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Digital Data Acquisition

Foundation:  Shannon/Nyquist sampling theorem

time space

“if you sample densely enough    
(at the Nyquist rate), you can 
perfectly reconstruct the 
original analog data”

http://upload.wikimedia.org/wikipedia/commons/3/31/Moire_pattern_of_bricks.jpg
http://upload.wikimedia.org/wikipedia/commons/f/fb/Moire_pattern_of_bricks_small.jpg


Major Trends in Sensing

higher resolution / denser sampling 

large numbers of sensors

increasing # of modalities / mobility



Major Trends in Sensing

Motivation:   solve bigger / more important problems

decrease acquisition times / costs

entertainment…



Problems of the Current Paradigm

• Sampling at Nyquist rate 

– expensive / difficult

• Data deluge

– communications / storage

• Sample then compress

– not future proof



Approaches

• Do nothing / Ignore

be content with 
where we are…

– generalizes well

– robust 



Approaches

• Finite Rate of Innovation

Sketching / Streaming

Compressive Sensing

[Vetterli, Marziliano, Blu; Blu, Dragotti, Vetterli, Marziliano, Coulot; 
Gilbert, Indyk, Strauss, Cormode, Muthukrishnan; Donoho; Candes, Romberg, Tao; Candes, Tao]



Approaches

• Finite Rate of Innovation

Sketching / Streaming

Compressive Sensing

[Vetterli, Marziliano, Blu; Blu, Dragotti, Vetterli, Marziliano, Coulot; 
Gilbert, Indyk, Strauss, Cormode, Muthukrishnan; Donoho; Candes, Romberg, Tao; Candes, Tao]

PARSITY



Today – Beyond Sparsity

Sensing via dimensionality reduction

Model-based Compressive Sensing 
w/ Structured Sparsity Models

– Reducing sampling / processing / communication costs

– Increasing recovery / processing speed

– Improving robustness / stability



Compressive Sensing 101

• Goal:  Recover a sparse or
compressible signal 
from measurements

• Problem:  Random
projection      not full rank

• Solution:  Exploit the sparsity/compressibility
geometry of acquired signal



• Goal:  Recover a sparse or
compressible signal 
from measurements

• Problem:  Random
projection      not full rank
but satisfies Restricted Isometry Property (RIP)

• Solution:  Exploit the sparsity/compressibility 
geometry of acquired signal

– iid Gaussian
– iid Bernoulli
– …

Compressive Sensing 101



• Goal:  Recover a sparse or
compressible signal 
from measurements

• Problem:  Random
projection      not full rank

• Solution:  Exploit the model
geometry of acquired signal

Compressive Sensing 101



• Sparse signal: only K out of N
coordinates nonzero

– model:  union of K-dimensional subspaces
aligned w/ coordinate axes

Concise Signal Structure

sorted index



• Sparse signal: only K out of N
coordinates nonzero

– model:  union of K-dimensional subspaces

• Compressible signal:   sorted coordinates decay 
rapidly to zero

– model:        ball:

Concise Signal Structure

sorted index

power-law
decay



• Sparse signal: only K out of N
coordinates nonzero

– model:  union of K-dimensional subspaces

• Compressible signal:   sorted coordinates decay 
rapidly to zero

well-approximated by a K-sparse signal
(simply by thresholding)

sorted index

Concise Signal Structure



Restricted Isometry Property (RIP)
• Preserve the structure of sparse/compressible signals

• RIP of order 2K implies: for all K-sparse x1 and x2

K-planes



Restricted Isometry Property (RIP)
• Preserve the structure of sparse/compressible signals

• Random subGaussian (iid Gaussian, Bernoulli) matrix 
has the RIP with high probability if 

K-planes



Recovery Algorithms
• Goal: given

recover 

• and convex optimization formulations
– basis pursuit, Dantzig selector, Lasso, …

• Greedy algorithms
– orthogonal matching pursuit, 

iterative thresholding (IT), 
compressive sensing matching pursuit (CoSaMP)

– at their core: iterative sparse approximation



Performance of Recovery

• Using     methods, IT, CoSaMP

• Sparse signals

– noise-free measurements: exact recovery 
– noisy measurements: stable recovery

• Compressible signals

– recovery as good as K-sparse approximation

CS recovery
error

signal K-term
approx error

noise



From Sparsity 
to 

Model-based (structured)
Sparsity



Sparse Models 

wavelets:
natural images

Gabor atoms:
chirps/tones

pixels:
background subtracted 

images



Sparse Models 
• Sparse/compressible signal model captures 

simplistic primary structure

sparse image



• Sparse/compressible signal model captures 
simplistic primary structure

• Modern compression/processing algorithms capture 
richer secondary coefficient structure

Beyond Sparse Models 

wavelets:
natural images

Gabor atoms:
chirps/tones

pixels:
background subtracted 

images



Sparse Signals
• Defn:  K-sparse signals comprise a 

particular set of K-dim canonical subspaces



Model-Sparse Signals
• Defn:  A K-sparse signal model comprises a 

particular (reduced) set of K-dim canonical 
subspaces



Model-Sparse Signals
• Defn:  A K-sparse signal model comprises a 

particular (reduced) set of K-dim canonical 
subspaces

• Structured subspaces

<> fewer subspaces

<> relaxed RIP

<> fewer measurements



Model-Sparse Signals
• Defn:  A K-sparse signal model comprises a 

particular (reduced) set of K-dim canonical 
subspaces

• Structured subspaces

<> increased signal discrimination

<> improved recovery perf.

<> faster recovery



Model-based CS

Running Example: 
Tree-Sparse Signals

[Baraniuk, VC, Duarte, Hegde]



Wavelet Sparse

• Typical of wavelet 
transforms
of natural signals 
and images 
(piecewise smooth)

1-D signals 1-D wavelet transform
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Tree-Sparse

• Model: K-sparse coefficients 
+ significant coefficients 

lie on a rooted subtree

• Typical of wavelet 
transforms
of natural signals 
and images 
(piecewise smooth)



Tree-Sparse

• Model: K-sparse coefficients 
+ significant coefficients 

lie on a rooted subtree

• Sparse approx: find best set of coefficients

– sorting
– hard thresholding

• Tree-sparse approx: find best rooted subtree
of coefficients 

– CSSA [Baraniuk]

– dynamic programming [Donoho]



• Model: K-sparse coefficients 

• RIP: stable embedding 

Sparse

K-planes



Tree-Sparse
• Model: K-sparse coefficients 

+ significant coefficients 
lie on a rooted subtree

• Tree-RIP: stable embedding 

K-planes



Tree-Sparse
• Model: K-sparse coefficients 

+ significant coefficients 
lie on a rooted subtree

• Tree-RIP: stable embedding 

• Recovery: new model based algorithms
[VC, Duarte, Hegde, Baraniuk; Baraniuk, VC, Duarte, Hegde]



• Iterative Thresholding

Standard CS Recovery

[Nowak, Figueiredo; Kingsbury, Reeves; Daubechies, Defrise, De Mol; Blumensath, Davies; …]

update signal estimate

prune signal estimate
(best K-term approx)

update residual



• Iterative Model Thresholding

Model-based CS Recovery

[VC, Duarte, Hegde, Baraniuk; Baraniuk, VC, Duarte, Hegde]

update signal estimate

prune signal estimate
(best K-term model approx)

update residual



Tree-Sparse Signal Recovery

target signal CoSaMP, 
(MSE=1.12)

L1-minimization
(MSE=0.751)

Tree-sparse CoSaMP 
(MSE=0.037)

N=1024
M=80



Compressible Signals
• Real-world signals are compressible, not sparse

• Recall: compressible <> well approximated 
by sparse

– compressible signals lie close to a union of subspaces
– ie:  approximation error decays rapidly as

• If      has RIP, then
both sparse and
compressible signals
are stably recoverable 

sorted index



Model-Compressible Signals
• Model-compressible <> well approximated

by model-sparse
– model-compressible signals lie close to a 

reduced union of subspaces
– ie:  model-approx error decays rapidly as



Model-Compressible Signals
• Model-compressible <> well approximated

by model-sparse
– model-compressible signals lie close to a 

reduced union of subspaces
– ie:  model-approx error decays rapidly as

• While model-RIP enables stable
model-sparse recovery, 
model-RIP is not sufficient for stable 
model-compressible recovery at         !



Stable Recovery
• Stable model-compressible signal recovery at 

requires that      have both:
– RIP + Restricted Amplification Property

• RAmP: controls nonisometry of      in the 
approximation’s residual subspaces

optimal K-term
model recovery
(error controlled

by      RIP)

optimal 2K-term
model recovery
(error controlled

by      RIP)

residual subspace
(error not controlled

by      RIP)



Tree-RIP, Tree-RAmP
Theorem: An MxN iid subgaussian random matrix 
has the Tree(K)-RIP if 

Theorem: An MxN iid subgaussian random matrix 
has the Tree(K)-RAmP if 



Simulation

• Number samples for correct recovery

• Piecewise cubic 
signals +
wavelets

• Models/algorithms:
– compressible

(CoSaMP)
– tree-compressible

(tree-CoSaMP)



Performance of Recovery

• Using model-based IT, CoSaMP with RIP and RAmP

• Model-sparse signals
– noise-free measurements: exact recovery 
– noisy measurements: stable recovery

• Model-compressible signals

– recovery as good as K-model-sparse approximation

CS recovery
error

signal K-term
model approx error

noise

[Baraniuk, VC, Duarte, Hegde]



Other Useful Models

• When the model-based framework makes sense:
– model with 

fast approximation algorithm
– sensing matrix with 

model-RIP
model-RAmP



Other Useful Models

• When the model-based framework makes sense:
– model with 

fast approximation algorithm
– sensing matrix with 

model-RIP
model-RAmP

• Ex:  block sparsity / signal ensembles
[Tropp, Gilbert, Strauss], [Stojnic, Parvaresh, Hassibi], 
[Eldar, Mishali], [Baron, Duarte et al], [Baraniuk, VC, Duarte, Hegde]

• Ex:  clustered signals
[VC, Duarte, Hegde, Baraniuk], [VC, Indyk, Hegde, Baraniuk]

• Ex:  neuronal spike trains
[Hegde, Duarte, VC] – Best paper award at SPARS’09



Block-Sparse Signal

target CoSaMP (MSE = 0.723)

block-sparse model recovery 
(MSE=0.015) Blocks are pre-specified.



Block-Compressible Signal

target CoSaMP (MSE=0.711)

block-sparse recovery 
(MSE=0.195)

best 5-block approximation 
(MSE=0.116 )



Clustered Sparsity

• (K,C) sparse signals (1-D)
– K-sparse within at most C clusters

• For stable recovery 
(model-RIP + RAmP)

• Model approximation 
using dynamic 
programming

• Includes 
block sparsity as 
as a special case

[VC, Indyk, Hedge, Baraniuk]



Clustered Sparsity

target Ising-model
recovery

CoSaMP
recovery

LP (FPC)
recovery

• Model clustering of significant 
pixels in space domain using 
graphical model (MRF)

• Ising model approximation 
via graph cuts
[VC, Duarte, Hedge, Baraniuk]



Neuronal Spike Trains

• Model the firing process of a 
single neuron via 1D Poisson 
process with spike trains

- Exploit the refractory 
period of neurons

• Model approximation problem:

- Find a K-sparse signal
such that 
its coefficients are separated 
by at least   



Neuronal Spike Trains

• Model the firing process of a 
single neuron via 1D Poisson 
process with spike trains

- Stable recovery

• Model approximation solution:

– Integer program

– Efficient & provable 
solution  due to 
total unimodularity of      
linear constraint

[Hedge, Duarte, VC; SPARS’09]





Signal recovery is not always required.

ELVIS:

Enhanced 
Localization 
via 
Incoherence and 
Sparsity



Localization Problem

• Goal: Localize targets
by fusing measurements
from a network of sensors

[VC, Duarte, Baraniuk; Model and Zibulevsky; VC, Gurbuz, 
McClellan, Chellappa; Malioutov, Cetin, and Willsky; Chen et al.]



Localization Problem

• Goal: Localize targets
by fusing measurements
from a network of sensors

– collect time signal data
– communicate signals across

the network
– solve an optimization

problem



Bottlenecks

• Goal: Localize targets
by fusing measurements
from a network of sensors

– collect time signal data
requires potentially
high-rate (Nyquist)
sampling

– communicate signals
across the network

potentially large
communication
burden

– solve an optimization
problem

Need compression



An Important Detail

• Solve two entangled problems for localization

– Estimate source locations

– Estimate source signals



ELVIS

• Instead, solve one localization problem

– Estimate source locations by exploiting random 
projections of observed
signals

– Estimate source signals



ELVIS

• Instead, solve one localization problem

– Estimate source locations by exploiting random 
projections of observed
signals

– Estimate source signals

• Bayesian model order selection & MAP estimation 
results in a decentralized sparse approximation 
framework that leverages

– Source sparsity

– Incoherence of sources

– Spatial sparsity of sources

[VC, Boufounos, Baraniuk, Gilbert, Strauss]



ELVIS

• Use random projections of 
observed signals two ways:

– Create local sensor dictionaries 
that sparsify source locations

– Create intersensor communication 
messages

(K targets on N-dim grid)



ELVIS

• Use random projections of 
observed signals two ways:

– Create local sensor dictionaries 
that sparsify source locations

sample at source sparsity
– Create intersensor communication 

messages
communicate at spatial sparsity
robust to (i) quantization

(ii) packet drops

No Signal 
Reconstruction



ELVIS

• Use random projections of 
observed signals two ways:

– Create local sensor dictionaries 
that sparsify source locations

sample at source sparsity
– Create intersensor communication 

messages
communicate at spatial sparsity
robust to (i) quantization

(ii) packet drops

• Provable greedy estimation for ELVIS dictionaries

Bearing pursuit

No Signal 
Reconstruction



Field Data Results
5 vehicle convoy

>100 × sub-Nyquist



Yet Another Application

20% Compression
No performance 
loss in tracking



Conclusions

• Why CS works: stable embedding for signals 
with concise geometric structure

• Sparse signals >> model-sparse signals

• Compressible signals >> model-compressible signals

upshot: fewer measurements
faster and more stable recovery

new concept: RAmP



Volkan Cevher / volkan@rice.edu
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