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1 Introduction

Measuring the concentration of a random variable around some value has many applications in statistics, information
theory, optimization, etc. In probability theory, this concentration of measures can be quantified as :

Definition 1. Given a random variable Y and a constant m, Y is said to be concentrated around m if,

P(|Y − m| > t) ≤ D(t)

where, D(t) decreases drastically to 0 in t.

These inequalities are called concentration of measure inequalities [1] [2].

Example 1.1. A simple example can be considered when Yn = 1
n
∑n

i=1 Xi, where Xi are independent random variables with
mean µ and variance σ2, then Yn tends to concentrate around µ as n→ ∞. The concentration in this case can be quantified
by following results:

• Law of Large Numbers : P(|Y − m| > ε)→ 0 as n→ ∞.

• Central Limit Theorem : P(|Y − m| > α
√

n )→ 2Φ
(
− α
σ

)
as n→ ∞, where Φ is the standard normal CDF.

• Large Deviations : Under some technical assumptions, P(|Y − m| > ε) ≤ exp(−n.c(ε))

It is quite interesting to note that these concentration properties on the average of the independent random variables
hold for the more generalized scenario where a not too sensitive function of independent random variables concentrates
on its expectation, formally:

Proposition 1.1. If x1, · · · , xn are independent random variables then any function f (x1, · · · , xn) that is, not too sensitive to any of
the co-ordinate will concentrate around its mean:

P(| f (x1, · · · , xn) − E[ f (x1, · · · , xn)]| > t) ≤ e−t2/c(t).

Here, c(t) quantifies the sensitivity of the function to its variables.

2 Concentration Inequalities

Now we define several types of functions and the concentration inequalities:
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2.1 Bounded Difference Function

Definition 2. A function f : Xn → R is called a bounded difference function if for some non-negative c1, · · · , cn,

sup
{x1,...,xi,...,xn,x′i∈X}

| f (x1, · · · , xi, · · · , xn) − f (x1, · · · , x′i , · · · , xn)| ≤ ci.

Example 2.1 (Chromatic number of a Random Graph). Let V = {1, · · · , n} and G be a random graph such that each pair
i, j ∈ V is independently connected with probability p. Let Xi j = 1 if (i, j) are connected and 0 otherwise. The Chromatic
number of G is the number of colors needed to color the vertices such that no two connected vertices have the same color.
Defining:

Chromatic number = f (X11, · · · , Xi j, · · · , Xnn)

it can be shown that f is a bounded difference function with Ci j = 1.

Theorem 2.1 (Bounded difference inequality). Let f : Xn → R satisfy the bounded difference property with ci’s and let
X1, · · · , Xn be independent random variables. Then:

P(| f (x1, · · · , xn) − E[ f (x1, · · · , xn)]| > t) ≤ 2 exp

 −2t2∑N
i=1 c2

i

 .
Proof. To prove this result we need to exploit some common probability bounds. As these bounds are essential to prove
the inequality, therefore, we discuss them in details with examples, meanwhile, keeping the flow of the proof:

• Cramer Chernoff Bound

– Markov’s Inequality We start by stating Markov’s inequality and its proof:

Theorem 2.2 (Markov’s Inequality). Let Z be a non-negative random variable then, P(Z ≥ t) ≤ E[Z]
t .

Proof. This can be proven by showing that:∫ ∞

t
PZ(z) dz ≤

∫ ∞

t

z
t
PZ(z) dz ≤

∫ ∞

0

z
t
PZ(z) dz =

E[Z]
t
.

�

– Chebyshev’s Inequality We extend this result to any non-decreasing and non-negative function ϕ of the non-
negative random varibale Z then,

P(Z ≥ t) ≤ P(ϕ(Z) ≥ ϕ(t)) ≤
E[ϕ(Z)]
ϕ(t)

.

On choosing ϕ(Z) = Z2, and substituting |Z − E[Z]| into Z, we get the Chebyshev’s inequality:

P(|Z − E[Z]| ≥ t) ≤
Var[Z]

t2 .

– Chernoff Bound Similarly, by choosing ϕ(Z) = eλZ where, λ ≥ 0 and taking ψZ(λ) = log λZ, we get the Chernoff
bound:

P(Z ≥ t) ≤ inf
λ≥0

e−λtE[eλZ] = E

[
exp

(
−sup
λ≥0

(λt − ψZ(λ))
)]
.

2
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– Cramer-Transform To get the Cramer-Chernoff inequality from this Chernoff bound we first define Cramer
Transform of the random variable Z,:

ψ∗Z(t) = sup
λ≥0

λt − ψZ(λ)

Thus, by putting the Cramer transform of Z in the Chernoff bound we derive:

P(Z ≥ t) ≤ exp
(
−ψ∗Z(t)

)
Example 2.2. To illustrate the power of these bounds we apply them to the case when Z = X1 + · · · + Xn where
Xi are i.i.d. ’s (independent and identical distributions). On applying Chebyshev’s inequality to the sum and
acknowledging that Var[Z] = nVar[X], and putting t = nε, we obtain,

P
(

1
n
|Z − E[Z]| ≥ ε

)
≤

Var[X]
nε2 .

Whereas, by first deriving that:

ψZ(λ) = logE[eλZ] = logE[eλ
∑n

i=1 Xi ] = logE[Πn
i=1eλXi ] = log Πn

i=1E[eλXi ] = log(E[eλX])n = nψX(λ)

using i.i.d. property of the Xis and putting this in the Cramer-Chernoff inequality on the sum we get:

P(Z ≥ nε) ≤ exp
(
−nψ∗X(ε)

)
.

We also use the Cramer-Chernoff inequality on any centered random variable Y = X − E[X] and its negative
Y− = −Y :

P(Y ≥ t) ≤ exp
(
−ψ∗Y (t)

)
, P(−Y ≥ t) ≤ exp

(
−ψ∗−Y(t)

)
,

adding the two:
P(|Y | ≥ t) ≤ exp

(
−ψ∗Y (t)

)
+ exp

(
−ψ∗Y−(t)

)
.

In case the probability distribution of Y is symmetric around its mean. Then ψ∗
−Y (t) = ψ∗Y (t), and thus,

P(|Y | ≥ t) ≤ 2 exp
(
−ψ∗Y(t)

)
.

For example, for a random variable Y = N(0, σ2), ψY (λ) = λ2σ2

2 and ψ∗Y (t) = t2

2σ2 and hence,

P(|Y | ≥ t) ≤ 2e−
t2

2σ2 ,

which means that the Gaussian random variables concentrate around their mean as σ→ 0.

• Sub-Gaussian Random Variables : To use the discussed inequalities to prove the concentration of measure for
the bounded difference functions we describe the larger family of sub-Gaussian random variables to which they
belong:

Definition 3 (Sub-Gaussian Random Variable). If a centered random variable Z is such that ψZ(λ) ≤ λ2σ2

2 , for all non-
negative λ then it is called a sub-Gaussian random variable with parameter σ2. The family of all such random variables with
the parameter σ2 is denoted by G(σ2).

Interestingly, when ψZ(λ) ≤ λ2σ2

2 , then ψ∗Z(t) ≥ t2

2σ2 and ψ∗
−Z(t) ≥ t2

2σ2 , which brings us to the properties of the sub-
Gaussian random variables:

– If Z ∈ G(σ2) then, P(|Z| ≥ t) ≤ 2 exp
(
− t2

2σ2

)
i.e. Sub-Gaussian random variables concentrate around their mean.

3
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– If Zi ∈ G(σ2) are independent, then
∑n

i=1 aiXi ∈ G(
∑n

i=1 a2
i σ

2) i.e. linear combination of sub-Gaussian random
variables is sub-Gaussian as well.

• Hoeffding’s Lemma The result then can be used to state Hoeffding’s Lemma:

Lemma 2.3 (Hoeffding’s Lemma). Let Z be a random variable with E[Z] = 0, and bounded in [a, b] then, ψZ(λ) ≤ λ2

2 .
(b−a)2

4
and thus, Z ∈ G((b − a)2/4).

The details of the lemma are discussed later.

• Applying property 1 of the sub-Gaussian random variables on Z = Y − E[Y], we get,

P(|Y − E[Y]| ≥ t) ≤ 2 exp
(
−

2t2

(b − a)2

)
,

We then use the property 2 of the sub-Gaussian random variables to prove that Z = Z1 + · · ·+Zn (where Zi = Yi−E[Yi]
and is bounded in [ai, bi]) is sub-Gaussian with parameter

∑n
i=1(bi − ai)2/4. Then, substituting t = nε and using the

result obtained we get :

P
(

1
n
|Z − E[Z]| ≥ ε

)
≤ 2 exp

− 2nε2

1
n
∑n

i=1(bi − ai)2

 .
�

We state 2 more examples of concentration inequalities :

Theorem 2.4 (Lipschitz Function of Gaussian RVs). Let X1, · · · , Xn be independent random variables with distribution N(0, 1)
and let f be an L − Lipschitz i.e. (| f (x) − f (x′)| ≤ L‖x − x′‖2 for any x, x′). Then,

P (| f (X1, · · · , Xn) − E[ f (X1, · · · , Xn)]|) ≤ 2 exp
(
−

t2

2L2

)
.

Theorem 2.5. Let X1, · · · , Xn be independent random variables bounded in [0, 1], and let f : [0, 1]n → R be 1 − Lipschitz and
separately convex (i.e. convex in any given co-ordinate when the other ones are fixed). Then,

P ( f (X1, · · · , Xn) − E[ f (X1, · · · , Xn)] ≥ t) ≤ exp
(
−

t2

2

)

3 Examples

We now discuss some applications of these concentration inequalities:

Example 3.1. PAC Learnability:
As discussed in the previous lecture, a hypothesis classH has the uniform convergence property, if there exists a function
nH (ε, δ), such that for every ε, δ ∈ [0, 1] and any probability distribution P, if n ≥ nH (ε, δ), we have

sup
h∈H
|F̂n(h) − F(h)| ≤ ε,

with probability at least 1 − δ, where, F̂n(h) is the empirical risk and F(h) is the risk.
Given that the hypothesis class H includes a finite number of functions f (h, ·) bounded in [0,1]. Then, H satisfies the
uniform convergence property with

nH (ε, δ) =
log(2|H|/δ)

2ε2 .

4
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Proof. Let ξ(h) = f (h, xi), and S n(h) = 1
n
∑n

i=1(ξi(h) − Eξi(h)). Then,

sup
h∈H
|S n(h)| = sup

h∈H
|F̂n(h) − F(h)|.

As f (h, xi) are bounded in [0,1], therefore, they satisfy the bounding difference inequality such that,:

sup
h∈H
P(|S n(h)| ≥ ε) ≤

∑
h∈H

P(|S n(h)| ≥ ε) ≤ |H|.2e−2nε2
≤ δ

for n ≥ log(2|H|/δ)
2ε2 . Here, |H| is the cardinality of the setH . �

Example 3.2. Network Tomography
The problem as shown in Fig 1. is to reconstruct the tree structure given n packets and p leaf nodes and the information
X(i)

k = 1 {Packet i arrives at the node k} for the n independent samples:
Solution: In [3], it has been shown that the tree structure can be recovered from the information qkl = P(packet reaches

xk and xl). We approximate qkl by the ensemble average q̂kl = 1
n
∑n

i=1 1{X(i)
k = 1∩ X(i)

l = 1}. But the approximation is feasible
only if the system is robust i.e. |q̂kl − qkl| ≤ ε for any pair k, l. This can be achieved with probability 1 − δ if n ≥ 1

2ε2 log p2

δ
.

Proof. Using Hoeffding’s inequality it is easy to see that:

P(|q̂kl − qkl| ≥ ε) ≤ 2 exp
(
−2nε2

)
To get the upper bound of this for any k and l,

sup
k,l∈n×n

P(|q̂kl − qkl| ≥ ε) ≤
∑

k,l∈n×n

P(|q̂kl − qkl| ≥ ε) ≤ 2.
p2

2
exp(−2nε2) ≤ δ

Thus, the P(error)≤ δ if n ≥ 1
2ε2 log p2

δ
.

�

Example 3.3. Random Linear Projections:
This is also called as Johnson-Lindenstrauss Theorem [4],

5
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Theorem 3.1 (Johnson-Lindenstrauss Theorem). Let x1, · · · , xp be a collection of points inRd, and A ∈ Rn×d be a random Gaussian
matrix with N(0, 1

√
N

) distribution, then, for any pair ε, δ ∈ (0, 1) if n ≥ 4
ε2(1−ε) log p2

δ
, with probability 1 − δ following is satisfied:

(1 − ε)‖xi − x j‖
2
2 ≤ ‖Axi − Ax j‖

2
2 ≤ (1 + ε)‖xi − x j‖

2
2 (1)

Proof. Lets focus on E[‖Au‖22], we observe that:

E[‖Au‖22] = uTE[ATA]u = uTIu = ‖u‖22.

Also note that Z j = [Ax] j/‖x‖ is distributed as N(0, 1) and Z j are independent. Thus, ‖Ax‖2/‖x‖ =
∑n

i=1 Z2
j = χ2 ( where χ2

is the chi-squared distribution with n degrees of freedom). We then use the squared-Gaussian concentration (Chapter 2,
[5]) to show that for any u,

P
(
‖Au‖22 ≥ (1 + ε)‖u‖22

)
≤ exp

(
−

n
4
ε
(
1 − ε2

)
)
)

P
(
‖Au‖22 ≤ (1 − ε)‖u‖22

)
≤ exp

(
−

n
4
ε
(
1 − ε2

))
implying that :

P
(
|‖Au‖22 − ‖u‖

2
2| ≥ ε‖u‖

2
2

)
≤ 2 exp

(
−

n
4
ε
(
1 − ε2

))
To get the upper bound of the LHS:

sup
k∈Q

P
(
|‖Auk‖

2
2 − ‖uk‖

2
2| ≥ ε‖uk‖

2
2

)
≤

∑
u∈Q

P
(
|‖Aui‖

2
2 − ‖ui‖

2
2| ≥ ε‖ui‖

2
2

)
≤ 2|Q| exp

(
−

n
4
ε
(
1 − ε2

))
On substituting ui = xp − xq, the cardinality of the set |Q| = p2/2, we obtain:

P
(∣∣∣‖A(xi − x j)‖22 − ‖(xi − x j)‖22

∣∣∣ ≥ ε‖(xi − x j)‖22
)
≤ p2 exp

(
−

n
4
ε
(
1 − ε2

))
(2)

Assuming, δ = p2 exp
(
− n

4 ε
(
1 − ε2

))
, we obtain n ≥ 4

ε2(1−ε) log p2

δ
such that for this n the inequality in (2)1 is not true with

probability 1 − δ i.e.
(1 − ε)‖xi − x j‖

2
2 ≤ ‖Axi − Ax j‖

2
2 ≤ (1 + ε)‖xi − x j‖

2
2

is true with probability 1 − δ. �

4 Proofs

• Details of Hoeffding’s Lemma:

Lemma 4.1 (Hoeffding’s Lemma). Let Z be a random variable with E[Z] = 0, and bounded in [a, b] then, ψZ(λ) ≤ λ2

2 .
(b−a)2

4
and thus, Z ∈ G((b − a)2/4).

Proof. First note that if a , b then, a < 0 and b > 0, since, E[Y] = 0. Now, since eλy is a convex function for a given λ
then, using Jensen’s inequality:

eλy ≤
b − y
b − a

eλa +
y − a
b − a

eλb.

6
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This can be simplified as :

E[eλY ] ≤
b − E[Y]

b − a
eλa +

E[Y] − a
b − a

eλb

=
b

b − a
eλa +

−a
b − a

eλb

=

(
1 −

−a
b − a

)
e−(λ(b−a) −a

b−a ) +

(
−a

b − a

)
eλ(b−a)(1− −a

b−a )

= (1 − p)e−hp + peh(1−p)

= e−hp
(
1 − p + peh

)
= e−hp+ln(1−p+peh)

= eL(h)

where, h = λ(b−a), p = −a
b−a and L(h) = −hp+ln(1−p+peh). Note that, p > 0 and 1−p+peh = p( 1

p−1+eh) = p(−b
a +eh) > 0

and thus, is a feasible argument for ln. By Taylor’s theorem, there exists h′ ∈ [0, h] such that,

L(h) = L(0) + hL′(0) +
1
2

h2L′′(h′)

It is easy to check that L(0) = L′(0) = 0 and

L′′(h′) =
peh′

1 − p + peh′

(
1 −

peh′

1 − p + peh′

)
= t(1 − t),

where t =
peh′

1−p+peh′ > 0. Note that, L′′(h′) reaches its maximum 1/4 at t = 1/2 thus,

L(h) ≤
1
2

h2L′′(h′) ≤
1
2

h2.
1
4

=
1
8
λ2(b − a)2.

This implies that:

E[eλY ] ≤ exp
1
8

(b − a)2

and that Y is sub-Gaussian G( (b−a)2

4 ). �

• In literature, the bounded difference inequality is also proved using the entropy method [5]. We here outline the
proof and the tools that are needed for the proof.

Definition 4 (Entropy). : Let Z be a non-negative random variable. The entropy of Z is defined as:

Ent(Z) = E[Z log Z] − (E[Z]) log(E[Z]).

Properties of Entropy:

– It is a scale independent measure of variation i.e. E[cZ] = E[Z] for a constant c > 0.

– It is always non-negative and attains 0 when Z is deterministic (can be proven using Jensen’s inequality).

Note that, the entropy discussed here is different from the Shannon entropy H(Z) = E[− logPZ(Z)]. The two are
related but not equivalent(in fact, Ent(.) is more related to the relative entropy).

Definition 5. Let {Xi}
n
i=1 be independent random variables and f ≥ 0 be any function, and let

Ent(i)( f (x1, · · · , xn)) := Ent[ f (x1, · · · , xi−1, Xi, xi+1, · · · , xn)].

That is, Ent(i) f is the entropy of f with respect to the variable Xi only. Similarly,

E(i)[ f (x1, · · · , xn)] := E[ f (x1, · · · , xi−1, Xi, xi+1, · · · , xn)].

7
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Theorem 4.2 (Bounded Difference Inequality). : Let X1, · · · , Xn be independent random variables, and let f satisfy the
bounded differences property for some {ci}

n
i=1. Set σ2 = 1

4
∑n

i=1 c2
i . Then,

P (| f (X1, · · · , Xn) − E[ f (X1, · · · , Xn)]| > t) ≤ 2e−
t2

2σ2 .

Proof’s outline : Taking Z = f (X1, · · · , Xn), the proof contains three sub-parts:

– Showing that
Ent(i)(eλZ)
E(i)[eλZ]

≤
λ2

2
.
c2

i

4
( Hoeffding type bound).

One approach to proving this is using Logarithmic Sobolev Inequalities [5] whereas, a direct approach can be
found in section 2.3 in [[2]].

– In the next step we use the property of (subadditivity of entropy)[discussed later]

Ent(Z) ≤ E

 n∑
i=1

Ent(i)(Z)


to obtain:

Ent(eλZ)
E[eλZ]

≤
λ2

2
.

∑n
i=1 c2

i

4
.

– Then, we use (Herbst’s Trick)[discussed later] to prove that, Z − E[Z] ∈ G
(
σ2 = 1

4
∑n

i=1 c2
i

)
which then can be

used with the concentration inequality obtained for sub-Gaussian variables to prove the main result.

• We outline the proof of sub-additivity of entropy and Herbst’s trick:

– Proof’s outline for sub-additivity of entropy:

∗ First showing that Ent(Z) =
∑n

i=1 E [ZUi] where Ui = log E[Z|X1,··· ,Xi]
E[Z|X1,··· ,Xi−1] .

∗ Then use the variational formula[discussed below] to deduce that E[ZUi] ≤ E[Ent(i)(Z)]. After that we
average both sides and reach the result.
The variational formula for Entropy can be written as:

Ent(Z) = sup
X:E[eX ]=1

E[ZX]

This can be shown by :
1. Using Jensen’s inequality to show that Ent(Z) − E[ZX] ≥ 0 when E[eX] = 1.

2. Then showing that equality holds when X = log Z
E[Z] .

It is interesting to note that a similar property holds for the Variance i.e. (Sub-additivity of the Variance)
For independent X1, · · · , Xn,

Var[ f (X1, · · · , Xn)] ≤ E

 n∑
i=1

Var(i) f (X1, · · · , Xn)


This property is also called as Effron-Stein Inequality.

8
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– Proof’s outline of Herbst’s Trick:
For a given random variable Z if

Ent(eλZ)
E[eλZ]

≤
λ2σ2

2
,∀λ ≥ 0.

Then, Z − E[Z] ∈ G(σ2):

ψ0(λ) := ψ(Z−E[Z])(λ) = logE[eλ(Z−E[Z])] ≤
λ2σ2

2
,∀λ ≥ 0.

∗ The log-Moment generating function of Z − E[Z] is ψ0(λ) = logE[eλZ] − λE[Z].

∗ It can be shown that d
dλ

ψ0(λ)
λ

=
Ent(eλZ )
λ2E[eλZ ] .

∗ Integrating
∫ λ

0
d

dλ
ψ0(λ)
λ
≤

∫ λ

0
σ2

2 gives ψ0(λ) ≤ λ2σ2

2 .

5 Review

In this lecture we discussed:

• Concentration inequalities and there implications.

• Probability bounds to prove the concentration inequalities.

• Examples where these inequalities can be used.

• Alternative proof of concentration inequalities using entropy method.
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