eigenvectors of very large matrices.

The idea behind the derivation of CG is to establish a number of relationships between
the gradients gk, the directions dk, and the step sizes αk (for different k values), starting
from gT

k dk = 0 and xk = xk−1 + αkdk only, which imply that all directions are mutually
conjugate, and all gradients are mutually orthogonal (yes, to get you completely confused!).
There is a single ansatz, namely that dk+1 = −gk + βkdk, involving some further scalars
βk. A formally clean way is to use induction over the number of iterations k, but because it
is convolved enough, I will rather proceed in the most digestable ordering. I’ll also number
equations excessively.

gk = Axk − b (1)

xk = xk−1 + αkdk (2)

gk = gk−1 + αkAdk (3)

gT
k dk = 0 (4)

Here, (3) is just (2) times A, minus b, and we have discussed (4) above. We have also seen
why the following holds:

gT
k−1dj = 0, dT

kAdj = 0 ⇒ gT
k dj = 0 (j ≤ k) (5)

In order to obtain a recurrence for the search directions, we make the ansatz

dk+1 = −gk + βkdk. (6)

We would obtain steepest descent with βk = 0, but in CG, we always have βk 6= 0, unless
we are done (we will see that below). Amazingly, this simple recurrence suffices to get all
the rest. In order to determine what βk should be, recall that we want conjugate directions.

0 = dT
k+1Adk = (−gk + βkdk)TAdk ⇒ βk =

gT
kAdk

dT
kAdk

. (7)

We will simplify this below. What about the gradients? If we assume the r.h.s. of (5) to
hold, then for j < k:

gT
k gj

(6)
= gT

k (βjdj − dj+1)
(5)
= 0.

Not relying on (5), we have

gT
k dj = gT

k dj−1 = 0 ⇒ gT
k gj = 0. (8)

OK, small break here. In steepest descent, search directions are orthogonal, and that is bad.
In that method, search directions are (negative) gradients, so gradients are orthogonal. In
CG, improving on steepest descent, directions are not orthogonal, but conjugate. However,
gradients in CG are still orthogonal. And to really get everybody confused, the whole method
is called conjugate gradients!



We will now close the loop, by showing that orthogonality of gradients implies conjugacy
of directions. Assume that for some j < k: dT

kAdj = 0. Then,

dT
k+1Adj

(6)
= (−gk + βkdk)TAdj = −gT

kAdj
(3)
= −gT

k (gj − gj−1)/αj .

But if gradients are orthogonal, the r.h.s. is zero. Therefore,

dT
kAdj = 0, gT

k gj = gT
k gj−1 = 0 ⇒ dT

k+1Adj = 0. (9)

The mutual orthogonality of all gradients and the conjugacy of all directions follows by
running the cycle (5) ⇒ (8) ⇒ (9) ⇒ (5) . . . Make sure you understand that this cycle is
kickstarted by (4), which holds by line minimization.

We are almost done. Right now, CG would not really be elegant. While we have analytic
expressions for αk and βk (7), they are clumsy and require more than one MVM with A
per iteration. By (4), (3): 0 = gT

k dk = (gk−1 + αAdk)Tdk, so that

αk =
−gT

k−1dk

dT
kAdk

(6)
=
−gT

k−1(−gk−1 + βk−1dk−1)

dT
kAdk

(4)
=
‖gk−1‖2

dT
kAdk

. (10)

And now, let’s use (almost) everything above:

βk
(7)
=

gT
kAdk

dT
kAdk

(10)
=

gT
k (αkAdk)

‖gk−1‖2
(3)
=

gT
k (gk − gk−1)

‖gk−1‖2
(8)
=
‖gk‖2

‖gk−1‖2
. (11)

From this equation, we see that if βk = 0, then gk = 0, and we have reached the global
minimum point of q(x).

That’s it. The CG algorithm itself is given as a lecture slide. Finally, note that (5) and
the conjugacy of the dk imply that with at most n iterations, we are done. Namely, any
set of conjugate directions is also linearly independent (easy exercise). But then, gn is
orthogonal to all dk, k ≤ n, which is possible only if gn = 0. For special matrices A, whose
characteristic polynomial has rank < n, this can happen earlier (a very simple example is
A = I). In practice, you will probably never see this happening. Also note that (5) (new
gradients orthogonal to old directions) directly implies the Krylov subspace minimization
characteristic of CG that was discussed in the lecture.

References

[1] C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1st
edition, 1995.


