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Announcement

No assignment this week
Deadline programming assignment: June 18 (next lecture)
bayesml09lecture@googlemail.com
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Outline

1 Structured Mean Field (Variational Bayes)

2 Moment Parameters. Variational Relaxations
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Structured Mean Field (Variational Bayes)

Variational Mean Field

log Z ≥ supQ∈Q {EQ[Ψ(x )] + H[Q(x )]}

Q: Tractable subset of all distributions (factorization constraints)

Q =
{

Q(x ) =
∏

k
Qk (xSk )

}
, Sk disjoint

Tractable? For any k ,
Nk : Factor nodes j connected to any i ∈ Sk (Sk ∩ Cj 6= ∅)

Q′k (xSk ) ∝ exp
(∑

j∈Nk
EQ(xCj\Sk

)[Ψj(xCj )]

)
tractable to handle F1

Q(x ) completely factorized? Naive mean field
Anything more elaborate? Structured mean field
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Structured Mean Field (Variational Bayes)

Factorial Hidden Markov Model F2
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Structured Mean Field (Variational Bayes)

Factorial Hidden Markov Model

S1 = uppermost chain. Update? F3

Q(xS1): Markov chain (variable single node potentials)

Double node (transition) potentials of Q(xSk )? Fixed up front!
Forward-backward for single node marginals to update Q(xS1 ).
Implementation reduces to single HMM code, called with changing
evidence potentials

Not magic, but as expected:
If this does not happen, you made a mistake
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Structured Mean Field (Variational Bayes)

Variational Bayes

Another instance of re-naming game:
Nothing else than structured mean field
Often applied to P(x ,θ|y )
(y observed, x latent nuisance, θ latent parameters)
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Structured Mean Field (Variational Bayes)

Variational Bayes

Another instance of re-naming game:
Nothing else than structured mean field
Often applied to P(x ,θ|y )
(y observed, x latent nuisance, θ latent parameters)

Expectation maximization

maxθ log
∫

P(y ,x |θ) dx

≥ maxθ,Q(x )

{
EQ[log P(y ,x |θ)]

+ H[Q(x )]
}

Variational Bayes

log
∫

P(y ,x |θ) dxdθ

≥ maxQ(θ),Q(x )

{
EQ[log P(y ,x |θ)]

+ H[Q(x )] + H[Q(θ)]
}

Factorization assumption: Q(x ,θ) = Q(x )Q(θ)

Easy to write generic code (bit like MCMC Gibbs sampling)
Good approximation?
Can do better today for almost any well-studied model
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Moment Parameters. Variational Relaxations

Moment Parameters

log Z = supQ {EQ[Ψ(x )] + H[Q(x )]}

Q: Tractable subset of all distributions (factorization constraints)
⇒ Seems whole story. What else could there be?
Consider log-linear models: Ψj(xCj ) = θT

j f j(xCj ), θ = (θj)

EQ[Ψ(x )] =
∑

j
θT

j µj , µj := EQ[f j(xCj )], µ = (µj)

Moment parameters: Under mild assumptions on f j(xCj ):
Just another way (instead of θ) of parameterizing P(x )
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Moment Parameters. Variational Relaxations

Moment Parameters: Examples

P(x ;θ) = Z−1eθT f (x )

θ Natural parameters
f (x ) Statistics, representation
µ = Eθ [f (x )] Moment parameters

Representation minimal: For every z 6= 0, there is x :
zT (f (x )T 1)T 6= 0
Otherwise: Representation overcomplete F6
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Moment Parameters. Variational Relaxations

Moment Parameters: Examples

P(x ;θ) = Z−1eθT f (x )

θ Natural parameters
f (x ) Statistics, representation
µ = Eθ [f (x )] Moment parameters

Representation minimal: For every z 6= 0, there is x :
zT (f (x )T 1)T 6= 0
Otherwise: Representation overcomplete

1 Multinomial on graph with cliques Cj F6b

Convenient overcomplete representation: Components of f (x ):
Indicators on cliques Cj , indicators on intersections of cliques,
indicators on intersections of cliques, intersections, . . .
Equality constraints for µ:

Consistency on nonempty intersections
Sum to one on smallest intersections
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Moment Parameters. Variational Relaxations

Moment Parameters: Examples

P(x ;θ) = Z−1eθT f (x )

θ Natural parameters
f (x ) Statistics, representation
µ = Eθ [f (x )] Moment parameters

Representation minimal: For every z 6= 0, there is x :
zT (f (x )T 1)T 6= 0
Otherwise: Representation overcomplete

2 Gaussian MRF
Overcomplete representation: F6c

f (x ) =

(
x

vec(−xxT/2)

)
, θ =

(
r

vec(A)

)
Not minimal: A symmetric. {ij} 6∈ E → aij = aji = 0.
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Moment Parameters. Variational Relaxations

Variational Formulation of Bayesian Inference

log Z = supQ

{
θT EQ[f (x )] + H[Q(x )]

}
, f (x ) = [f j(xCj )]

Transform to moment parameters

What about the entropy?
Point of this exercise: M convex set of vectors, more useful
relaxation target than set of distributions
Close now: Exponential families, Fenchel duality, maximum
entropy. Full story:
Wainwright, Jordan: Graphical Models, Exponential Families, and Variational Inference
Foundations and Trends in Machine Learning, 1(1–2), pp. 1–305
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Moment Parameters. Variational Relaxations

Bayesian Inference is Convex Optimization

log Z = supµ∈M

{
θTµ + H[µ]

}
Marginal polytopeM: Convex set F8

Entropy µ 7→ H[µ]: Concave function onM
Posterior: Unique solution to convex optimization problem
Convex optimization can be intractable
M can be hard to fence in
θ ↔ µ can be hard to compute
H[µ] can be hard to compute
Took some steps. But worth it:
Rich literature on relaxations of hard convex problems
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Moment Parameters. Variational Relaxations

Variational Mean Field Revisited

log Z = supµ∈M

{
θTµ + H[µ]

}
Have to approximateM, H[µ]. One way you already know . . .

Entropy decomposes just as distribution: H[µ] =
∑

i H[µi ]

log Z ≥ supµ∈MNMF

{
θTµ +

∑
i
H[µi ]

}
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Moment Parameters. Variational Relaxations

Variational Mean Field Revisited

log Z = supµ∈M

{
θTµ + H[µ]

}
Have to approximateM, H[µ]. One way you already know . . .

M ⊃ MNMF :=

{
µ
∣∣∣ µCj (xCj ) =

∑
xCj

(∏
i∈Cj

Q(xi)

)
f j(xCj )

}
Inner approximation, induced by factorized distributions
Entropy decomposes just as distribution: H[µ] =

∑
i H[µi ]

log Z ≥ supµ∈MNMF

{
θTµ +

∑
i
H[µi ]

}
Non-convex relaxation: MNMF not convex F9
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Moment Parameters. Variational Relaxations

The Marginal Polytope

M =
{

(µj)
∣∣∣µj = EQ[f j(xCj )] for some Q(x )

}
Multinomial on graph. Minimal representation.
M convex polytope: Described by finite number
inequalities.
Complexity ofM: Number of inequalities F10

Complexity ofM→ complexity of exact inference [we’ll see why]
G tree: M described by O(n) inequalities [next lecture]
Many graphs G with cycles: M polytope description provably hard
(poly(n) inequalities would imply P=NP)
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Moment Parameters. Variational Relaxations

The Marginal Polytope

M =
{

(µj)
∣∣∣µj = EQ[f j(xCj )] for some Q(x )

}
Gaussian MRF. Minimal representation (upper triangle of A).
M exactly characterized by Σ = A−1 � 0.
Convex cone (not polytope): Tractable to describe F10b

G tree: M described by O(n) inequalities
General sparse G: Approximate inference still of interest, if exact
cost O(n3) too high
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Moment Parameters. Variational Relaxations

Wrap-Up

Structured Mean Field: Q(x ) product of tractable, disjoint factors
Variational Bayes: Another name for structured mean field
Bayesian (marginal) inference is a convex optimization problem
Variational approximations: Inner / outer bounds to marginal
polytope
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