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The lecture formally addresses the question of feasibility of learning in a hypothesis space and links empirically observed predic-

tion errors to the actual but unknown expected error when predicting quantities from an unknown distribution.
Section 1 presents the standard statistical learning model and casts some commonly encountered learning and estimation problems

into the model’s framework. Section 2 defines the notion of learnability in terms of Probably Approximately Correct (PAC) and
Agnostic PAC learnability. Section 3 then presents the link between the process of Emperical Risk minimization and PAC learnability.
Section 4 addresses the issue of selecting an appropriate hypothesis space and its effect on the expected risk. Many Empirical Risk
minimization problems are in general NP hard, Section 5 presents the use of Convex Surrogate functions to solve such problems in a
tractable way and yet achieve a bound on the risk function. Section 6 presents the theory of stability of learning algorithms and its to
link to obtaining algorithm specific generalization error bounds.

1 The standard statistical learning model

In this section we describe a model that is used to describe and analyze the performance of learning algorithms. The model comprises
of the following five components:

1. Training Data: The training dataDn := {Zi : 1 ≤ i ≤ n} is a set of samples drawn independently and identically from an unknown
distribution P defined on a setZ.

2. Hypothesis Class: The hypothesis class given byH , is a set of hypotheses h.

3. Loss Function: The loss function f : H ×Z → R is a function that describes the “loss” faced by choosing an hypothesis h ∈ H
when a data sample Z ∈ Z is observed.

4. Risk: Given the loss function f , we would like to find an hypothesis h ∈ H that minimizes the “risk” or expected loss faced on
drawing a new sample independently from the distribution P. We thus define the risk function F(h) := EP f (h,Z), where Z ∼ P.
Note the new is sample drawn independently from the same distribution as samples inDn. Note also that since the distribution
P is unknown the function F(h) is unknown and cannot be directly evaluated.

5. Goal: The goal of a learning algorithm is to find a “good hypothesis” ĥn ∈ H based on Dn such that F(ĥn) is “small”. We will
look at how this is done in Section 3.

We now see how some of the most commonly encountered learning and estimation problems can be cast using the components of
the above learning model.
Example 1. Binary Classification

1. The training data for a binary classification problem is a collection of input features Xi (say images) along with a binary (0-1)
label Yi.

2. The hypothesis classH is a set of classifiers h : X → {0, 1}. H can be a set of linear classifiers, a reproducing kernel Hilbert space,
or all possible realizations of a deep network.

3. The loss function is a binary loss f (h,Z) := 1{Yi,h(Xi)}, where Z ∼ P is independent ofDn

4. Using the Binary loss function we define risk as F(h) := EP f (h,Z), which is the probability of false classification

5. The goal of binary classification is to find a “good” classifier based on the training dataDn such that the resulting probability of
false classification is “small”.

Remark. The goal of binary classification is to minimize the probability of false classification under the unknown distribution P.
However if the distribution P was known the the classifier that minimizes the probability of false classification under P would be the
Bayes classifier,

h(x) = 1{P(Y=1|X=x)≥1/2},

In standard statistics this problem could be cast into a distribution estimation problem followed by Bayes classification, as is done in
logistic regression.
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Example 2. Logistic regression

1. The training data set considered is the same as that for binary classification.

2. For the hypothesis class, the class of linear classifiersH := {1{〈·,θ〉≤0} : θ ∈ Θ} for some parameter space Θ ⊆ Rp is considered.

A statistical model relating the input Xi and output Yi is assumed (canonical generalized linear model [1])

P (Yi = 1|Xi = xi) = 1 − P (Yi = 0|Xi = xi) =
1

1 + exp(−〈xi, θ\〉)
,

for some θ\ ∈ Θ. (See [2] for a Bayesian interpretation.)

3. The same loss function and risk for a binary classification problem are considered.

4. The goal is to find the maximum-likelihood estimator

θ̂n ∈ arg min
θ∈Θ

Ln(θ),

where Ln is the negative log-likelihood function. Output the classifier ĥn(·) = 1{〈·,θ̂n〉≤0}.

Example 3. Linear regression

1. The training data, Zi = (Xi,Yi) ∈ Z = Rp × R, is a collection of input output data on a euclidean space.

2. A set of linear mapsH = {hθ(·) = 〈·, θ〉 : θ ∈ Θ} parameterized using Θ ⊆ Rp are considered as the hypothesis class

3. The loss function is the squared error f (hθ, z) = (y − 〈x, θ〉)2

Example 4. Density estimation

1. Training data: Zi ∈ R

2. Hypothesis class: A class of probability densities P

3. Loss function: Negative log-likelihood f (p, z) = − log p(z)

Example 5. K-means clustering/Vector quantization

1. The training data is a collection of points Zi ∈ R
p

2. A class of subsets of Rp of cardinality K is considered as the hypothesis class.

3. The loss function: f (h, z) = minc∈h ‖c − z‖22

2 Probably approximately correct (PAC) learnability

In this section we define the learnability of a function g in the hypothesis spaceH in the Probably approximately correct (PAC) sense.

Definition 1. (PAC learnability [3])
Assume that Yi = g(Xi) for some deterministic function g, and that g ∈ H . (Hence zero risk is possible.)

A hypothesis class H is PAC learnable, if there exists an algorithm AH : Zn → H and a function nH (ε, δ), such that for every probability
distribution P and every ε, δ ∈ (0, 1), if n ≥ nH (ε, δ), we have for the risk function F(h)

F(A(Dn)) ≤ ε, (approximately correct)

with probability at least 1 − δ (probably).

Note that the above definition requires a nH (ε, δ) to exist for every ε, δ. But such an nH (ε, δ) will not exist as ε → 0 for some δ < 1
if g is not contained in H as none of the hypotheses in H can drive the risk to 0 with nonzero probability. The same is true if g is a
mapping such that Yi is a random variable. So to characterize learnability under such commonly occurring cases we define a weaker
notion of learnability as follows.

Definition 2. Definition (Agnostic PAC learnability [4])
A hypothesis classH is agnostic PAC learnable, if there exist an algorithmAH : Zn → H and a function nH (ε, δ), such that for every probability
distribution P and every ε, δ ∈ (0, 1), if n ≥ nH (ε, δ), we have

F(A(Dn)) − inf
h∈H

F(h) ≤ ε,

with probability at least 1 − δ.

2
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The agnostic PAC learnability simply requires the risk for the learned hypothesis to be within an ε distance from the infimum
(minimum) risk possible within the given hypothesis class with probability 1 − δ. The quantity F(A(Dn)) − infh∈H F(h) is called the
excess risk.

Observation 1. PAC learnability implies P independent bound
Note above that definitions of PAC learnability requires nH (ε, δ) to also be independent of the distribution P and thus the nH , ε, δ bounds on excess
risk hold for any P even if the learning has been completed using data from one particular instance of P and thus PAC and agnostic PAC learnability
is a strong property in this sense.

Observation 2. Other types of learnability notions
Distribution-dependent and localized formulations of PAC learnability unlike the ones above are presented in [5, 6, 7, 8].

A distribution dependent and localized PAC bound states that given an algorithm AH : Zn → H , for every probability distribution P and every
δ ∈ (0, 1), we have

F(A(Dn)) − inf
h∈H

F(h) ≤ εn(P, h?;H , δ)→ 0,

with probability at least 1 − δ, where h? = arg minh∈H F(h) (assuming uniqueness).

3 Emperical Risk Minimization

Having defined the notion of PAC learnability in the previous section, we proceed to minimizing the unknown function F(A(Dn))
using an empirical approximation of the function. Since P is assumed unknown, we cannot directly solve the risk minimization
problem

h? ∈ arg min
h∈H

F(h) := E f (h,Z).

However, we can consider the empirical risk minimization problem as an approximation,

ĥn ∈ arg min
h∈H

F̂n(h) :=
1
n

∑
i≤n

f (h,Zi).

This is called the ERM principle, due to Vapnik and Chervonenkis.
By the strong law of large numbers (LLN), we know that F̂n(h)→ F(h) almost surely for every h ∈ H . So given convergence by the

strong law of large numbers, what can we say about the nH (ε, δ) for the PAC learnability.

Observation 3. Convergence implied by the strong LLN
For every h ∈ H and every probability distribution P, there exists a function n(ε, δ; h,P), such that for every ε, δ ∈ (0, 1), if n ≥ n(ε, δ; h,P), we have

|F̂n(h) − F(h)| ≤ ε,

with probability at least 1 − δ.

In other words the strong LLN only shows that for every hypothesis h, the emperical average of the F̂n(h) converges almost surely
to F(h) for a large enough n that can change from one hypothesis to another. Thus we have still not shown PAC learnability, which
requires the existence of an nH (ε, δ) that is independent of the choice of h. To show this we can use the notion of convergence in a
stronger sense.

Definition 3. Uniform convergence
A hypothesis classH has the uniform convergence property, if there exists a function nH (ε, δ), such that for every ε, δ ∈ (0, 1) and any probability
distribution P, if n ≥ nH (ε, δ), we have

sup
h∈H
|F̂n(h) − F(h)| ≤ ε,

with probability at least 1 − δ.

Proposition 3.1. Uniform convergence implies learnability
If the hypothesis classH has uniform convergence, i.e., for any ε > 0, ∃ nH (ε, δ) s.t. ∀ n ≥ nH (ε, δ)

sup
h∈H
|F̂n(h) − F(h)| ≤ ε,

then for any h? ∈ arg minh∈H F(h), we have
F(ĥn) − F(h?) ≤ 2ε.

Proof.

F(ĥn) − F(h?) = F(ĥn) − F̂n(ĥn) + F̂n(ĥn) − F̂n(h?) + F̂n(h?) − F(h?)

≤ 2 sup
h∈H
|F̂n(h) − F(h)|.

�

3



LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

Remark. Note from the proof that Uniform convergence is only a sufficient condition for learnability.

The next theorem shows the relation of ERM and PAC learnability to uniform convergence for a binary classification problem.

Theorem 3.2 (See, e.g., [9]). Assume that the hypothesis class H consists of only {0, 1}-valued functions, and f is the 0 − 1 loss. The following
statements are equivalent.

1. The hypothesis class is agnostic PAC learnable.

2. The ERM is a good PAC learner.

3. The hypothesis class has the uniform convergence property.

The above theorem states that for the binary classification problem with the 0-1 loss function, uniform convergence is both neces-
sary and sufficient for PAC learnability. In general, uniform convergence may not be necessary for learnability and is only a sufficient
condition.

Now having shown how the uniform convergence property of the hypothesis class affects learnability, we will see how to check
for the uniform convergence property in a given class.

Proposition 3.3. Uniform convergence property of a finite bounded hypothesis class
Assume that the hypothesis class H consists of a finite number of functions taking values in [0, 1]. Then H satisfies the uniform convergence
property with

nH (ε, δ) =
log(2|H|/δ)

2ε2 .

The proposition is a simple consequence of Hoeffding’s inequality and the union bound.

Theorem 3.4 (Hoeffding’s inequality (see, e.g., [11])).
Let (ξi)1≤i≤m be a sequence of independent [0, 1]-valued random variables.
Let S n := (1/n)

∑
1≤i≤n(ξi − E ξi).

Then for any t > 0, P (|S n| ≥ t) ≤ 2 exp
(
−2nt2

)
.

From Hoeffding’s inequality the proof for the proposition is as follows:

Proof. Define ξi(h) = f (h, xi), and define S n(h) := (1/n)
∑

1≤i≤n(ξi(h) − E ξi(h)) for every h ∈ H . Notice that then

sup
h∈H
|S n(h)| = sup

h∈H
|F̂n(h) − F(h)|.

By the union bound and Hoeffding’s inequality, we have for any t > 0,

P

(
sup
h∈H
|S n(h)| ≥ t

)
≤

∑
h∈H

P (|S n(h)| ≥ t) ≤ |H| · 2 exp
(
−2nt2

)
.

Hence it suffices to choose
nH (ε, δ) =

log(2|H|/δ)
2ε2 .

�

Observation 4. Necessity of choosing a not-too-big hypothesis class
We may write the proposition in another way:

For every probability distribution P and every δ ∈ (0, 1), the ERM satisfies

sup
h∈H
|F̂n(h) − F(h)| ≤ εn :=

√
log(2|H|/δ)

2n
,

with probability at least 1 − δ.
If |H| is large, we need a large number of training data of the order O(log |H|) to achieve a small excess risk εn.

Otherwise, if εn is large, the values of F̂n and F can be very different on certain hypotheses, and overfitting occurs. Thus to obtain reasonable
fits with a small number of training samples, we need to keep |H| small as well. On the other hand if |H| is too small then F(h) itself will be large
and even though the excess risk is small the learned hypothesis will have a large risk.

When |H| is not finite, the proof for learnability for the binary classification problem can be extended using the notion of the
shattering coefficient. Consider the binary classification problem, in whichH is a set of {0, 1}-valued functions, and f is the 0 − 1 loss.

4
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Definition 4 (Shattering coefficient). The shattering coefficient of a hypothesis classH is defined as

S n(H) := sup
x1 ,...,xn∈X

|{(h(xi))1≤i≤n : h ∈ H}|.

Definition 5 (Vapnik-Chervonenkis (VC) dimension). The VC dimension of a hypothesis classH , denoted by VC(H), is defined as the largest
integer k such that S k(H) = 2k. If S k(H) = 2k for all k, then VC(H) := ∞.

Theorem 3.5 ([12]). LetH be a hypothesis class with VC dimension d. Then

sup
h∈H
|F̂n(h) − F(h)| ≤ 2

√
2d log(2en/d)

n
+

√
log(2/δ)

2n
,

with probability at least 1 − δ.

4 Model Selection and Structural Risk Minimization

As we saw in the previous sections, an unknown function may only be agnostic PAC learnable in a given hypothesis space as the
function may not belong to the hypothesis class selected. Further more as we increase the size of the hypothesis class the risk bound
increases and for extremely large hypothesis classes the function may no longer remain learnable. In order to address the selection of
an appropriate hypothesis space, we define the following terms. Let hopt be a global minimizer of the risk F(·) which is not necessarily
inH . Let h? be a minimizer of the risk F(·) onH .
Then we can write

F(ĥn) − F(hopt) = F(ĥn) − F(h?) + F(h?) − F(hopt).

Definition 6 (Approximation error). The approximation error is defined as Eapp = F(h?) − F(hopt).

• The approximation error is fixed given a hypothesis classH .

• The ERM can yield small risk only ifH contains a “good enough” hypothesis.

Definition 7 (Estimation error). The estimation error is defined as Eest = F(ĥn) − F(h?).

• The estimation error decreases with the training data size as the empirical risk minimizer approaches h? (assuming a tractable
solution to empirical risk minimization problem is available).

Observation 5. Effect of shrinking the hypothesis class
If we shrink the hypothesis class, while the estimation error Eest can be smaller, doing so can only increase the approximation error Eapp.

4.1 Model Selection

Model selection seeks a balance between approximation and estimation errors. Let H be a hypothesis class. Consider a countable
family of sub-classes {Hk : k ∈ K} such that

⋃
k∈K Hk = H . Denote by ĥn,k an empirical risk minimizer chosen based onDn inHk for all

k ∈ K . The model selection problem asks to choose a k̂n ∈ K based onDn, such that

F(ĥn,k̂n
) − F(h?) ≤ C inf

k∈K

(
inf

h∈Hk
F(h) − F(h?) + π̃n(k)

)
,

with high probability for some constant C > 0 and π̃n(k) > 0. Such an inequality on F(ĥn,k̂n
) − F(h?) is called an oracle inequality. If

C = 1, the oracle inequality is called sharp.

4.2 Structural risk minimization (SRM)

The idea of structural risk minimization is to choose a subclass k ∈ K that minimizes a risk estimate (see, e.g., [13]). For this model
selection process we choose,

k̂n ∈ arg min
k∈K

(F̂n(ĥn,k) + πn(k)),

where πn(k) is some good estimate of F(ĥn,k) − F̂n(ĥn,k). We then output the hypothesis ĥn = ĥn,k̂n
. The computational complexity of the

selection process is completely ignored here.

5
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Figure 1: Logistic loss function

Theorem 4.1 ([14]).
Suppose there exists a double sequence (Rn,k)n∈N,k∈K , such that for every n ∈ N, k ∈ K , and ε > 0,

P
(
F(ĥn,k) > Rn,k + ε

)
≤ αn exp(−2βnε

2),

for some constants αn, βn > 0. Set πn(k) := Rn,k − F̂n(ĥn,k) +
√
β−1

n log k. Then we have

F(ĥn) < inf
k

 inf
h∈Hk

F(h) + πn(k) +

√
log k

n

 + ε,

with probability at least 1 − 2αn exp(−βnε
2/2) − 2 exp(−nε2/2).

In applying the above theorem the risk bound based on the VC dimension may be used [15, 13], but it can be loose since the bound
is for the worst case. Hence it is important to find sharp data dependent risk estimates. See [16] for some recent advances.

5 Convex Surrogate Functions

Loss functions chosen for the emperical risk minimization often leads to NP hard optimization problems. In such cases convex sur-
rogate functions are sought that provide a computationally tractable optimization problem for the risk minimization. The subsection
below provides an example of a convex surrogate function used in binary classification.

5.1 Logistic regression as a learning algorithm

Given training data (xi, yi) ∈ Rp × {±1}, 1 ≤ i ≤ n and a hypothesis class {sign(〈x, θ〉) : θ ∈ Θ} (linear classifiers) for some Θ ⊂ Rp, we seek
to solve the empirical risk minimization problem:

θ̂n ∈ arg min
θ∈Θ

1
n

∑
1≤i≤n

log
[
1 + exp (−yi〈xi, θ〉)

]
.

The output of the classifier is ĥn(x) = sign(〈x, θ̂n〉).
Unlike the empirical risk minimization problem with the 0 − 1 loss, the logistic regression approach yields a convex optimization

problem that can be efficiently solved (when Θ is also convex). The intuition behind using the logistic loss function instead of the
0-1 loss function is shown in figure 1, where the logistic loss function behaves as a convex surrogate function that approximates the
behavior of the 0-1 loss function. The Logistic loss function is given by, φ(t) = log(1 + exp(−t)) while the 0 − 1 loss function is given by
φ(t) = 1{t≤0}. For logistic regression, t corresponds to y〈x, θ〉. The subsection below provides a general notion for the use of surrogate
functions for binary classification.

5.2 Soft classification

Consider a cost function g : H ×Z → R.

Definition 8 (Margin-based cost [17]).
A cost function g is called margin-based, if it can be written as g(h, z) = φ(yh(x)) for some function φ.

6
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For example, in logistic regression, φ(t) = log(1 + exp(−t)), and h ∈ H = {〈·, θ〉 : θ ∈ Θ}. The corresponding empirical cost
minimization problem is given by

ĥn ∈ arg min
h∈H

1
n

∑
1≤i≤n

φ(yih(xi)).

The corresponding soft classifier is given by
h̃n(x) = sign(ĥn(x)).

Now if we define

Hφ(η, α) = ηφ(α) + (1 − η)φ(−α), α?φ (η) = arg min
α

Hφ(η, α).

Let F(h) = P(sign(h(X)) , Y) denote the risk function, and G(h) = E φ(Yh(X)) be the expected cost function, then the following lemma
provides a relation between the solution of the surrogate cost function minimization problem and the 0-1 loss risk minimization
problem.

Lemma 5.1. Zhang’s lemma ([18])
Assume that φ is convex, and α?φ (η) > 0 when η > 1/2. If there exist c > 0 and s ≥ 1 such that for all η ∈ [0, 1],

|1/2 − η|s ≤ cs [H(η, 0) − H(η, α?(η))
]1/s

,

Then for any hypothesis h,

F(h) −min
h

F(h) ≤ 2c
[
G(h) −min

h
G(h)

]1/s
.

The lemma can be used to justify the use of soft classifiers as done in the previous subsection where the deviation of the surrogate
cost from the minimized surrogate cost for any hypothesis bounds the deviation of the 0-1 loss function from its minimum. For the
logistic regression it can be shown that, c = 1/

√
2 and s = 2 in the statement for Zhang’s lemma can be used to justify the use of the

logistic loss function. The lemma is also useful in several other problems as will be shown below.

5.3 Risk bound for `1-regularized logistic regression

Theorem 5.2. Consider the `1-regularized logistic regression with Θ = {θ : ‖θ‖1 ≤ ν} for some ν > 0. Assume that ‖x‖∞ ≤ 1 for all x ∈ X. Then
there exists a constant C > 0 depending only on p, such that with probability at least 1 − δ,

F(ĥn) − inf
h

F(h) ≤ 4

ν√C
n

+

√
2 log(1/δ)

n

1/2

+
√

2
[(

inf
h∈H

G(h)
)
−

(
inf

h
G(h)

)]1/2
.

Proof. Similar to Theorem 4.4 in [19]. �

The right-hand side may be viewed as the sum of the estimation error and approximation error (w.r.t. the cost).

5.4 Other examples

Example 6. AdaBoost (See, e.g., [20])
Adaboost is equivalent to solving an empirical cost minimization problem with φ(t) = exp(−t), for which s = 2 and c = 1/

√
2.

In practice however, AdaBoost may not be implemented by directly solving the empirical cost minimization problem.

Example 7. Support vector machine (See, e.g., [21]) The hinge cost function used by the support vector machine (SVM) corresponds
to φ(t) = max(0, 1 − t), for which s = 1 and c = 1/2.

6 Stability

An important property of learning algorithms is given by the notion of stability of its hypothesis choice under changing training sets.
Below we look at a commonly used learning algorithm SVM (Support Vector Machine) and analyze its performance using the notion
of stability. A linear SVM is given by

θ̂n ∈ arg min
θ∈Θ

1
n

∑
1≤i≤n

φ(yi〈xi, θ〉) + λ ‖θ‖22 ,

for some λ > 0, where φ(t) = max(0, 1 − t) is the hinge loss. The output classifier is given by h̃n(·) = sign(〈·, θ̂n〉).

7
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Since we have added a `2 regularizer on θ in the SVM formulation this is no longer a empirical cost minimization problem as
considered by in the previous section. In order to analyse the risk bounds for such an algorithm, we instead resort to an algorithm
dependent analysis as opposed to considering a full class of algorithms for which the bounds should hold. The notion of stability of a
learning algorithm as defined below plays a key role in deriving such algorithm specific risk bounds.

Definition 9 (Classification stability [22]).
Consider the soft classification setting, where H is a class of soft classifiers (i.e., h̃n = sign(ĥn)). For any Dn = {z1, . . . , zn}, define D\in as Dn with
the i-th element zi removed. An algorithmA has classification stability with parameter β > 0, if for allDn ⊂ Z and for all 1 ≤ i ≤ n,

‖A(Dn) −A(D\in )‖L∞ ≤ β.

Then by the triangle inequality,
‖A(Dn) −A(Dn ∪ {z})‖L∞ ≤ 2β, for all z ∈ Z,

meaning the algorithm is robust to a small change of the training data.
Now, consider the 0 − 1 loss f (h, z) = 1{sign(h(x)),y}. Then the risk F(h) = E f (h,Z) is the probability of classification error. Defining the

margin-based loss

f γ(h, z) =


1 for yh(x) , 0
1 − yh(x)/γ for 0 ≤ yh(x) ≤ γ
0 for yh(x) ≥ γ

,

and the corresponding margin-based empirical risk F̂γ
n (h) = (1/n)

∑
1≤i≤n fγ(h, zi).

Theorem 6.1 ([22]). Stability implies generalization
LetA be a soft classification algorithm that possesses classification stability with parameter βn > 0. Then for any γ > 0, n ∈ N, and any δ ∈ (0, 1),

F(A(Dn)) ≤ F̂γ
n (A(Dn)) + 2

βn

γ
+

(
1 + 4n

βn

γ

) √
log(1/δ)

2n
.

Remark.
Notice that the uniform convergence property is not required.

Now to analyze the performance of the linear SVM classifier we look at the stability properties of SVM.

Theorem 6.2. Risk bound for the linear SVM
Assume that ‖x‖2 ≤ κ for all x ∈ X for some κ > 0. ThenASVM has classification stability with parameter βn = κ2/(2λn). Hence for any n ∈ N and
δ ∈ (0, 1),

F(ASVM(Dn)) ≤ F̂1
n(ASVM(Dn)) +

κ2

λn
+

(
1 +

2κ2

λ

) √
log(1/δ)

2n
,

with probability at least 1 − δ.

Proof. Similar to Example 2 in [22]. �

7 Summary

• Learning theory is concerned with developing learning algorithms that have distribution-free guarantees.

• The ERM principle provides a principled approach, if the uniform convergence property holds.

• SRM is an extension of the ERM principle that seeks a balance between the estimation error and the approximation error.

• In practice, we may replace the loss by an convex surrogate to yield an efficiently solvable empirical cost minimization problem.

• Stability provides another algorithm-wise analysis framework.

8
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