Homework 7

Assigned: 08/11/2011.
Due: 18/11/2011.

Exercise 1. ℓ_{1}-Minimization approximation guarantees

Let $u=\Phi x^{*}+n$ be a set of observations where $u \in \mathbb{R}^{m}$ and $\Phi \in \mathbb{R}^{m \times n},(m<n)$. Here, $x^{*} \in \mathbb{R}^{n}$ is the signal of interest: it can be exactly k-sparse $(k<m)$ or compressible, i.e. we can well-approximate x^{*} by keeping the k largest (in magnitude) coefficients and (yet) have a good approximation of x^{*}. We denote the best k-sparse approximation of x^{*} as x^{k}.
One way to efficiently reconstruct x^{*} is by using ℓ_{1}-minimization schemes, according to which we try to solve the following optimization problem:

$$
\begin{equation*}
\min _{x: x \in \mathbb{R}^{n}}\|x\|_{1} \quad \text { subject to } \quad\|u-\Phi x\|_{2} \leq \varepsilon \tag{1}
\end{equation*}
$$

We reserve $\tilde{x} \in \mathbb{R}^{n}$ to denote the sparse solution of (1). In this exercise, we prove the following approximation guarantees for the ℓ_{1}-minimization problem:

Theorem 1 Assume $\Phi \in \mathbb{R}^{m \times n}$ satisfies the RIP for $\delta_{2 k}<\sqrt{2}-1$ and let $\|n\|_{2} \leq \varepsilon$. Given positive constants C_{1}, C_{2}, the solution \tilde{x} satisfies the following approximation guarantees:

$$
\begin{equation*}
\left\|\tilde{x}-x^{*}\right\|_{2} \leq \frac{C_{1}}{\sqrt{k}}\left\|x^{k}-x^{*}\right\|_{1}+C_{2} \varepsilon \tag{2}
\end{equation*}
$$

To prove Theorem 1, we prove a series of steps that lead to the desired result. An important "ingredient" in the proof is described next:

Lemma 1 For all $x_{1}, x_{2} \in \mathbb{R}^{n}$ with disjoint support sets $T_{1}, T_{2} \subseteq \mathcal{N}$ (respectively) such that $\left|T_{1}\right| \leq k_{1}$ and $\left|T_{2}\right| \leq k_{2}$, the following inequality holds:

$$
\begin{equation*}
\left|\left\langle\Phi x_{1}, \Phi x_{2}\right\rangle\right| \leq \delta_{k_{1}+k_{2}}\left\|x_{1}\right\|_{2}\left\|x_{2}\right\|_{2} . \tag{3}
\end{equation*}
$$

To set-up notation, the index set of n-dimensional vectors is denoted as $\mathcal{N}=\{1,2, \ldots, n\}$. For $\mathcal{S} \subseteq \mathcal{N}$, we define the complement set $\mathcal{S}^{c}=\mathcal{N} \backslash \mathcal{S}$. Moreover, given a set $\mathcal{S} \subseteq \mathcal{N}$ and a vector $x \in \mathbb{R}^{n},(x)_{\mathcal{S}} \in \mathbb{R}^{n}$ denotes a vector with nonzero coefficients at the positions indexed by \mathcal{S}.

1. [3 points] Let $\alpha:=\tilde{x}-x^{*} \in \mathbb{R}^{n}$. We define the following index sets: $\Gamma_{i} \subseteq \mathcal{N}, i=$ $1,2, \ldots$, where Γ_{0} contains the indices of the k largest (in magnitude) elements of x^{*}, Γ_{1} contains the indices of the next k largest elements in α outside Γ_{0}, Γ_{2} contains the indices of the next k largest elements in α outside $\Gamma_{0} \cup \Gamma_{1}$ etc. Thus,

$$
\Gamma_{i} \cap \Gamma_{j}=\{\emptyset\}, \forall i \neq j \text { and } \alpha=\sum_{i}(\alpha)_{\Gamma_{i}}
$$

Given the above:

- Justify the following set of inequalities for $i \geq 2$:

$$
\begin{equation*}
\left\|(\alpha)_{\Gamma_{i}}\right\|_{2} \leq \sqrt{k}\left\|(\alpha)_{\Gamma_{i}}\right\|_{\infty} \leq \frac{\left\|(\alpha)_{\Gamma_{i-1}}\right\|_{1}}{\sqrt{k}} \tag{4}
\end{equation*}
$$

and prove:

$$
\begin{equation*}
\left\|(\alpha)_{\left(\Gamma_{0} \cup \Gamma_{1}\right)^{c}}\right\|_{2} \leq \frac{\left\|(\alpha)_{\Gamma_{0}^{c}}\right\|_{1}}{\sqrt{k}} \tag{5}
\end{equation*}
$$

Hint: Find the connection between $\left\|(\alpha)_{\left(\Gamma_{0} \cup \Gamma_{1}\right)^{c}}\right\|_{2}$ and $\sum_{i \geq 2}\left\|(\alpha)_{\Gamma_{i}}\right\|_{2}$ and then use (4) to prove (5).
2. [1 point] Given that \tilde{x} is a feasible solution, i.e., satisfies (1), prove:

$$
\begin{equation*}
\left\|\Phi \tilde{x}-\Phi x^{*}\right\|_{2} \leq 2 \varepsilon . \tag{6}
\end{equation*}
$$

3. Since:

$$
\begin{equation*}
\|\alpha\|_{2} \leq\left\|(\alpha)_{\Gamma_{0} \cup \Gamma_{1}}\right\|_{2}+\left\|(\alpha)_{\left(\Gamma_{0} \cup \Gamma_{1}\right)^{c}}\right\|_{2} \tag{7}
\end{equation*}
$$

we want to bound the quantities $\left\|(\alpha)_{\Gamma_{0} \cup \Gamma_{1}}\right\|_{2}$ and $\left\|(\alpha)_{\left(\Gamma_{0} \cup \Gamma_{1}\right)^{c}}\right\|_{2}$.

- [2 points] Prove:

$$
\begin{equation*}
\left\|(\alpha)_{\left(\Gamma_{0} \cup \Gamma_{1}\right)^{c}}\right\|_{2} \leq\left\|(\alpha)_{\Gamma_{0}}\right\|_{2}+\frac{2}{\sqrt{k}}\left\|x^{k}-x^{*}\right\|_{1} \tag{8}
\end{equation*}
$$

Hint: Use the fact that $\left\|x^{*}\right\|_{1} \geq\|\tilde{x}\|_{1}$ and inequality (5).

- [3 points] Prove:

$$
\begin{equation*}
\left\|(\alpha)_{\Gamma_{0} \cup \Gamma_{1}}\right\|_{2} \leq \frac{2 \varepsilon \sqrt{1+\delta_{2 k}}}{1-\delta_{2 k}}+\frac{\sqrt{2} \delta_{2 k}}{1-\delta_{2 k}} \frac{\left\|(\alpha)_{\Gamma_{0}^{c}}\right\|_{1}}{\sqrt{k}} \tag{9}
\end{equation*}
$$

using the following steps:
(a) Using $\Phi(\alpha)_{\Gamma_{0} \cup \Gamma_{1}}=\Phi \alpha-\sum_{i \geq 2} \Phi(\alpha)_{\Gamma_{i}}$, prove:

$$
\begin{equation*}
\left\|\Phi(\alpha)_{\Gamma_{0} \cup \Gamma_{1}}\right\|_{2}^{2}=\left\langle\Phi(\alpha)_{\Gamma_{0} \cup \Gamma_{1}}, \Phi \alpha\right\rangle-\left\langle\Phi(\alpha)_{\Gamma_{0} \cup \Gamma_{1}}, \sum_{i \geq 2} \Phi(\alpha)_{\Gamma_{i}}\right\rangle \tag{10}
\end{equation*}
$$

(b) Prove $\left|\left\langle\Phi(\alpha)_{\Gamma_{0} \cup \Gamma_{1}}, \Phi \alpha\right\rangle\right| \leq 2 \varepsilon \sqrt{1+\delta_{2 k}}\left\|(\alpha)_{\Gamma_{0} \cup \Gamma_{1}}\right\|_{2}$.
(c) Using Lemma 1, verify that $\left|\left\langle\Phi(\alpha)_{\Gamma_{i}}, \Phi(\alpha)_{\Gamma_{j}}\right\rangle\right| \leq \delta_{2 k}\left\|(\alpha)_{\Gamma_{i}}\right\|_{2}\left\|(\alpha)_{\Gamma_{j}}\right\|_{2}$.
(d) Given that $\left\|(\alpha)_{\Gamma_{0}}\right\|_{2}+\left\|(\alpha)_{\Gamma_{1}}\right\|_{2} \leq \sqrt{2}\left\|(\alpha)_{\Gamma_{0} \cup \Gamma_{1}}\right\|_{2}$, prove (9).

Hint: Use the definition of RIP on $(\alpha)_{\Gamma_{0} \cup \Gamma_{1}}$.
4. [1 point] Given the derivations above, complete the proof of Theorem 1 using (7) and give the restricted isometry constant constraints in terms of $\delta_{2 k}$.

Exercise 2. Proving RIP for Random matrices

In this exercise we will provide a simple proof of a fundamental CS construct namely the Restricted Isometry property (RIP). Let Φ denote a $n \times N$ matrix where $n<N$. We say that Φ satisfies the RIP of order k if there exists $\delta_{k} \in(0,1)$ such that

$$
\left(1-\delta_{k}\right)\left\|\mathbf{x}_{T}\right\|_{2}^{2} \leq\left\|\Phi_{T} \mathbf{x}_{T}\right\|_{2}^{2} \leq\left(1+\delta_{k}\right)\left\|\mathbf{x}_{T}\right\|_{2}^{2}
$$

holds for all sets $T \subset\{1, \ldots, N\}$ with $|T| \leq k$ where T denotes the set of column indices. Φ_{T} is the $n \times|T|$ matrix composed of those columns. \mathbf{x}_{T} denotes the vector obtained by retaining only the entries of \mathbf{x} corresponding to the column indices T. Denote by X_{T} the set of all vectors in \mathbb{R}^{N} that are zero outside of T. Assume that the matrix Φ has i.i.d entries with

$$
\mathbb{E}\left[\phi_{i, j}\right]=0 \quad \text { and } \quad \mathbb{E}\left[\phi_{i, j}^{2}\right]=\frac{1}{n}
$$

1. [2 points] Show that $\mathbb{E}\left[\|\Phi \mathbf{x}\|_{2}^{2}\right]=\|\mathbf{x}\|_{2}^{2}$ for any given $\mathbf{x} \in \mathbb{R}^{N}$.

Now for any $\mathbf{x} \in \mathbb{R}^{N}$ the random variable $\|\Phi \mathbf{x}\|_{2}^{2}$ is strongly concentrated around its mean i.e. for any $0<\epsilon<1$ we have

$$
\begin{equation*}
\mathbb{P}\left(\left|\|\Phi \mathbf{x}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2}\right| \geq \epsilon\|\mathbf{x}\|_{2}^{2}\right) \leq 2 e^{-n c_{0}(\epsilon)} \tag{11}
\end{equation*}
$$

where $c_{0}(\epsilon)$ is a constant depending only on ϵ and such that $c_{0}(\epsilon)>0$ for all $\epsilon \in(0,1)$. We make use of this inequality in the following parts.
2. [4 points] As Φ is linear we can assume that $\|\mathbf{x}\|_{2}=1$ for all $\mathbf{x} \in X_{T}$. Assume $|T|=k$. Now it is known from covering numbers that there exists $Q_{T} \subseteq X_{T}$ with $\left|Q_{T}\right| \leq\left(\frac{12}{\delta}\right)^{k}$ where $\delta \in(0,1)$ and $\|q\|_{2}=1$ for all $q \in Q_{T}$ so that

$$
\begin{equation*}
\min _{q \in Q_{T}}\|\mathbf{x}-\mathbf{q}\|_{2} \leq \frac{\delta}{4} \tag{12}
\end{equation*}
$$

holds for any $\mathrm{x} \in X_{T}$. Use (12) along with the concentration result in (11) to show that for any given T with $|T|=k$,

$$
(1-\delta)\|\mathbf{x}\|_{2} \leq\|\Phi \mathbf{x}\|_{2} \leq(1+\delta)\|\mathbf{x}\|_{2}
$$

holds $\forall \mathbf{x} \in X_{T}$ with probability at least $1-2\left(\frac{12}{\delta}\right)^{k} e^{-c_{0}(\delta / 2) n}$.
3. [4 points] Use the result from previous part to show that for a given $0<\delta<1, n$, N, there exist constants $c_{1}, c_{2}>0$ depending only on δ such that for all sets T with $|T|=k$,

$$
(1-\delta)\left\|\mathbf{x}_{T}\right\|_{2} \leq\left\|\Phi_{T} \mathbf{x}_{T}\right\|_{2} \leq(1+\delta)\left\|\mathbf{x}_{T}\right\|_{2}
$$

holds for the prescribed δ and any $k \leq \frac{c_{1} n}{\log (N / k)}$ with probability at least $1-2 e^{-c_{2} n}$. Conclude that Φ satisfies the RIP of order k with high probability. (Hint: Use $\binom{N}{k} \leq$ $\left(\frac{e N}{k}\right)^{k}$.)

