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We have introduced the framework of Statistical Learning in previous lectures. The purpose of this lecture is to introduce some of
the most basic error bounds in Statistical Learning Theory. We follow the traditional path of Uniform Convergence, and briefly explain
how this notion should be improved for modern applications.

1 Preliminaries

Recall the following ingredients of Statistical Learning Theory:

e Training Data: O, :={Z}! ii.d. unknown P on Z.

Hypothesis Class: H a set of hypotheses 4.

Loss Function: ¢: H xZ — R.

o Risk: L(h) := Bz pl(h,Z), where Z is independent of D,,.

Empirical Risk Minimization:

R I ©
h, = argmin L,(h) = arg min — Z C(h,Z).
heH heH N i=1

The goal is to learn from data, in the sense that we have guarantees in
e Generalization error: L(h) < L(h,) + €
e Excess risk: L(h,) — infyeq L(h) < &

for some small numbers € and e, ideally decreasing in the number of samples. We have seen that this can be achieved by studying
the uniform convergence property.

Definition 1 (Uniform Convergence [10]). A hypothesis class H has the uniform convergence property, if there exists a function nq(g, ), such
that for every €,6 € (0, 1) and any probability distribution P, if n > ng(g, 6), we have

suplL,(h) — L(h)] < &,
heH
with probability at least 1 - 6.
The following theorem explains why uniform convergence is useful in providing guarantees.

Theorem 1.1. For any & > 0, if sup,eg |L.(h) — L(h)| < &, then for any h* € arg min, ., L(h), we have
1. L(h,) < La(hy) + €.

2. L(h,) — L(h*) < 2e.

Proof. The first inequality is simply L, (h,) — L(h,)| < SUPyeqq [Ly(h) — L(h)|. The second inequality follows since

L(h,) = L(h*) = L(h,) = Ly(h,) + L,(h,) — L(h*)
< L(hy) = Ly(hy) + L,(h*) = L(h*)
< 2sup|L,(h) — L(h)|.

heH

where we have used the fact that 1, minimizes L,(-).
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In the sequel we shall need the following two concentration of measure inequalities.
Theorem 1.2 (Hoeffding’s inequality [3]). Let Y be a random variable with E[Y] = 0, taking values in a bounded interval [a, b]. Let yy(1) =
log Ble'" . Then (1) < 52 and ¥ 6“5

In particular, for all Y € [a, b],

27
Pr(lY —EY|>1) < Zexp(— o )2).
—-a

Stated differently but equivalently, with probability at least 1 — §, we have

|Y—EY|s(b—a)w/@. 1)

Definition 2 (Bounded Difference Functions). A function f : X" — R has the bounded differences property if for some positive cy, .., cx,

SUP  1F (X1, ey Xis ooy Xn) = (X1, ety Xy ey X0)| < €
x],,..,xn,)qe/\’

Theorem 1.3 (Bounded Differences Inequality [3]). Let X, ..., X, be independent random variables, and let f satisfy the bounded differences
property with ¢;’s. Then

212
PUFX1, o Xo) = BF X1y s Xl > 1) < 2exp( - ﬁ)

i=1%

A similar statement of (1) holds for the Bounded Differences Inequality.

2 Classical VC Theory for Binary Classification

Historically, the first bound of uniform convergence type is given by the VC bound for binary classification. In this section, we
illustrate the key ideas of VC bound, and we refer the readers to Section 12 of [5] for proofs.
Consider the problem of binary classification; that is, we consider the following setup:

e Training Data: D, ={Z; = (X;,Y;): 1 <i<n}, where?Y; € {+1,-1}.
e Binary Hypothesis Class: H a set of classifiers n : X — {-1, 1}.
o Loss Function: Binary loss £(h,Z;) := 1y,nx,))-

e Risk: L(h) := By pl(h,Z) = P(Y # h(X)).

e Empirical Risk: L,(h) := 2 3 Ly ncx)-

In view of Theorem 1.1, we can focus on bounding sup,. |L.(h) — L(h)|. To start, consider the case where H is a single, fixed
hypothesis 4. Applying Hoeffding’s bound (1) to L,(h) = 1 3, £(h, Z;), we immediately see that, with probability at least 1 — &,

In(2/6
Sup L, () — L0 = ILy) — L) < | . @
heH n

An equally simple case is when H is finite, where Hoeffding’s lemma followed by a union bound implies that, with probability at

least 1 -6,
sup Ly (h) — L()| < /w. 3)
heH n

We next consider infinitely large hypothesis spaces H. Although the bound (3) is useless for such #, it turns out it is possible to
replace the cardinality in (3) by the effective cardinality of /. This important fact lies at the heart of VC theory, and we illustrate how
this can be done by the following example.

Example 1: 1-Dimensional Linear Classifiers Consider the set of hypotheses formed by picking any real number r, and declare +1 if
x> r,and -1 if x < r (breaking ties arbitrarily); see Figure 1. The cardinality of such hypothesis set is infinite. However, for any
given n points, we can produce at most n + 1 different output labels. This suggests that we may think of the hypothesis class as
containing effectively n + 1 different hypotheses when the number of samples is n.

The above rough statements can be made precise. Toward this end, we need some definitions.

Definition 3 (Dichotomies). For any finite sample S = (xy, ..., X,), the set of dichotomies is defined to be all possible labelings of S by the functions
in H:
g (S) = {{h(x1), ..., h(x,)) - h e H}.
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Figure 1: One dimensional linear classifier. Given 2 input points, one can produce at most 3 different output labels using such
hypothesis class, although the number of hypotheses is infinite.

Definition 4 (Growth Function).
My (n) = max [Tz (S)I.

In other words, given n input points, the growth function is the maximum number of different output labels that H can produce.
For example, I1y/(n) = n + 1 in Example 1.

We are now ready to state a key result in VC theory. Ignoring constants, the next theorem states that one can replace |H| in (3) with
g (n).

Theorem 2.1. With probability at least 1 — 6, we have

321n Ty (n) + In(16/9)

n

sup|L,(h) = L(h)| < \/ *)
heH

So our attention naturally turns to the growth function Iy (n). In “nice” cases, such as in Example 1, the growth function can be
expressed in a close form. However, the growth function needs not always admit such expressions. Moreover, it is easy to construct
examples where H can perfectly reproduce all possible combinations of output labels, in which case Ily(n) = 2" and (4) becomes a
constant (consider the hypotheses class formed by declaring +1 on union of arbitrary intervals, and —1 on the complement). All these
observations seem to suggest that (4) cannot be useful in full generality. Surprisingly, a remarkable result of combinatorics says that
controlling Tlg(n) is easy: All we need is to compute one characteristic of the hypothesis class, the VC dimension.

Definition 5 (Shattering coefficient). The shattering coefficient of a hypothesis class H is defined as
Su(H) == sup  {(h(x))<icn - h € H}.

X s Xn€X
Definition 6 (Vapnik-Chervonenkis (VC) dimension). The VC dimension of a hypothesis class H, denoted by d, is defined as the largest
integer k such that S (H) = 2. If S (H) = 2* for all k, then d = co.

In short, the VC dimension is the maximum number d such that we can perfectly recover 2¢ output labels on d input points, and
produce strictly < 2¢*! output labels on d + 1 samples. For example, in Example 1, d = 1 since we can produce only 3 < 2'*! output
labels on 2 input points.

There exist some obvious connections between Il (n) and the VC dimension d. For instance, ITy(n) < 2" if and only if d < oo by
definition. The following fundamental theorem gives a much stronger statement: Il (n) is upper bounded by a polynomial of degree
d.

Lemma 2.2 (Sauer-Shelah). Let the VC dimension be d. The growth function is bounded by

d
My(m) < ) (';)
=0

. C] d
In particular, Ty (n) < (%)
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For a proof, see, e.g., [12].
The VC bound is obtained by substituting the above into (4).

Theorem 2.3 (The VC Bound for Binary Classification [13]). Let H be a hypothesis class with VC dimension d. Assume that n > d. Then

with probability at least 1 - 6,
qup L (k) ~ L) SO( /w) 6
heH

In short, ignoring constants and log factors, the effective cardinality of a hypothesis class is 2¢, where d is the VC dimension. Hence
the VC dimension is a natural measure of the complexity of a hypothesis class.

3 Uniform Convergence and Rademacher Complexity

Although the VC theory is extremely important in revealing qualitative behaviors of learning, several drawbacks make it inapplicable
in practice. First, the VC bound (5) is very loose in practice. This is due to the fact that it holds for all distributions and all possible
realization of data. Such a doubly worst-case scenario, however, is never encountered in real world applications. Another significant
disadvantage of the arguments in Section 2 is that they do not easily generalize to other learning problems, such as regression or
density estimation, which are equally important as binary classification.

In this section, we prove the uniform convergence through another important notion, the Rademacher complexity, that can be viewed
again as a complexity measure of the hypothesis class. The benefits we gain by adopting Rademacher complexity will become obvious
later. Specifically, the Rademacher complexity improves upon VC bound by

1. Providing data-dependent bounds, which are usually much tighter than (5) in practice.

2. Allowing immediate generalization to other learning problems.

To illustrate the intuition of Rademacher complexity, let us first consider the binary classification problem. Let the sample be

(X1,Y1)5 e (X, ¥a), Where y; € {1, —1}. By the identity L)z, = 17}'(2“')’" , we can rewrite the empirical risk minimization procedure as

1 n
=) yih(x).
max Zy (x)

Now, suppose that, instead of the true labels {y;};, the learner receives a set of random noise {0}; where o; takes probability %
on both +1 and —1. If one can still achieve small training error in this setting, then we expect some sort of overfitting phenomenon
has occurred, a sign that the hypothesis class H might be too complex for the sake of learning. Formally, we define the Rademacher
complexity as follows.

Definition 7 (Rademacher Complexity, Binary Classification [9]). Let S = (xi,...,x,) be a given set of input instances, and let o; be a
Rademacher random variable (-1 or +1 with equal probability). The Rademacher complexity of a class of binary functions H with respect to S is
defined as

n

E sup l Z oih(x;). (6)

heH 1 im1

That is, in binary classification, the Rademacher complexity measures how well H can fit pure noise.
In the above definition, the function class is restricted to be binary. The importance of Rademacher complexity is that, unlike VC
dimension (or growth function related notions), the Rademacher complexity naturally extends to arbitrary type of functions.

Definition 8 (Rademacher Complexity, General Cases [9]). Let S = (zi, ..., 2.) be a given set of input instances, and let o; be a Rademacher
random variable (-1 or +1 with equal probability). The Rademacher complexity of a class of arbitrary functions F with respect to S is defined as

%Zn;‘("if(zi)

i=

Rs(F) :=Esup
feF

: @)

We remark that the presence of the absolute value above, as oppose to the definition in (6), is insignificant since the term
SUp.r + 31, 07f(z;) is usually positive. However, adding absolute value greatly simplifies the analysis to come.

One has to be careful that, when extending to general hypothesis classes, we lose the interpretation of Rademacher complexity
maximization being equivalent to empirical risk minimization over pure noise. However, one can still interpret the Rademacher
complexity as measuring the correlation between ¥ and pure noise. It turns out that, in a much wider class of learning problems,
characterizing the uniform convergence can be done through the Rademacher complexity.
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Theorem 3.1 ([2]). Let F be any family of functions Z — [~1,+1]. Let S = {Z;}}_, be random samples of size n. Then, with probability at least

1-96,
1 v 2In(1/6
sup [Bf(2)— + 3 f(Z)| < 285 Ry(F) + ) L), ®)
JeF n< n
We also have
1 v 2In(2/6
sup[B@) ~ + " 12| < 2Rs () + || ZED, ©)
Jer i n

Since the proof of Theorem 3.1 is simple and elegant, we include it here for completeness.

We first need the so-called “symmetrization lemma”, which is very useful in many fields of mathematics and is arguably more
important than the Theorem 3.1 itself.

Lemma 3.2 (Rademacher Symmetrization). With the same notation as Theorem 3.1, we have

E sup
feF

< 2Es R (F).

1 n
Bf(2)~ ), f(Z)
i=1

Proof. Introduce a set of “ghost” samples S’ = {Z!}\, which are identical and independent of the original samples S. Then

LS (1) - 2y r@)

n i=1

1 n
Ef(2)~ ), f(Z)
i=1

1
E sup Qg sup
feF feF

2
2g sup
feF

1 n
By Zl (fZ) - £(Z))

(3)
< Ess/ sup
feF

l n
=2, @)~ £Z))
i=1

(G
= ES,S !0 sup

ln
= 0 (FZ) - f(Z
fesf",-=la-(f( )= f(ZD)

1<
; ; oif(Z)

(5)
< 2Eg, su
feF

where
(1) follows since Z and Z! have the same distribution,
(2) is because of the independence of Z; and Z/,
(3) uses Jensen’s inequality,
(4) follows since the distribution of f(Z;) — f(Z}) is in variant to sign change, and
(5) uses triangle inequality.
m]

proof of Theorem 3.1: In view of Lemma 3.2, to prove (8), it suffices to note that the function sup e ']E f(Z) - ﬁ > f (Z,-)l satisfies the
assumption of bounded differences inequality.
For (9), we simply use the bounded differences inequality again, this time on the Rademacher complexity itself. o

To use Theorem 3.1, define 7 = CoH = {{(h,-) : h € H}, and apply (9) to ¥ . The left-hand side of (9) then becomes the desired form
in uniform convergence. The second term on the right-hand is simply a constant, so it remains to calculate the Rademacher complexity
of £ o H (not H!). Evaluating the Rademacher complexity of the above form is a profound area in its own, and we refer the readers to
[11] for a comprehensive account. Nonetheless, it is worth mentioning that the Rademacher complexity of many important function
classes admit simple upper bounds, so one simply needs to plug in those existing results. For example, if the loss function is Lipschitz
continuous, then one can reduce the tasking of bounding R (€ o H) to Rs(H), where many results are readily available.
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4 A Brief View of Modern Statistical Learning

Since the advent of compressive sensing [4], [6], the so-called “high-dimensional” phenomena have been a research area of intensive
study. In the language of Statistical Learning Theory, the high-dimensional phenomena say that when the best hypotheses are typically
structured, as is usually the case in modern applications, learning problems become much easier.

As a result, modern Statistical Learning Theory aims at:

1. Deriving bounds that reveal high-dimensional phenomena, such as distribution dependent bounds.

2. Getting rid of redundant assumptions (such as boundedness in classical Statistical Learning Theory).

The central idea here is that, instead of demanding uniform convergence, a property that treats all the members in a function class
equally, we consider a local neighborhood of the best member in the class, and require the worst case of only that local neighborhood
to converge. If it happens that the best member has some structures (such as sparsity, etc.), then typically the local convergence is
much easier than the global (uniform) convergence.

It turns out that we need to impose more assumptions on the distribution that generates the data (that is, we can no longer afford
the luxury of distribution-free assertions). In a seminal paper [8], Mendelson has introduced two parameters that involve the !localized
Rademacher complexity. Denote ||f]* = f f2dP where P is the distribution generating the data. We define:

< yr}

Definition 9 ([8]). Given a function class ¥ and y > 0. Set

1 n
= 3ol — )
n

feFnrDs | 4

B (y) = inf {r >0: E sup

where Dy = (f : |If = f*Il < 1}.

Definition 10 ([8]). Let & = f*(X;) - Y: and y,(s) = SUP fernsD o H Y oibif - f*)(Xi)l .
Giveny,§ > 0. Set
@' (,0) =inf{s>0: P(yu(s) <ys’) 2 1-}.

Mendelson showed that, under very mild assumptions on the distribution, it is possible to reveal high-dimensional phenomena
for the least squared regression problems:

e Training Data: D, ={Z; = (X;,Y;): 1 <i < n}, whereY; e R.
o Hypothesis Class:  a set of convex regression function f : X — R.
e Loss Function: Squared loss {(f,Z) 1= (f(X;) - ¥))*.
Theorem 4.1 ([8]). Under mild assumptions, there exist constants ci, c,, c3 > 0 such that, with probability 1 — § — exp(—ncy),
I = £l < 2max{a*(c2, 6/4), 8°(c3)).

Very roughly speaking, instead of computing the Rademacher complexity for the whole function class, it suffices to consider
only the Rademacher complexity in a neighborhood of the best hypothesis. Evaluating these localized Rademacher complexity will
automatically reveal the desired high-dimensional phenomena.
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