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Digital Data Acquisition

Foundation: Shannon/Nyquist sampling theorem

“if you sample densely enough
(at the Nyquist rate), you can
perfectly reconstruct the
original analog data”

time space
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Major Trends In Sensing

higher resolution / denser sampling

large numbers of sensors

INncreasing # of modalities / mobility



Major Trends In Sensing

Motivation: solve bigger / more important problems

decrease acquisition times / costs

entertainment...



Problems of the Current Paradigm

e Sampling at Nyquist rate “*M

— expensive / difficult CONM“”Q%ﬂ IONS

3 i“‘ Sur\mﬂng the
- Data Deluge
1

nnnnnnnnnnnnnn

o

“f ot .
- "% Extrac tion
e Data deluge s i

;o

ATy @ CTOson
Virtualization
i 1

WWWWWW

— communications / storage

e Sample then compress

— not future proof




Approaches

e Do nothing / Ignore

be content with
where we are...

— generalizes well

— robust



Approaches

e Finite Rate of Innovation

Sketching / Streaming
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Compressive Sensing
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Approaches

e Finite Rate of Innovation
Sketching / Streaming

Compressive Sensing
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Today — Beyond Sparsity

Sensing via dimensionality reduction

Model-based Compressive Sensing
w/ Structured Sparsity Models

— Reducing sampling / processing / communication costs
— Increasing recovery / processing speed

— Improving robustness / stability



Compressive Sensing 101

e Goal: Recover a sparse or
compressible signal @ ..l .:
from measurements Y .ﬂ H:!
Mx1 MxN (M<N)
e Problem: Random
projection @ not full rank
N

e Solution: Exploit the sparsity/compressibility
geometry of acquired signal &
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Compressive Sensing 101

compressible signal & I.;F .: :

from measurements Y
— 1id Gaussian

e Problem: Random — iid Bernoulli =1
projection @ not full rank
but satisfies Restricted Isometry Property (RIP)

Y
e Goal: Recover a sparse or i “?ﬁ EE

e Solution: Exploit the sparsity/compressibility
geometry of acquired signal &
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Compressive Sensing 101
Y P

e Goal: Recover as “FI.T
cover asparse or B [AdMial
compressible signal @ =
o

from measurements Y 'm

e Problem: Random
projection @ not full rank

e Solution: Exploit the model
geometry of acquired signal &
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Concise Signal Structure

e Sparse signal: only K out of V
coordinates nonzero

— model: union of K-dimensional subspaces
aligned w/ coordinate axes

K N

sorted index



Concise Signal Structure

e Sparse signal: only K out of V
coordinates nonzero
— model: union of K-dimensional subspaces

e Compressible signal: sorted coordinates decay
rapidly to zero

— model: p ball: ||33||p — Z |33z| <1, p<l1
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Concise Signal Structure

e Sparse signal: only K out of V
coordinates nonzero
— model: union of K-dimensional subspaces

e Compressible signal: sorted coordinates decay
rapidly to zero

well-approximated by a K-sparse signal
(simply by thresholding)
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Restricted Isometry Property (RIP)

e Preserve the structure of sparse/compressible signals
e RIP of order 2K implies: for all K-sparse x; and X,

[Pz — Ps||3

|21 — x2]|3

< (14 o)
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K-planes




Restricted Isometry Property (RIP)

e Preserve the structure of sparse/compressible signals

e Random subGaussian (iid Gaussian, Bernoulli) matrix
has the RIP with high probability if

M = O(K log(N/K))

RY RM

K-planes




Recovery Algorithms

e« Goal: given y=>bxr+e

recover XL {CB/ Ly = Cbx/}

« /1 and convex optimization formulations
— basis pursuit, Dantzig selector, Lasso, ...

r = argmin||xz||1 s.t. y = dx

e Greedy algorithms
— orthogonal matching pursuit,
iterative thresholding (IT),
compressive sensing matching pursuit (CoSaMP)

— at their core: iterative sparse approximation

M = O(KIlog(N/K))




Performance of Recovery

e Using ¢1 methods, IT, CoSaMP

e Sparse signals

— noise-free measurements: exact recovery
— noisy measurements: stable recovery

e Compressible signals

— recovery as good as K-sparse approximation
r — TK||/
|z —wclles (o
K1/2

CS recovery signhal K-term noise
error approx error

M = O(KIlog(N/K))

|z — ||, < C1llz — zK]le, + C2




From Sparsity
to
Model-based (structured)
Sparsity



Sparse Models

h-

pixels:
background subtracted
iImages

wavelets: Gabor atoms:
natural images chirps/tones



Sparse Models

e Sparse/compressible signal model captures
simplistic primary structure

sparse image



Beyond Sparse Models

e Sparse/compressible signal model captures
simplistic primary structure

e Modern compression/processing algorithms capture
richer secondary coefficient structure

pixels:
background subtracted
images

wavelets: Gabor atoms:
natural images chirps/tones



Sparse Signals

e Defn: K-sparse signals comprise a
particular set of K-dim canonical subspaces

RN
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Model-Sparse Signals

e Defn: A K-sparse signal model comprises a
particular (reduced) set of K-dim canonical
subspaces

RN




Model-Sparse Signals

e Defn: A K-sparse signal model comprises a
particular (reduced) set of K-dim canonical
subspaces

RN

e Structured subspaces

<> fewer subspaces
<> relaxed RIP

<> fewer measurements




Model-Sparse Signals

e Defn: A K-sparse signal model comprises a
particular (reduced) set of K-dim canonical
subspaces

RN

v

e Structured subspaces

<> increased signal discrimination
<> iImproved recovery perf.

<> faster recovery




Model-based CS

Running Example:
Tree-Sparse Signals

[Baraniuk, VC, Duarte, Hegde]



Wavelet Sparse

1-D signals 1-D wavelet transform
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Tree-Sparse

e Model: K-sparse coefficients
+ significant coefficients wa,0
lie on a rooted subtree

e Typical of wavelet

0 200 41::)0 50 100 150 200 250 transforms

of natural signals
and images
(piecewise smooth)

0 200 400 50 100 150 200 250



Tree-Sparse

e Model: K-sparse coefficients w20
+ significant coefficients
lie on a rooted subtree

e Sparse approx: find best set of coefficients

— sorting
— hard thresholding

e Tree-sparse approx: find best rooted subtree
of coefficients

— CSSA [Baraniuk]
— dynamic programming [Donoho]



Sparse

e Model: K-sparse coefficients

e RIP: stable embedding
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Tree-Sparse

e Model: K-sparse coefficients
+ significant coefficients
lie on a rooted subtree

e Tree-RIP: stable embedding

RY RM
T1 (D
T = — Ddxq
T

K-planes M=0(K) < O(K IOQ(N/K))
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Tree-Sparse

e Model: K-sparse coefficients
+ significant coefficients
lie on a rooted subtree

e Tree-RIP: stable embedding

e Recovery: new model based algorithms

[VC, Duarte, Hegde, Baraniuk; Baraniuk, VC, Duarte, Hegde]



Standard CS Recovery

e Iterative Thresholding

[Nowak, Figueiredo; Kingsbury, Reeves; Daubechies, Defrise, De Mol; Blumensath, Davies; ...]

Given y = $x, recover a sparse x
initialize: 7z0=0,r=vy, i=0

iteration:
o 1+— 1+ 1
o b— 2,1+ Py update signal estimate
e 7; — thresh(b, K) prune signal estimate
(best K-term approx)
¢ 7 y— P, update residual

return: 7z «— z;



Model-based CS Recovery

e Iterative Model Thresholding

[VC, Duarte, Hegde, Baraniuk; Baraniuk, VC, Duarte, Hegde]
Given y = dx, recover a model sparse x € M
initialize: 20=0,r=vy, 1=0

iftearantion-:
UL T ALV

o 11— 1+ 1

o b—Zi 1+ dlr update signal estimate

o 7, — M(b, K) prune signal estimate
—— (best K-term model approx)

o r—y— b update residual

return: 7 <« 7;



Tree-Sparse Signal Recovery

N=1024
M=80

AVAV,

target signal CosaMP,
(MSE=1.12)
L1-minimization Tree-sparse CoSaMP

(MSE=0.751) (MSE=0.037)



Compressible Signals

e Real-world signals are compressible, not sparse

e Recall: compressible <= well approximated
by sparse

— compressible signals lie close to a union of subspaces
— ie: approximation error decays rapidly as /X — 00

e If d has RIP, then \xz‘|

both sparse and
compressible signals
are stably recoverable

e —

K N

sorted index



Model-Compressible Signals

e Model-compressible <> well approximated
by model-sparse

— model-compressible signals lie close to a
reduced union of subspaces

— ie: model-approx error decays rapidly as K — oo



Model-Compressible Signals

e Model-compressible <> well approximated

by model-sparse
— model-compressible signals lie close to a
reduced union of subspaces

— ie: model-approx error decays rapidly as K — oo

e While model-RIP enables stable
model-sparse recovery,
model-RIP is not sufficient for stable
model-compressible recovery at O(K)!



Stable Recovery

e Stable model-compressible signal recovery at O(K)
requires that @ have both:
— RIP + Restricted Amplification Property

e RAMP: controls nonisometry of @ in the
approximation’s residual subspaces

optimal K-term optimal 2K-term residual subspace
model recovery model recovery (error not controlled
(error controlled (error controlled by @ RIP)

by P RIP) by P RIP)



Tree-RIP, Tree-RAMP

Theorem: An MxN iid subgaussian random matrix
has the Tree(K)-RIP if

2 (K ;a +1n Ilz +z‘) if K < log, N
M > ({ Tk Ty
\ Ih Tk =

Theorem: An MxN iid subgaussian random matrix
has the Tree(K)-RAMP if

. 9 N e
Ve (\/1++h—1) (l[)ﬂ + 21In KIERT) T z‘) if K <log, \
— (e 7 s (10K +21n 994 4 1) it K> log, N

N K

with probability 1 — exp(—t).



Simulation

e Number samples for correct recovery

e Pjecewise cubic
sighals +
wavelets

e Models/algorithms:

— compressible
(CoSaMP)

— tree-compressible
(tree-CoSaMP)

M/K

12t [ == Standard recow:fery -
— Model-based recovery e
10+ .“'.“’mw- _
: " O(K log N)
6_
O(K)
4;--___..-—
10 11 12 13 14

log,(N)

15



Performance of Recovery
e Using model-based IT, CoSaMP with RIP and RAmMP

e Model-sparse signals
— noise-free measurements: exact recovery
— Nnoisy measurements: stable recovery

e Model-compressible signals

— recovery as good as K-model-sparse approximation
o = zsndlle,
| 3€
K1/2

CS recovery sighal K-term noise
error model approx error

|z — ||, < Cillz — a0, + Co

[Baraniuk, VC, Duarte, Hegde]



Other Useful Models

e \WWhen the model-based framework makes sense:
— model with
» fast approximation algorithm
— sensing matrix P with
* model-RIP
* model-RAMP



Other Useful Models

e \WWhen the model-based framework makes sense:
— model with
» fast approximation algorithm
— sensing matrix P with
* model-RIP
* model-RAMP

e Ex: block sparsity 7/ signal ensembles
[Tropp, Gilbert, Strauss], [Stojnic, Parvaresh, Hassibi],
[Eldar, Mishali], [Baron, Duarte et al], [Baraniuk, VC, Duarte, Hegde]

e EXx: clustered signals
[VC, Duarte, Hegde, Baraniuk], [VC, Indyk, Hegde, Baraniuk]

e EX: neuronal spike trains
[Hegde, Duarte, VC] — Best paper award at SPARS’09



Block-Sparse Signal

CoSaMP (MSE = 0.723)

o block-sparse model recovery
Blocks are pre-specified. (MSE=0.015)



Block-Compressible Signal

k3

ke
—_—l .
—

target CoSaMP (MSE=0.711)

F_;r
e NS

H Ji 4

best 5-block approximation block-sparse recovery
(MSE=0.116) (MSE=0.195)



Clustered Sparsity

(K,C) sparse signals (1-D)

— K-sparse within at most C clusters

For stable recovery

\i

|

(model-RIP + RAmP) M = O(K + Clog(N/C))

[VC, Indyk, Hedge, Baraniuk]

Model approximation

using dynamic
programming

Includes
block sparsity
as a special case

o
o

o
o
T

Probability of perfect signal recovery

=
I
T

o
o
T

-----

I

¢ |==(K,C)—based recovery

===CoSaMP

I\Jo

3.5 4 4.5
M/K




Clustered Sparsity

e Model clustering of significant
pixels Iin space domain using
graphical model (MRF)

e [sing model approximation
via graph cuts

[VC, Duarte, Hedge, Baraniuk]

target Ising-model CoSaMP LP (FPC)
recovery recovery recovery



Neuronal Spike Trains

e Model the firing process of a
single neuron via 1D Poisson
process with spike trains

Tn = Yp_q apdln — ny]

- Exploit the refractory
period of neurons

e Model approximation problem:
- Find a K-sparse signal i
such that 0.1

its coefficients are separated \
0.05¢ N

by at least A A

0 10 20 30 40




Neuronal Spike Trains

e Model the firing process of a
single neuron via 1D Poisson

process with spike trains Ku
10 ms
- Stable recovery ooy
M =O(KIlog(N/K — A)) __;n;;;;_,.;,:
« Model approximation solution: AT
a0.8-
— Integer program 2
® 0.6}
— Efficient & provable 2 s
solution due to 504
total unimodularity of £
linear constraint - ; -+ =Model-based recovery
x". | —-TCoSaMIP |
B "% 3 35 4 45 5

[Hedge, Duarte, VC; SPARS’'09] M/K






Signal recovery is not always required.

ELVIS:

Enhanced
Localization

via

Incoherence and
Sparsity




Localization Problem

e Goal: Localize targets
by fusing measurements
from a network of sensors

[VC, Duarte, Baraniuk; Model and Zibulevsky; VC, Gurbuz,
McClellan, Chellappa; Malioutov, Cetin, and Willsky; Chen et al.]



Localization Problem

e Goal: Localize targets A
by fusing measurements ~ atoustic sensors(
from a network of sensors |

— collect time signal data
— communicate signals across
the network

— solve an optimization
problem




Bottlenecks

- Goal: Localize targets “*M

by fusing measurements
from a network of sensors

Need compression

— collect time signal data
» requires potentially
high-rate (Nyquist)
sampling
— communicate signals
across the network

= potentially large
communication
burden

— solve an optimization
problem




An Important Detall

e Solve two entangled problems for localization

— Estimate source locations

— Estimate source signals




ELVIS

e Instead, solve one localization problem

— Estimate source locations by exploiting random
projections of observed
signals

— Estimate




ELVIS

e Instead, solve one localization problem

— Estimate source locations by exploiting random
projections of observed
signals

— Estimate

[VC, Boufounos, Baraniuk, Gilbert, Strauss]

e Bayesian model order selection & MAP estimation
results in a decentralized sparse approximation
framework that leverages

— Source sparsity
— Incoherence of sources

— Spatial sparsity of sources



ELVIS

e Use random projections of
observed signals two ways:

— Create local sensor dictionaries
that sparsify source locations

— Create intersensor communication
messages

(K targets on N-dim grid)
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ELVIS 1

mEs: Smamemr s
e Use random projections of £ 0 | § |
observed signals two ways: ; No Signal
— Create local sensor dictionaries | Reconstruction
that sparsify source locations _ ﬁl | _ lf‘ _
sample at source sparsity g :
— Create intersensor communication :
messages N

communicate at spatial sparsity ~ O(K log (N/K))

robust to (1) guantization 9
(ii) packet drops

D= oV

-ty




ELVIS 1.

4 3 i
e Use random projections of NI 5% | | §
observed signals two ways: No Signal
— Create local sensor dictionaries Reconstruction .
that sparsify source locations il ﬁ 3 _ |Q, _
sample at source sparsity A z | . :
— Create Intersensor communication = —
messages N

communicate at spatial sparsity ~ O(K log(N/K))

robust to (1) guantization
(i) packet drops

e Provable greedy estimation for ELVIS dictionaries

Bearing pursuit



Field Data Results

N = 2000

5 vehicle convoy

M =15
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Yet Another Application

20% Compression
No performance
loss In tracking




Conclusions

 Why CS works: stable embedding for signals
with concise geometric structure

e Sparse signals >>= model-sparse signals

e Compressible signals >> model-compressible signals

upshot: fewer measurements
faster and more stable recovery

new concept: RAMP



Volkan Cevher / volkan@rice.edu
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