Homework 8

Assigned: 14/11/2011.
Due: 25/11/2011.

Exercise 1. Asymptotics of best relative k-TERM approximation error
Undetermined linear regression (ULR) is a fundamental problem with broad applications in many fields. In ULR we seek an unknown vector $\mathbf{x} \in \mathbb{R}^{N}$ from its dimensionality reducing linear projection $\mathbf{y} \in \mathbb{R}^{m}(m<N)$ obtained via a known encoding matrix $\Phi \in \mathbb{R}^{m \times N}$ as:

$$
\mathbf{y}=\Phi \mathbf{x}
$$

Since Φ posesses a non-trivial kernel, we clearly need to make additional assumptions about \mathbf{x} to distinguish it from the infinitely many possible solutions. It is now well known that a sparsity assumption on \mathbf{x}, i.e. \mathbf{x} has most of its energy in $k \ll N$ coefficients, plays a crucial role in obtaining "good" solutions. Furthermore from a probabilistic perspective one assumes \mathbf{x} to be drawn from a prior. Hence in this probabilistic setting, own would like to come up with a mathematically precise mechanism to characterize the "compressibility" of a prior.

In this exercise we will analyze the relative best k - term approximation error:

$$
\bar{\sigma}_{k}(\mathbf{x})_{q}=\frac{\sigma_{k}(\mathbf{x})_{q}}{\|\mathbf{x}\|_{q}}
$$

in the limit of large problem sizes (i.e. $N \rightarrow \infty)$, for any $q \in(0, \infty)$ and for random vectors $\mathbf{x}_{N}=\left(X_{1}, \ldots, X_{n}\right)$ with i.i.d entries $\left(X_{i} \sim p(x)\right)$ drawn from a distribution $p(x)$. Note that $\sigma_{k}(\mathbf{x})_{q}=\inf _{\|z\|_{0} \leq k}\|\mathbf{x}-\mathbf{z}\|_{q}$. Denote $\tilde{p}(x)$ as the PDF of $\tilde{X}_{n}=|X|_{n}$ and $\tilde{F}(t):=\mathbb{P}(|X| \leq t)$ as its CDF. Assume \tilde{F} is continuous and strictly increasing. Also assume that X_{n} satisfies $\mathbb{E}|X|^{q}<\infty$. For any $\kappa \in(0,1)$ consider the following function:

$$
G_{q}[p](\kappa):=\frac{\int_{0}^{\tilde{F}^{-1}(1-\kappa)} x^{q} \tilde{p}(x) d x}{\int_{0}^{\infty} x^{q} \tilde{p}(x) d x} .
$$

Given any sequence $\left(k_{N}\right)_{N=1}^{\infty}$ so that $\lim _{N \rightarrow \infty} \frac{k_{N}}{N}=\kappa$, we would like to show in this question that:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \bar{\sigma}_{k_{N}}\left(\mathbf{x}_{N}\right)_{q}^{q}=G_{q}[p](\kappa) \quad \text { a.s } \tag{1}
\end{equation*}
$$

where a.s. denotes "almost surely".

Let us begin by defining the random variables $Y_{n}:=\left|X_{n}\right|^{q}$. They have the $\operatorname{CDF} F_{Y}(y):=$ $\mathbb{P}(Y \leq y)=\tilde{F}\left(y^{1 / q}\right)$. Denote

$$
\mu=\mathbb{E}[Y]=\int_{0}^{\infty} x^{q} d \tilde{F}(x)
$$

1. [1 point] For a given $\kappa \in(0,1)$, show that there is a unique $\tau_{0} \in(0, \infty)$ such that $\kappa=1-F_{Y}\left(\tau_{0}\right)$.
2. Fix $0<\epsilon<\tau_{0}$. Define $\tau=\tau_{0}-\epsilon$ and $\rho=\int_{0}^{\tau} y d \tilde{F}(y)$. Clearly $\rho \in(0, \mu)$. Lastly consider $L_{N}=\max \left\{l \leq N: \sum_{i=1}^{l} Y_{i, N} \leq N \rho\right\}$ where $Y_{1, N} \leq \cdots \leq Y_{N, N}$ are the increasing order statistics of Y_{1}, \ldots, Y_{N}. It can be shown that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{L_{N}}{N}=F_{Y}(\tau) \quad \text { a.s. } \tag{2}
\end{equation*}
$$

We now proceed to prove (1) by solving the following questions:
(a) $\left[\mathbf{1}\right.$ point] Show that: $\lim _{N \rightarrow \infty} \frac{N-k_{N}}{L_{N}}>1$.
(b) [3 points] Using the above result and applying (2) show that:

$$
\lim \inf _{N \rightarrow \infty} \frac{\sigma_{k_{N}}\left(\mathbf{x}_{N}\right)_{q}^{q}}{\|\mathbf{x}\|_{q}^{q}} \geq \frac{\int_{0}^{\tau_{0}-\epsilon} y d F_{Y}(y)}{\int_{0}^{\infty} y d F_{Y}(y)} \quad \text { a.s. }
$$

3. [2 points] By now choosing $\tau=\tau_{0}+\epsilon$ (ϵ is the same as in the previous part), follow the steps of the previous part to show that:

$$
\lim \sup _{N \rightarrow \infty} \frac{\sigma_{k_{N}}\left(\mathbf{x}_{N}\right)_{q}^{q}}{\|\mathbf{x}\|_{q}^{q}} \leq \frac{\int_{0}^{\tau_{0}+\epsilon} y d F_{Y}(y)}{\int_{0}^{\infty} y d F_{Y}(y)} \quad \text { a.s. }
$$

4. [3 points] Now finally by using the results of the last two parts, deduce that:

$$
\lim _{N \rightarrow \infty} \frac{\sigma_{k_{N}}\left(\mathbf{x}_{N}\right)_{q}^{q}}{\|\mathbf{x}\|_{q}^{q}}=G_{q}[p](\kappa) \quad \text { a.s }
$$

Exercise 2. Least squares estimation versus Oracle k-sparse Estimation

Carrying on from the previous problem, a natural question one could ask is the following. Given that the data $\mathbf{x}_{N}=\left(X_{1}, \ldots, X_{N}\right)$ is formed from i.i.d samples from some distribution $p(x)\left(X_{i} \sim p(x)\right)$, then how would one characterize the compressibility of the data \mathbf{x}_{N} ? A possible way to do this would be to apply a dimensionality reducing linear operator on \mathbf{x}_{N} and then compare the relative k term approximation error performance of a "sparse estimator" with a typically "dense" (or non-sparse estimator).

In this exercise we will compare the expected performance of two decoding approaches for estimating a given vector $\mathbf{x} \in \mathbb{R}^{N}$ from its encoding : $\mathbf{y}=\Phi \mathbf{x}$. Here, Φ is a $m \times N$ matrix $(\mathrm{m}<\mathrm{N})$ with i.i.d Gaussian entries, $\phi_{i, j} \sim \mathcal{N}\left(0, \frac{1}{m}\right)$. In order to estimate \mathbf{x} from the measurement \mathbf{y}, we will compare two decoding approaches:

1. Oracle k sparse decoder

$$
\triangle_{\text {oracle }}(\mathbf{y}, \Lambda)=\arg \min _{\tilde{\mathbf{x}}: \text { support }(\tilde{\mathbf{x}})=\Lambda}\|\mathbf{y}-\Phi \tilde{\mathbf{x}}\|_{2}
$$

$\triangle_{\text {oracle }}$ is an idealized sparse decoder which is given the "side" information Λ corresponding to the indices of the k largest coefficients of \mathbf{x} (Assume $k<m$). Note that the estimation $\triangle_{\text {oracle }}(\mathbf{y}, \Lambda)$ has at most k non-zero coefficients.
2. Least squares (LS) decoder

$$
\triangle_{L S}(\mathbf{y})=\arg \min _{\tilde{\mathbf{x}}: \mathbf{y}=\Phi \tilde{\mathbf{x}}}\|\tilde{\mathbf{x}}\|_{2}
$$

This is a commonly used decoder which typically provides a "dense" estimate of \mathbf{x} due to the particular nature of the objective function (l_{2} norm).

In the following, for any column index set $\Lambda \subset\{1, \ldots, N\}$ we have the notation that Φ_{Λ} is the matrix restricted to the column set Λ. Similarly for any $\mathbf{x} \in \mathbb{R}^{N}, \mathbf{x}_{\Lambda}$ denotes the restriction of \mathbf{x} to the support set Λ. The complement of Λ is denoted by $\bar{\Lambda}$.

1. [3 points] Show that:

$$
\triangle_{L S}(\mathbf{y})=\Phi^{+}(\mathbf{y})
$$

where $\Phi^{+}=\Phi^{T}\left(\Phi \Phi^{T}\right)^{-1}$ is the pseudo inverse of Φ. Also show that:

$$
\triangle_{\text {oracle }}(\mathbf{y}, \Lambda)=\Phi_{\Lambda}^{+}(\mathbf{y})
$$

where Φ_{Λ} is a $m \times k$ matrix and $\Phi_{\Lambda}^{+}=\left(\Phi_{\Lambda}^{T} \Phi_{\Lambda}\right)^{-1} \Phi_{\Lambda}^{T}$ is the pseudo inverse of Φ_{Λ}.
2. It is well known that the relative expected performance of $\triangle_{L S}$ is given by:

$$
\frac{\mathbb{E}_{\Phi}\left[\left\|\triangle_{L S}(\Phi \mathbf{x})-\mathbf{x}\right\|_{2}^{2}\right]}{\|\mathbf{x}\|_{2}^{2}}=1-\frac{m}{N}
$$

Observe that the expected performance of $\triangle_{L S}$ is directly governed by the undersampling ratio: $\frac{m}{N}$. It is independent of the vector \mathbf{x} which should be no surprise since the Gaussian distribution is isotropic. We now proceed to derive the expression for the relative expected performance of $\triangle_{\text {oracle }}$. We will see that the expected performance of the oracle estimator drastically depends on the shape of the best k term approximation relative error of \mathbf{x} (i.e. $\bar{\sigma}_{k}(\mathbf{x})$).
(a) $\left[2\right.$ points] Denoting $w:=\frac{\Phi_{\bar{\Lambda}} \mathbf{x}_{\bar{\Lambda}}}{\left\|\Phi_{\bar{\Lambda}} \mathbf{x}_{\bar{\Lambda}}\right\|_{2}} \in \mathbb{R}^{m}$ show that:

$$
\frac{\left\|\triangle_{\text {oracle }}(\mathbf{y}, \Lambda)-\mathbf{x}\right\|_{2}^{2}}{\left\|\mathbf{x}_{\bar{\Lambda}}\right\|_{2}^{2}}=\left\|\Phi_{\Lambda}^{+} w\right\|_{2}^{2} \cdot \frac{\left\|\Phi_{\bar{\Lambda}} \mathbf{x}_{\bar{\Lambda}}\right\|_{2}^{2}}{\left\|\mathbf{x}_{\bar{\Lambda}}\right\|_{2}^{2}}+1
$$

(b) $[\mathbf{2}$ points $]$ Show that: $\mathbb{E}_{\Phi}\left[\frac{\left\|\Phi_{\bar{\Lambda}} \mathbf{x}_{\bar{\Lambda}}\right\|_{2}^{2}}{\left\|\mathbf{x}_{\bar{\Lambda}}\right\|_{2}^{2}}\right]=1$.
(c) [2 points] Let $\Phi_{\Lambda}=U \Sigma V^{T}$ be the SVD of Φ_{Λ} where u_{l} and v_{l} denote the column vectors of U and V repectively. It can be shown that:

- The random variables $\left\langle u_{l}, w\right\rangle$ are identically distributed and statistically independent from Φ_{Λ}.
- $\mathbb{E}\left[\left|\left\langle u_{l}, w\right\rangle\right|^{2}\right]=\frac{1}{m}$. Furthermore, $\mathbb{E}\left[\operatorname{Trace}\left(\Phi_{\Lambda}^{T} \Phi_{\Lambda}\right)^{-1}\right]=\frac{m k}{m-k+1}$.

With help from the above facts show that: $\mathbb{E}\left[\left\|\Phi_{\Lambda}^{+} w\right\|_{2}^{2}\right]=\frac{k}{m-k+1}$.
(d) [2 points] Lastly using the above results conclude that:

$$
\frac{\mathbb{E}\left[\left\|\triangle_{\text {oracle }}(\mathbf{y}, \Lambda)-\mathbf{x}\right\|_{2}^{2}\right]}{\|\mathbf{x}\|_{2}^{2}}=\frac{1}{1-\frac{k}{m+1}} \frac{\sigma_{k}(\mathbf{x})_{2}^{2}}{\|\mathbf{x}\|_{2}^{2}}
$$

