
Probabilistic Graphical Models

Lecture 4: Essential Numerical Mathematics. Vector Calculus

Volkan Cevher, Matthias Seeger
Ecole Polytechnique Fédérale de Lausanne

10/10/2011

(EPFL) Graphical Models 10/10/2011 1 / 24

Outline

1 Matrix Factorizations

2 Conjugate Gradients Algorithm

3 Vector Calculus

(EPFL) Graphical Models 10/10/2011 2 / 24

Matrix Factorizations

Why Numerical Mathematics?

1 Great new idea? Have to run it on an imperfect machine!
Continuous variables: Messages are vectors / matrices,
manipulated large number of times
Without care, errors (roundoff, cancellation, . . .) accumulate
Greatest idea worth nothing if not numerically stable

2 Thousands / millions of variables? Need iterative approximations

Backbone of about any continuous inference approximation:
Iterative solvers from numerical mathematics
They are bottlenecks: Need to understand their properties

(EPFL) Graphical Models 10/10/2011 3 / 24

Matrix Factorizations

Why Numerical Mathematics?

1 Great new idea? Have to run it on an imperfect machine!
Continuous variables: Messages are vectors / matrices,
manipulated large number of times
Without care, errors (roundoff, cancellation, . . .) accumulate
Greatest idea worth nothing if not numerically stable

2 Thousands / millions of variables? Need iterative approximations
Backbone of about any continuous inference approximation:
Iterative solvers from numerical mathematics
They are bottlenecks: Need to understand their properties

(EPFL) Graphical Models 10/10/2011 3 / 24

Matrix Factorizations

Positive Definite Matrices

Positive definite A (symmetric positive definite)

AT = A, vT Av > 0 for all v 6= 0

Equivalent to:
All eigenvalues positive F2

A = X X T , X full rank

(EPFL) Graphical Models 10/10/2011 4 / 24

Matrix Factorizations

Positive Definite Matrices

Positive definite A (symmetric positive definite)

AT = A, vT Av > 0 for all v 6= 0

Equivalent to:
All eigenvalues positive
A = X X T , X full rank

A pos. def.⇔ Covariance matrix of Gaussian
F2(2)

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

(EPFL) Graphical Models 10/10/2011 4 / 24

Matrix Factorizations

Positive Definite Matrices

Positive definite A (symmetric positive definite)

AT = A, vT Av > 0 for all v 6= 0

Equivalent to:
All eigenvalues positive
A = X X T , X full rank

A pos. def.⇔ Covariance matrix of Gaussian

Numbers Matrices
C any square
R symmetric (hermitian)
> 0 positive definite

⇒ Pos. def. simplifies many methods

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

(EPFL) Graphical Models 10/10/2011 4 / 24

Matrix Factorizations

Positive Definite Matrices

Positive definite A (symmetric positive definite)

AT = A, vT Av > 0 for all v 6= 0

Equivalent to:
All eigenvalues positive
A = X X T , X full rank

A pos. def.⇔ Covariance matrix of Gaussian

Positive semidefinite A: “≥” instead of “>”
⇔ A = X X T , any X −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

5

(EPFL) Graphical Models 10/10/2011 4 / 24

Matrix Factorizations

Positive Definite Matrices

Positive definite A (symmetric positive definite)

AT = A, vT Av > 0 for all v 6= 0

Equivalent to:
All eigenvalues positive
A = X X T , X full rank

A pos. def.⇔ Covariance matrix of Gaussian

Positive semidefinite A: “≥” instead of “>”
⇔ A = X X T , any X −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

5

A pos. semidef.⇔ Covariance matrix of degenerate Gaussian
[variance 0 along some directions]

[More about matrices? Horn, Johnson: Matrix Analysis (1985)]

(EPFL) Graphical Models 10/10/2011 4 / 24

Matrix Factorizations

Cholesky Decomposition
What is a matrix decomposition? The right way to use A−1!

Rule 1 for Matrix Computations
Do not invert a matrix. Decompose it
[Rule 2: Do not code it yourself. Use BLAS / LAPACK]

(EPFL) Graphical Models 10/10/2011 5 / 24

Matrix Factorizations

Cholesky Decomposition
What is a matrix decomposition? The right way to use A−1!

Rule 1 for Matrix Computations
Do not invert a matrix. Decompose it
[Rule 2: Do not code it yourself. Use BLAS / LAPACK]

Positive definite A: Cholesky decomposition

A = X X T . Can I use lower triangular L = X ?
⇒ Yes, exactly one: Cholesky factor of A F3

(EPFL) Graphical Models 10/10/2011 5 / 24

Matrix Factorizations

Cholesky Decomposition
What is a matrix decomposition? The right way to use A−1!

Rule 1 for Matrix Computations
Do not invert a matrix. Decompose it
[Rule 2: Do not code it yourself. Use BLAS / LAPACK]

Positive definite A: Cholesky decomposition

A = X X T . Can I use lower triangular L = X ?
⇒ Yes, exactly one: Cholesky factor of A

Remarkable facts:
Maybe the only algorithm in numerical mathematics that is so
simple. If it fails, A is not (numerically) pos. def.
In-place algorithm: L can overwrite A. li,i > 0
Complexity O(n3) [A ∈ Rn×n]

(EPFL) Graphical Models 10/10/2011 5 / 24

Matrix Factorizations

Working with Cholesky Factors

Suppose: A = LLT ∈ Rn×n, L lower triangular
Solving linear system: Ax = LLT x = b

[1] : Lv = b, [2] : LT x = v

Two backsubstitutions, at O(n2) F4

[Beware: Some books distinguish between forward-, back-substitutions. I don’t: It’s just the same algorithm]

Log determinant:

log |A| = 2 log |L| = 2
∑n

i=1
log li,i

Other expressions:

bT A−1b = ‖v‖2, Lv = b

(EPFL) Graphical Models 10/10/2011 6 / 24

Matrix Factorizations

Working with Cholesky Factors

Suppose: A = LLT ∈ Rn×n, L lower triangular
Solving linear system: Ax = LLT x = b

[1] : Lv = b, [2] : LT x = v

Two backsubstitutions, at O(n2)
[Beware: Some books distinguish between forward-, back-substitutions. I don’t: It’s just the same algorithm]

Log determinant:

log |A| = 2 log |L| = 2
∑n

i=1
log li,i

Other expressions:

bT A−1b = ‖v‖2, Lv = b

(EPFL) Graphical Models 10/10/2011 6 / 24

Matrix Factorizations

Sequential Bayesian Updates
Example:

Robot unsure about location, velocity: P(u) = N(µ,Σ), u ∈ Rn

Obtains noisy linear measurements: y = xT u + ε, ε ∼ N(0, σ2)

Sequential update of belief state: P(u)→ P(u |x , y), . . .

(EPFL) Graphical Models 10/10/2011 7 / 24

Matrix Factorizations

Sequential Bayesian Updates
Example:

Robot unsure about location, velocity: P(u) = N(µ,Σ), u ∈ Rn

Obtains noisy linear measurements: y = xT u + ε, ε ∼ N(0, σ2)

Sequential update of belief state: P(u)→ P(u |x , y), . . .
Recall last lecture:

Σ′ = Σ −Σx (σ2 + xTΣx)−1xTΣ,

µ′ = µ +Σx (σ2 + xTΣx)−1(y − xTµ)

State representation: Could simply maintain µ, Σ

(EPFL) Graphical Models 10/10/2011 7 / 24

Matrix Factorizations

Sequential Bayesian Updates
Example:

Robot unsure about location, velocity: P(u) = N(µ,Σ), u ∈ Rn

Obtains noisy linear measurements: y = xT u + ε, ε ∼ N(0, σ2)

Sequential update of belief state: P(u)→ P(u |x , y), . . .
Recall last lecture:

Σ′ = Σ −Σx (σ2 + xTΣx)−1xTΣ,

µ′ = µ +Σx (σ2 + xTΣx)−1(y − xTµ)

State representation: Could simply maintain µ, Σ

Better: Use Cholesky representation: L, a s.t. Σ = LLT , µ = La
Slightly more efficient
Better numerical properties [details in exercise]

[Cholesky up-/downdates: TR at people.mmci.uni-saarland.de/∼mseeger/papers/cholupdate.pdf
Code at people.mmci.uni-saarland.de/∼mseeger/software.html]

(EPFL) Graphical Models 10/10/2011 7 / 24

Matrix Factorizations

Singular Value Decomposition

A = UΛV T ∈ Rm×n, UT U = I , V T V = I , Λ diagonal, λi ≥ 0

Singular values Λ ∈ Rd×d diagonal (d ≤ min{m,n}):
λ2

i positive eigenvalues of AT A
A symmetric→ U = V D , di ∈ {±1}: Eigenvectors of A
A positive definite→ SVD ≡ eigendecomposition

Can be computed robustly for about any matrix, in O(n3)

For pos. def. matrices: SVD more expensive than Cholesky
⇒ Use latter if sufficient for your goal
Some applications in machine learning:

Principal components analysis (PCA)
Optimal low-rank matrix approximation (covariance explained)
⇒ Basis for linear approximations
Spectral clustering, manifold regularization, . . . :
Leading eigenvectors carry lot of information about A

(EPFL) Graphical Models 10/10/2011 8 / 24

Matrix Factorizations

Singular Value Decomposition

A = UΛV T ∈ Rm×n, UT U = I , V T V = I , Λ diagonal, λi ≥ 0

Singular values Λ ∈ Rd×d diagonal (d ≤ min{m,n}):
λ2

i positive eigenvalues of AT A
A symmetric→ U = V D , di ∈ {±1}: Eigenvectors of A
A positive definite→ SVD ≡ eigendecomposition
Can be computed robustly for about any matrix, in O(n3)

For pos. def. matrices: SVD more expensive than Cholesky
⇒ Use latter if sufficient for your goal

Some applications in machine learning:

Principal components analysis (PCA)
Optimal low-rank matrix approximation (covariance explained)
⇒ Basis for linear approximations
Spectral clustering, manifold regularization, . . . :
Leading eigenvectors carry lot of information about A

(EPFL) Graphical Models 10/10/2011 8 / 24

Matrix Factorizations

Singular Value Decomposition

A = UΛV T ∈ Rm×n, UT U = I , V T V = I , Λ diagonal, λi ≥ 0

Singular values Λ ∈ Rd×d diagonal (d ≤ min{m,n}):
λ2

i positive eigenvalues of AT A
A symmetric→ U = V D , di ∈ {±1}: Eigenvectors of A
A positive definite→ SVD ≡ eigendecomposition
Can be computed robustly for about any matrix, in O(n3)

For pos. def. matrices: SVD more expensive than Cholesky
⇒ Use latter if sufficient for your goal
Some applications in machine learning:

Principal components analysis (PCA)
Optimal low-rank matrix approximation (covariance explained)
⇒ Basis for linear approximations
Spectral clustering, manifold regularization, . . . :
Leading eigenvectors carry lot of information about A

(EPFL) Graphical Models 10/10/2011 8 / 24

Matrix Factorizations

Example: Design Optimization

You know / have learned: u ∼ N(µ,Σ) [but want to know more]
You can do: One more noisy linear measurement,

y ∼ N(xT u , σ2), ‖x‖ = 1

Which x do you choose? F7

(EPFL) Graphical Models 10/10/2011 9 / 24

Matrix Factorizations

Example: Design Optimization

You know / have learned: u ∼ N(µ,Σ) [but want to know more]
You can do: One more noisy linear measurement,

y ∼ N(xT u , σ2), ‖x‖ = 1

Which x do you choose?

x∗ = argmax{xTΣx | ‖x‖ = 1} : Leading eigenvectorΣ

Remember MRI sampling optimization [first lecture]?
⇒ That’s (part of) how it works [stay on for rest]

(EPFL) Graphical Models 10/10/2011 9 / 24

Conjugate Gradients Algorithm

Why Iterative Solvers?

Moderate-sized high-resolution image: n = 65536 pixels.
Storage: 32G (single matrix)
Time for Cholesky decomposition: ≈ 3h (if enough memory)
⇒ Bayesian methods over images, stacks of images, videos, . . . ?

And how about structure?

E[u |y] = (X TΨ−1X +Π)−1(X TΨ−1y + b)

X sparse (most entries = 0) [e.g., consumer-product ratings]
X structured (banded, Toeplitz, . . .) [e.g., Markov grid structure]
X fast operator (FFT) [e.g., MRI measurements]

Matrix decompositions do not make use of that
[Some do: sparse Cholesky factorization]

(EPFL) Graphical Models 10/10/2011 10 / 24

Conjugate Gradients Algorithm

Why Iterative Solvers?

Moderate-sized high-resolution image: n = 65536 pixels.
Storage: 32G (single matrix)
Time for Cholesky decomposition: ≈ 3h (if enough memory)
⇒ Bayesian methods over images, stacks of images, videos, . . . ?
And how about structure?

E[u |y] = (X TΨ−1X +Π)−1(X TΨ−1y + b)

X sparse (most entries = 0) [e.g., consumer-product ratings]
X structured (banded, Toeplitz, . . .) [e.g., Markov grid structure]
X fast operator (FFT) [e.g., MRI measurements]

Matrix decompositions do not make use of that
[Some do: sparse Cholesky factorization]

(EPFL) Graphical Models 10/10/2011 10 / 24

Conjugate Gradients Algorithm

Minimizing Quadratic Functions

For positive definite A: F9

x∗ = argmin{q(x) = 1
2

xT Ax − bT x} ⇔ Ax∗ = b

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

(EPFL) Graphical Models 10/10/2011 11 / 24

Conjugate Gradients Algorithm

Minimizing Quadratic Functions

q(x) =
1
2

xT Ax − bT x , g(x) = ∇q(x) = Ax − b

Require: Operator A. Initial x0
for k = 1,2, . . . do

Pick search direction dk , based on gk−1 = g(xk−1), d l , l < k
Line minimization:

xk = xk−1 + αkdk , αk = argminα q(xk−1 + αdk)

end for

(EPFL) Graphical Models 10/10/2011 12 / 24

Conjugate Gradients Algorithm

Conjugate Directions

Why, of course down as steep as possible

q(xk−1 + dx) = q(xk−1) + gT
k−1(dx)︸ ︷︷ ︸

Smallest:dx∝−gk−1

+O(‖dx‖2)

Steepest descent: dk = −gk−1 F11

Wrong: For steepest descent: dT
k+1dk = 0

⇒ Improvements from previous iterations rapidly tempered with

Conjugate Directions

dT
k Ad j for all j < k

(EPFL) Graphical Models 10/10/2011 13 / 24

Conjugate Gradients Algorithm

Conjugate Directions

Why, of course down as steep as possible

q(xk−1 + dx) = q(xk−1) + gT
k−1(dx)︸ ︷︷ ︸

Smallest:dx∝−gk−1

+O(‖dx‖2)

Steepest descent: dk = −gk−1

Wrong: For steepest descent: dT
k+1dk = 0 F11(2)

⇒ Improvements from previous iterations rapidly tempered with

Conjugate Directions

dT
k Ad j for all j < k

(EPFL) Graphical Models 10/10/2011 13 / 24

Conjugate Gradients Algorithm

Conjugate Directions

Why, of course down as steep as possible

q(xk−1 + dx) = q(xk−1) + gT
k−1(dx)︸ ︷︷ ︸

Smallest:dx∝−gk−1

+O(‖dx‖2)

Steepest descent: dk = −gk−1

Wrong: For steepest descent: dT
k+1dk = 0

⇒ Improvements from previous iterations rapidly tempered with

New gradients ⊥ old directions?
⇒ Retains previous efforts: F11(3)

gT
k dk = 0→ gT

k+1dk = 0 . . .

Conjugate Directions

dT
k Ad j for all j < k

(EPFL) Graphical Models 10/10/2011 13 / 24

Conjugate Gradients Algorithm

Conjugate Directions

Why, of course down as steep as possible

q(xk−1 + dx) = q(xk−1) + gT
k−1(dx)︸ ︷︷ ︸

Smallest:dx∝−gk−1

+O(‖dx‖2)

Steepest descent: dk = −gk−1

Wrong: For steepest descent: dT
k+1dk = 0

⇒ Improvements from previous iterations rapidly tempered with

New gradients ⊥ old directions?
⇒ Retains previous efforts:
gT

k dk = 0→ gT
k+1dk = 0 . . .

Conjugate Directions

dT
k Ad j for all j < k

(EPFL) Graphical Models 10/10/2011 13 / 24

Conjugate Gradients Algorithm

Towards Conjugate Gradients

Details: Handout people.mmci.uni-saarland.de/∼mseeger/lectures/bml09/handout_lect4.pdf

1 Directions conjugate: Gradient gk ⊥ all previous directions:
gT

k d j = 0 for all j ≤ k

2 After n steps we are done: gn = 0
3 Construct conjugate directions by recurrence:

dk = −gk−1 + βk−1dk−1
4 All gradients are orthogonal: gT

k g j = 0, j < k
[Bit of misnomer: Directions are conjugate]

5 What is αk? From line minimization:

αk =
‖gk−1‖2

dT
k Adk

6 What is βk? The great synthesis!

βk =
‖gk‖2

‖gk−1‖2

(EPFL) Graphical Models 10/10/2011 14 / 24

Conjugate Gradients Algorithm

Towards Conjugate Gradients

Details: Handout people.mmci.uni-saarland.de/∼mseeger/lectures/bml09/handout_lect4.pdf

1 Directions conjugate: Gradient gk ⊥ all previous directions:
gT

k d j = 0 for all j ≤ k
2 After n steps we are done: gn = 0
3 Construct conjugate directions by recurrence:

dk = −gk−1 + βk−1dk−1

4 All gradients are orthogonal: gT
k g j = 0, j < k

[Bit of misnomer: Directions are conjugate]
5 What is αk? From line minimization:

αk =
‖gk−1‖2

dT
k Adk

6 What is βk? The great synthesis!

βk =
‖gk‖2

‖gk−1‖2

(EPFL) Graphical Models 10/10/2011 14 / 24

Conjugate Gradients Algorithm

Towards Conjugate Gradients

Details: Handout people.mmci.uni-saarland.de/∼mseeger/lectures/bml09/handout_lect4.pdf

1 Directions conjugate: Gradient gk ⊥ all previous directions:
gT

k d j = 0 for all j ≤ k
2 After n steps we are done: gn = 0
3 Construct conjugate directions by recurrence:

dk = −gk−1 + βk−1dk−1
4 All gradients are orthogonal: gT

k g j = 0, j < k
[Bit of misnomer: Directions are conjugate]

5 What is αk? From line minimization:

αk =
‖gk−1‖2

dT
k Adk

6 What is βk? The great synthesis!

βk =
‖gk‖2

‖gk−1‖2

(EPFL) Graphical Models 10/10/2011 14 / 24

Conjugate Gradients Algorithm

Towards Conjugate Gradients

Details: Handout people.mmci.uni-saarland.de/∼mseeger/lectures/bml09/handout_lect4.pdf

1 Directions conjugate: Gradient gk ⊥ all previous directions:
gT

k d j = 0 for all j ≤ k
2 After n steps we are done: gn = 0
3 Construct conjugate directions by recurrence:

dk = −gk−1 + βk−1dk−1
4 All gradients are orthogonal: gT

k g j = 0, j < k
[Bit of misnomer: Directions are conjugate]

5 What is αk? From line minimization:

αk =
‖gk−1‖2

dT
k Adk

6 What is βk? The great synthesis!

βk =
‖gk‖2

‖gk−1‖2

(EPFL) Graphical Models 10/10/2011 14 / 24

Conjugate Gradients Algorithm

Conjugate Gradients (for reference)

Require: Operator A. Initial x0. g0 = Ax0 − b
for k = 1,2, . . . (no more than n) do
ρk−1 = ‖gk−1‖2
if k = 1 then

d1 = −g0
else
βk−1 = ρk−1/ρk−2; dk = −gk−1 + βk−1dk−1

end if
qk = Adk ; αk = ρk−1/(dT

k qk)
xk = xk−1 + αkdk ; gk = gk−1 + αkqk
Check for convergence (say ‖gk‖/‖b‖ < ε)

end for

(EPFL) Graphical Models 10/10/2011 15 / 24

Conjugate Gradients Algorithm

Krylov Subspaces

Let Kk = x0 + span{d1, . . . ,dk}. Then, F14

gT
k d j = 0, j ≤ k ⇒ xk = argminx∈k

q(x)

(EPFL) Graphical Models 10/10/2011 16 / 24

Conjugate Gradients Algorithm

Krylov Subspaces

Let Kk = x0 + span{d1, . . . ,dk}. Then,

gT
k d j = 0, j ≤ k ⇒ xk = argminx∈k

q(x)

But Kk = x0 + span{Ajg0 | j < k}
⇒ Optimal with k (A·) multiplications! F14(2)

Kk ⊂ Kk+1 ⊂ . . . , x∗ ∈ Kn (Cayley/Hamilton)

What about k � n for huge n? Depends on eigenspectrum of A.
xk ≈ x∗ in surprisingly many cases in practice
⇒ Krylov subspace view key to convergence analysis [exercise]

Preconditioning: M = CCT ≈ A, but easy to solve systems with

Work on (C−T AC−1)Cx = C−T b
⇒ Better spectral properties→ Faster convergence
CG as before, with one (M−1·) per iteration
Preconditioning: Art of iterative linear solvers

(EPFL) Graphical Models 10/10/2011 16 / 24

Conjugate Gradients Algorithm

Krylov Subspaces

Let Kk = x0 + span{d1, . . . ,dk}. Then,

gT
k d j = 0, j ≤ k ⇒ xk = argminx∈k

q(x)

But Kk = x0 + span{Ajg0 | j < k}
⇒ Optimal with k (A·) multiplications!

Kk ⊂ Kk+1 ⊂ . . . , x∗ ∈ Kn (Cayley/Hamilton)
What about k � n for huge n? Depends on eigenspectrum of A.
xk ≈ x∗ in surprisingly many cases in practice
⇒ Krylov subspace view key to convergence analysis [exercise]

Preconditioning: M = CCT ≈ A, but easy to solve systems with

Work on (C−T AC−1)Cx = C−T b
⇒ Better spectral properties→ Faster convergence
CG as before, with one (M−1·) per iteration
Preconditioning: Art of iterative linear solvers

(EPFL) Graphical Models 10/10/2011 16 / 24

Conjugate Gradients Algorithm

Krylov Subspaces

Let Kk = x0 + span{d1, . . . ,dk}. Then,

gT
k d j = 0, j ≤ k ⇒ xk = argminx∈k

q(x)

But Kk = x0 + span{Ajg0 | j < k}
⇒ Optimal with k (A·) multiplications!

Kk ⊂ Kk+1 ⊂ . . . , x∗ ∈ Kn (Cayley/Hamilton)
What about k � n for huge n? Depends on eigenspectrum of A.
xk ≈ x∗ in surprisingly many cases in practice
⇒ Krylov subspace view key to convergence analysis [exercise]

Preconditioning: M = CCT ≈ A, but easy to solve systems with
Work on (C−T AC−1)Cx = C−T b
⇒ Better spectral properties→ Faster convergence
CG as before, with one (M−1·) per iteration
Preconditioning: Art of iterative linear solvers

(EPFL) Graphical Models 10/10/2011 16 / 24

Vector Calculus

Why Vector Calculus?

Remember differentiation? A bunch of rules, no-brainer.
Do that in Rn: (∂fi)/(∂xj) =

∑
k (∂gi)/(∂yk) · (∂yk)/(∂xj), . . . ?

No! Use bunch of rules on vectors, matrices.
No

∑
j,k , no ∂i/∂j : Waste of paper / your time

Vector calculus in machine learning:

∇f (x) = 0, solve for x (if you’re lucky)
Search directions always fed by gradient (steepest descent)
Newton (second order) optimization: Hessian as well

(EPFL) Graphical Models 10/10/2011 17 / 24

Vector Calculus

Why Vector Calculus?

Remember differentiation? A bunch of rules, no-brainer.
Do that in Rn: (∂fi)/(∂xj) =

∑
k (∂gi)/(∂yk) · (∂yk)/(∂xj), . . . ?

No! Use bunch of rules on vectors, matrices.
No

∑
j,k , no ∂i/∂j : Waste of paper / your time

Vector calculus in machine learning:
∇f (x) = 0, solve for x (if you’re lucky)
Search directions always fed by gradient (steepest descent)
Newton (second order) optimization: Hessian as well

Like with Gaussian: Experience with the rules pays off!

(EPFL) Graphical Models 10/10/2011 17 / 24

Vector Calculus

Differential Notation

Trace of square matrix F16

tr A =
∑

i

αi,i =
∑

i

λi , spec(A) = {λ1, . . . , λn}

tr AB = tr BA, xT Ax !
= tr xT Ax = tr AxxT

Differential dx : Tiny vector, situated at x .
df (x) = f (x + (dx))− f (x) = (∇f (x))T (dx) + O(‖dx‖2), . . .
⇒ For vector calculus: dx special vector, obeying one more rule:

Term with dx ≥ 2 times→ Term = 0 (≥ 3 for Hessian)

(EPFL) Graphical Models 10/10/2011 18 / 24

Vector Calculus

Differential Notation

Trace of square matrix

tr A =
∑

i

αi,i =
∑

i

λi , spec(A) = {λ1, . . . , λn}

tr AB = tr BA, xT Ax !
= tr xT Ax = tr AxxT

Differential dx : Tiny vector, situated at x . F16(2)

df (x) = f (x + (dx))− f (x) = (∇f (x))T (dx) + O(‖dx‖2), . . .
⇒ For vector calculus: dx special vector, obeying one more rule:

Term with dx ≥ 2 times→ Term = 0 (≥ 3 for Hessian)

[All I do here: Minka’s note, http://research.microsoft.com/en-us/um/people/minka/papers/matrix/]

(EPFL) Graphical Models 10/10/2011 18 / 24

Vector Calculus

Simple Rules

Constant. Linear

dA = 0 [A constant]

d(αX + βY) = α(dX) + β(dY), d tr X = tr(dX)

Product rule

d(X Y) = (dX)Y + X (dY) [also for⊗, ◦]

Permutation/extraction: (·)∗ reorders/extracts entries

d(X ∗) = (dX)∗

Example: (·)T , diag−1(·), vectorization (reshape in Matlab)

Prove any of them: lhs = rhs + O(‖dx‖2)

(EPFL) Graphical Models 10/10/2011 19 / 24

Vector Calculus

More Interesting Rules

Matrix inverse F18

d(X−1) = −X−1(dX)X−1

Log determinant
d log |X | = tr X−1(dX)

And d |X | = d elog |X | = |X |(d log |X |)

(EPFL) Graphical Models 10/10/2011 20 / 24

Vector Calculus

More Interesting Rules

Matrix inverse
d(X−1) = −X−1(dX)X−1

Log determinant F18(2)

d log |X | = tr X−1(dX)

And d |X | = d elog |X | = |X |(d log |X |)

(EPFL) Graphical Models 10/10/2011 20 / 24

Vector Calculus

The “Algorithm”

Given: Really messy f (x), f (x), f (X), F (x).
1 Inward: Write df (x) (or other forms). Use rules to push d(·)

inside, until dx only

2 Outward: Use linear algebra rules (dx vector, dX matrix!) to pull
dx out, until:

df = a(dx) df = a(dx) dF = A(dx)
df = aT (dx) df = A(dx)

df = tr AT (dX)

Just read off derivative: a, a, A.
Empty cells? Don’t like tensors beyond matrices. Use vec(X)

(EPFL) Graphical Models 10/10/2011 21 / 24

Vector Calculus

The “Algorithm”

Given: Really messy f (x), f (x), f (X), F (x).
1 Inward: Write df (x) (or other forms). Use rules to push d(·)

inside, until dx only
2 Outward: Use linear algebra rules (dx vector, dX matrix!) to pull

dx out, until:
df = a(dx) df = a(dx) dF = A(dx)

df = aT (dx) df = A(dx)
df = tr AT (dX)

Just read off derivative: a, a, A.
Empty cells? Don’t like tensors beyond matrices. Use vec(X)

(EPFL) Graphical Models 10/10/2011 21 / 24

Vector Calculus

The “Algorithm”

Given: Really messy f (x), f (x), f (X), F (x).
1 Inward: Write df (x) (or other forms). Use rules to push d(·)

inside, until dx only
2 Outward: Use linear algebra rules (dx vector, dX matrix!) to pull

dx out, until:
df = a(dx) df = a(dx) dF = A(dx)

df = aT (dx) df = A(dx)
df = tr AT (dX)

Just read off derivative: a, a, A.
Empty cells? Don’t like tensors beyond matrices. Use vec(X)

Constraints on X ? Inherited by dX , A F19

X symmetric ⇒ df = tr(sym A)(dX), sym A = (A + AT)/2
X diagonal ⇒ df = (diag diag−1(A))(dX)

(EPFL) Graphical Models 10/10/2011 21 / 24

Vector Calculus

Example

Model: x ∼ N(µ,Σ), x ∈ Rd

Data: Independent draws x1, . . . ,xn, n > d

Suppose µ known. Maximum likelihood estimator for Σ? F20

(EPFL) Graphical Models 10/10/2011 22 / 24

Vector Calculus

Summary

A = (aij)ij . Then:

AT = (aji)ij Transpose
|A| Determinant [|I + AB | = |I + BA|]
tr A =

∑
i aii Trace [tr AB = tr BA]

diag−1(A) = (aii)i Diagonal of matrix
(diag v) = (vi I{i=j})ij Diagonal matrix
sym A = (A + AT)/2 Symmetrization
AI,J = (aij)i∈I,j∈J Subselection (“i” for {i}, “·” for full range)
I{I,·}v = v I Subselection matrix
I{·,I}v = (

∑
k I{j=ik}vk)j Distribution matrix (I = {ik})

(EPFL) Graphical Models 10/10/2011 23 / 24

Vector Calculus

Wrap-Up

Lots of stuff: Seems hard, tedious at first
As computer scientists, we are engineers (get things done):
These rules / basic algorithms are our toolbox
Better know your basic tools very well (with practice, you will)

(EPFL) Graphical Models 10/10/2011 24 / 24

	Matrix Factorizations
	Conjugate Gradients Algorithm
	Vector Calculus

