
EE-731: ADVANCED TOPICS IN DATA SCIENCES
LABORATORY FOR INFORMATION AND INFERENCE SYSTEMS

SPRING 2016

INSTRUCTOR: VOLKAN CEVHER SCRIBER: ABBAS BAZZI AND ASHKAN NOROUZI-FARD

SUBMODULAR OPTIMIZATION

Many interesting problems in computer science can be casted as optimization problems, where given a function f , one would want
to find either the minimizer or the maximizer of f subject to some constraints. An interesting class of such functions are set functions
of the form f : {0, 1}V 7→ R, i.e., we are given a ground set V , and for every subset S ⊆ V , the function f assigns a value. The goal in
such problems is find a feasible subset S ? such that f (S ?) is maximized (or minimized). The general version of this problem is hard,
and cover a large fraction of the interesting problems in computer science. Hence in this lecture we only focus on optimizing over
such set functions when they are either submodular, supermodular, or modular. We then study how to optimize over more general
functions when the underlying constraints satisfy additional property.

1 Submodular Optimization

In this lecture, we will mainly focus on the following three topics:

• Submodular Function Maximization

• Submodular Function Minimization

• Interger programming

Let us start by recalling the definition of submodular functions.

Definition 1. A function f : 2V → R on a ground set V is said to be submodular if for all S ⊆ T ⊆ V and any e ∈ V\T , it holds ∆(e|S) ≥ ∆(e|T),
where ∆(e|S) = f (S ∪ {e}) − f (S).

We also call f monotone, if for all S ⊆ T , we have that f (S) ≤ f (T).

In several problems in theoretical computer science, machine learning and game theory, the goal is to optimize over a submodular
function, i.e., finding the minimum or the maximum of such function. Hence we define the following two problems.

Definition 2. SFMin: Given a submodular function f : 2V → R the goal is to find a set S that minimizes f (S).

Definition 3. SFMax: Given a submodular function f : 2V → R the goal is to find a set S that maximizes f (S).

We first focus on the SFMax problem, and show that not only it is NP-hard, but it is also unconditionally hard. We also present
an (1 − 1

e)-approximation algorithm for a special case of this problem. Then we focus on SFMin, and show that, unlike SFMax, it is
solvable in polynomial.

2 Submodular Maximization

We start by studying submodular functions in this section. We start in Section 2.1 by motivating the use of sub modular function
with application in Learning-based CS. We then show in Section 2.2 that SFMax is NP-hard, and distinguish between two different
computational models for this problem. Then we study modular maximisation in Section 2.3, and show that this problem can be
solved exactly in polynomial time, unlike submodular maximization. For the latter, we design in Section 2.4 a (1 − 1

e)-approximation
algorithm when we require our submodular function to be monotone, and we add cardinality constraints for a feasible solutions. We
then show in Section 2.5 how to use a greedy algorithm to solve the Minimum submodular set cover problem.

2.1 Submodular maximization in Learning-based CS

In this section we present three examples of submodular maximization in learning based CS.

Definition 4. Given a set of m training signals x1, . . . , xm ∈ C
p, find an index set Ω of a given cardinality n such that a related test signal x can

reliably be recovered given the subsampled measurement vector b = ¶ΩΨx.

LIONS @ EPFL Advanced Topics in Data Sciences Prof. Volkan Cevher

Definition 5. Average energy criterion

Ω̂ = arg max
Ω : |Ω|=n

1
m

m∑
j=1

∑
i∈Ω

|〈ψi, x j〉|
2

This is a cardinality constrained modular maximization problem.

Definition 6. Generalized average energy criterion

Ω̂ = arg max
Ω : |Ω|=n

1
m

m∑
j=1

g
(∑

i∈Ω

|〈ψi, x j〉|
2
)
.

where g : R→ R be an increasing concave function with g(0) = 0. This is a cardinality constrained monotone submodular maximization problem.

2.2 SFMax is NP-hard

Let us first show that this problem is NP-hard. In order to do that, we first define our computational model, as it is different than
usual models. To see the difference, assume that we are given as input the value of f (S) for any S ⊆ V , then we can just check all of
these value, and find min/max in linear time (in the size of the input). However, this renders the size of the input exponentially large
compared to the size of the ground set, and any algorithm (even the linear time) would be extremely slow. Therefore, we normally
assume that we are only given the ground set in the input, and we have a polynomial size description of a Turing machine that allows
us to query the value of f (S) for any S ⊆ V . In particular, this turing machine returns the value of any query in polynomial time with
respect to the size of the ground set.

In order to show that SFMax is NP-hard, reduce form SFMax to Max Cut. To do that, we start by defining the Max Cut problem
and then show that the cut function is submodular.

Definition 7. Max Cut: Given a graph G = (V, E), find a subset of vertices S ⊆ V maximizing the number of edges between S and V\S .

maxS⊆V |δ(S)|

Max Cut is known to be an NP-hard problem, and is listed in Karp’s list of 21 NP-complete problems [4]. The following Lemma
shows that the cut function is submodular.

Lemma 2.1. For a given graph G = (V, E), δ(S) is a submodular function, where δ(S) = {(u, v) ∈ E : u ∈ S , v ∈ V\S }

Proof. Let S ⊆ T ⊆ V and e ∈ V\T . We need to show that ∆(e|T) ≤ ∆(e|S), where ∆(e|A) = δ(A ∪ u) − δ(A). Let us define the following
three variables:

• n1 be the number edges between e and V\T .

• n2 be the number edges between e and T\S .

• n3 be the number edges between e and S .

Now one can easily see that ∆(e|S) = n1 + n2 − n3 and ∆(e|T) = n1 − n2 − n3, since n2 ≥ 0, we get that ∆(e|T) ≤ ∆(e|S). �

This shows that if SFMax is solvable in polynomial time, then Max Cut is solvable in polynomial time as well, hence SFMax in
NP-hard. Note that its easy to design a Turing machine that can find the number of the edges in a cut.

In a different computational model, we also can show that any (1/2 + ε)-approximation algorithm requires exponentially many
oracle calls. This means that it is impossible to design a polynomial time algorithm that gives an approximation guarantee that is
strictly better than 1/2 with fewer oracle requests [3]. Note that, this result does not show that approximating SFMax within a factor
1/2 is NP-hard, but in a separate result we get that it is indeed NP-hard to approximate SFMax within a factor strictly better that 1/2.
There is also a polynomial 1/2-approximation algorithm for SFMax.

2.3 Modular Function Maximization

We focus in this section on Modular function maximisation; while SFMax is hard, MFMax (Modular Function Maximization) is easy.

Definition 8. Unconstrained modular maximization Given a ground set V and constants c1, ..., cn ∈ R, the goal is to find a set S ⊆ V
maximizing f (S), where f (S) :=

∑
i∈S ci.

maxS⊆V f (S)

For solving this problem we just need to pick elements with positive ci value, which is trivially linear time.

Definition 9. Cardinality Constrained modular maximization Given a ground set V and constants c1, ..., cn ∈ R, the goal is to find a set
S ⊆ V such that |S | ≤ k, maximizing f (S), where f (S) :=

∑
i∈S ci.

max|S |≤k f (S)

For solving this we just pick the elements with k biggest ci as while as they are positive. Similar to previous part this can still be
done in linear time. That is, we can find the k-th biggest element of a set in time O(n).

2

LIONS @ EPFL Advanced Topics in Data Sciences Prof. Volkan Cevher

2.4 Cardinality constrained monotone submodular maximization

In this section we present a simple but tight algorithm for cardinality constrained monotone submodular maximization problem. In
this problem, we are given a ground set V and an oracle, the goal is to find a set S , such that |S | ≤ k, maximizing f (S), where f is a
monotone, submodular function.
Here is the greedy algorithm:

1. Initialize S 0 = ∅

2. For i = 1, . . . , k

• Find ei = arg maxe∈V\S i−1
∆(e|S i−1)

• Set S i = S i−1 ∪ {ei}

3. Return S k

The following lemma shows that the greedy algorithm gives us a (1 − 1/e)-approximation factor.

Lemma 2.2. For any monotone submodular function f , with f (∅) = 0, after ` iterations of the greedy algorithm, it holds that

f (S `) ≥ (1 − e−`/k) f (S ?),

where S ? is the optimal solution.

Proof. We can assume w.l.o.g. that |S ?| = k, since by monotonicity of f adding elements can only increase the function value. Assume
that S ? = {e?1 , e

?
2 , · · · , e

?
k }, then for all i ≤ `,

f (S ?) ≤ f (S ? ∪ S i)

= f (S i ∪ {e?1 , e
?
2 , · · · , e

?
k−1}) + ∆

(
e?k |S i ∪ {e?1 , e

?
2 , · · · , e

?
k−1}

)
= f (S i) +

k∑
j=1

∆
(
e?j |S i ∪ {e?1 , e

?
2 , · · · , e

?
j−1}

)
≤ f (S i) +

k∑
j=1

∆
(
e?j |S i

)
≤ f (S i) +

k∑
j=1

∆ (ei|S i)

≤ f (S i) + k (f (S i+1) − f (S i))

The first inequality holds by monotonicity, the third one follows by repeating the second inequality k times. The forth one follows
by submodularity.

Let ∆ fi := f (S ∗) − f (S i). Then by rearranging the term we get that, ∆ fi+1 ≤
(
1 − 1

k

)
∆ fi.

f (S ?) − f (S `) ≤ (1 −
1
k

)` f (S ?) ≤ e−l/k f (S ∗)

Rearranging terms yields f (S l) ≥ (1 − e−l/k) f (S ∗).
�

After k iterations, the greedy algorithm achieves a (1 − 1/e)-approximation, which is tight; no algorithm requiring a polynomial
number of oracle calls has a better performance. This results also shows something more interesting is shows that we can get much
better guarantee if we are allowed to choose a set of size more than k and still compare our solution with a solution of size k. For
instance we get that by choosing l = 5k, f (S 5k) ≥ 0.9933 max|S |≤k f (S).

In the next section, we use the greedy algorithm to solve Minimum submodular set cover problem.

3

LIONS @ EPFL Advanced Topics in Data Sciences Prof. Volkan Cevher

2.5 Minimum Submodular Set Cover

We first define the problem, and then show that the greedy algorithm can almost solve this problem.

Definition 10. Given a fixed z ∈ Z, such that z ≤ f (V), if we now run the greedy algorithm until we reach f (S `) ≥ z, how big is the size of S l,
compared to the minimum sized S ? set achieving f (S ?) ≥ z.

k? = min
S⊆V
{|S | : f (S) ≥ z}

The following theorem shows that the |S ` | that the greedy algorithm finds is not that bad. Recall that a function f is called
normalized, if f (∅) = 0.

Lemma 2.3. Given a normalized monotone submodular integer-valued function f and a fixed z ∈ Z, such that z ≤ f (V). Let ` be smallest integer
such that f (S `) ≥ z. Then

` ≤
(
1 + ln max

v∈V
f ({v})

)
k?

I

After showing that SFMax is a hard problem, and also presenting a tight approximation, it is time to focus on SFMin problem
Before we do that, we end this section with an exercise.

Exercise 1. Let f : {0, 1}V 7→ Z be a submodular function such that maxv∈V f (v) ≤ 1. Is f modular?

Solution. No. As a counter example, let V = {1, 2}, and define f as follows:

f (∅) = 0

f ({1}) = 1

f ({2}) = 1

f ({1, 2}) = 1

f is clearly submodular, however it is not modular. J

3 Unconstrained Submodular Minimization

In this section we abuse the notation a little bit for the sake of readability. As defined before, a set function is defined as f : 2V → R. In
this section we also define it over a vector of size n = |V |, i.e., f (1S) = f (S).

We start by defining the Convex Closure, and then in Section 3.1 we define the Lovasz extention and use them to give a polynomial
time algorithm for SFMin in Section 3.2.

Definition 11. Given any set function f : {0, 1}n → R, for all x ∈ [0, 1]n we define the convex closure of f as:

f −(x) = min
α∈[0,1]2n

∑
S⊆V

αS f (S) : x =
∑
S⊆V

αS1S ,
∑
S⊆V

αS = 1, αS ≥ 0


3.1 Lovász Extension

As we saw in the previous section, given a function f : {0, 1}n 7→ R, we wanted to define the convex closure of f , denoted by
f − : [0, 1]n 7→ R that is close to f yet can be minimized efficiently. A good candidate for that purpose if the Lovász extension defined as
follows:

Definition 12 (Lovász extension [6]). Given a normalized set function f : {0, 1}n → R (i.e., f (∅) = 0), its Lovász extension fL : [0, 1]n → R is
defined ∀s ∈ [0, 1]n as follows:

fL(s) =

n∑
k=1

s jk
(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
where s j1 ≥ s j2 ≥ · · · ≥ s jn .

The convex closure f −(x) = fL(x) where fL is the Lovász extension of f iff f is a submodular function [11]. We present below some
observations about fL and verify some of them.

Fact 1. fL is an extension of f since fL(s) = f (s),∀s ∈ {0, 1}n.

4

LIONS @ EPFL Advanced Topics in Data Sciences Prof. Volkan Cevher

Proof. For any s ∈ {0, 1}n that is an indicator vectors of a set S , let j1, · · · , jn be such that s j1 ≥ s j2 ≥ · · · ≥ s jn , and define ` ∈ [n] to be the
largest index jk such that s jk = 1. It is easy to see that S = { j1, j2, . . . , j`} hence from Definition 12 we get

fL(s) =

n∑
k=1

s jk
(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
=

∑̀
k=1

(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
= f ({ j1, · · · , j`})

= f (S)

where the third equality follows from the telescoping nature of the sum. �

Fact 2. fL can be computed efficiently in O(n log n).

Proof. It is to see that given an ordering s j1 ≥ s j2 ≥ · · · ≥ s jn , fL(s) can be computed using O(n) oracle accesses. Hence there running
time of the computation is dominated by sorting the s j’, which requires O(n log n) �

Fact 3. For a fixed ordering of s, fL is a linear function.

Proof. Fix any 0 ≤ a, b ≤ 1, and s1, s2 ∈ [0, 1]n such that s = as1 + bs2 ∈ [0, 1]n, and consider a fixed ordering s j1 , · · · , s jn , then

fL(s) =

n∑
k=1

s jk
(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
=

n∑
k=1

(as1, jk + bs2, jk)
(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
= a

n∑
k=1

s1, jk
(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
+ b

n∑
k=1

s2, jk
(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
= a fL(s1) + b fL(s2)

where to get the last equality we used the fact that the ordering is fixed. �

Fact 4. For modular functions, fL is a linear function.

Proof. Assume f is a modular function, then we get that for any s ∈ [0, 1]n

fL(s) =

n∑
k=1

s jk
(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
=

n∑
k=1

s jk f ({ jk})

hence fL is linear. �

Fact 5. Let h = f + g, then hL = fL + gL.

Proof. From Definition 12, we that for any s ∈ [0, 1]n:

hL(s) =

n∑
k=1

s jk (h({ j1, · · · , jk}) − h({ j1, · · · , jk−1}))

=

n∑
k=1

s jk
([

f ({ j1, · · · , jk}) + g({ j1, · · · , jk})
]
−

[
f ({ j1, · · · , jk−1}) + g({ j1, · · · , jk−1})

])
=

n∑
k=1

s jk (f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})) +

n∑
k=1

s jk (g({ j1, · · · , jk}) − g({ j1, · · · , jk−1}))

= fL(s) + gL(s)

�

5

LIONS @ EPFL Advanced Topics in Data Sciences Prof. Volkan Cevher

Fact 6. fL is positively homogenous, i.e., fL(αs) = α fL(s),∀α > 0.

Fact 7. fL is a non-decreasing function if f is monotone.

We note here that there are several definitions for the Lovász extension, however we stick to Definition 12 for our purposes.
The motivation behind defining the Lovász extension fL was to come up with a function that is close to our submodular function f ,

and can be efficiently minimized. We have shown earlier that fL is indeed close to f , hence it remains to show that the second property
holds. To do that, we show that fL is convex if and only if f is submodular, which yields the required property.

Theorem 3.1 ([6]). Given a set function f and its Lovász extension fL, fL is convex iff f is submodular.

Proof. We first show that fL is convex if f is submodular. To see this, consider any s1, s2 ∈ [0, 1]n and a real 0 ≤ λ ≤ 1, and let
s = λs1 + (1 − λ)s2 ∈ [0, 1]n hence

fL(s) =

n∑
k=1

s jk
(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
= λ

n∑
k=1

s1, jk
(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
+ (1 − λ)

n∑
k=1

s2, jk
(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
(1)

(2)

Now consider a variant of the Lovász extension where the ordering is fixed, i.e., f J
L (x) where I is sequence defined as J = (j1, j2, . . . , jn).

In this terminology, we define f J
L (s) to be equal

f J
L (s) =

n∑
k=1

s jk (f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1}))

so it is easy to see that fL(s) = f J
L (s) for J being the ordering J∗ = (j∗1, j∗2, . . . , j∗n) where s j∗1

≥ s j∗2
≥ · · · ≥ s j∗n . From Proposition 3.2 in [1],

we know that if f is submodular then, f J
L (s) attains a maximum when J = J∗, i.e.,

fL(s) ≥ f J
L (s) ∀ ordering J

Applying this observation to Equation(1), we get that

fL(s) = λ

n∑
k=1

s1, jk
(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
+ (1 − λ)

n∑
k=1

s2, jk
(
f ({ j1, · · · , jk}) − f ({ j1, · · · , jk−1})

)
≤ λ fL(s1) + (1 − λ) fL(s2)

which concludes the first direction of the proof.
Now for the second direction, assume that fL is convex, and consider any two sets A, B ⊆ V and let 1A,1B be the respective indicator

vectors. In order to prove that f is submodular in this case, we will prove that f (A∩ B) + f (A∪ B) ≤ f (A) + f (B). To see why this holds,
consider the two sets A ∪ B and A ∩ B. An easy observation yields that for any i ∈ [n]

(1A∪B + 1A∩B)i = (1A + 1B)i =


2 if i ∈ A ∩ B
1 if i ∈ A4B
0 if i < A ∪ B

Hence from Definition 12 we get that

fL(1A∪B + 1A∩B) = 2(f (A ∩ B) − f (∅)) + 1(f (A∆B ∪ A ∩ B) − f (A ∩ B))

= f (A ∩ B) + f (A ∪ B)

fL(1A) = f (A)

fL(1B) = f (B)

But this means that

fL(1A∪B + 1A∩B) = fL(1A + 1B) ≤ fL(1A) + fL(1B)

since fL is convex by our assumption. Combining this all together we get that

f (A ∩ B) + f (A ∪ B) = fL(1A∪B + 1A∩B) ≤ fL(1A) + fL(1B) = f (A) + f (B)

which yields the proof. �

6

LIONS @ EPFL Advanced Topics in Data Sciences Prof. Volkan Cevher

Before we proceed, we give some examples of submodular functions, along with their Lovász extensions.

Example 1. f (S) = |S |.

It is easy to see that f is modular, since for any S ⊆ T ⊆ V and e < T , we have that ∆(S |e) = ∆(T |e) = 1. Plugging in f into
Definition 12, we get that for all s ∈ [0, 1]n, fL(s) = 1

T s.

Example 2. For a G ⊆ V , f (S) = 1G∩S,∅(S), i.e, f (S) = 1 if G ∩ S , ∅.

First, it is easy to see that f is monotone, hence for any S ⊆ T ⊆ V , we have that f (T) ≥ f (S). Now consider any e < T , then we have
that f (S ∪ {e}) = f (T ∪ {e}) = 1. Now it follows directly from the monotonicity of f that ∆(S |e) ≥ ∆(T |e).Plugging in f into Definition 12,
we get that for all s ∈ [0, 1]n,

fL(s) = s j11 j1∈G + s j21 j2∈G, j1<G + · · · + s jn1 jn∈G,V\ jn<G = max
k∈G

sk,

where s j1 ≥ s j2 ≥ · · · ≥ s jn .

Example 3. f (S) =
∑

G∈G dG1G∩S,∅(S), where dG > 0.

Since the function f of this example if a non-negative combination of functions from Example 2, it follows directly that f is
submodular and

fL(s) =
∑
G∈G

dG max
k∈G

sk.

3.2 Minimizing submodular functions

As mentioned earlier, the motivation behind defining the Lovász extension fL for submodular functions is that we want to be able
to minimize submodular function efficiently. We argued in the previous section that this indeed helpful as the extension we get is
actually convex, and hence we know how to solve such problems efficiently. Moreover, we will show in this section that the extension
is very close to the original function, in the sense that both f and fL have the same minimum over their respective domains. More
formally, we prove the following theorem.

Theorem 3.2 (SFMin is equivalent to a convex problem). Given a normalized submodular function f and its Lovász extension fL,

min
s∈{0,1}n

f (s) = min
x∈[0,1]n

fL(x)

where any minimizer s? of the LHS is a minimizer of the RHS, and any minimizer x? of the RHS, has all its thresholded sets {x? ≥ θ},∀θ ∈ (0, 1)
as minimizers of the LHS.

Proof. We only prove the first part of the claim here, and the proof of the second part can be found in [1]. Namely, we only prove that

min
s∈{0,1}n

f (s) = min
x∈[0,1]n

fL(x)

Let s? and x? be defined as in the statement of the theorem, then it is easy to see that f (s?) ≥ f (x?) since {0, 1}n ⊂ [0, 1]n. To prove
the other direction (i.e., f (s?) ≤ f (x?)), we resort to an equivalent definition of the Lovász extension as it appears in [1] and get the
following:

fL(x?) =

n−1∑
k=1

(x?jk − x?jk+1
) f ({ j1, · · · , jk}) + x?jn f (V)

≥

n−1∑
k=1

(x?jk − x?jk+1
) f (s?) + x?jn f (s?) (x jk − x jk+1 ≥ 0)

≥ x j1 f (s?)

≥ f (s?) (since f (s?) ≤ f (∅) = 0 and x j1 ≤ 1)

where x?j1 ≥ x?j2 ≥ · · · ≥ x?jn . �

We have thus far reduced the seemingly complex problem of minimizing a submodular function, to the easier problem of min-
imizing a continuous convex function fL, i,e, solving minx∈[0,1]n fL(x). This problem has been studied efficiently in the literature, and
have many efficient algorithms, such as

• Minimum Norm Point (MNP) algorithm [2]: The running time of this algorithm is O((n3EO + n3 log n + n4)F2), where F :=
maxi{| f ({i})|, | f (V) − f (V \ i)|}, and EO is the running time of the evaluation oracle. The drawback of this algorithm is that it is
weakly polynomial, as its running time depends on F, which is generally not desirable.

• Frank Wolfe algorithm [1]: The running time of this algorithm is O((n3EO + n3 log n)F2), hence it is also weakly polynomial.
Although asymptotically its running time is better than that of MNP (n3 versus n4), the latter works faster in practice.

7

LIONS @ EPFL Advanced Topics in Data Sciences Prof. Volkan Cevher

• Combinatorial algorithms, e.g., [8]: The running time of this algorithm is O(n5EO + n6) without any dependency on F, and hence
is strongly polynomial.

• Cutting plane method [5]: If one is willing to settle for a weakly polynomial time algorithm, then the cutting plane method can
be made to run in O(n2 log nF · EO + n3logO(1)nF), otherwise its running time is O(n3log2n · EO + n4logO(1)n).

4 Integer Linear Program

In this section, we study Integer Programs (IP) that basically be used to solve many interesting combinatorial problems. However
since solving such problems is NP-hard, we study their relaxations as Linear Programs (LP) that can be solved efficiently, and discuss
cases where the solution of the LP is the same as that of the IP. Integer Linear Programs (ILP) play a crucial role in Computer Science,
as many interesting discrete optimization problems can be formulated as ILPs in the following way:

β\ ∈ arg max
β∈Zm
{θTβ : Mβ ≤ c} (IP)

However, solving ILPs exactly is an NP-hard problem and that is listed in Karp’s 21 NP-complete problems list [4]. Hence, the usual
way to get around this issue is to relax the integrality constraints, and settle for a fractional solution with the hope of being able to
round this fractional solution later on to an integral one, without loosing too much.

β? ∈ arg max
β∈Rm
{θTβ : Mβ ≤ c} (LP)

It is not hard to see that the optimal value of a relaxation is an upper bound on the optimal of the original ILP, as the domain of the
latter is a subset of the domain of the former. We illustrate this in Figure 1, where the left figure shows the optimal value of an integral
solution (i.e., that of ILP), and the right one shows the optimal solution of the relaxation (i.e, that of the LP).

�1

�2

M�  c �\ ✓T�\

✓

�1

�2

M�  c ✓T�\�\

✓

�?

✓T�? � ✓T�\

Figure 1: Optimal solution of ILP on the left. Optimal solution of LP on the right.

An important notion in the context of optimization is that of convex polyhedra, which is defined as P = {β|Mβ ≤ b} for β ∈ Rm, c ∈
Rm. One can show that an optimal value for any linear objective function defined over P is attained at a vertex of P, hence if we could
prove that all vertices of our polyhedra of interest are integral, we would be able to solve our integer program to optimality, as any
optimal value is in fact integral. We illustrate that in Figure 4.

We do know how to optimize linear function over such convex bodies efficiently up to arbitrary, where for instance we can use
the interior point method that performs O

(√
l log l

ε

)
iterations (l > m) with up to O(m2l) operations, where ε is the absolute solution

accuracy, and l is the number of constraints.
As mentioned earlier, if we could prove that our convex polyhedra of interest has only integral vertices, then we can solve our

problem easily. In order to get this property, we study the structure of matrix M represents our constraints and defines our polyhedra.
As it turns out, its structure would be crucial in order to solve its underlying optimization problems. A property that will be of special
interest for us is that of Total Unimodularity defined as follows:

Definition 13 (Total unimodularity). A matrix M ∈ Rl×m is totally unimodular (TU) iff the determinant of every square submatrix of M is 0, or
±1.

It is easy to see from the definition that all the entries of M are necessarily 0,±1, as the 1 × 1 sub matrices should also satisfy the
properties of Definition 13. Moreover, given a matrix M, we can verify whether M is TU or not in polynomial time [10]. Before we
proceed, we state some obversations about TU matrices. Namely, we give some operations that when applied to a TU matrix M, the
resulting matrix remains TU.

8

LIONS @ EPFL Advanced Topics in Data Sciences Prof. Volkan Cevher

�1

�2

M�  c ✓T�\

�?=�\

✓

Figure 2: the vertices of P are integral.

Observation 1. If M is TU then,

1. The tranpose of M is TU.

2. M′ = (M, I) is TU, where I is the identity matrix.

3. Matrix M′ resulting from deleting a row (or a column) with at most one non-zero entry from M is TU.

4. Matrix M′ resulting from interchanging two rows (or columns) in M is TU.

5. Matrix M′ resulting from multiplying a row (or a column) from M by (−1) is TU.

6. Matrix M′ resulting from duplicating rows (or columns) of M is TU.

7. Matrix M′ resulting from applying a pivot operation1 on M is TU.

The reason why we are interested in our constraint matrix M being TU is that it leads to interesting properties for the underlying
polyhedron. Formally,

Theorem 4.1 (TU Polyhedron is integral). The polyhedron P = {Mβ ≤ c} has integer vertices when M is TU and c is an integer vector.

Proof. Let z be any vertex of our polyhedron P, then z is determined by a subsystem M′z = c′ where M′ is a matrix of full row rank
m′ ≤ n. We can now rewrite M′ = [U,V] where U is a m′ × m′ matrix of full row and column rank, and hence has a determinant ±1 as it
is sub matrix of M and it is non-singular. This says that z can be written as

z =

[
U−1c′

0

]
From Cramer’s rule, we know that U−1 =

AdjU
det U where AdjU is the adjugate matrix of U. But since det U ∈ {±1} and AdjU is an integer

matrix and c′ is an integer vector, we get that z is an integer vector as well. �

An equivalent definition of a TU matrix is the following:

Definition 14 (Equivalent definition of TU [9, 7]). A matrix M is TU iff for every subset J of its columns, there exits a partition J1, J2 of J such
that

|
∑
j∈J1

Mi j −
∑
j∈J2

Mi j| ≤ 1,∀i = 1, · · · , l

We give below examples of useful matrices in graph theory, that turn out to be TU.

Example 4. The edge-node incidence matrix T of a directed graph G = (V, E).

1A pivot operation is the operation done in the reduced Gaussian elimination. For a (0,±1) matrix A, given a pivot |ai j | = 1, if ai j = −1, then we multiply the ith row by
−1, and denote the new row by āi. For each row k , i, we modify it as follows:

āk =


ak if ak j = 0
ak − āi if ak j = 1
ak + āi if ak j = −1

9

LIONS @ EPFL Advanced Topics in Data Sciences Prof. Volkan Cevher

Recall that if T is an m × n matrix where m = |E| and n = |V |, and for each edge e = (i, j) ∈ E, Te,i = 1 and Te, j = −1. Any row Mk

for k ∈ {1, 2, . . . ,m}, corresponds to an edge e = (i, j) and hence has two non-zero entries (more precisely, a (1)-entry and a (-1)-entry)
corresponding to the end points on this edge. Thus, given any subset J of the columns of T , let

J1 = { j ∈ J : ∃i ∈ [m] such that Ti j , 0}

J2 = J\J1

Given that each row contains at 2 non-zero entries that are 1 and -1, we get that |
∑

j∈J1
Ti, j| ≤ 1 for all i ∈ [m]. We also get by construction

that |
∑

j∈J2
Ti, j| = 0, which proves that T is TU.

Example 5. The edge-node incidence matrix T of an undirected bipartite graph G = (U,V, E) with bipartitions U and V .

When G is an unweighted graph, we define T such that Te,i = Te, j = 1 for any edge e = (i, j) ∈ E. Now given any subset J of columns
corresponding to vertices in U ∪ V , we define J1, J2 as follows:

J1 = J ∩ U and J2 = J ∩ V

Since G is bipartite, it is easy to see that no edge can have both his endpoints neither in J1 nor in J2, hence for all e ∈ [m], we have∑
j∈J1

Te, j ∈ {0, 1} and
∑
j∈J2

Te, j ∈ {0, 1}

which proves that T is TU.

Example 6. The biadjacency matrix B of an undirected acyclic bipartite graph G = (U,V, E), such that the degree of every node in V is
at most 2.

Recall that the biadjacency matrix B is an r × s matrix where r = |V |, s = |U | such that Bv,u = 1 if and only if v ∈ V, u ∈ U and (u, v) ∈ E.
To see why B is TU, consider another graph G′ = (U, E′) over the vertices in the right partition U, such that e = (u1, u2) ∈ E′ iff there
exists a vertex v ∈ V such that (u1, v), (u2, v) ∈ E, i.e., if u1 and u2 share a common neighbour in the original graph. It is not hard to see
that G′ is acyclic and hence bipartite over some partitions U1,U2; G′ cannot have a cycle of length 3 as this would imply that exists a
vertex in V whose degree is greater than 2. Similarly, a cycle of length k ≥ 4 would correspond to a cycle of length 2k in G, but G is
acyclic.

Now in order to prove that B is TU, we provide a way to partition any subset J of the columns of J such that the TU condition is
satisfied. Recall that the columns if B are indexed by vertices in U, the rows are indexed by vertices in V , and hence each row has at
most two non-zero entries. Given a subset J of the columns of B, we define J1, J2 as follows:

J1 = J ∩ U1 and J2 = J ∩ U2

where U1,U2 are the bipartition’s of the new graph G′ defined earlier. Now for every row indexed v ∈ V , we have two cases:

1. v has only one neighbour in U, hence the row has only one nonzero entry, so the TU condition is satisfied trivially.

2. v has two neighbours u1, u2 ∈ U. Note that in this case we have an edge (u1, u2) ∈ E′, and since G′ is bipartite we get that
|U1 ∩ {u1, u2}| = |U2 ∩ {u1, u2}| = 1, and hence∑

u∈J1

Bv,u ∈ {0, 1} and
∑
u∈J2

Bv,u ∈ {0, 1}

and hence the TU condition is satisfied.

We present below another application where TU matrices turn out to be handy. In this problem, we are given a vector y ∈ Rn and
an integer k, and the goal is to find a k sparse vector x ∈ Rn that best approximates y in the `2 sense. More formally the problem of
interest, known as the k-sparse projection, can be stated as follows:

Problem 1 (k-sparse projection). The projection of a vector y ∈ Rn over the set of k-sparse vectors is given by:

min
x∈Rn
{‖x − y‖22 : ‖x‖0 ≤ k}

where ‖x‖0 = |supp(x)| where supp(x) = {i : xi , 0}.

We will see now how to cast this problem as an maximization problem where the underlying matrix is TU. To see that note that
our problem can be equivalently rewritten as:

min
x∈Rn
{‖x − y‖22 : ‖x‖0 ≤ k} = min

|S |≤k
min
x∈Rn
{‖x − y‖22 : supp(x) = S }

10

LIONS @ EPFL Advanced Topics in Data Sciences Prof. Volkan Cevher

For a fixed |S | ≤ k, and an x ∈ Rn such that supp(x) = S , we can break the summation of the `2 norm as

‖x − y‖22 =
∑
i∈S

(xi − yi)2 +
∑
i<S

y2
i

= ‖y‖22 −max
|S |≤k
{
∑
i∈S

y2
i }

where the first term can be brought down to zero by setting xi = yi for all i ∈ S . Hence the problem boils down to finding the highest
energy k terms in k, i.e.,

min
x∈Rn
{‖x − y‖22 : ‖x‖0 ≤ k} = min

|S |≤k
{
∑
i<S

y2
i }

= ‖y‖22 −max
|S |≤k
{
∑
i∈S

y2
i }

But we can view max|S |≤k
∑

i∈S y2
i as an integer program over TU constraints:

max
s∈{0,1}
{

n∑
i=1

siy2
i : 1T s ≤ k} = max

s∈[0,1]
{

n∑
i=1

siy2
i : 1T s ≤ k}

Since matrix 1T is TU and k ∈ Z.

References

[1] Francis Bach. Learning with submodular functions: A convex optimization perspective. arXiv preprint arXiv:1111.6453, 2011.

[2] Deeparnab Chakrabarty, Prateek Jain, and Pravesh Kothari. Provable submodular minimization via fujishige-wolfe’s algorithm.

[3] Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. Maximizing non-monotone submodular functions. SIAM Journal on Computing,
40(4):1133–1153, 2011.

[4] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[5] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its implications for combinatorial and
convex optimization. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 1049–1065. IEEE,
2015.

[6] László Lovász. Submodular functions and convexity. In Mathematical Programming The State of the Art, pages 235–257. Springer,
1983.

[7] George L Nemhauser and Laurence A Wolsey. Integer and combinatorial optimization, volume 18. Wiley New York, 1988.

[8] James B Orlin. A faster strongly polynomial time algorithm for submodular function minimization. Mathematical Programming,
118(2):237–251, 2009.

[9] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

[10] Klaus Truemper. Alpha-balanced graphs and matrices and gf (3)-representability of matroids. Journal of Combinatorial Theory,
Series B, 32(2):112–139, 1982.

[11] Jan Vondrák. Continuous extensions of submodular functionscontinuous extensions of submodular functions. CS 369P: Polyhe-
dral techniques in combinatorial optimization, http://theory.stanford.edu/ jvondrak/CS369P-files/lec17.pdf, 2010.

11

