

Compressive Sensing and Applications

Volkan Cevher

volkan@rice.edu

Rice University

RICE UNIVERSITY

Acknowledgements

- Rice DSP Group (Slides)
 - Richard Baraniuk
 - Mark Davenport,
 - Marco Duarte,
 - Chinmay Hegde,
 - Jason Laska,
 - Shri Sarvotham,
 - Mona Sheikh
 - Stephen Schnelle...
 - Mike Wakin, Justin Romberg, Petros Boufounos, Dror Baron

Outline

- Introduction to Compressive Sensing (CS)
 - motivation
 - basic concepts
- CS Theoretical Foundation
 - geometry of sparse and compressible signals
 - coded acquisition
 - restricted isometry property (RIP)
 - signal recovery
- CS in Action
- Summary

Sensing

Digital Revolution

Pressure is on Digital Sensors

• Success of digital data acquisition is placing increasing pressure on signal/image processing hardware and software to support

higher resolution / denser sampling

» ADCs, cameras, imaging systems, microarrays, ...

large numbers of sensors

» image data bases, camera arrays, distributed wireless sensor networks, ...

increasing numbers of modalities

» acoustic, RF, visual, IR, UV, x-ray, gamma ray, ...

Pressure is on Digital Sensors

 Success of digital data acquisition is placing increasing pressure on signal/image processing hardware and software to support

higher resolution / denser sampling

» ADCs, cameras, imaging systems, microarrays, ...

Χ

large numbers of sensors

» image data bases, camera arrays, distributed wireless sensor networks, ...

x increasing numbers of modalities

» acoustic, RF, visual, IR, UV

deluge of data

» how to acquire, store, fuse, process efficiently?

Digital Data Acquisition

• Foundation: Shannon/Nyquist sampling theorem

"if you sample densely enough (at the Nyquist rate), you can perfectly reconstruct the original analog data"

time

space

Sensing by Sampling

- Long-established paradigm for digital data acquisition
 - uniformly sample data at Nyquist rate (2x Fourier bandwidth)

$$x \rightarrow \text{sample}^N$$

Sensing by Sampling

- Long-established paradigm for digital data acquisition
 - uniformly sample data at Nyquist rate (2x Fourier bandwidth)

Sensing by Sampling

- Long-established paradigm for digital data acquisition
 - uniformly sample data at Nyquist rate (2x Fourier bandwidth)
 - compress data

Sparsity / Compressibility

N pixels

 $K \ll N$ large wavelet coefficients

(blue = 0)

N wideband signal samples

 $K \ll N$ large Gabor (TF) coefficients

Sample / Compress

- Long-established paradigm for digital data acquisition
 - uniformly *sample* data at Nyquist rate
 - compress data

What's Wrong with this Picture?

 Why go to all the work to acquire N samples only to discard all but K pieces of data?

What's Wrong with this Picture?

linear processing linear signal model (bandlimited subspace) nonlinear processing nonlinear signal model (union of subspaces)

IN transmit/store sample compress \mathcal{X} sparse / compressible wavelet transform \widehat{r} receive decompress

Compressive Sensing

- Directly acquire "compressed" data
- Replace samples by more general "measurements"

$$K \approx M \ll N$$

Compressive Sensing

Theory I Geometrical Perspective

Sampling

- Signal x is K-sparse in basis/dictionary Ψ $\Psi = I$
 - WLOG assume sparse in space domain

Sampling

- Signal x is K-sparse in basis/dictionary Ψ – WLOG assume sparse in space domain $\Psi = I$
- Samples

Compressive Sampling

• When data is sparse/compressible, can directly acquire a *condensed representation* with no/little information loss through linear *dimensionality reduction* $y = \Phi x$

Projection Φ
 not full rank...

M < N

... and so loses information in general

- Ex: Infinitely many x 's map to the same y

• But we are only interested in *sparse* vectors

 Projection Φ not full rank...

K columns

M < N

... and so loses information in general

• But we are only interested in *sparse* vectors

• Φ is effectively $M \times K$

- But we are only interested in *sparse* vectors
- Design Φ so that each of its MxK submatrices are full rank

2K columns

- Goal: Design Φ so that its
 Mx2K submatrices are full rank
 - difference $x_1 x_2$ between two *K*-sparse vectors is 2*K* sparse in general
 - preserve information in *K*-sparse signals
 - **Restricted Isometry Property** (RIP) of order 2K

Unfortunately...

2K columns

- Goal: Design Φ so that its Mx2K submatrices are full rank (Restricted Isometry Property – RIP)
- Unfortunately, a combinatorial, NP-complete design problem

Insight from the 80's [Kashin, Gluskin]

- Draw Φ at **random**
 - iid Gaussian

. . .

– iid Bernoulli ± 1

 $2K\,{
m columns}$

- Then Φ has the RIP with high probability as long as $M = O(K \log(N/K)) \ll N$
 - Mx2K submatrices are full rank
 - stable embedding for sparse signals
 - extends to compressible signals in $\,\ell_p\,$ balls

Compressive Data Acquisition

- Measurements $\mathcal{Y} = random linear combinations$ of the entries of \mathcal{X}
- WHP does not distort structure of sparse signals

 no information loss

• Goal: Recover signal x from measurements y

 Challenge: Random projection Φ not full rank (ill-posed inverse problem)

 Solution: Exploit the sparse/compressible geometry of acquired signal x

Sparse signal:

only *K* out of *N* coordinates nonzero

- Sparse signal: only K out of N coordinates nonzero
 - model: union of K-dimensional subspaces aligned w/ coordinate axes

- Sparse signal: only K out of N
 coordinates nonzero
 - model: union of K-dimensional subspaces

Compressible signal:

sorted coordinates decay rapidly to zero

- Sparse signal: only K out of N coordinates nonzero
 - model: union of K-dimensional subspaces

- Random projection Φ not full rank
- Recovery problem: given $y = \Phi x$ find x
- Null space
- So search in null space for the "best" *x* according to some criterion
 - ex: least squares

Recovery:
 (ill-posed inverse problem)

given $y = \Phi x$ find x (sparse)

• ℓ_2 fast

 $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$

$$\widehat{x} = (\Phi^T \Phi)^{-1} \Phi^T y$$

pseudoinverse

- Recovery:
 (ill-posed inverse problem)
- given $y = \Phi x$ find x (sparse)

• ℓ_2 fast, wrong

 $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$

 ${\mathcal X}$

 $\widehat{x} = (\Phi^T \Phi)^{-1} \Phi^T y$

pseudoinverse
Why ℓ_2 Doesn't Work

for signals sparse in the **space/time domain**

$$\widehat{x} = \arg\min_{y = \Phi x'} \|x'\|_2$$

least squares, minimum ℓ_2 solution is almost **never sparse**

null space of Φ translated to \mathfrak{X} (random angle)

• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x

•
$$\ell_2$$
 fast, wrong

• ℓ_0

 $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$

$$\widehat{x} = \arg\min_{\substack{y = \Phi x}} \|x\|_{0}$$

$$\uparrow$$
number of
nonzero
entries

"find sparsest \mathcal{X} in translated nullspace"

given Reconstruction/decoding: Φx y =find \mathcal{X} (ill-posed inverse problem)

· l? fast, wrong

• ℓ_0

correct: only *M=2K* measurements required to reconstruct K-sparse signal $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$

```
\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0
                number of
```

nonzero entries

given $y = \Phi x$ Reconstruction/decoding: find \mathcal{X} (ill-posed inverse problem)

· l? fast, wrong

• ℓ_0

correct: only M=2Kmeasurements required to reconstruct K-sparse signal $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$

 $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$ number of nonzero

entries

slow: NP-complete algorithm

- Recovery: (ill-posed inverse problem)
- ℓ_2 fast, wrong
- ℓ_0 correct, slow

• l₁

given $y = \Phi x$ find x (sparse)

- $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$
- $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$
- $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_1$

linear program

number of measurements required $M = O(K \log(N/K)) \ll N$

correct, efficient

mild oversampling

[Candes, Romberg, Tao; Donoho]

Why ℓ_1 Works

for signals sparse in the **space/time domain**

$$\widehat{x} = \arg\min_{y = \Phi x'} \|x'\|_1$$

minimum ℓ_1 solution = sparsest solution (with high probability) if

 $M = O(K \log(N/K)) \ll N$

Universality

 Random measurements can be used for signals sparse in any basis

$$x = \Psi \alpha$$

Universality

 Random measurements can be used for signals sparse in *any* basis

$$y = \Phi x = \Phi \Psi \alpha$$

Universality

 Random measurements can be used for signals sparse in *any* basis

$$y = \Phi x = \Phi \Psi \alpha = \Phi' \alpha$$

$$y \qquad \Phi' \qquad \alpha$$

$$N \times 1$$

sparse coefficient vector

K nonzero entries

Compressive Sensing

- Directly acquire "compressed" data
- Replace *N* samples by *M* random projections

$$M = O(K \log(N/K))$$

Compressive Sensing

Theory II Stable Embedding

Johnson-Lindenstrauss Lemma

• JL Lemma: random projection stably embeds a cloud of *Q* points whp provided $M = O(\log Q)$

- Proved via concentration inequality
- Same techniques link JLL to RIP [Baraniuk, Davenport, DeVore, Wakin, *Constructive Approximation*, 2008]

Connecting JL to RIP

Consider effect of random JL Φ on each K-plane

- construct covering of points Q on unit sphere
- JL: isometry for each point with high probability
- union bound \rightarrow isometry for all points q in Q
- extend to isometry for all x in K-plane

Connecting JL to RIP

Consider effect of random JL Φ on each K-plane

- construct covering of points Q on unit sphere
- JL: isometry for each point with high probability
- union bound \rightarrow isometry for all points q in Q
- extend to isometry for all x in K-plane
- union bound \rightarrow isometry for all K-planes

Favorable JL Distributions

• Gaussian

$$\phi_{i,j} \sim \mathcal{N}\left(0, \frac{1}{M}\right)$$

• Bernoulli/Rademacher [Achlioptas]

$$\phi_{i,j} := \begin{cases} +\frac{1}{\sqrt{M}} \\ -\frac{1}{\sqrt{M}} \end{cases}$$

with probability $\frac{1}{2}$, with probability $\frac{1}{2}$

- "Database-friendly" [Achlioptas]
 - with probability $\frac{1}{6}$,
 - with probability $\frac{2}{3}$,
 - with probability $\frac{1}{6}$

$$\phi_{i,j} := \begin{cases} +\sqrt{\frac{3}{M}} \\ 0 \\ -\sqrt{\frac{3}{M}} \end{cases}$$

• Random Orthoprojection to R^M [Gupta, Dasgupta]

RIP as a "Stable" Embedding

• RIP of order 2K implies: for all K-sparse x_1 and x_2 .

$$(1 - \delta_{2K}) \leq \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \leq (1 + \delta_{2K})$$

Compressive Sensing

Recovery Algorithms

CS Recovery Algorithms

- Convex optimization:
 - noise-free signals
 - Linear programming (Basis pursuit)
 - FPC
 - Bregman iteration, ...
 - noisy signals
 - Basis Pursuit De-Noising (BPDN)
 - Second-Order Cone Programming (SOCP)
 - Dantzig selector
 - GPSR, ...
- Iterative greedy algorithms
 - Matching Pursuit (MP)
 - Orthogonal Matching Pursuit (OMP)
 - StOMP
 - CoSaMP
 - Iterative Hard Thresholding (IHT), ...

software @ dsp.rice.edu/cs

SOCP

- Standard LP recovery $\min \|x\|_1 \ \ \text{subject to} \ y = \Phi x$
- Noisy measurements

$$y = \Phi x + n$$

• Second-Order Cone Program

min $||x||_1$ subject to $||y - \Phi x||_2 \le \epsilon$

• Convex, quadratic program

BPDN

- Standard LP recovery $\min \|x\|_1 \ \ \text{subject to} \ y = \Phi x$
- Noisy measurements

$$y = \Phi x + n$$

• Basis Pursuit De-Noising

$$\min \frac{1}{2} \|y - \Phi x\|_2 + \lambda \|x\|_1$$

• Convex, quadratic program

Matching Pursuit

- Greedy algorithm
- Key ideas:

(1) measurements y composed of sum of *K* columns of Φ

(2) identify which K columns sequentially according to size of contribution to \mathcal{Y}

Matching Pursuit

• For each column ϕ_i compute

 $\widehat{x}_i = \langle y, \phi_i \rangle$

- Choose largest $|\widehat{x}_i|$ (greedy)
- Update estimate \widehat{x} by adding in \widehat{x}_i

- Form residual measurement y and iterate until convergence

$$y' = y - x_i \phi_i$$

Orthogonal Matching Pursuit

• Same procedure as Matching Pursuit

- $\begin{array}{c} y \\ \hline \end{array} = \begin{array}{c} \Phi \\ \hline \end{array} \\ i \end{array}$
- Except at each iteration:
 - remove selected column ϕ_i
 - re-orthogonalize the remaining columns of $\,\Phi\,$
- Converges in *K* iterations

Compressive Sensing In Action

Cameras

"Single-Pixel" CS Camera

"Single-Pixel" CS Camera

- Flip mirror array *M* times to acquire *M* measurements
- Sparsity-based (linear programming) recovery

First Image Acquisition

target 65536 pixels

11000 measurements (16%)

1300 measurements (2%)

Second Image Acquisition

4096 pixels

500 random measurements

CS Low-Light Imaging with PMT

true color low-light imaging

256 x 256 image with 10:1 compression

[Nature Photonics, April 2007]

Hyperspectral Imaging

Compressive Sensing In Action

A/D Converters

Analog-to-Digital Conversion

- Nyquist rate limits reach of today's ADCs
- "Moore's Law" for ADCs:
 - technology Figure of Merit incorporating sampling rate and dynamic range doubles every 6-8 years
- DARPA Analog-to-Information (A2I) program
 - wideband signals have high Nyquist rate but are often sparse/compressible
 - develop new ADC technologies to exploit
 - new tradeoffs among
 Nyquist rate, sampling rate,
 dynamic range, ...

frequency hopper spectrogram

Analog-to-Information Conversion

 Sample near signal's (low) "information rate" rather than its (high) Nyquist rate

Example: Frequency Hopper

Nyquist rate sampling

20x sub-Nyquist sampling

spectrogram

sparsogram

Compressive Sensing In Action

Data Processing

Information Scalability

 Many applications involve signal *inference* and not *reconstruction*

detection < **classification** < **estimation** < **reconstruction**

fairly computationally intense

Information Scalability

 Many applications involve signal *inference* and not *reconstruction*

detection < **classification** < **estimation** < **reconstruction**

 Good news: CS supports efficient learning, inference, processing directly on compressive measurements

 Random projections ~ sufficient statistics for signals with concise geometrical structure

Matched Filter

- Detection/classification with K unknown articulation parameters
 - Ex: position and pose of a vehicle in an image
 - Ex: time delay of a radar signal return
- Matched filter: joint parameter estimation and detection/classification
 - compute sufficient statistic for each potential target and articulation
 - compare "best" statistics to detect/classify

Matched Filter Geometry

- Detection/classification with K unknown articulation parameters
- Images are points in \mathbf{R}^N
- Classify by finding closest target template to data for each class (AWG noise)
 distance or inner product

target templates from generative model or training data (points)

 \mathbf{R}^N

data

Matched Filter Geometry

- Detection/classification with K unknown articulation parameters
- Images are points in \mathbf{R}^N
- Classify by finding closest target template to data
- As template articulation parameter changes, points map out a *K*-dim nonlinear manifold
- Matched filter classification
 = closest manifold search

data

CS for Manifolds

• Theorem:

 $M = O(K \log N)$
random measurements
stably embed manifold
whp

[Baraniuk, Wakin, *FOCM* '08] related work: [Indyk and Naor, Agarwal et al., Dasgupta and Freund]

- Stable embedding
- Proved via concentration inequality arguments (JLL/CS relation)

CS for Manifolds

• Theorem:

 $M = O(K \log N)$ random measurements stably embed manifold whp

- Enables parameter estimation and MF detection/classification directly on compressive measurements
 - K very small in many applications (# articulations)

Example: Matched Filter

- Detection/classification with K=3 unknown articulation parameters
 - 1. horizontal translation
 - 2. vertical translation
 - 3. rotation

Smashed Filter

 Detection/classification with K=3 unknown articulation parameters (manifold structure)

 Dimensionally reduced matched filter directly on compressive measurements

 $M = O(K \log N)$

Smashed Filter

- Random shift and rotation (*K*=3 dim. manifold)
- Noise added to measurements
- Goal: identify most likely position for each image class identify most likely class using nearest-neighbor test

Compressive Sensing

Summary

CS Hallmarks

CS changes the rules of the data acquisition game

 exploits a priori signal *sparsity* information

Stable

acquisition/recovery process is numerically stable

Universal

- same random projections / hardware can be used for any compressible signal class (generic)
- Asymmetrical (most processing at decoder)
 - conventional: smart encoder, dumb decoder
 - CS: dumb encoder, smart decoder
- Random projections weakly encrypted

CS Hallmarks

Democratic

- each measurement carries the same amount of information
- robust to measurement loss and quantization simple encoding
- Ex: wireless streaming application with data loss
 - conventional: complicated (unequal) error protection of compressed data
 - DCT/wavelet low frequency coefficients
 - CS: merely stream additional measurements and reconstruct using those that arrive safely (fountain-like)

After the Break

Beyond Sparsity with structured sparsity models.

volkan@rice.edu

dsp.rice.edu/cs