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• Introduction to Compressive Sensing (CS) 

– motivation
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• Summary



Sensing



Digital Revolution



Pressure is on Digital Sensors

• Success of digital data acquisition is placing increasing pressure 
on signal/image processing hardware and software to support

higher resolution / denser sampling
» ADCs, cameras, imaging systems, microarrays, …

large numbers of sensors
» image data bases, camera arrays, 

distributed wireless sensor networks, …

increasing numbers of modalities
» acoustic, RF, visual, IR, UV, x-ray, gamma ray, …



Pressure is on Digital Sensors

• Success of digital data acquisition is placing increasing pressure 
on signal/image processing hardware and software to support

higher resolution / denser sampling
» ADCs, cameras, imaging systems, microarrays, …

x
large numbers of sensors

» image data bases, camera arrays, 
distributed wireless sensor networks, …

x
increasing numbers of modalities

» acoustic, RF, visual, IR, UV

deluge of data
» how to acquire, store, 

fuse, process efficiently?



Digital Data Acquisition

• Foundation:  Shannon/Nyquist sampling theorem
“if you sample densely enough
(at the Nyquist rate), you can 
perfectly reconstruct the original 
analog data”

time space



Sensing by Sampling

• Long-established paradigm for digital data acquisition
– uniformly sample data at Nyquist rate (2x Fourier bandwidth) 

sample
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data!



Sensing by Sampling

• Long-established paradigm for digital data acquisition
– uniformly sample data at Nyquist rate (2x Fourier bandwidth)
– compress data

compress transmit/store

receive decompress

sample

JPEG
JPEG2000

…



Sparsity / Compressibility
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Sample / Compress

compress transmit/store

receive decompress

sample

sparse /
compressible
wavelet
transform

• Long-established paradigm for digital data acquisition
– uniformly sample data at Nyquist rate 
– compress data



What’s Wrong with this Picture?

• Why go to all the work to acquire 
N samples only to discard all but 
K pieces of data?

compress transmit/store

receive decompress

sample

sparse /
compressible
wavelet
transform



What’s Wrong with this Picture?
linear processing
linear signal model
(bandlimited subspace)

compress transmit/store

receive decompress

sample

sparse /
compressible
wavelet
transform

nonlinear processing
nonlinear signal model
(union of subspaces)



Compressive Sensing

• Directly acquire “compressed” data

• Replace samples by more general “measurements”

compressive sensing transmit/store

receive reconstruct



Compressive Sensing

Theory I
Geometrical Perspective



• Signal      is    -sparse in basis/dictionary
– WLOG assume sparse in space domain

Sampling

sparse
signal

nonzero
entries



• Signal      is    -sparse in basis/dictionary
– WLOG assume sparse in space domain

• Samples

sparse
signal

nonzero
entries

measurements

Sampling



Compressive Sampling
• When data is sparse/compressible, can directly 

acquire a condensed representation with 
no/little information loss through 
linear dimensionality reduction

measurements sparse
signal

nonzero
entries



How Can It Work?

• Projection 
not full rank…

… and so 
loses information in general

• Ex: Infinitely many    ’s map to the same 
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How Can It Work?

• Projection 
not full rank…

… and so 
loses information in general

• But we are only interested in sparse vectors

• Design so that each of its MxK submatrices 
are full rank

columns



How Can It Work?

• Goal:  Design      so that its 
Mx2K submatrices are full rank

– difference                  between two K-sparse vectors 
is 2K sparse in general

– preserve information in K-sparse signals

– Restricted Isometry Property (RIP) of order 2K

columns



Unfortunately…

• Goal:  Design      so that its 
Mx2K submatrices are full rank
(Restricted Isometry Property – RIP)

• Unfortunately, a combinatorial, 
NP-complete design problem

columns



Insight from the 80’s [Kashin, Gluskin]

• Draw     at random
– iid Gaussian
– iid Bernoulli

… 

• Then      has the RIP with high probability  
as long as      

– Mx2K submatrices are full rank
– stable embedding for sparse signals
– extends to compressible signals in        balls

columns



Compressive Data Acquisition

• Measurements      = random linear combinations
of the entries of

• WHP does not distort structure of sparse signals 
– no information loss

measurements sparse
signal

nonzero
entries



CS Signal Recovery

• Goal:  Recover signal 
from measurements

• Challenge:  Random
projection      not full rank
(ill-posed inverse problem)

• Solution:  Exploit the sparse/compressible
geometry of acquired signal



• Sparse signal: only K out of N
coordinates nonzero

Concise Signal Structure

sorted index



• Sparse signal: only K out of N
coordinates nonzero

– model:  union of K-dimensional subspaces
aligned w/ coordinate axes

Concise Signal Structure

sorted index



• Sparse signal: only K out of N
coordinates nonzero

– model:  union of K-dimensional subspaces

• Compressible signal: sorted coordinates decay 
rapidly to zero

Concise Signal Structure
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decay



• Sparse signal: only K out of N
coordinates nonzero

– model:  union of K-dimensional subspaces

• Compressible signal: sorted coordinates decay 
rapidly to zero

– model:        ball:

Concise Signal Structure

sorted index

power-law
decay



CS Signal Recovery
• Random projection 

not full rank

• Recovery problem:
given
find

• Null space

• So search in null space 
for the “best” 
according to some 
criterion
– ex: least squares



• Recovery: given
(ill-posed inverse problem) find           (sparse)

• fast

CS Signal Recovery

pseudoinverse



• Recovery: given
(ill-posed inverse problem) find           (sparse)

• fast, wrong

CS Signal Recovery

pseudoinverse



Why Doesn’t Work 

least squares,
minimum      solution
is almost never sparse

null space of 

translated to

(random angle)

for signals sparse in the 
space/time domain



• Reconstruction/decoding: given
(ill-posed inverse problem) find

• fast, wrong

•

CS Signal Recovery

number of
nonzero
entries

“find sparsest
in translated nullspace”



• Reconstruction/decoding: given
(ill-posed inverse problem) find

• fast, wrong

• correct:
only M=2K
measurements 
required to 
reconstruct 
K-sparse signal

CS Signal Recovery

number of
nonzero
entries



• Reconstruction/decoding: given
(ill-posed inverse problem) find

• fast, wrong

• correct:
only M=2K
measurements 
required to 
reconstruct 
K-sparse signal 

slow: NP-complete
algorithm

CS Signal Recovery

number of
nonzero
entries



• Recovery: given
(ill-posed inverse problem) find           (sparse)

• fast, wrong

• correct, slow

• correct, efficient
mild oversampling
[Candes, Romberg, Tao; Donoho]

number of measurements required

CS Signal Recovery

linear program



Why      Works

minimum solution
= sparsest solution 
(with high probability) if

for signals sparse in the 
space/time domain



Universality

• Random measurements can be used for signals 
sparse in any basis
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Universality

• Random measurements can be used for signals 
sparse in any basis

sparse
coefficient

vector

nonzero
entries



Compressive Sensing

• Directly acquire “compressed” data

• Replace N samples by M random projections

transmit/store

receive linear pgm

…

random measurements



Compressive Sensing

Theory II
Stable Embedding



Johnson-Lindenstrauss Lemma

• JL Lemma:  random projection stably embeds 
a cloud of Q points whp provided

• Proved via concentration inequality

• Same techniques link JLL to RIP 
[Baraniuk, Davenport, DeVore, Wakin, Constructive Approximation, 2008]

Q points



Connecting JL to RIP
Consider effect of random JL Φ on each K-plane

– construct covering of points Q on unit sphere
– JL: isometry for each point with high probability
– union bound isometry for all points q in Q
– extend to isometry for all x in K-plane

K-plane



Connecting JL to RIP
Consider effect of random JL Φ on each K-plane

– construct covering of points Q on unit sphere
– JL: isometry for each point with high probability
– union bound isometry for all points q in Q
– extend to isometry for all x in K-plane
– union bound isometry for all K-planes

K-planes



• Gaussian

• Bernoulli/Rademacher [Achlioptas]

• “Database-friendly” [Achlioptas]

• Random Orthoprojection to RM [Gupta, Dasgupta]

Favorable JL Distributions



RIP as a “Stable” Embedding

• RIP of order 2K implies: for all K-sparse x1 and x2,

K-planes



Compressive Sensing

Recovery Algorithms



CS Recovery Algorithms
• Convex optimization: 

– noise-free signals
Linear programming (Basis pursuit)
FPC
Bregman iteration, …

– noisy signals
Basis Pursuit De-Noising (BPDN)
Second-Order Cone Programming (SOCP)
Dantzig selector
GPSR, …

• Iterative greedy algorithms
– Matching Pursuit (MP)
– Orthogonal Matching Pursuit (OMP)
– StOMP
– CoSaMP
– Iterative Hard Thresholding (IHT), …

software @
dsp.rice.edu/cs



SOCP

• Standard LP recovery

• Noisy measurements

• Second-Order Cone Program

• Convex, quadratic program



BPDN

• Standard LP recovery

• Noisy measurements

• Basis Pursuit De-Noising

• Convex, quadratic program



Matching Pursuit

• Greedy algorithm

• Key ideas:
(1) measurements 
composed of sum
of K columns of

(2) identify which K columns sequentially 
according to size of contribution to 

columns



Matching Pursuit

• For each column
compute

• Choose largest
(greedy)

• Update estimate      by adding in

• Form residual measurement
and iterate until convergence   



Orthogonal Matching Pursuit

• Same procedure
as Matching Pursuit

• Except at each iteration:

– remove selected column

– re-orthogonalize the remaining columns of

• Converges in K iterations



Compressive Sensing
In Action

Cameras



“Single-Pixel” CS Camera

random
pattern on
DMD array

DMD DMD

single photon 
detector

image
reconstruction

or
processing

w/ Kevin Kelly 

scene



“Single-Pixel” CS Camera

random
pattern on
DMD array

DMD DMD

single photon 
detector

image
reconstruction

or
processing

scene

• Flip mirror array M times to acquire M measurements
• Sparsity-based (linear programming) recovery

…



Single Pixel Camera

Object LED (light source)

DMD+ALP 
Board

Lens 1Lens 2
Photodiode 

circuit



Single Pixel Camera

Object LED (light source)

DMD+ALP 
Board

Lens 1Lens 2
Photodiode 

circuit



Single Pixel Camera

Object LED (light source)

DMD+ALP 
Board

Lens 1Lens 2
Photodiode 

circuit



Single Pixel Camera

Object LED (light source)

DMD+ALP 
Board

Lens 1Lens 2
Photodiode 

circuit



First Image Acquisition

target 
65536 pixels

1300 measurements 
(2%)

11000 measurements 
(16%)



Second Image Acquisition

500 
random measurements

4096 
pixels



CS Low-Light Imaging with PMT

true color low-light imaging

256 x 256 image with 10:1 
compression
[Nature Photonics, April 2007]



Hyperspectral Imaging

spectrometer

blue

red

near IR



Compressive Sensing
In Action

A/D Converters



Analog-to-Digital Conversion
• Nyquist rate limits reach of today’s ADCs

• “Moore’s Law” for ADCs:
– technology Figure of Merit incorporating sampling rate

and dynamic range doubles every 6-8 years

• DARPA Analog-to-Information (A2I) program
– wideband signals have 

high Nyquist rate 
but are often 
sparse/compressible

– develop new ADC 
technologies to exploit

– new tradeoffs among
Nyquist rate, sampling rate,
dynamic range, …

frequency hopper
spectrogram

time
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eq
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nc

y



Analog-to-Information Conversion
• Sample near signal’s (low) “information rate” 

rather than its (high) Nyquist rate

• Practical hardware:
randomized 
demodulator
(CDMA receiver)

A2I
sampling 
rate

number of
tones /
window

Nyquist
bandwidth



Example: Frequency Hopper

20x sub-Nyquist 
sampling

spectrogram sparsogram

Nyquist rate sampling 



Compressive Sensing
In Action

Data Processing



Information Scalability

• Many applications involve signal inference
and not reconstruction

detection < classification < estimation < reconstruction

fairly 
computationally
intense



Information Scalability

• Many applications involve signal inference
and not reconstruction

detection < classification < estimation < reconstruction

• Good news: CS supports efficient learning, 
inference, processing directly 
on compressive measurements

• Random projections ~ sufficient statistics
for signals with concise geometrical structure



Matched Filter
• Detection/classification with K unknown 

articulation parameters
– Ex: position and pose of a vehicle in an image
– Ex: time delay of a radar signal return

• Matched filter: joint parameter estimation and 
detection/classification
– compute sufficient statistic for each potential target and 

articulation
– compare “best” statistics to detect/classify



Matched Filter Geometry
• Detection/classification with K unknown 

articulation parameters

• Images are points in

• Classify by finding closest
target template to data
for each class (AWG noise)

– distance or inner product

data

target templates
from

generative model
or 

training data (points)



Matched Filter Geometry
• Detection/classification with K unknown 

articulation parameters

• Images are points in

• Classify by finding closest
target template to data

• As template articulation
parameter changes, 
points map out a K-dim
nonlinear manifold 

• Matched filter classification  
= closest manifold search

articulation parameter space

data



CS for Manifolds

• Theorem:

random measurements 
stably embed manifold
whp
[Baraniuk, Wakin, FOCM ’08]
related work:
[Indyk and Naor, Agarwal et al., 
Dasgupta and Freund]

• Stable embedding

• Proved via concentration 
inequality arguments
(JLL/CS relation)



CS for Manifolds

• Theorem:

random measurements 
stably embed manifold
whp

• Enables parameter 
estimation and MF
detection/classification
directly on compressive
measurements
– K very small in many 

applications (# articulations)



Example: Matched Filter

• Detection/classification with K=3 unknown 
articulation parameters
1. horizontal translation
2. vertical translation
3. rotation



Smashed Filter

• Detection/classification with K=3 unknown 
articulation parameters (manifold structure)

• Dimensionally reduced matched filter directly on 
compressive measurements



Smashed Filter
• Random shift and rotation (K=3 dim. manifold)
• Noise added to measurements
• Goal: identify most likely position for each image class

identify most likely class using nearest-neighbor test

number of measurements Mnumber of measurements M

av
g.
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Compressive Sensing

Summary



CS Hallmarks

• CS changes the rules of the data acquisition game
– exploits a priori signal sparsity information 

• Stable
– acquisition/recovery process is numerically stable

• Universal
– same random projections / hardware can be used for

any compressible signal class                     (generic)

• Asymmetrical (most processing at decoder)
– conventional: smart encoder, dumb decoder
– CS: dumb encoder, smart decoder

• Random projections weakly encrypted



CS Hallmarks

• Democratic
– each measurement carries the same amount of information
– robust to measurement loss and quantization simple 

encoding

• Ex:  wireless streaming application with data loss

– conventional:  complicated (unequal) error protection of 
compressed data

DCT/wavelet low frequency coefficients

– CS:  merely stream additional measurements and 
reconstruct using those that arrive safely (fountain-like)



After the Break

Beyond Sparsity with structured sparsity models.



dsp.rice.edu/cs

volkan@rice.edu
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