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Exercise 1. Asymptotics of best relative k-term approximation error

Undetermined linear regression (ULR) is a fundamental problem with broad applications in
many fields. In ULR we seek an unknown vector x ∈ R

N from its dimensionality reducing
linear projection y ∈ R

m (m < N) obtained via a known encoding matrix Φ ∈ R
m×N as:

y = Φx.

Since Φ posesses a non-trivial kernel, we clearly need to make additional assumptions about
x to distinguish it from the infinitely many possible solutions. It is now well known that
a sparsity assumption on x, i.e. x has most of its energy in k � N coefficients, plays a
crucial role in obtaining “good” solutions. Furthermore from a probabilistic perspective one
assumes x to be drawn from a prior. Hence in this probabilistic setting, own would like to
come up with a mathematically precise mechanism to characterize the “compressibility” of
a prior.

In this exercise we will analyze the relative best k - term approximation error:

σ̄k(x)q =
σk(x)q
‖x‖q

in the limit of large problem sizes (i.e. N → ∞), for any q ∈ (0,∞) and for random vectors
xN = (X1, . . . , Xn) with i.i.d entries (Xi ∼ p(x)) drawn from a distribution p(x). Note that
σk(x)q = inf‖z‖

0
≤k ‖x− z‖q. Denote p̃(x) as the PDF of X̃n = |X |n and F̃ (t) := P(|X | ≤ t)

as its CDF. Assume F̃ is continuous and strictly increasing. Also assume that Xn satisfies
E |X |q < ∞. For any κ ∈ (0, 1) consider the following function:

Gq[p](κ) :=

∫ F̃−1(1−κ)

0
xq p̃(x)dx

∫∞

0 xq p̃(x)dx
.

Given any sequence (kN )∞N=1 so that limN→∞
kN

N = κ, we would like to show in this
question that:

lim
N→∞

σ̄kN
(xN )qq = Gq[p](κ) a.s (1)

where a.s. denotes “almost surely”.

Let us begin by defining the random variables Yn := |Xn|
q
. They have the CDF FY (y) :=

P(Y ≤ y) = F̃ (y1/q). Denote

µ = E[Y ] =

∫ ∞

0

xqdF̃ (x)

1. [1 point] For a given κ ∈ (0, 1), show that there is a unique τ0 ∈ (0,∞) such that
κ = 1− FY (τ0).



2. Fix 0 < ε < τ0. Define τ = τ0 − ε and ρ =
∫ τ

0
ydF̃ (y). Clearly ρ ∈ (0, µ). Lastly

consider LN = max{l ≤ N :
∑l

i=1 Yi,N ≤ Nρ} where Y1,N ≤ · · · ≤ YN,N are the
increasing order statistics of Y1, . . . , YN . It can be shown that

lim
N→∞

LN

N
= FY (τ) a.s. (2)

We now proceed to prove (1) by solving the following questions:

(a) [1 point] Show that: limN→∞
N−kN

LN

> 1.

(b) [3 points] Using the above result and applying (2) show that:

lim inf
N→∞

σkN
(xN )qq

‖x‖qq
≥

∫ τ0−ε

0 ydFY (y)
∫∞

0 ydFY (y)
a.s.

3. [2 points] By now choosing τ = τ0 + ε (ε is the same as in the previous part), follow
the steps of the previous part to show that:

lim sup
N→∞

σkN
(xN )qq

‖x‖qq
≤

∫ τ0+ε

0 ydFY (y)
∫∞

0 ydFY (y)
a.s.

4. [3 points] Now finally by using the results of the last two parts, deduce that:

lim
N→∞

σkN
(xN )qq

‖x‖qq
= Gq[p](κ) a.s

Exercise 2. Least squares estimation versus Oracle k-sparse Estimation

Carrying on from the previous problem, a natural question one could ask is the following.
Given that the data xN = (X1, . . . , XN) is formed from i.i.d samples from some distribution
p(x) (Xi ∼ p(x)), then how would one characterize the compressibility of the data xN?
A possible way to do this would be to apply a dimensionality reducing linear operator on
xN and then compare the relative k term approximation error performance of a “sparse
estimator” with a typically “dense” (or non-sparse estimator).

In this exercise we will compare the expected performance of two decoding approaches
for estimating a given vector x ∈ R

N from its encoding : y = Φx. Here, Φ is a m × N

matrix (m < N) with i.i.d Gaussian entries, φi,j ∼ N (0, 1
m ). In order to estimate x from

the measurement y, we will compare two decoding approaches:

1. Oracle k sparse decoder

4oracle(y,Λ) = arg min
x̃:support(x̃)=Λ ‖y − Φx̃‖2

4oracle is an idealized sparse decoder which is given the “side” information Λ corre-
sponding to the indices of the k largest coefficients of x (Assume k < m). Note that
the estimation 4oracle(y,Λ) has at most k non-zero coefficients.

2. Least squares (LS) decoder

4LS(y) = arg min
x̃:y=Φx̃

‖x̃‖2

This is a commonly used decoder which typically provides a “dense” estimate of x due
to the particular nature of the objective function (l2 norm).
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In the following, for any column index set Λ ⊂ {1, . . . , N} we have the notation that ΦΛ

is the matrix restricted to the column set Λ. Similarly for any x ∈ R
N , xΛ denotes the

restriction of x to the support set Λ. The complement of Λ is denoted by Λ̄.

1. [3 points] Show that :

4LS(y) = Φ+(y)

where Φ+ = ΦT (ΦΦT )−1 is the pseudo inverse of Φ. Also show that:

4oracle(y,Λ) = Φ+
Λ(y)

where ΦΛ is a m× k matrix and Φ+
Λ = (ΦT

ΛΦΛ)
−1ΦT

Λ is the pseudo inverse of ΦΛ.

2. It is well known that the relative expected performance of 4LS is given by:

EΦ[‖4LS(Φx)− x‖22]

‖x‖22
= 1−

m

N
.

Observe that the expected performance of 4LS is directly governed by the undersam-

pling ratio: m
N . It is independent of the vector x which should be no surprise since

the Gaussian distribution is isotropic. We now proceed to derive the expression for
the relative expected performance of 4oracle. We will see that the expected perfor-
mance of the oracle estimator drastically depends on the shape of the best k term
approximation relative error of x (i.e. σ̄k(x)).

(a) [2 points] Denoting w :=
ΦΛ̄xΛ̄

‖ΦΛ̄xΛ̄‖2
∈ R

m show that:

‖4oracle(y,Λ)− x‖22
‖xΛ̄‖

2
2

=
∥

∥Φ+
Λw

∥

∥

2

2
·
‖ΦΛ̄xΛ̄‖

2
2

‖xΛ̄‖
2
2

+ 1.

(b) [2 points] Show that: EΦ

[

‖ΦΛ̄xΛ̄‖
2
2

‖xΛ̄‖
2
2

]

= 1.

(c) [2 points] Let ΦΛ = UΣV T be the SVD of ΦΛ where ul and vl denote the column
vectors of U and V repectively. It can be shown that:

• The random variables 〈ul, w〉 are identically distributed and statistically in-
dependent from ΦΛ.

• E[|〈ul, w〉|
2
] = 1

m . Furthermore, E[Trace(ΦT
ΛΦΛ)

−1] = mk
m− k + 1

.

With help from the above facts show that: E[
∥

∥Φ+
Λw

∥

∥

2

2
] = k

m− k + 1
.

(d) [2 points] Lastly using the above results conclude that:

E[‖4oracle(y,Λ)− x‖22]

‖x‖22
=

1

1− k
m+ 1

σk(x)
2
2

‖x‖22
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