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ROBUST SUBMODULAR MAXIMIZATION

In many applications, we want to select observations which are robust against a number of possible objective functions. Examples
include sensor placement for outbreak detection, blocking mechanisms to suppress the spread of misinformation in networks, etc. We
study the submodular Saturation algorithm, a simple and efficient algorithm with strong theoretical approximation guarantees for
cases where the possible objective functions exhibit submodularity, an intuitive diminishing returns property.

We start this lecture by first defining the robust submodular function maximization problem. Next, we describe a few real-world
problems that can be formulated as the robust submodular maximization. In the subsequent section, we discuss the hardness of this
problem. In Section 4, we revisit the MinCover problem and the Greedy Partial Cover algorithm. Finally, we describe the Saturate
algorithm and discuss its theoretical guarantees.

The outline that summerizes this lecture:

1. Robust submodular function maximization

2. Hardness results and performance of the greedy algorithm

3. MinCover problem and the Greedy Partial Cover algorithm

4. Algorithm overview

5. The Saturate algorithm

1 Robust submodular maximization

Let us start by recalling the definition of submodular functions.

Definition 1. A function f : 2V → R on a ground set V is said to be submodular if for all S ⊆ T ⊆ V and any e ∈ V\T , it holds ∆(e|S ) ≥ ∆(e|T ),
where ∆(e|S ) = f (S ∪ {e}) − f (S ).

We also call f monotone, if for all S ⊆ T , we have that f (S ) ≤ f (T ).

Problem 1 (Robust submodular maximization problem - RSFMax). Given a collection of normalized monotonic submodular functions
f1, ..., fm, find a set S ⊆ V , which is robust against the worst possible objective, mini fi (i ∈ {1, ...,m}):

max
S⊆V

min
i

fi(S ), subject to |S | ≤ k

In what follows we describe a few real-world problems that can be captured by the previous problem formulation.

2 Examples

2.1 Submodular maximization in learning-based CS.

First, let us recall the learning based compressive sensing problem and average energy criterion.

Problem 2 (LB-CS: Problem statement). Given a set of m training signals x1, . . . , xm ∈ Cp, find an index set Ω of a given cardinality n such that
a related test signal x can reliably be recovered given the subsampled measurement vector b = PΩΨx.

Problem 3 (Average energy criterion).

Ω̂ = arg max
Ω : |Ω|=n

1
m

m∑
j=1

∑
i∈Ω

|〈ψi, x j〉|
2

This is a cardinality constrained modular maximization problem. Alternatively, we can also formalize another criterion in the
following way:
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Problem 4 (Worst-case energy criterion).
Ω̂ = arg max

Ω : |Ω|=n
min

j=1,...,m

∑
i∈Ω

|〈ψi, x j〉|
2.

This is an instance of the robust modular maximization problem.

In Problem 4, we care more about the worst case (minimum energy) scenario, whereas in Problem 3 we are concerned with
average case. Compared to the average criterion, the worst-case criterion may be preferable in some cases, but it tends to be less
robust to “outliers”.

Interpretation 1: Linear decoding performance. Here, we digress a little bit to answer a very important question. Capturing
energy sounds like a reasonable criterion, but does it actually correspond to good recovery performance? The answer is yes for a
particular choice of decoder.

Definition 2 (Linear decoder). We consider a linear decoder that expands b to a p-dimensional vector by placing zeros in the entries correspond-
ing to Ωc, and then applies the adjoint Ψ∗ = Ψ−1:

x̂ = Ψ∗PT
Ω.
¯

Theorem 2.1. The `2 estimation error of the above decoder is

‖x − x̂‖22 = ‖x‖22 − ‖PΩΨx‖22.

Proof.

‖x − x̂‖22 = ‖x −Ψ∗PT
ΩPΩΨx‖22 (1)

= ‖Ψx − PT
ΩPΩΨx‖22 (2)

= ‖PT
Ωc PΩcΨx‖22 (3)

= ‖PΩcΨx‖22 (4)

where (2) follows since Ψ is an orthonormal basis matrix, (3) follows since PT
Ω

PΩ + PT
Ωc PΩc = I, and (3) follows since a multiplication by

PT
Ωc simply produces additional rows that are equal to zero. The theorem then follows since

‖x‖22 = ‖PΩΨx‖22 + ‖PΩcΨx‖22. (5)

�

The previous theorem shows that maximizing the captured energy in the worst case, amounts to minimizing the error of the linear
decoder.

Interpretation 2: Subsampling pattern providing the best restricted isometry property (RIP) constant.
We have ‖PΩΨx j‖2 ≤ ‖x j‖2 (Ψ is an orthonormal basis matrix). Thus, defining X := [x1, . . . , xm] and V := ΨX, we can equivalently

write as
Ω̂ = arg min

Ω : |Ω|=n
‖1 − diag(VT PT

ΩPΩV)‖∞, (6)

where 1 is the vector of m ones, and diag(·) forms a vector by taking the diagonal entries of a matrix.

In this form, the optimization problem can also be interpreted as finding the subsampling pattern providing the best restricted
isometry property (RIP) constant [5] with respect to the training [1, 2].

Generalization bounds. Capturing as much of the signal energy as possible on the training signals x j corresponds to minimizing
the `2-norm error of the linear decoder. The following theorem provides the answer under which conditions the same will be true for
some new signal x.

Theorem 2.2 (Deterministic generalization bound for f = fmin [3]). Fix δ > 0 and ε > 0, and suppose that for a set of training signals
x1, . . . , xm with ‖x j‖2 = 1, we have a sampling set Ω such that

min
j=1,...,m

‖PΩΨx j‖
2
2 ≥ 1 − δ. (7)

Then for any signal x with ‖x‖2 = 1 such that ‖PΩcΨ(x − x j)‖22 ≤ ε for some j ∈ {1, . . . ,m}, we have

‖PΩΨx‖22 ≥ 1 −
(√
δ +
√
ε
)2
. (8)

Proof. It follows from (5) and (7) that ‖PΩcΨx j‖
2
2 ≤ δ for all j. Hence, letting j be an index such that ‖PΩcΨ(x − x j)‖22 ≤ ε, we obtain from

the triangle inequality that

‖PΩcΨx‖2 ≤ ‖PΩcΨx j‖2 + ‖PΩcΨ(x − x j)‖2 ≤
√
δ +
√
ε. (9)

Taking square and applying (5), we obtain (8). �

Therefore, if a new sample is close to any of the training examples, and we have a guarantee for the its energy captured by the
sampling set Ω.

2
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2.2 Protection of networks against cascading phenomena

More real-world problems that can be formulated as the robust submodular maximization problems are:

• Sensor placement for outbreak detection [6]

• Protection of networks against cascading phenomena [4]

In sensor placement, the NIMS (Networked InfoMechanical System) robot shown in Figure 2.2 is deployed in order to estimate the pH
values across a horizontal transect of a river. The goal is to deploy these robots in such a way that they quickly discover the spread of
a contagion. The deployment strategy should be robust w.r.t. to the worst possible contagion outcome. Next, we explain the second
real-world problem in more details.

Figure 1: Illustration of the municipal water distribution network and Deployment of the Networked Infomechanical System

Figure 2: Examples of cascades

In Figure 2.2 , we show an example of a cascade that can spread in the network G(V, E). Usually, cascades have tree structures
(different cascade models are explained in [4]). We assume the following protection mechanism: if a cascade c(Vc, Ec) contains a
blocking node b, all descendant nodes of node b in c become protected (yellow nodes in Figure 2.2).

We use Fc to denote the number of protected nodes in the cascade c,

Fc(B) :=

∣∣∣∣∣∣∣⋃b∈B

descendantsc(b)

∣∣∣∣∣∣∣ . (10)

3
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The number of protected nodes Fc is a coverage function, and the coverage functions are submodular by definition. The diminishing
returns behavior of this function is illustrated in Figure 3.

Figure 3: Diminishing returns

Next, we define our objective function, the number of protected nodes in the network.

Definition 3 (The number of protected nodes). For a given cascade c(Vc, Ec) and a set of blocking nodes B, let S c denote the number of protected
nodes in the network,

S c(B) = Fc(B) + λc, (11)
where λc is the difference between the size of the network and the size of the cascade c, i.e., λc = |V | − |Vc|.

Finally, we can formulate the robust protection of networks problem which is an instance of the robust submodular maximization
problem.

Problem 5 (Robust protection of networks). Given a directed network G(V, E) and an arbitrary set of cascades C, |C| ≤ m that can possibly
spread in G, find a set of nodes B to block so that

max
B⊆V

min
c

S c(B) s.t. |B| ≤ k, (12)

i.e., the protection against the worst-possible cascade outcome is maximized.

3 Hardness of the RSFMax problem

In Problem 1, fi are all submodular, but fwc(S ) := mini fi(S ) is generally not submodular. Hence, the simple greedy algorithm (which
performs near-optimally in the single-criterion setting) can perform arbitrarily badly. Example of this is given in Table 3. Given,
V = {s1, s2, t1, t2} and k = 2, the greedy algorithm maximizing fwc(S ) = min { f1(S ), f2(S )} would choose {t1, t2} obtaining a score of 2. The
optimal solution for k = 2 is {s1, s2}, with a score of n. As, n→ ∞, the greedy algorithm performs arbitrarily worse!

S f1(S) f2(S) mini fi(S)

∅ 0 0 0
{s1} n 0 0
{s2} 0 n 0
{t1} 1 1 1
{t2} 1 1 1
{s1, s2} n n n
{s1, t1} n + 1 1 1
{s1, t2} n + 1 1 1
{s2, t1} 1 n + 1 1
{s2, t2} 1 n + 1 1
{t1, t2} 2 2 2

Table 1: Functions f1 and f2 are used in counterexample.
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The following theorem states that solving the RSFMax problem approximately is NP-hard.

Theorem 3.1 (Hardness of Approximate Solution [6]). If there exists a positive function γ(·) > 0 and an algorithm that, for all n and k, in time
polynomial in the size of the problem instance n, is guaranteed to find a set S ′ of size k such that

min
i

fi(S ′) ≥ γ(n) max
|S |≤k

min
i

fi(S ),

then P = NP.

In other words: there cannot exist any polynomial time approximation algorithm for the RSFMax problem (unless P = NP).
In the next section, we explain the minimum submodular set cover problem and the algorithm used to solve it, as this is going to

be one of the main components for solving the relaxed version of the RSFMax problem.

4 Minimum submodular set cover (MinCover)

Problem 6 (MinCover). For any given c solve:

S c = arg min
S⊆V

|S | subject to fi(S ) ≥ c for 1 ≤ i ≤ m,

i.e., find the smallest set S with fi(S ) ≥ c for all i.

In the case of a single criterion, i.e., when m = 1, we know that the following theorem holds.

Theorem 4.1 ([7]). Given a submodular integer-valued function f and a fixed c ∈ Z, c ≤ f (V). Let S l be the greedy solution and let ` be the
smallest integer such that f (S l) ≥ c. Then

` ≤
(
1 + ln max

v∈V
f ({v})

)
k?

We note that there are non-integer variants of this theorem [7].
Next, we show a simple trick that allows us to use the result of the previous theorem in the case when we have multiple objective

functions, i.e. m > 1.

Definition 4. We define the following functions:

f̂i,c(S ) := min{ fi(S ), c} f̄c(S ) :=
1
m

∑
i

f̂i,c(S ) (13)

The previous transformations preserve submodularity. Now, we can rewrite the MinCover problem as:

S = arg min
S⊆V

|S | subject to f̄c(S ) = c.

Notice, that in this formulation, we have a single objective function. We can solve this problem by using the GPC (Greedy partial
cover) algorithm (Algorithm 1).

Algorithm 1 Greedy Partial Cover

GPC( f̄c, c):
1: S ← ∅
2: while f̄c(S ) < c do
3: ∆ j ← f̄c(S ∪ { j}) − f̄c(S )
4: S ← S ∪ arg max j ∆ j

5: return S

Finally, we can use the result of Theorem 4.1 to show the following:

Theorem 4.2 (Approximation achieved by the GPC algorithm [6]). Given integer monotonic submodular functions f1, ..., fm and a constant
c, GPC with input f̄c finds a set S l such that fi(S l) ≥ c for all i, and |S l| ≤ αk∗, where k∗ is the size of the optimal solution to Problem ?? , and

α = 1 + ln
(

max
v∈V

∑
i

fi({v})
)

An important observation is that α does not depend on c, hence we can compute alpha for any c. We will use the GPC algorithm
as the subroutine in the submodular saturation algorithm.

5
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0 cc*

Feasible c for RSFMax

Feasible c for RelRSFMax
Figure 4: Illustration of feasible regions for the RSFMax and RelRSFMax problems. c∗ is the optimal solution to the RSFMax problem.

5 Constraint relaxation

We saw in Section 3 that solving the RSFMax problem approximately is NP-hard. Next, we define its relaxed version.

Problem 7 (Relaxed RSFMax). RelRSFMax, the relaxed version of the RSFMax problem:

max
c,S

c, subject to fi(S ) ≥ c for 1 ≤ i ≤ m and |S | ≤ αk

Here, α ≥ 1 is a parameter relaxing the constraint on |S |. When α = 1, RelRSFMax = RSFMax.

In Figure 5 , we show the illustration of the feasible regions for RSFMax and its relaxed version.

The overall idea to solve the previous problem is as follows:

• set α = 1 + ln
(

maxv∈V
∑

i fi({v})
)

in RelRSFMax

• for a given c solve MinCover problem approximately by using the GPC algorithm

• if S c ≤ αk then both S c and c are feasible solution to RelRSFMax problem

• use binary search to find the solution S c ≤ αk with the maximum feasible c

In the next section, we introduce the Saturate algorithm that is based on the previous description.

6 The Saturate algorithm

The pseudocode of the algorithm is shown in Algorithm 6. The main idea of Saturate is as follows (see Figure 5 for the illustration):

• Maintain a lower bound (cmin) for RelRSFMax and an upper bound for RSFMax (cmax); Initialize [cmin, cmax] = [0,mini fi(V)]

• Successively improve the upper and lower bounds using a binary search procedure

• Invoke the GPC algorithm with c = (cmax + cmin)/2:

– |S c| > αk implies that c > c∗, hence c is an upper bound to the RSFMax problem; It is safe to set cmax = c

– |S c| ≤ αk implies that S c is a feasible solution to the RelRSFMax problem; S c is then kept as best current solution and we
can set cmin = c

• Upon convergence, we are thus guaranteed a feasible solution to RelRSFMax (c′, S ′) such that:

c′ ≥ c∗ and |S ′| ≤ αk

6
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Feasible c for RSFMax

c min c maxc’

Feasible c for RelRSFMax
Figure 5: [cmin, cmax] is the search interval during some iteration of Saturate. c∗ is the optimal solution to the RSFMax problem, and c′

is the solution that will eventually be returned by Saturate.

Algorithm 2 The Saturate algortihm
Saturate ( f1, · · · , fm, k, α):

1: cmin ← 0; cmax ← min j f j(V); S best ← ∅

2: while (cmax − cmin) > 1/m do
3: c← (cmin + cmax)/2
4: f̄c(S )← 1

m

∑m
j=1 min{ f j(S ), c}

5: Ŝ ← GPC( f̄c, c)
6: if |Ŝ | > αk then
7: cmax ← c
8: else
9: cmin ← c; S best ← Ŝ

10: return S best

Theorem 6.1 (Approximation achieved by the Saturate algorithm [6]). For any integer k, Saturate finds a solution S best such that

min
i

fi(S best) ≥ max
|S |≤k

min
i

fi(S ) and |S best| ≤ αk

for α = 1 + ln
(

maxv∈V
∑

i fi({v})
)
.

Proof. Let S ∗ denote an optimal solution to the RSFMax problem. At every iteration of the saturation algorithm it holds that (due to
the GPC Theorem)

min
i

fi(S ∗) ≤ cmax,

and
min

i
fi(S best) ≥ cmin and |S best| ≤ αk.

Since fi are integer functions, if cmax − cmin <
1
m then it must hold that

min
i

fi(S best) ≥ min
i

fi(S ∗)

�

This theorem says that we can achieve the goal of simultaneously optimizing over several submodular functions, provided that

we relax the constraint by a factor of α = 1 + ln
(

maxv∈V
∑

i fi({v})
)
.
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7 Appendix

Summary of submodular optimization problems covered:

Lec-
ture

Problem Algorithm Approxi-
mation

Hardness

2 Unconstrained SFMax Greedy 1/2 (1 + ε)1/2
2 Cardinality constrained

monotone SFMax
Greedy 1 − 1/e 1 − 1/e

2 Unconstrained
MFMax/MFMin

Pick
positive
weights

1 1

2 Cardinality constrained
MFMax/MFMin

Sorting 1 1

2 Unconstrained SFMin Convex
methods

1 1

2 TU constrained
MFMax/MFMin

Linear pro-
gramming

1 1

4 Robust monotone
SFMax

Saturate Bicrite-
rion:
(1, α)

Bicriterion:
(1, (1 − ε)α)

where α = 1 + ln
(

maxv∈V
∑

i fi({v})
)

• SFMax: Submodular function maximization

• SFMin: Submodular function minimization

• MFMax/MFMin: Modular function maximization/minimization
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