Probabilistic Graphical Models

Lecture 4: Essential Numerical Mathematics. Vector Calculus

Volkan Cevher, Matthias Seeger
Ecole Polytechnique Fédérale de Lausanne

10/10/2011

Outline

(1) Matrix Factorizations
(2) Conjugate Gradients Algorithm
(3) Vector Calculus

Why Numerical Mathematics?

(1) Great new idea? Have to run it on an imperfect machine!

- Continuous variables: Messages are vectors / matrices, manipulated large number of times
- Without care, errors (roundoff, cancellation, ...) accumulate
- Greatest idea worth nothing if not numerically stable

Why Numerical Mathematics?

(1) Great new idea? Have to run it on an imperfect machine!

- Continuous variables: Messages are vectors / matrices, manipulated large number of times
- Without care, errors (roundoff, cancellation, ...) accumulate
- Greatest idea worth nothing if not numerically stable
(2) Thousands / millions of variables? Need iterative approximations
- Backbone of about any continuous inference approximation: Iterative solvers from numerical mathematics
- They are bottlenecks: Need to understand their properties

Positive Definite Matrices

Positive definite \boldsymbol{A} (symmetric positive definite)

$$
\boldsymbol{A}^{T}=\boldsymbol{A}, \quad \boldsymbol{v}^{T} \boldsymbol{A} \boldsymbol{v}>0 \text { for all } \boldsymbol{v} \neq \mathbf{0}
$$

Equivalent to:

- All eigenvalues positive
- $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{X}^{T}, \boldsymbol{X}$ full rank

Positive Definite Matrices

Positive definite \boldsymbol{A} (symmetric positive definite)

$$
\boldsymbol{A}^{T}=\boldsymbol{A}, \quad \boldsymbol{v}^{T} \boldsymbol{A} \boldsymbol{v}>0 \text { for all } \boldsymbol{v} \neq \mathbf{0}
$$

Equivalent to:

- All eigenvalues positive
- $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{X}^{\top}, \boldsymbol{X}$ full rank
\boldsymbol{A} pos. def. \Leftrightarrow Covariance matrix of Gaussian F2(2)

Positive Definite Matrices

Positive definite \boldsymbol{A} (symmetric positive definite)

$$
\boldsymbol{A}^{T}=\boldsymbol{A}, \quad \boldsymbol{v}^{T} \boldsymbol{A} \boldsymbol{v}>0 \text { for all } \boldsymbol{v} \neq \mathbf{0}
$$

Equivalent to:

- All eigenvalues positive
- $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{X}^{T}, \boldsymbol{X}$ full rank
\boldsymbol{A} pos. def. \Leftrightarrow Covariance matrix of Gaussian

Numbers	Matrices
\mathbb{C}	any square
\mathbb{R}	symmetric (hermitian)
>0	positive definite

\Rightarrow Pos. def. simplifies many methods

Positive Definite Matrices

Positive definite \boldsymbol{A} (symmetric positive definite)

$$
\boldsymbol{A}^{T}=\boldsymbol{A}, \quad \boldsymbol{v}^{T} \boldsymbol{A} \boldsymbol{v}>0 \text { for all } \boldsymbol{v} \neq \mathbf{0}
$$

Equivalent to:

- All eigenvalues positive
- $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{X}^{T}, \boldsymbol{X}$ full rank
\boldsymbol{A} pos. def. \Leftrightarrow Covariance matrix of Gaussian
Positive semidefinite $\boldsymbol{A}: " \geq$ " instead of " $>$ "
$\Leftrightarrow \boldsymbol{A}=\boldsymbol{X} \boldsymbol{X}^{T}$, any \boldsymbol{X}

Positive Definite Matrices

Positive definite \boldsymbol{A} (symmetric positive definite)

$$
\boldsymbol{A}^{T}=\boldsymbol{A}, \quad \boldsymbol{v}^{T} \boldsymbol{A} \boldsymbol{v}>0 \text { for all } \boldsymbol{v} \neq \mathbf{0}
$$

Equivalent to:

- All eigenvalues positive
- $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{X}^{T}, \boldsymbol{X}$ full rank
\boldsymbol{A} pos. def. \Leftrightarrow Covariance matrix of Gaussian
Positive semidefinite $\boldsymbol{A}: " \geq$ " instead of " $>$ "
$\Leftrightarrow \boldsymbol{A}=\boldsymbol{X} \boldsymbol{X}^{\top}$, any \boldsymbol{X}
A pos. semidef. \Leftrightarrow Covariance matrix of degenerate Gaussian [variance 0 along some directions]

Cholesky Decomposition

What is a matrix decomposition? The right way to use \boldsymbol{A}^{-1} !

Rule 1 for Matrix Computations

Do not invert a matrix. Decompose it
[Rule 2: Do not code it yourself. Use BLAS / LAPACK]

Cholesky Decomposition

What is a matrix decomposition? The right way to use \boldsymbol{A}^{-1} !
Rule 1 for Matrix Computations
Do not invert a matrix. Decompose it
[Rule 2: Do not code it yourself. Use BLAS / LAPACK]

Positive definite \boldsymbol{A} : Cholesky decomposition
$\boldsymbol{A}=\boldsymbol{X} \boldsymbol{X}^{T}$. Can I use lower triangular $\boldsymbol{L}=\boldsymbol{X}$?
\Rightarrow Yes, exactly one: Cholesky factor of \boldsymbol{A}

Cholesky Decomposition

What is a matrix decomposition? The right way to use \boldsymbol{A}^{-1} !

Rule 1 for Matrix Computations

Do not invert a matrix. Decompose it
[Rule 2: Do not code it yourself. Use BLAS / LAPACK]

Positive definite \boldsymbol{A} : Cholesky decomposition
$\boldsymbol{A}=\boldsymbol{X} \boldsymbol{X}^{T}$. Can I use lower triangular $\boldsymbol{L}=\boldsymbol{X}$?
\Rightarrow Yes, exactly one: Cholesky factor of \boldsymbol{A}
Remarkable facts:

- Maybe the only algorithm in numerical mathematics that is so simple. If it fails, \boldsymbol{A} is not (numerically) pos. def.
- In-place algorithm: \boldsymbol{L} can overwrite $\boldsymbol{A} . I_{i, i}>0$
- Complexity $O\left(n^{3}\right)\left[\boldsymbol{A} \in \mathbb{R}^{n \times n}\right]$

Working with Cholesky Factors

Suppose: $\boldsymbol{A}=\boldsymbol{L L}^{T} \in \mathbb{R}^{n \times n}, \boldsymbol{L}$ lower triangular

- Solving linear system: $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{L L}^{\top} \boldsymbol{x}=\boldsymbol{b}$

$$
[1]: \boldsymbol{L} \boldsymbol{v}=\boldsymbol{b}, \quad[2]: \boldsymbol{L}^{T} \boldsymbol{x}=\boldsymbol{v}
$$

Two backsubstitutions, at $O\left(n^{2}\right)$
[Beware: Some books distinguish between forward-, back-substitutions. I don't: It's just the same algorithm]

Working with Cholesky Factors

Suppose: $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{\top} \in \mathbb{R}^{n \times n}, \boldsymbol{L}$ lower triangular

- Solving linear system: $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{L L}^{\top} \boldsymbol{x}=\boldsymbol{b}$

$$
[1]: \boldsymbol{L} \boldsymbol{v}=\boldsymbol{b}, \quad[2]: \boldsymbol{L}^{T} \boldsymbol{x}=\boldsymbol{v}
$$

Two backsubstitutions, at $O\left(n^{2}\right)$
[Beware: Some books distinguish between forward-, back-substitutions. I don't: It's just the same algorithm]

- Log determinant:

$$
\log |\boldsymbol{A}|=2 \log |\boldsymbol{L}|=2 \sum_{i=1}^{n} \log I_{i, i}
$$

- Other expressions:

$$
\boldsymbol{b}^{T} \boldsymbol{A}^{-1} \boldsymbol{b}=\|\boldsymbol{v}\|^{2}, \quad \boldsymbol{L} \boldsymbol{v}=\boldsymbol{b}
$$

Sequential Bayesian Updates

Example:

- Robot unsure about location, velocity: $P(\boldsymbol{u})=N(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{u} \in \mathbb{R}^{n}$
- Obtains noisy linear measurements: $\boldsymbol{y}=\boldsymbol{x}^{\top} \boldsymbol{u}+\varepsilon, \varepsilon \sim N\left(0, \sigma^{2}\right)$
- Sequential update of belief state: $P(\boldsymbol{u}) \rightarrow P(\boldsymbol{u} \mid \boldsymbol{x}, y), \ldots$

Sequential Bayesian Updates

Example:

- Robot unsure about location, velocity: $P(\boldsymbol{u})=N(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{u} \in \mathbb{R}^{n}$
- Obtains noisy linear measurements: $\boldsymbol{y}=\boldsymbol{x}^{\top} \boldsymbol{u}+\varepsilon, \varepsilon \sim N\left(0, \sigma^{2}\right)$
- Sequential update of belief state: $P(\boldsymbol{u}) \rightarrow P(\boldsymbol{u} \mid \boldsymbol{x}, y), \ldots$

Recall last lecture:

$$
\begin{aligned}
\boldsymbol{\Sigma}^{\prime} & =\boldsymbol{\Sigma}-\boldsymbol{\Sigma} \boldsymbol{x}\left(\sigma^{2}+\boldsymbol{x}^{\top} \boldsymbol{\Sigma} \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\top} \boldsymbol{\Sigma} \\
\boldsymbol{\mu}^{\prime} & =\boldsymbol{\mu}+\boldsymbol{\Sigma} \boldsymbol{x}\left(\sigma^{2}+\boldsymbol{x}^{T} \boldsymbol{\Sigma} \boldsymbol{x}\right)^{-1}\left(y-\boldsymbol{x}^{\top} \boldsymbol{\mu}\right)
\end{aligned}
$$

State representation: Could simply maintain $\boldsymbol{\mu}, \boldsymbol{\Sigma}$

Sequential Bayesian Updates

Example:

- Robot unsure about location, velocity: $P(\boldsymbol{u})=N(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{u} \in \mathbb{R}^{n}$
- Obtains noisy linear measurements: $\boldsymbol{y}=\boldsymbol{x}^{\top} \boldsymbol{u}+\varepsilon, \varepsilon \sim N\left(0, \sigma^{2}\right)$
- Sequential update of belief state: $P(\boldsymbol{u}) \rightarrow P(\boldsymbol{u} \mid \boldsymbol{x}, y), \ldots$

Recall last lecture:

$$
\begin{aligned}
\boldsymbol{\Sigma}^{\prime} & =\boldsymbol{\Sigma}-\boldsymbol{\Sigma} \boldsymbol{x}\left(\sigma^{2}+\boldsymbol{x}^{T} \boldsymbol{\Sigma} \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\top} \boldsymbol{\Sigma} \\
\boldsymbol{\mu}^{\prime} & =\boldsymbol{\mu}+\boldsymbol{\Sigma} \boldsymbol{x}\left(\sigma^{2}+\boldsymbol{x}^{T} \boldsymbol{\Sigma} \boldsymbol{x}\right)^{-1}\left(y-\boldsymbol{x}^{T} \boldsymbol{\mu}\right)
\end{aligned}
$$

State representation: Could simply maintain $\boldsymbol{\mu}, \boldsymbol{\Sigma}$
Better: Use Cholesky representation: \boldsymbol{L}, a s.t. $\boldsymbol{\Sigma}=\boldsymbol{L L}^{T}, \boldsymbol{\mu}=\boldsymbol{L} \boldsymbol{a}$

- Slightly more efficient
- Better numerical properties [details in exercise]
[Cholesky up-/downdates: TR at people.mmci.uni-saarland.de/~mseeger/papers/cholupdate.pdf
Code at people.mmci.uni-saarland.de/~mseeger/software.html]

Singular Value Decomposition

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{\top} \in \mathbb{R}^{m \times n}, \quad \boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}, \boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}, \boldsymbol{\Lambda} \text { diagonal, } \lambda_{i} \geq 0
$$

- Singular values $\boldsymbol{\Lambda} \in \mathbb{R}^{d \times d}$ diagonal $(d \leq \min \{m, n\})$: λ_{i}^{2} positive eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$
- \boldsymbol{A} symmetric $\rightarrow \boldsymbol{U}=\boldsymbol{V} \boldsymbol{D}, d_{i} \in\{ \pm 1\}$: Eigenvectors of \boldsymbol{A}
- A positive definite \rightarrow SVD \equiv eigendecomposition

Singular Value Decomposition

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{\top} \in \mathbb{R}^{m \times n}, \quad \boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}, \boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}, \boldsymbol{\Lambda} \text { diagonal, } \lambda_{i} \geq 0
$$

- Singular values $\boldsymbol{\Lambda} \in \mathbb{R}^{d \times d}$ diagonal $(d \leq \min \{m, n\})$: λ_{i}^{2} positive eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$
- \boldsymbol{A} symmetric $\rightarrow \boldsymbol{U}=\boldsymbol{V} \boldsymbol{D}, d_{i} \in\{ \pm 1\}$: Eigenvectors of \boldsymbol{A}
- A positive definite \rightarrow SVD \equiv eigendecomposition
- Can be computed robustly for about any matrix, in $O\left(n^{3}\right)$
- For pos. def. matrices: SVD more expensive than Cholesky \Rightarrow Use latter if sufficient for your goal

Singular Value Decomposition

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{\top} \in \mathbb{R}^{m \times n}, \quad \boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}, \boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}, \boldsymbol{\Lambda} \text { diagonal, } \lambda_{i} \geq 0
$$

- Singular values $\boldsymbol{\Lambda} \in \mathbb{R}^{d \times d}$ diagonal $(d \leq \min \{m, n\})$: λ_{i}^{2} positive eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$
- \boldsymbol{A} symmetric $\rightarrow \boldsymbol{U}=\boldsymbol{V} \boldsymbol{D}, d_{i} \in\{ \pm 1\}$: Eigenvectors of \boldsymbol{A}
- A positive definite \rightarrow SVD \equiv eigendecomposition
- Can be computed robustly for about any matrix, in $O\left(n^{3}\right)$
- For pos. def. matrices: SVD more expensive than Cholesky \Rightarrow Use latter if sufficient for your goal
- Some applications in machine learning:
- Principal components analysis (PCA)
- Optimal low-rank matrix approximation (covariance explained) \Rightarrow Basis for linear approximations
- Spectral clustering, manifold regularization, Leading eigenvectors carry lot of information about \boldsymbol{A}

Example: Design Optimization

You know / have learned: $\boldsymbol{u} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ [but want to know more] You can do: One more noisy linear measurement, $y \sim N\left(\boldsymbol{x}^{T} \boldsymbol{u}, \sigma^{2}\right),\|\boldsymbol{x}\|=1$

Which \boldsymbol{x} do you choose?

Example: Design Optimization

You know / have learned: $\boldsymbol{u} \sim N(\mu, \boldsymbol{\Sigma})$ [but want to know more] You can do: One more noisy linear measurement,

$$
y \sim N\left(\boldsymbol{x}^{\top} \boldsymbol{u}, \sigma^{2}\right),\|\boldsymbol{x}\|=1
$$

Which \boldsymbol{x} do you choose?

$$
\boldsymbol{x}_{*}=\operatorname{argmax}\left\{\boldsymbol{X}^{\top} \boldsymbol{\Sigma} \boldsymbol{x} \mid\|\boldsymbol{X}\|=1\right\}: \quad \text { Leading eigenvector } \boldsymbol{\Sigma}
$$

Remember MRI sampling optimization [first lecture]?
\Rightarrow That's (part of) how it works [stay on for rest]

Why Iterative Solvers?

- Moderate-sized high-resolution image: $n=65536$ pixels.

Storage:

 32G (single matrix) Time for Cholesky decomposition: $\approx 3 \mathrm{~h}$ (if enough memory)\Rightarrow Bayesian methods over images, stacks of images, videos, ... ?

Why Iterative Solvers?

- Moderate-sized high-resolution image: $n=65536$ pixels.

Storage: 32G (single matrix)
Time for Cholesky decomposition: $\approx 3 \mathrm{~h}$ (if enough memory)
\Rightarrow Bayesian methods over images, stacks of images, videos, ... ?

- And how about structure?

$$
\mathrm{E}[\boldsymbol{u} \mid \boldsymbol{y}]=\left(\boldsymbol{X}^{T} \boldsymbol{\Psi}^{-1} \boldsymbol{X}+\boldsymbol{\Pi}\right)^{-1}\left(\boldsymbol{X}^{T} \boldsymbol{\Psi}^{-1} \boldsymbol{y}+\boldsymbol{b}\right)
$$

- \boldsymbol{X} sparse (most entries $=0$) [e.g., consumer-product ratings]
- \boldsymbol{X} structured (banded, Toeplitz, ...) [e.g., Markov grid structure]
- \boldsymbol{X} fast operator (FFT) [e.g., MRI measurements]

Matrix decompositions do not make use of that
[Some do: sparse Cholesky factorization]

Minimizing Quadratic Functions

For positive definite \boldsymbol{A} :

$$
\boldsymbol{x}_{*}=\operatorname{argmin}\left\{q(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{T} \boldsymbol{x}\right\} \quad \Leftrightarrow \quad \boldsymbol{A} \boldsymbol{x}_{*}=\boldsymbol{b}
$$

Minimizing Quadratic Functions

$$
q(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{T} \boldsymbol{x}, \quad \boldsymbol{g}(\boldsymbol{x})=\nabla q(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}
$$

Require: Operator \boldsymbol{A}. Initial \boldsymbol{x}_{0} for $k=1,2, \ldots$ do

Pick search direction \boldsymbol{d}_{k}, based on $\boldsymbol{g}_{k-1}=\boldsymbol{g}\left(\boldsymbol{x}_{k-1}\right), \boldsymbol{d}_{l}, l<k$ Line minimization:

$$
\boldsymbol{x}_{k}=\boldsymbol{x}_{k-1}+\alpha_{k} \boldsymbol{d}_{k}, \quad \alpha_{k}=\operatorname{argmin}_{\alpha} q\left(\boldsymbol{x}_{k-1}+\alpha \boldsymbol{d}_{k}\right)
$$

end for

Conjugate Directions

- Why, of course down as steep as possible

$$
q\left(\boldsymbol{x}_{k-1}+d \boldsymbol{x}\right)=q\left(\boldsymbol{x}_{k-1}\right)+\underbrace{\boldsymbol{g}_{k-1}^{T}(d \boldsymbol{x})}_{\text {Smallest: } d \boldsymbol{x} \propto-\boldsymbol{g}_{k-1}}+O\left(\|d \boldsymbol{x}\|^{2}\right)
$$

Steepest descent: $\boldsymbol{d}_{k}=-\boldsymbol{g}_{k-1}$

Conjugate Directions

- Why, of course down as steep as possible

$$
q\left(\boldsymbol{x}_{k-1}+d \boldsymbol{x}\right)=q\left(\boldsymbol{x}_{k-1}\right)+\underbrace{\boldsymbol{g}_{k-1}^{T}(d \boldsymbol{x})}_{\text {Smallest: } d \boldsymbol{x} \propto-\boldsymbol{g}_{k-1}}+O\left(\|d \boldsymbol{x}\|^{2}\right)
$$

Steepest descent: $\boldsymbol{d}_{k}=-\boldsymbol{g}_{k-1}$

- Wrong: For steepest descent: $\boldsymbol{d}_{k+1}^{T} \boldsymbol{d}_{k}=0$
\Rightarrow Improvements from previous iterations rapidly tempered with

Conjugate Directions

- Why, of course down as steep as possible

$$
q\left(\boldsymbol{x}_{k-1}+d \boldsymbol{x}\right)=q\left(\boldsymbol{x}_{k-1}\right)+\underbrace{\boldsymbol{g}_{k-1}^{T}(d \boldsymbol{x})}_{\text {Smallest: } d \boldsymbol{x} \propto-\boldsymbol{g}_{k-1}}+O\left(\|d \boldsymbol{x}\|^{2}\right)
$$

Steepest descent: $\boldsymbol{d}_{k}=-\boldsymbol{g}_{k-1}$

- Wrong: For steepest descent: $\boldsymbol{d}_{k+1}^{T} \boldsymbol{d}_{k}=0$
\Rightarrow Improvements from previous iterations rapidly tempered with
New gradients \perp old directions?
\Rightarrow Retains previous efforts:
$\boldsymbol{g}_{k}^{T} \boldsymbol{d}_{k}=0 \rightarrow \boldsymbol{g}_{k+1}^{T} \boldsymbol{d}_{k}=0 \ldots$

Conjugate Directions

- Why, of course down as steep as possible

$$
q\left(\boldsymbol{x}_{k-1}+d \boldsymbol{x}\right)=q\left(\boldsymbol{x}_{k-1}\right)+\underbrace{\boldsymbol{g}_{k-1}^{T}(d \boldsymbol{x})}_{\text {Smallest: } d \boldsymbol{x} \propto-\boldsymbol{g}_{k-1}}+O\left(\|d \boldsymbol{x}\|^{2}\right)
$$

Steepest descent: $\boldsymbol{d}_{k}=-\boldsymbol{g}_{k-1}$

- Wrong: For steepest descent: $\boldsymbol{d}_{k+1}^{T} \boldsymbol{d}_{k}=0$
\Rightarrow Improvements from previous iterations rapidly tempered with
New gradients \perp old directions?
\Rightarrow Retains previous efforts:
$\boldsymbol{g}_{k}^{T} \boldsymbol{d}_{k}=0 \rightarrow \boldsymbol{g}_{k+1}^{T} \boldsymbol{d}_{k}=0 \ldots$

Conjugate Directions

$$
\boldsymbol{d}_{k}^{T} \boldsymbol{A} \boldsymbol{d}_{j} \text { for all } j<k
$$

Towards Conjugate Gradients

Details: Handout

people.mmci.uni-saarland.de/~mseeger/lectures/bml09/handout_lect4.pdf
(1) Directions conjugate: Gradient $\boldsymbol{g}_{k} \perp$ all previous directions:
$\boldsymbol{g}_{k}^{T} \boldsymbol{d}_{j}=0$ for all $j \leq k$

Towards Conjugate Gradients

Details: Handout

people.mmci.uni-saarland.de/~mseeger/lectures/bml09/handout_lect4.pdf
(1) Directions conjugate: Gradient $\boldsymbol{g}_{k} \perp$ all previous directions: $\boldsymbol{g}_{k}^{T} \boldsymbol{d}_{j}=0$ for all $j \leq k$
(2) After n steps we are done: $\boldsymbol{g}_{n}=\mathbf{0}$
(3) Construct conjugate directions by recurrence:

$$
\boldsymbol{d}_{k}=-\boldsymbol{g}_{k-1}+\beta_{k-1} \boldsymbol{d}_{k-1}
$$

Towards Conjugate Gradients

Details: Handout

people.mmci.uni-saarland.de/~mseeger/lectures/bml09/handout_lect4.pdf
(1) Directions conjugate: Gradient $\boldsymbol{g}_{k} \perp$ all previous directions: $\boldsymbol{g}_{k}^{T} \boldsymbol{d}_{j}=0$ for all $j \leq k$
(2) After n steps we are done: $\boldsymbol{g}_{n}=\mathbf{0}$
(3) Construct conjugate directions by recurrence:
$\boldsymbol{d}_{k}=-\boldsymbol{g}_{k-1}+\beta_{k-1} \boldsymbol{d}_{k-1}$
(4) All gradients are orthogonal: $\boldsymbol{g}_{k}^{T} \boldsymbol{g}_{j}=0, j<k$ [Bit of misnomer: Directions are conjugate]

Towards Conjugate Gradients

Details: Handout
people.mmci.uni-saarland.de/~mseeger/lectures/bml09/handout_lect4.pdf
(1) Directions conjugate: Gradient $\boldsymbol{g}_{k} \perp$ all previous directions:
$\boldsymbol{g}_{k}^{T} \boldsymbol{d}_{j}=0$ for all $j \leq k$
(2) After n steps we are done: $\boldsymbol{g}_{n}=\mathbf{0}$
(3) Construct conjugate directions by recurrence:
$\boldsymbol{d}_{k}=-\boldsymbol{g}_{k-1}+\beta_{k-1} \boldsymbol{d}_{k-1}$
(4) All gradients are orthogonal: $\boldsymbol{g}_{k}^{\top} \boldsymbol{g}_{j}=0, j<k$ [Bit of misnomer: Directions are conjugate]
(5) What is α_{k} ? From line minimization:

$$
\alpha_{k}=\frac{\left\|\boldsymbol{g}_{k-1}\right\|^{2}}{\boldsymbol{d}_{k}^{T} \boldsymbol{A} \boldsymbol{d}_{k}}
$$

(6) What is β_{k} ? The great synthesis!

$$
\beta_{k}=\frac{\left\|\boldsymbol{g}_{k}\right\|^{2}}{\left\|\boldsymbol{g}_{k-1}\right\|^{2}}
$$

Conjugate Gradients (for reference)

Require: Operator \boldsymbol{A}. Initial $\boldsymbol{x}_{0} \cdot \boldsymbol{g}_{0}=\boldsymbol{A} \boldsymbol{x}_{0}-\boldsymbol{b}$
for $k=1,2, \ldots$ (no more than n) do
$\rho_{k-1}=\left\|\boldsymbol{g}_{k-1}\right\|^{2}$
if $k=1$ then

$$
\boldsymbol{d}_{1}=-\boldsymbol{g}_{0}
$$

else

$$
\beta_{k-1}=\rho_{k-1} / \rho_{k-2} ; \boldsymbol{d}_{k}=-\boldsymbol{g}_{k-1}+\beta_{k-1} \boldsymbol{d}_{k-1}
$$

end if

$$
\begin{aligned}
& \boldsymbol{q}_{k}=\boldsymbol{A} \boldsymbol{d}_{k} ; \alpha_{k}=\rho_{k-1} /\left(\boldsymbol{d}_{k}^{T} \boldsymbol{q}_{k}\right) \\
& \boldsymbol{x}_{k}=\boldsymbol{x}_{k-1}+\alpha_{k} \boldsymbol{d}_{k} ; \boldsymbol{g}_{k}=\boldsymbol{g}_{k-1}+\alpha_{k} \boldsymbol{q}_{k} \\
& \text { Check for convergence (say } \left.\left\|\boldsymbol{g}_{k}\right\| /\|\boldsymbol{b}\|<\varepsilon\right)
\end{aligned}
$$

end for

Krylov Subspaces

Let $\mathcal{K}_{k}=\boldsymbol{x}_{0}+\operatorname{span}\left\{\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{k}\right\}$. Then,

$$
\boldsymbol{g}_{k}^{T} \boldsymbol{d}_{j}=0, j \leq k \quad \Rightarrow \quad \boldsymbol{x}_{k}=\operatorname{argmin}_{\boldsymbol{x} \in_{k}} q(\boldsymbol{x})
$$

Krylov Subspaces

Let $\mathcal{K}_{k}=\boldsymbol{x}_{0}+\operatorname{span}\left\{\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{k}\right\}$. Then,

$$
\boldsymbol{g}_{k}^{T} \boldsymbol{d}_{j}=0, j \leq k \quad \Rightarrow \quad \boldsymbol{x}_{k}=\operatorname{argmin}_{\boldsymbol{x} \in_{k}} q(\boldsymbol{x})
$$

But $\mathcal{K}_{k}=\boldsymbol{x}_{0}+\operatorname{span}\left\{\boldsymbol{A}^{j} \boldsymbol{g}_{0} \mid j<k\right\}$
\Rightarrow Optimal with $k(\boldsymbol{A} \cdot)$ multiplications!

- $\mathcal{K}_{k} \subset \mathcal{K}_{k+1} \subset \ldots, \boldsymbol{x}_{*} \in \mathcal{K}_{n}$ (Cayley/Hamilton)

Krylov Subspaces

Let $\mathcal{K}_{k}=\boldsymbol{x}_{0}+\operatorname{span}\left\{\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{k}\right\}$. Then,

$$
\boldsymbol{g}_{k}^{T} \boldsymbol{d}_{j}=0, j \leq k \quad \Rightarrow \quad \boldsymbol{x}_{k}=\operatorname{argmin}_{\boldsymbol{x} \in k} q(\boldsymbol{x})
$$

But $\mathcal{K}_{k}=\boldsymbol{x}_{0}+\operatorname{span}\left\{\boldsymbol{A}^{j} \boldsymbol{g}_{0} \mid j<k\right\}$
\Rightarrow Optimal with $k(\boldsymbol{A} \cdot)$ multiplications!

- $\mathcal{K}_{k} \subset \mathcal{K}_{k+1} \subset \ldots, \boldsymbol{x}_{*} \in \mathcal{K}_{n}$ (Cayley/Hamilton)
- What about $k \ll n$ for huge n ? Depends on eigenspectrum of \boldsymbol{A}.
$\boldsymbol{x}_{k} \approx \boldsymbol{x}_{*}$ in surprisingly many cases in practice
\Rightarrow Krylov subspace view key to convergence analysis [exercise]

Krylov Subspaces

Let $\mathcal{K}_{k}=\boldsymbol{x}_{0}+\operatorname{span}\left\{\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{k}\right\}$. Then,

$$
\boldsymbol{g}_{k}^{T} \boldsymbol{d}_{j}=0, j \leq k \quad \Rightarrow \quad \boldsymbol{x}_{k}=\operatorname{argmin}_{\boldsymbol{x} \in_{k}} q(\boldsymbol{x})
$$

But $\mathcal{K}_{k}=\boldsymbol{x}_{0}+\operatorname{span}\left\{\boldsymbol{A}^{j} \boldsymbol{g}_{0} \mid j<k\right\}$
\Rightarrow Optimal with $k(\boldsymbol{A} \cdot)$ multiplications!

- $\mathcal{K}_{k} \subset \mathcal{K}_{k+1} \subset \ldots, \boldsymbol{x}_{*} \in \mathcal{K}_{n}$ (Cayley/Hamilton)
- What about $k \ll n$ for huge n ? Depends on eigenspectrum of \boldsymbol{A}.
$\boldsymbol{x}_{k} \approx \boldsymbol{x}_{*}$ in surprisingly many cases in practice
\Rightarrow Krylov subspace view key to convergence analysis [exercise]
- Preconditioning: $\boldsymbol{M}=\boldsymbol{C C}^{T} \approx \boldsymbol{A}$, but easy to solve systems with
- Work on $\left(\boldsymbol{C}^{-T} \boldsymbol{A} \boldsymbol{C}^{-1}\right) \boldsymbol{C} \boldsymbol{x}=\boldsymbol{C}^{-T} \boldsymbol{b}$
\Rightarrow Better spectral properties \rightarrow Faster convergence
- CG as before, with one (\boldsymbol{M}^{-1}.) per iteration
- Preconditioning: Art of iterative linear solvers

Why Vector Calculus?

- Remember differentiation? A bunch of rules, no-brainer. Do that in $\mathbb{R}^{n}:\left(\partial f_{i}\right) /\left(\partial x_{j}\right)=\sum_{k}\left(\partial g_{i}\right) /\left(\partial y_{k}\right) \cdot\left(\partial y_{k}\right) /\left(\partial x_{j}\right), \ldots$?

Why Vector Calculus?

- Remember differentiation? A bunch of rules, no-brainer.

Do that in $\mathbb{R}^{n}:\left(\partial f_{i}\right) /\left(\partial x_{j}\right)=\sum_{k}\left(\partial g_{i}\right) /\left(\partial y_{k}\right) \cdot\left(\partial y_{k}\right) /\left(\partial x_{j}\right), \ldots$?

- No! Use bunch of rules on vectors, matrices.

No $\sum_{j, k}$, no $\partial_{i} / \partial_{j}$: Waste of paper / your time

- Vector calculus in machine learning:
- $\nabla f(\boldsymbol{x})=\mathbf{0}$, solve for \boldsymbol{x} (if you're lucky)
- Search directions always fed by gradient (steepest descent)
- Newton (second order) optimization: Hessian as well

Like with Gaussian: Experience with the rules pays off!

Differential Notation

- Trace of square matrix

$$
\begin{aligned}
\operatorname{tr} \boldsymbol{A} & =\sum_{i} \alpha_{i, i}=\sum_{i} \lambda_{i}, \quad \operatorname{spec}(\boldsymbol{A})=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \\
\operatorname{tr} \boldsymbol{A} \boldsymbol{B} & =\operatorname{tr} \boldsymbol{B} \boldsymbol{A}, \quad \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \stackrel{!}{=} \operatorname{tr} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\operatorname{tr} \boldsymbol{A} \boldsymbol{x} \boldsymbol{x}^{T}
\end{aligned}
$$

Differential Notation

- Trace of square matrix

$$
\begin{aligned}
\operatorname{tr} \boldsymbol{A} & =\sum_{i} \alpha_{i, i}=\sum_{i} \lambda_{i}, \quad \operatorname{spec}(\boldsymbol{A})=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \\
\operatorname{tr} \boldsymbol{A} \boldsymbol{B} & =\operatorname{tr} \boldsymbol{B} \boldsymbol{A}, \quad \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \stackrel{!}{=} \operatorname{tr} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\operatorname{tr} \boldsymbol{A} \boldsymbol{x} \boldsymbol{x}^{T}
\end{aligned}
$$

- Differential $d \boldsymbol{x}$: Tiny vector, situated at \boldsymbol{x}. $d f(\boldsymbol{x})=f(\boldsymbol{x}+(d \boldsymbol{x}))-f(\boldsymbol{x})=(\nabla f(\boldsymbol{x}))^{T}(d \boldsymbol{x})+O\left(\|d \boldsymbol{x}\|^{2}\right), \ldots$
\Rightarrow For vector calculus: $d \boldsymbol{x}$ special vector, obeying one more rule:
Term with $d \boldsymbol{x} \geq 2$ times \rightarrow Term $=0$ (≥ 3 for Hessian)
[All I do here: Minka's note, http://research.microsoft.com/en-us/um/people/minka/papers/matrix/]

Simple Rules

- Constant. Linear

$$
\begin{aligned}
& d \boldsymbol{A}=\mathbf{0} \quad[\boldsymbol{A} \text { constant }] \\
& d(\alpha \boldsymbol{X}+\beta \boldsymbol{Y})=\alpha(d \boldsymbol{X})+\beta(d \boldsymbol{Y}), \quad d \operatorname{tr} \boldsymbol{X}=\operatorname{tr}(d \boldsymbol{X})
\end{aligned}
$$

- Product rule

$$
d(\boldsymbol{X} \boldsymbol{Y})=(d \boldsymbol{X}) \boldsymbol{Y}+\boldsymbol{X}(d \boldsymbol{Y}) \quad[\text { also for } \otimes, \circ]
$$

- Permutation/extraction: $(\cdot)^{*}$ reorders/extracts entries

$$
d\left(\boldsymbol{X}^{*}\right)=(d \boldsymbol{X})^{*}
$$

Example: $(\cdot)^{T}$, diag $^{-1}(\cdot)$, vectorization (reshape in Matlab)
Prove any of them: Ihs $=$ rhs $+\boldsymbol{O}\left(\|d \boldsymbol{x}\|^{2}\right)$

More Interesting Rules

- Matrix inverse

$$
d\left(\boldsymbol{X}^{-1}\right)=-\boldsymbol{X}^{-1}(d \boldsymbol{X}) \boldsymbol{X}^{-1}
$$

More Interesting Rules

- Matrix inverse

$$
d\left(\boldsymbol{X}^{-1}\right)=-\boldsymbol{X}^{-1}(d \boldsymbol{X}) \boldsymbol{X}^{-1}
$$

- Log determinant

$$
d \log |\boldsymbol{X}|=\operatorname{tr} \boldsymbol{X}^{-1}(d \boldsymbol{X})
$$

And $d|\boldsymbol{X}|=d e^{\log |\boldsymbol{X}|}=|\boldsymbol{X}|(d \log |\boldsymbol{X}|)$

The "Algorithm"

Given: Really messy $f(\boldsymbol{x}), \boldsymbol{f}(\boldsymbol{x}), f(\boldsymbol{X}), \boldsymbol{F}(x)$.
(1) Inward: Write $d f(\boldsymbol{x})$ (or other forms). Use rules to push $d(\cdot)$ inside, until $d \boldsymbol{x}$ only

The "Algorithm"

Given: Really messy $f(\boldsymbol{x}), \boldsymbol{f}(\boldsymbol{x}), f(\boldsymbol{X}), \boldsymbol{F}(x)$.
(1) Inward: Write $d f(\boldsymbol{x})$ (or other forms). Use rules to push $d(\cdot)$ inside, until $d x$ only
(2) Outward: Use linear algebra rules ($d \boldsymbol{x}$ vector, $d \boldsymbol{X}$ matrix!) to pull $d x$ out, until:

$d f=a(d x)$	$d \boldsymbol{f}=\boldsymbol{a}(d x)$	$d \boldsymbol{F}=\boldsymbol{A}(d x)$
$d f=\boldsymbol{a}^{T}(d \boldsymbol{x})$	$d \boldsymbol{f}=\boldsymbol{A}(d \boldsymbol{x})$	
$d f=\operatorname{tr} \boldsymbol{A}^{T}(d \boldsymbol{X})$		

Just read off derivative: a, a, \boldsymbol{A}.
Empty cells? Don't like tensors beyond matrices. Use vec(\boldsymbol{X})

The "Algorithm"

Given: Really messy $f(\boldsymbol{x}), \boldsymbol{f}(\boldsymbol{x}), f(\boldsymbol{X}), \boldsymbol{F}(x)$.
(1) Inward: Write $d f(\boldsymbol{x})$ (or other forms). Use rules to push $d(\cdot)$ inside, until $d x$ only
(2) Outward: Use linear algebra rules ($d \boldsymbol{x}$ vector, $d \boldsymbol{X}$ matrix!) to pull $d x$ out, until:

$d f=a(d x)$	$d \boldsymbol{f}=\boldsymbol{a}(d x)$	$d \boldsymbol{F}=\boldsymbol{A}(d x)$
$d f=\boldsymbol{a}^{T}(d \boldsymbol{x})$	$d \boldsymbol{f}=\boldsymbol{A}(d \boldsymbol{x})$	
$d f=\operatorname{tr} \boldsymbol{A}^{T}(d \boldsymbol{X})$		

Just read off derivative: a, a, \boldsymbol{A}.
Empty cells? Don't like tensors beyond matrices. Use vec (\boldsymbol{X})
Constraints on \boldsymbol{X} ? Inherited by $d \boldsymbol{X}, \boldsymbol{A}$
$\begin{array}{ll}\boldsymbol{X} \text { symmetric } & \Rightarrow d f=\operatorname{tr}(\operatorname{sym} \boldsymbol{A})(d \boldsymbol{X}), \operatorname{sym} \boldsymbol{A}=\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right) / 2 \\ \boldsymbol{X} \text { diagonal } & \Rightarrow d f=\left(\operatorname{diag} \operatorname{diag}^{-1}(\boldsymbol{A})\right)(d \boldsymbol{X})\end{array}$

Example

Model: $\boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{x} \in \mathbb{R}^{d}$
Data: Independent draws $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}, n>d$
Suppose μ known. Maximum likelihood estimator for $\boldsymbol{\Sigma}$?

Summary

$\boldsymbol{A}=\left(a_{i j}\right)_{i j}$. Then:
$\boldsymbol{A}^{T}=\left(a_{j i}\right)_{i j}$
$|\boldsymbol{A}|$
$\operatorname{tr} \boldsymbol{A}=\sum_{i} a_{i i}$ $\operatorname{diag}^{-1}(\boldsymbol{A})=\left(a_{i j}\right)_{i}$
$(\operatorname{diag} \boldsymbol{v})=\left(\boldsymbol{v}_{i} \mathrm{I}_{\{i=j\}}\right)_{i j}$ $\operatorname{sym} \boldsymbol{A}=\left(\boldsymbol{A}+\boldsymbol{A}^{\top}\right) / 2$
$\boldsymbol{A}_{l, J}=\left(a_{i j}\right)_{i \in l, j \in J}$
$\mathrm{I}_{\{1,\}} \boldsymbol{v}=\boldsymbol{v}_{\boldsymbol{l}}$
$\mathrm{I}_{\left\{,, \ell_{\}}\right.} \boldsymbol{v}=\left(\sum_{k} \mathrm{I}_{\left\{j=i_{k}\right\}} v_{k}\right)_{j}$

Transpose

Determinant $[[\boldsymbol{I}+\boldsymbol{A B}|=|\boldsymbol{I}+\boldsymbol{B A}|]$
Trace $[\operatorname{tr} \boldsymbol{A B}=\operatorname{tr} \boldsymbol{B A}$]
Diagonal of matrix
Diagonal matrix
Symmetrization
Subselection ("i") for $\{i\}$, "." for full range)
Subselection matrix
Distribution matrix ($I=\left\{i_{k}\right\}$)

Wrap-Up

- Lots of stuff: Seems hard, tedious at first
- As computer scientists, we are engineers (get things done): These rules / basic algorithms are our toolbox
- Better know your basic tools very well (with practice, you will)

