Fall 2011 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Homework 8

Assigned: 14/11/2011. Due: 25/11/2011.

Exercise 1. ASYMPTOTICS OF BEST RELATIVE *k*-TERM APPROXIMATION ERROR Undetermined linear regression (ULR) is a fundamental problem with broad applications in many fields. In ULR we seek an unknown vector $\mathbf{x} \in \mathbb{R}^N$ from its dimensionality reducing linear projection $\mathbf{y} \in \mathbb{R}^m$ (m < N) obtained via a known encoding matrix $\Phi \in \mathbb{R}^{m \times N}$ as:

$$\mathbf{y} = \Phi \mathbf{x}.$$

Since Φ possesses a non-trivial kernel, we clearly need to make additional assumptions about **x** to distinguish it from the infinitely many possible solutions. It is now well known that a *sparsity* assumption on **x**, i.e. **x** has most of its energy in $k \ll N$ coefficients, plays a crucial role in obtaining "good" solutions. Furthermore from a probabilistic perspective one assumes **x** to be drawn from a *prior*. Hence in this probabilistic setting, own would like to come up with a mathematically precise mechanism to characterize the "compressibility" of a prior.

In this exercise we will analyze the relative best k - term approximation error:

$$\bar{\sigma}_k(\mathbf{x})_q = \frac{\sigma_k(\mathbf{x})_q}{\|\mathbf{x}\|_q}$$

in the limit of large problem sizes (i.e. $N \to \infty$), for any $q \in (0, \infty)$ and for random vectors $\mathbf{x}_N = (X_1, \ldots, X_n)$ with i.i.d entries $(X_i \sim p(x))$ drawn from a distribution p(x). Note that $\sigma_k(\mathbf{x})_q = \inf_{\|z\|_0 \leq k} \|\mathbf{x} - \mathbf{z}\|_q$. Denote $\tilde{p}(x)$ as the PDF of $\tilde{X}_n = |X|_n$ and $\tilde{F}(t) := \mathbb{P}(|X| \leq t)$ as its CDF. Assume \tilde{F} is continuous and strictly increasing. Also assume that X_n satisfies $\mathbb{E}|X|^q < \infty$. For any $\kappa \in (0, 1)$ consider the following function:

$$G_q[p](\kappa) := \frac{\int_0^{F^{-1}(1-\kappa)} x^q \tilde{p}(x) dx}{\int_0^\infty x^q \tilde{p}(x) dx}.$$

Given any sequence $(k_N)_{N=1}^{\infty}$ so that $\lim_{N\to\infty} \frac{k_N}{N} = \kappa$, we would like to show in this question that:

$$\lim_{N \to \infty} \bar{\sigma}_{k_N}(\mathbf{x}_N)_q^q = G_q[p](\kappa) \quad \text{a.s} \tag{1}$$

where a.s. denotes "almost surely".

Let us begin by defining the random variables $Y_n := |X_n|^q$. They have the CDF $F_Y(y) := \mathbb{P}(Y \leq y) = \tilde{F}(y^{1/q})$. Denote

$$\mu = \mathbb{E}[Y] = \int_0^\infty x^q d\tilde{F}(x)$$

1. **[1 point]** For a given $\kappa \in (0, 1)$, show that there is a unique $\tau_0 \in (0, \infty)$ such that $\kappa = 1 - F_Y(\tau_0)$.

2. Fix $0 < \epsilon < \tau_0$. Define $\tau = \tau_0 - \epsilon$ and $\rho = \int_0^{\tau} y d\tilde{F}(y)$. Clearly $\rho \in (0, \mu)$. Lastly consider $L_N = \max\{l \leq N : \sum_{i=1}^l Y_{i,N} \leq N\rho\}$ where $Y_{1,N} \leq \cdots \leq Y_{N,N}$ are the increasing order statistics of Y_1, \ldots, Y_N . It can be shown that

$$\lim_{N \to \infty} \frac{L_N}{N} = F_Y(\tau) \quad \text{a.s.}$$
(2)

We now proceed to prove (1) by solving the following questions:

- (a) **[1 point]** Show that: $\lim_{N\to\infty} \frac{N-k_N}{L_N} > 1$.
- (b) [3 points] Using the above result and applying (2) show that:

$$\lim \inf_{N \to \infty} \frac{\sigma_{k_N}(\mathbf{x}_N)_q^q}{\|\mathbf{x}\|_q^q} \ge \frac{\int_0^{\tau_0 - \epsilon} y dF_Y(y)}{\int_0^\infty y dF_Y(y)} \quad \text{a.s.}$$

3. [2 points] By now choosing $\tau = \tau_0 + \epsilon$ (ϵ is the same as in the previous part), follow the steps of the previous part to show that:

$$\lim \sup_{N \to \infty} \frac{\sigma_{k_N}(\mathbf{x}_N)_q^q}{\|\mathbf{x}\|_q^q} \le \frac{\int_0^{\tau_0 + \epsilon} y dF_Y(y)}{\int_0^\infty y dF_Y(y)} \quad \text{a.s.}$$

4. [3 points] Now finally by using the results of the last two parts, deduce that:

$$\lim_{N \to \infty} \frac{\sigma_{k_N}(\mathbf{x}_N)_q^q}{\|\mathbf{x}\|_q^q} = G_q[p](\kappa) \quad \text{a.s}$$

Exercise 2. LEAST SQUARES ESTIMATION VERSUS ORACLE K-SPARSE ESTIMATION Carrying on from the previous problem, a natural question one could ask is the following. Given that the data $\mathbf{x}_N = (X_1, \ldots, X_N)$ is formed from i.i.d samples from some distribution p(x) $(X_i \sim p(x))$, then how would one characterize the compressibility of the data \mathbf{x}_N ? A possible way to do this would be to apply a dimensionality reducing linear operator on \mathbf{x}_N and then compare the relative k term approximation error performance of a "sparse estimator" with a typically "dense" (or non-sparse estimator).

In this exercise we will compare the expected performance of two decoding approaches for estimating a given vector $\mathbf{x} \in \mathbb{R}^N$ from its encoding : $\mathbf{y} = \Phi \mathbf{x}$. Here, Φ is a $m \times N$ matrix (m < N) with i.i.d Gaussian entries, $\phi_{i,j} \sim \mathcal{N}(0, \frac{1}{m})$. In order to estimate \mathbf{x} from the measurement \mathbf{y} , we will compare two decoding approaches:

1. Oracle k sparse decoder

$$\triangle_{oracle}(\mathbf{y}, \Lambda) = \arg\min_{\tilde{\mathbf{x}}: \operatorname{support}(\tilde{\mathbf{x}}) = \Lambda} \|\mathbf{y} - \Phi \tilde{\mathbf{x}}\|_2$$

 \triangle_{oracle} is an idealized sparse decoder which is given the "side" information Λ corresponding to the indices of the k largest coefficients of \mathbf{x} (Assume k < m). Note that the estimation $\triangle_{oracle}(\mathbf{y}, \Lambda)$ has at most k non-zero coefficients.

2. Least squares (LS) decoder

$$\triangle_{LS}(\mathbf{y}) = \arg\min_{\tilde{\mathbf{x}}:\mathbf{y}=\Phi\tilde{\mathbf{x}}} \|\tilde{\mathbf{x}}\|_2$$

This is a commonly used decoder which typically provides a "dense" estimate of \mathbf{x} due to the particular nature of the objective function (l_2 norm).

In the following, for any column index set $\Lambda \subset \{1, \ldots, N\}$ we have the notation that Φ_{Λ} is the matrix restricted to the column set Λ . Similarly for any $\mathbf{x} \in \mathbb{R}^N$, \mathbf{x}_{Λ} denotes the restriction of \mathbf{x} to the support set Λ . The complement of Λ is denoted by $\overline{\Lambda}$.

1. [3 points] Show that :

$$\triangle_{LS}(\mathbf{y}) = \Phi^+(\mathbf{y})$$

where $\Phi^+ = \Phi^T (\Phi \Phi^T)^{-1}$ is the pseudo inverse of Φ . Also show that:

$$\triangle_{oracle}(\mathbf{y}, \Lambda) = \Phi^+_{\Lambda}(\mathbf{y})$$

where Φ_{Λ} is a $m \times k$ matrix and $\Phi_{\Lambda}^{+} = (\Phi_{\Lambda}^{T} \Phi_{\Lambda})^{-1} \Phi_{\Lambda}^{T}$ is the pseudo inverse of Φ_{Λ} .

2. It is well known that the relative expected performance of \triangle_{LS} is given by:

$$\frac{\mathbb{E}_{\Phi}[\left\|\triangle_{LS}(\Phi \mathbf{x}) - \mathbf{x}\right\|_{2}^{2}]}{\left\|\mathbf{x}\right\|_{2}^{2}} = 1 - \frac{m}{N}$$

Observe that the expected performance of \triangle_{LS} is directly governed by the *undersampling ratio*: $\frac{m}{N}$. It is independent of the vector \mathbf{x} which should be no surprise since the Gaussian distribution is isotropic. We now proceed to derive the expression for the relative expected performance of \triangle_{oracle} . We will see that the expected performance of the oracle estimator drastically depends on the shape of the best k term approximation relative error of \mathbf{x} (i.e. $\bar{\sigma}_k(\mathbf{x})$).

(a) **[2 points]** Denoting
$$w := \frac{\Phi_{\bar{\Lambda}} \mathbf{x}_{\bar{\Lambda}}}{\|\Phi_{\bar{\Lambda}} \mathbf{x}_{\bar{\Lambda}}\|_2} \in \mathbb{R}^m$$
 show that:

$$\frac{\|\triangle_{oracle}(\mathbf{y}, \Lambda) - \mathbf{x}\|_2^2}{\|\mathbf{x}_{\bar{\Lambda}}\|_2^2} = \|\Phi_{\Lambda}^+ w\|_2^2 \cdot \frac{\|\Phi_{\bar{\Lambda}} \mathbf{x}_{\bar{\Lambda}}\|_2^2}{\|\mathbf{x}_{\bar{\Lambda}}\|_2^2} + 1.$$
(b) **[2 points]** Show that: $\mathbb{E}_{\Phi} \left[\frac{\|\Phi_{\bar{\Lambda}} \mathbf{x}_{\bar{\Lambda}}\|_2^2}{\|\mathbf{x}_{\bar{\Lambda}}\|_2^2} \right] = 1.$

- (c) [2 points] Let $\Phi_{\Lambda} = U\Sigma V^T$ be the SVD of Φ_{Λ} where u_l and v_l denote the column vectors of U and V repectively. It can be shown that:
 - The random variables (u_l, w) are identically distributed and statistically independent from Φ_Λ.
 - $\mathbb{E}[|\langle u_l, w \rangle|^2] = \frac{1}{m}$. Furthermore, $\mathbb{E}[\operatorname{Trace}(\Phi_{\Lambda}^T \Phi_{\Lambda})^{-1}] = \frac{mk}{m-k+1}$.

With help from the above facts show that: $\mathbb{E}[\|\Phi_{\Lambda}^+ w\|_2^2] = \frac{k}{m-k+1}.$

(d) [2 points] Lastly using the above results conclude that:

$$\frac{\mathbb{E}[\|\triangle_{oracle}(\mathbf{y},\Lambda)-\mathbf{x}\|_2^2]}{\|\mathbf{x}\|_2^2} = \frac{1}{1-\frac{k}{m+1}} \frac{\sigma_k(\mathbf{x})_2^2}{\|\mathbf{x}\|_2^2}$$