
EE-731: ADVANCED TOPICS IN DATA SCIENCES
LABORATORY FOR INFORMATION AND INFERENCE SYSTEMS

SPRING 2016

INSTRUCTOR: VOLKAN CEVHER SCRIBERS: SOROOSH SHAFIEEZADEH-ABADEH, MICHAËL DEFFERRARD

RANDOMIZED LINEAR ALGEBRA AND STOCHASTIC QUASI-NEWTON METHOD

1 Randomized Linear Algebra

1.1 Review

As real data is often noisy, it makes sense to sacrifice accuracy for speed-up by approximating the data matrix. Randomized methods
offer faster and parallelizible approximate solutions that also require a lower number of passes over the data matrix.

Random projections work in two steps:

1. Find an orthonormal basis Q that can approximate A well, i.e. A ⇡ QQ⇤A.

2. Apply classical linear algebra to the smaller matrix Q⇤A.

1.1.1 Decomposition

Recall that the matrix A can be decomposed with the following algorithm:

1. Multiply A⌦ for ⌦i, j ⇠ N(0, 1), at cost O(np`) (or O(np log `) using the FFT).

Yn

`

= An

p

⌦p

`

2. Compute the thin QR factorization of Y, at a cost of O(n`2) (e.g. with Gram-Schmidt).

Yn

`

= Qn

`

R`
`

3. Finally multiply C = Q⇤A at a cost of O(np`).

bAn

`

= Qn

`

Q⇤A`

p

1.1.2 Randomized SVD

A small SVD on C = Q⇤A then gives the randomized SVD:

1. Find SVD factors of C in O(p`2) time.

bA = Qn

`

C = Q⇤A`

p

= Qn

`

U`

`

⌃`

`

V⇤`

p

2. Multiply, in O(n`2) time.

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

bA =
QUn

`

⌃`

`

V⇤`

p

An alternative to find the randomized SVD is to compute the QR decomposition of C⇤:

1. Find QR factors of C⇤: C⇤ = QCRC, in O(p`2) time.

bA =
Qn

`

C`

p

=
Qn

`

R⇤C`

`

Q⇤C`

p

2. Calculate the SVD of the small inner matrix, in O(`3) time.

R⇤C`

`
=

eU`

`

⌃`

`

eV`

`

3. Multiply in O((n + p)`2) time.

bA =
QeUn

`

⌃`

`

eVQ⇤C`

p

1.2 Interpolative decomposition (ID)

For a matrix A 2 Rn⇥p of rank-r, a one-sided interpolative decomposition is defined as

A = A
(:,J)

X

where J = [j
1

, ... jr] is a computed column index set and X is a r ⇥ p matrix with X
(:,J)

= Ir and Xi, j  2 8i, j. In other words A
(:,J)

is a
subset of columns of A that spans the range of A with bounded coefficients.

p

n
A

=
A

(:,J)

r

n

p

r
X

Please note that:

• There exists a decomposition of the form above with X whose coefficients are bounded by 1, but it is NP-hard to compute. [11]

• When the bound is 2, there are stable and efficient algorithms that compute this decomposition of a rank-r matrix A 2 Rn⇥p at a
cost of O(nrp). [8]

• This decomposition can also be generalized to a two-sided form A =WA
(J0 ,J)

X where J0 is an index set of selected rows and W is
a n ⇥ r matrix with W

(J0 ,:) = Ir and Wi, j  2 8i, j.

2

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

1.3 Row extraction method

The problem with the aforementioned method is the O(npl) cost of computing C = Q⇤A. We want something cheaper. Given a matrix
Q 2 Rn⇥r such that kA �QQ⇤Ak  ✏ , one can obtain the Interpolative Decomposition (ID) Q = XQ

(J,:), where J denotes the l rows of Q
that span the rowspace of Q and X is a n⇥ l matrix with X

(J,:) = Ik and Xi, j  2 8i, j. This costs O(l2n) and it turns out that A ⇡ XA
(J,:) [9],

from which we can perform a small SVD. Proof:

• As X
(J,:) = Ik, we have A

(J,:) ⇡ Q
(J,:)Q⇤A where B 2 Rr⇥p consists of r rows extracted from A.

• Combining, we get A ⇡ QQ⇤A = XQ
(J,:)Q⇤A.

• Therefore we conclude that A ⇡ XB with B = A
(J,:).

A ⇡
Xn

`

A
(J,:)`

p

Given Q 2 Rn⇥r such that kA �QQ⇤Ak  ✏, we can compute a partial SVD at cost O(l(n + p)

2

) instead of npl + O((n + p)l2

) (forming
Q⇤A and performing SVD on it).

Algorithm: Partial SVD using row extraction
1. Form the row extraction as above: Q: A = XA

(J,:) as above O(l2n)

2. Form the RQ decomposition: A
(J,:) = R⇤W⇤ O(l2 p)

3. Multiply Z = XR⇤ O(l2n)

4. Compute a classical SVD: Z = U⌃eV⇤ O(l2n)

5. Multiply V =WV and conclude A ⇡ U⌃eV⇤ O(l2 p)

The decreased computational cost comes at the expense of the following worse error bound:

Lemma 1.1 (Error bound for Row Extraction [6]). Let A ⇡ U⌃V⇤ be the output of the algorithm produced by a given Q with an approximation
error ✏. Then the following error bound holds:

kA � U⌃V⇤k 
h p

1 + 4k(n � k)

i
✏

In other words, the bound is multiplied by a factor of
p

1 + 4k(n � k) if we avoid the multiplication Q⇤A and use the row extraction technique.

1.4 Power method

The spectrum of A does not always decay fast, e.g. when the matrix is noisy. In those cases the basic algorithm does not work well.
We therefore apply (AA⇤) several times to reduce the relative weight of the smaller singular values. Although the error guarantee is
given in the spectral norm only, i.e. not in the Frobenious norm, this method works well in practice. The cost of random projections is
(2q + 1)np` + O(q`2n) flops.

Algorithm: Power method
1. Draw a random matrix ⌦ 2 Rp⇥`

2. Form the multiplication Y = (AA⇤)qA⌦
3. Find the orthogonal Q that spans the range of Y (e.g. using Gram-Schmidt)

Some practical considerations:

• Usually q = 2 or q = 3 is sufficient.
• ⌦ is taken to be Gaussian. The other matrices do not work well.
• We perform QR factorization at each step.
• Apply A and A⇤ alternatively instead of forming AA⇤.

Theorem 1.2 (Power method [6]). Let A 2 Rn⇥p with n � p be the matrix that is randomly approximated using the power method. Then the
following holds:

EkA �QQ⇤Ak
2



1 +

4

p
r + s

s � 1

p
p
!

1/(2q+1)

�r+1

.

Note that when q = 0, this is the original algorithm with Y = A⌦. The extra factor can be made close to 1 by increasing the number
of passes q, but this is at the expense of increasing the computational cost.

3

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

1.5 Column selection methods

So far we only considered linear combinations of the columns for reducing the dimensionality of a matrix (SVD). Another approach
is to find a subset of columns that could well summarize the action of the matrix. This makes it easier to interpret for data analysts
although it is combinatorially hard. E.g. if the problem is to identify genes who promote a certain behavior, you would prefer to
identify a subset of important genes rather than a linear combination of all of them.

Problem 1 (Column Subset Selection Problem). Given a matrix A 2 Rn⇥p and a positive integer r, pick r columns of A to form a matrix
C 2 Rn⇥r such that the residual

kA � PCAk⇠
is minimized over all possible

⇣
n
r

⌘
choices for the matrix C. Here, PC = CC† denotes the projection onto the r-dimensional space spanned by the

columns of C and ⇠ = 2 or F denotes the spectral norm or Frobenius norm. [1]

Preliminary results:

• Uniform sampling of the columns is a bad idea in theory and in practice
• When O(r log(r)/✏2) columns are selected with probabilities proportional to the Frobenius norm of columns of A, we have

kA � ¶Cr AkF  kA � ArkF + ✏kAkF
kA � ¶Cr Ak2  kA � Ark2 + ✏kAkF

with high probability [3]. Ar and Cr are the best rank-r approximations to the matrices A and C respectively. (PX = XX† is the
projection to the column space of X.)

Given a singular value decomposition A = U⌃V⇤, an improved random sampling is given by [4].

• Compute the importance sampling probabilities (leverage scores)

pi =
1

r
kV⇤(i)r k22

where V⇤(i)r is the ith row of matrix V⇤r that contains the top r right-singular vectors.
• Sample c = O(r log(1/�)r/✏2) columns of A according to this distribution to form a submatrix C 2 Rn⇥c.
• Then with probability at least 1 � �, the following holds:

kA � ¶Cr Ak2  (1 + ✏)kA � ArkF .
• However approximating the leverage scores is expensive: O(np log n).

1.6 Which method to use ?

If interpretability is important, then go for column subset selection. Keep in mind that it might be expensive due to the cost of
calculating leverage scores. Otherwise use random projections, the choice of which depends on the scenarios below.

1. Matrix A fits in the core memory.

• Use a structured random matrix (e.g. SRFT) for Step-1 of low rank approximation using O(np log ` + `2n) flops.
• For Step-2, use the row extraction technique at the cost of O(`2(n + p)) .
• The total cost is O(np log l + `2(n + p)).
• If the row extraction results in a large error, use the direct method of forming Q⇤A at Step-2 which costs O(np`).

2. Matrix A can be rapidly applied to vectors.

• This is the case for sparse matrices or structured matrices such as Toeplitz.
• The cost of matrix-vector multiplication could be as low as Cmult = O(n + p).
• Step-1 to find Q costs `Cmult + O(`2n).
• In Step-2, form the Q⇤A as it is now cheap: `Cmult + O(`2(n + p)).
• In total it costs 2`Cmult + O(`2(n + p)).
• If the singular values of A decays slowly, use power method with q iterations which costs (2q + 2)`Cmult + O(`2(n + p)).
• Krylov methods would also benefit from this speed-up, but they are less robust and not as parallelizable as these random

methods.

3. Matrix A is stored in a slow memory.

• The computational time is dominated by the memory access, therefore classical methods which require at least r pass over
the matrix are not practical.

• One can use any of the randomized algorithms above according to the needs: e.g. if the decay of singular values is slow,
use power method, as a small q would be sufficient.

4

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

2 Stochastic quasi-Newton Method

In many machine learning applications, we need to solve large scale optimization problems coming from massive amounts of training
samples. The full-batch approach is feasible and appropriate if you can fulfill the computational and memory demands. However,
in most large scale learning problems, it is inevitable to employ algorithms which update the prediction model based on a relatively
small subset of the training data. These algorithms are known as stochastic methods which are particularly suited for settings where
we access a big dataset or a data stream.

Among full-batch approaches, Newton methods are known to guarantee the fastest convergence rate. In contrast to the first order
methods (such as a simple gradient decent algorithm) that only use the first order information, Newton methods exploit the second
derivatives of parameters to take advantage of the curvature information. The goal of this section is to incorporate the stochastic
framework into the Newton methods.

2.1 Iterative Optimization Methods

Suppose we are interested in solving the optimization problem

min

x2Rp
f (x). (P)

We denote the optimal value and optimal solution by f ? and x?. The starting point of many optimization algorithms is to use the
quadratic Taylor expansion of the objective f at iteration k

f (x) ⇡ Q(x, xk
) := f (xk

) + hx � xk, g(xk
)i + 1

2

hx � xk,Hk(xk
)(x � xk

)i, (1)

where g(xk
) and Hk(xk

) are the approximations of gradient r f and Hessian r2 f at iteration k. Notice that Q(x, xk
) is a quadratic function

which is minimized by solving rxQ(x, xk
) = 0. Thus, the minimum is attained at

¯xk
:= xk � [Hk(xk

)]

�1g(xk
). (2)

Then, we update the current solution by

xk+1 = xk + ↵k(

¯xk � xk
), (3)

where ↵k is the learning rate at iteration k which can be updated by line search methods [10]. Different choices of g and Hk result in
different optimization algorithms, including the well-known Newton and Gradient methods and their variant presented in Table 1.
Note that using the curvature information encapsulated in the Hessian matrix and having access to full gradient lead to the fastest
convergence rate in Newton method.

Table 1: Taxonomy of some methods.
Newton Quasi-Newton Gradient Stochastic Gradient

g r f r f r f E[g(xk
)] = r f (xk

)

Hk r2 f ⇡ r2 f LkI LkI
rate quadratic superlinear linear O(1/k)

2.2 Different Convergence Rates

Suppose we have a converging sequence limk!1 sk = s?, and we would like to characterize the speed, or rate, at which the iterates sk

approach the limit s?. A converging sequence of numbers {sk} exhibits linear convergence if for some 0  C < 1,

lim sup

k!1

|sk+1

� s⇤|
|sk � s?| = C,

where lim supk!1 denotes the worst-case limit points of a sequence. C in the above expression is termed as the rate constant; if C = 0,
the sequence exhibits superlinear convergence; if C = 1, the sequence exhibits sublinear convergence. For instance the sequences
sk =

⇣
1

10

⌘k
, sk =

0.1
k!

, and sk =
0.1
k have linear, superlinear, and sublinear convergence rates to zero, respectively. A sequence of numbers

{sk} exhibits quadratic convergence if it converges to some limit s? and

lim sup

k!1

|sk+1

� s⇤|
|sk � s?|2 = �  1.

5

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

For instance, the sequence sk =
⇣

1

10

⌘
(2

k�1)

has quadratic convergence rate to zero. In optimization, we aim to determine the converging
rate of the sequence f (xk

) to f ?. In this context, algorithms with sublinear, linear, and quadratic convergence rates need at most an
order of 1/✏, log(1/✏), and log(log(1/✏)) iterations, respectively to achieve ✏ sub-optimality (i.e., | f (xk

) � f ?|  ✏).
It is common to think that a linearly converging method is thought to be better than a sublinearly converging one; among two

linearly converging methods the more preferable is the one with the smaller rate constant; a superlinearly converging method is
preferred to a linearly converging one, etc. Of course, all these preferences are conditional, provided that there are no significant
differences in the computational complexity of each step.

2.3 Newton Method and its Full-Batch Variants

As we pointed out before, Newton methods not only use the gradient information but also exploit the second derivatives of parame-
ters. Geometrically, it means that the method takes advantage of the function curvature. In fact, information on r2 f (xk

) leads Q(x, xk
)

to be a better approximation of f . As a result, the Newton method uses curvature information to take a more direct route to the optimal
solution in comparison to gradient methods. Figure 1 illustrates the difference in routes taken by a gradient descent method and a
Newton method for minimizing a function with small step sizes.

x

x0

Figure 1: A comparison of gradient descent (green) and Newton’s method (red).

Newton algorithm for solving (P) can be summarized as:

Newton Algorithm
1. Initialize x0 2 Rp.
2. For K = 0, 1, · · · performs:

xk+1 = xk � ⇥r2 f (xk
)

⇤�1r f (xk
)

However, the Hessian in high-dimensional space can be a very dense matrix which may be computationally expensive to use.
Moreover, the Hessian is close to a non-invertible matrix in most practical cases, and as a result, the inverted Hessian can be numer-
ically unstable and the solution may diverge. In this case, we need to modify or approximate the Hessian. Quasi-Newton methods,
as an alternative to Newton method, are methods used to estimate the Hessian by analyzing successive gradient vectors. The Quasi-
Newton scheme can be seen as:

Quasi-Newton scheme
1. Initialize x0 2 Rp, set H

0

= I, and compute f (x0

) and r f (x0

).
2. For K = 0, 1, · · · performs:

2.a. Compute vk = Hkr f (xk
).

2.b. Compute xk+1 = xk � ↵kvk.
2.c. Compute f (xk+1

) and r f (xk+1

).
2.d. Update Hk+1

based on f (xk+1

) and r f (xk+1

).

Defining vk = r f (xk+1

) � r f (xk
) and yk = xk+1 � xk, the most popular update formulas in Quasi-Newton scheme are:

6

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

• Rank-one correction:

Hk+1

= Hk +
(yk � Hkvk

)(yk � Hkvk
)

>

(yk � Hkvk
)

>vk .

• Davidon-Fletcher-Powell:

Hk+1

= Hk +
yk

(yk
)

>

(vk
)

>yk �
Hkvk

(vk
)

>Hk

(vk
)

>Hkvk .

• Broyden-Fletcher-Goldfarb-Shanno:

Hk+1

= Hk +
Hkvk

(yk
)

> + yk
(vk

)

>Hk

(vk
)

>Hkvk � �k
Hkvk

(vk
)

>Hk

(vk
)

>Hkvk ,

where

�k = 1 +
(vk

)

>yk

(vk
)

>Hkvk .

2.4 Stochastic Extensions

In this section, we consider the following problem:

f ? = min

x2Rp

�
f (x) :=

1

n

nX

i=1

fi(x)

, (4)

where fi, i = 1, · · · , n, are twice continuously differentiable and their Hessian r2 fi are positive definite. In the high-dimensional regime
where both n and p are large, evaluation of the gradient and Hessian can be computationally prohibitive. Thus, we need to exploit the
hidden structure in the optimization program. Among these structures, the finite sum is the most pervasive as it appears in empirical
risk minimization problems. As we discussed in lecture 5, stochastic optimization can be applied to solve such problems. To adapt
this frame to Newton method, we need the following stochastic approximations:

I. sub-sampled gradient,

II. sub-sampled Hessian,

III. sub-sampled approximation of Hessian.

2.4.1 Stochastic quasi-Newton with Sublinear Convergence Rate

In this section, we present a stochastic quasi-Newton method which employs the classical BFGS update formula in its limited mem-
ory form. Instead of applying the classical approach that would compute differences of gradients at every iteration to estimate the
Hessian, the Hessian approximation is based on the observation through sub-sampled Hessian-vector products. This algorithm can
be summarized as:

Stochastic BFGS algorithm [2]
1. Set t = �1 and choose L 2 N and M 2 N.
2. For K = 0, 1, · · · performs:

2.a. Choose a sample S.
2.b. Calculate stochastic gradient rS f (xk

)

2.c. Update:

xk+1 =

8>><
>>:

xk � ↵krS f (xk
), if t < 1,

xk � ↵k HkrS f (xk
), otherwise.

2.d. When mod(k, L) = 0, perform:
2.d.1. t = t + 1.
2.d.2. ¯xt = 1

L

Pk
j=k�L+1

x j.
2.d.3. Choose a sample T ⇢ 1, · · · n.
2.d.4. Compute:

yt = ¯xt � ¯xt�1, vt = r2

T f (

¯xt
)(

¯xt � ¯xt�1

).
2.e. Update Hessian:

2.e.1. Compute: H = (yt
)

>vt/((vt
)

>vt
)

2.e.2. For j = t �min{t,M} + 1, · · · , t perform:
⇢ j = 1/((y j

)

>v j
), Ht = (I � ⇢ jy j

(v j
)

>
)H(I � ⇢ jv j

(y j
)

>
) + ⇢ jy j

(y j
)

>

7

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

To approximate the Hessian, M most recent pairs of (yt,vt
) is used to apply the BFGS update formula. Notice that the computational

cost of stochastic BFGS could be much cheaper than SGD as it is not necessary to compute the full Hessian. The directional derivative
along the vector ↵ is enough. Formally speaking, we need to compute

r2

S f (x)(v) =
d

d↵
r fS(x + ↵v)

���
↵=0

.

Furthermore, the quasi-Newton method can take advantage of parallelism by applying the compact form of limited memory BFGS
updating presented in [10]. Now, we analyze the convergence properties of the presented stochastic quasi-Newton method.

Theorem 2.1 (O(1/k) rate of stochastic BFGS [2]). Suppose that:

1. (8Q ⇢ {1, · · · , n})(8x 2 Rp
) : �I � r2

Q f (x) � ⇤I, where r2

Q f (x) = 1

|Q|
P

i2Q r2 fi(x).

2. E[kr f (x

k
)k2]  �2.

and
↵k = �/k with � > 1/(2µ

1

�).

Then for all k � 1,

1. there exist (µ
1

, µ
2

) such that µ
1

I � Hk � µ2

I.

2. the following holds: E[f (x

k
) � f ?]  Q(�)/k, where Q(�) = max{ ⇤µ2

2

�2�2

2(2µ
1

���1)

, f (x

0

) � f ?}.
Note that the convergence rate does not depend on the condition number of the problem; i.e., ⇤/�. We now present a numerical ex-

periment to compare stochastic quasi-Newton method with SGD. We first test these two algorithms on a binary classification problem
through the logloss function

min

x2Rp
�1

n

nX

i=1

yi log(c(x, xi)) + (1 � yi) log(1 � c(x, xi)),

where c(x, xi) = 1/(1 + exp(�x>i x)) and yi 2 {0, 1}. The gradient and Hessian of fi are r fi(x) = (c(x, xi) � yi)xi and r2 f (x)(v) = c(x, xi)(1 �
c(x, xi))(x>i v)xi, respectively. Figure 2 reports the performance of SGD and stochastic quasi-Newton method. Both methods use a
gradient batch size of b = 50. For stochastic quasi-Newton, we display results for two values of the Hessian batch size bH , and set
M = 10 and L = 10. The vertical axis, labeled f x, measures the value of the objective; the dotted black line marks the best function
value obtained by the coordinate descent (CD) method. We observe that the stochastic quasi-Newton method with bH = 300 and 600

outperforms SGD, and obtains the same or better objective value than the coordinate descent method.

0 0.5 1 1.5 2 2.5 3
x 105

10 2

10 1

100

p

adp

fx

SGD: b = 50, β = 7
SQN: b = 50, β = 2, bH = 300
SQN: b = 50, β = 2, bH = 600
CD approx min

Figure 2: Illustration of SQN and SGD on the synthetic dataset.

8

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

2.4.2 Stochastic Newton Method with linear Convergence Rate

As shown in Theorem 2.1, the convergence rate of stochastic quasi-Newton method is sublinear which is similar to SGD. Recall that
the converge rate of Newton and quasi-Newton methods are quadratic and sublinear. Hence, one can expect that stochastic Newton
may have linear rate. Interestingly, the linear convergence rate can be attained by using sub-sampled Hessian. The challenge here
is to achieve a right balance for sub-sample size as small sub-sample Hessian has not much larger computational cost than cost of
gradient while using large sub-sample Hessian helps us get more curvature information. In this section, we present two stochastic
second-order optimization algorithms and provide bounds on the their convergence. The first algorithm incorporates sub-sampled
Hessian while using the full gradient. Defining r2

S f (x) := 1

|S|
P

i2S �2 fi(x), the first algorithm is

Hessian sub-sampling Newton algorithm [12]
1. Choose x0 2 Rp, � 2 (0, 1) and ↵̂ � 1 and set sample size s.
2. For K = 0, 1, · · · performs:

2.a. Select S ⇢ {1, · · · , n} of size s, compute S-sub-sampled Hessian r2

S f (xk
).

2.b. Compute vk = �[r2

S f (xk
)]

�1r f (xk
) and solve

↵k = arg max↵ s.t. ↵  ↵̂ and f (xk + ↵vk
)  f (xk

) + ↵�(vk
)

>r f (xk
)

2.c. Update:
xk+1 = xk + ↵kvk

In the sequel, we define  := ⇤/� and

̃ :=

8>><
>>:


1

, if S is drawn with replacement,

S, if S is drawn without replacement.

Here, given q 2 [1, n], ˆ⇤q is the average of q largest ⇤i and q = ˆ⇤q/�. The following theorem provides a linear convergence rate for the
first algorithm.

Theorem 2.2 (Linear rate convergence [12]). Suppose that 0 � r2 fi(x) � ⇤iI and �I � r2 f (x) � ⇤I for every x 2 Rp. Given ✏ 2 (0, 1), � 2 (0, 1),
and x 2 Rp and suppose that

|S| � 2
1

ln(p/�)
✏2

.

With probability 1 � �, one has f (x

k+1

) � f ?  (1 � ⇢k)(f (x

k
) � f ?), where ⇢k =

2↵k�
̃ . Furthermore, ↵k � 2(1��)(1�✏)

 .

Recall that the convergence rate of SGD is 1 � ⇢ where ⇢ = ⇤/� is the condition number of f . By choosing appropriate � and ✏, ⇢k

can be smaller than the condition number, thus the proposed quasi-newton method has faster convergence rate.
Next, in addition to Hessian sub-sampling, we can consider sub-sampling the gradient as a way to further reduce the computa-

tional complexity per iteration. To obtain proper sampling strategy, randomized numerical linear algebra is applied to approximate
matrix multiplication. Defining sub-sample Hessian r2

S f (x) := 1

|S|
P

i2S �2 fi(x) and sub-sample gradient rT f (x) := 1

|T |
P

i2T � fi(x), the
second algorithm is as following:

Hessian sub-sampling Newton algorithm [12]
1. Choose x0 2 Rp, � 2 (0, 1) and ↵̂ � 1 and set sample size s and t.
2. For K = 0, 1, · · · performs:

2.a. Select S ⇢ {1, · · · , n} of size s and T ⇢ {1, · · · , n} of size t.
2.b. Compute r2

S f (xk
) and rT f (xk

).
2.c. Compute vk = �[r2

S f (xk
)]

�1rT f (xk
) and solve

↵k = arg max↵ s.t. ↵  ↵̂ and f (xk + ↵vk
)  f (xk

) + ↵�(vk
)

>rT f (xk
)

2.c. Update:
xk+1 = xk + ↵kvk

The following theorem provides a linear convergence rate for the second algorithm.

Theorem 2.3 (Linear rate convergence [12]). Suppose that 0 � r2 fi(x) � ⇤iI and �I � r2 f (x) � ⇤I for every x 2 Rp. Given ✏
1

2 (0, 1), ✏
2

2
(0, 1/2), � 2 (0, 1), and x 2 Rp and suppose that

|S| � 2
1

ln(p/�)
✏2

1

and |T | �
max

1in
sup

k2N
kr fi(x

k
)k2

✏2
2

�
1 +

p
8 ln(1/�)

�
2

With probability 1 � �, one has f (x

k+1

) � f ?  (1 � ⇢k)(f (x

k
) � f ?), where ⇢k =

8↵k�
9̃ . Furthermore, ↵k � 2(1��)(1�✏

1

)

 .

In both algorithms, computing the update requires solving a large scale linear program, which can be computationally expensive.
As a remedy, one can solve the linear programs approximately, as presented in [13].

9

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

2.5 Stochastic Block quasi-Newton

In this section, we present a new limited-memory stochastic block BFGS update combined with the variance reduction approach of
SVRG, suggested in [7], to compute batch stochastic gradients. In this method, the inverse Hessian matrix is estimated at each iteration
using a sketch of the Hessian, i.e., a randomly generated compressed form of the Hessian. We propose several sketching strategies.
The algorithm is as follow:

Stochastic block BFGS algorithm [5]
Inputs: x

0

2 Rp, step size ⌘ > 0, s = subsample size, q = sample action size, m = size of
the inner loop, M =memory parameter.
1. Initiate: H�1

= I.
2. For K = 0, 1, · · · performs:

2.a. Compute the full gradient r f (xk
).

2.b. Set y0 = xk.
2.c. For t = 0, · · · ,m � 1, performs:

2.c.1. Sample St and Tt in {1, · · · , n}, independently.
2.c.2. Compute: vt = rSt f (yt

) � rSt f (xk
) + r f (xk

).
2.c.3. Form At 2 Rp⇥p so that rank(At

) = q.
2.c.4. Compute Yt = r2

Tt
f (yt

)At.
2.c.5. Compute A>t Yt and its Cholesky factorization to obtain �t = (A>t Yt)

�1.
2.c.6. Compute vt

8>><
>>:
↵i = �iA>i vt

and vt vt � Yi↵i, for i = t, · · · , t � M + 1,

�i = �iY>i vt
and vt vt +Ai(↵i � �i), for i = t � M + 1, · · · , t.

2.c.7. Set yt+1 = yt � ⌘vt.
2.d. Update xk+1 = ym

The following theorem proves that the proposed method has linear convergence.

Theorem 2.4 (Linear rate convergence of stochastic block BFGS [5]). Suppose that

8T ⇢ {1, · · · , n}(8x 2 Rp �I � r2

T f (x) � ⇤I,
where r2

T f (x) = 1

|T |
P

i2T r2 fi(x). Then:

1. There exist (�,�) such that �I � Ht � �I.
2. Suppose that ⌘ < ��/(2�2⇤2

) and that

m � 1

2⌘ (�� � ⌘�2⇤(2⇤ � �)) .
Then

E[f (x

k
) � f ?]  ⇢k

(f (x

0

) � f (x?),

where
⇢ =

1/(2m⌘) + ⌘�2⇤(⇤ � �)
�� � ⌘�2⇤2

.

References

[1] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation algorithm for the column subset selection problem.
In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 968–977. Society for Industrial and
Applied Mathematics, 2009.

[2] R. Byrd, S. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-newton method for large-scale optimization. SIAM Journal on
Optimization, 26(2):1008–1031, 2016.

[3] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices ii: Computing a low-rank approximation to
a matrix. SIAM Journal on Computing, 36(1):158–183, 2006.

[4] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Relative-error cur matrix decompositions. SIAM Journal on Matrix Analysis
and Applications, 30(2):844–881, 2008.

[5] R. M. Gower, D. Goldfarb, and P. Richtárik. Stochastic block bfgs: Squeezing more curvature out of data. arXiv preprint
arXiv:1603.09649, 2016.

10

LIONS @ EPFL Mathematics of Big Data Prof. Volkan Cevher

[6] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing ap-
proximate matrix decompositions. SIAM review, 53(2):217–288, 2011.

[7] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in Neural
Information Processing Systems, pages 315–323, 2013.

[8] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert. Randomized algorithms for the low-rank approximation of
matrices. Proceedings of the National Academy of Sciences, 104(51):20167–20172, 2007.

[9] P.-G. Martinsson, V. Rockhlin, and M. Tygert. A randomized algorithm for the approximation of matrices. Technical report, DTIC
Document, 2006.

[10] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Media, 2006.

[11] C.-T. Pan. On the existence and computation of rank-revealing lu factorizations. Linear Algebra and its Applications, 316(1):199–222,
2000.

[12] F. Roosta-Khorasani and M. W. Mahoney. Sub-sampled newton methods i: Globally convergent algorithms. arXiv preprint
arXiv:1601.04737, 2016.

[13] F. Roosta-Khorasani and M. W. Mahoney. Sub-sampled newton methods ii: Local convergence rates. arXiv preprint
arXiv:1601.04738, 2016.

11

