Probabilistic Graphical Models

Lecture 2: Graphical Models. Belief Propagation

Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne

30/9/2011

A D M A A A M M

- E - N

Outline

< 同 > < ∃ >

Excellent book about graphical models and belief propagation, written by one of the pioneers in these topics:

• Pearl, J.

Probabilistic Reasoning in Intelligent Systems (1990)

The Need to Factorize

Variables x_1, x_2, \ldots, x_n

$$P(x_1) = \sum_{x_2} \cdots \sum_{x_n} P(x_1, x_2, \dots, x_n)$$

Marginalization: Exponential timeStorage:Exponential space \Rightarrow Need factorization

• Independence?

But probabilistic modelling is about dependencies!

The Need to Factorize

Variables x_1, x_2, \ldots, x_n

$$P(x_1) = \sum_{x_2} \cdots \sum_{x_n} P(x_1, x_2, \dots, x_n)$$

Marginalization: Exponential timeStorage:Exponential space \Rightarrow Need factorization

- Independence?
 But probabilistic modelling is about dependencies!
- Conditional independence Dependencies may have simple structure

Towards Bayesian Networks

Tracking a fly

Path pretty random

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Towards Bayesian Networks

Tracking a fly

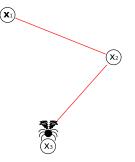
Path pretty random

- A 🖻 🕨

Towards Bayesian Networks

Tracking a fly

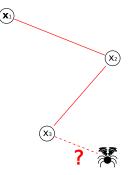
- Path pretty random
- Positions not independent



Towards Bayesian Networks

Tracking a fly

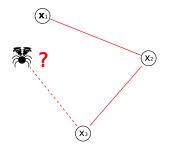
- Path pretty random
- Positions not independent



Towards Bayesian Networks

Tracking a fly

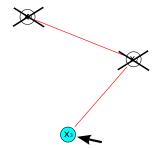
- Path pretty random
- Positions not independent



Towards Bayesian Networks

Tracking a fly

- Path pretty random
- Positions not independent
- But conditionally independent (Markovian)



Towards Bayesian Networks

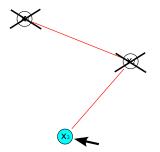
Tracking a fly

- Path pretty random
- Positions not independent
- But conditionally independent (Markovian)

Remember

$$P(x_1,...,x_n) = P(x_1)P(x_2|x_1)...$$

 $P(x_n|x_{n-1},...,x_1)$?



Here: $P(x_n|x_{n-1},...,x_1) = P(x_n|x_{n-1}) \Rightarrow$ Linear storage Causal factorization \Rightarrow Bayesian networks

Bayesian Networks (Directed Graphical Models)

Causal factorization:

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|\boldsymbol{x}_{\pi_i})$$

Bayesian network

(aka directed graphical model, aka causal network):

- Graphical representation of ancestry [DAG]
- *P*(*x_i*|*x*_{π_i}): Conditional probability table (CPT)

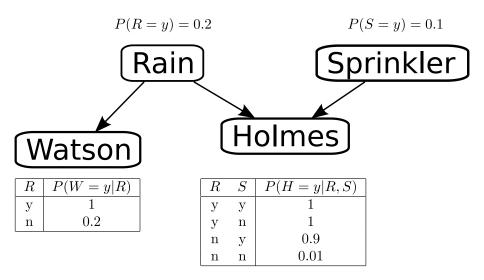
Conditional Independence

 $\mathcal{A} \perp \mathcal{B} \mid \mathcal{C} \iff \mathcal{P}(\mathcal{A}, \mathcal{B} \mid \mathcal{C}) = \mathcal{P}(\mathcal{A} \mid \mathcal{C}) \mathcal{P}(\mathcal{B} \mid \mathcal{C}) \iff \mathcal{P}(\mathcal{A} \mid \mathcal{C}, \mathcal{B}) = \mathcal{P}(\mathcal{A} \mid \mathcal{C})$

(amonatoma of :)

(EPFL)

Did It Rain Tonight?



(EPFL)

Monty Hall Problem

Let's make a deal!

- Door with car (hidden)
- First choice of yours (remains closed)
- Host opens door with goat, $H \neq F$, D
- Do you switch?

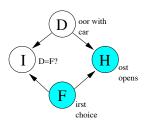
Monty Hall Problem

Let's make a deal!

- Door with car (hidden)
- First choice of yours (remains closed)
- Host opens door with goat, $H \neq F, D$
- Do you switch?
- "Intuition": Fifty-fifty.

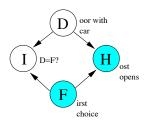
F, H give no information. He would be stupid, wouldn't he?

Winning with Bayes (I)



- Intuition "H does not tell anything" correct in principle. But about what?
- Add latent $I = I_{\{D=F\}} = I_{\{\text{first choice correct}\}}$

Winning with Bayes (I)



- Intuition "*H* does not tell anything" correct in principle. But about what?
- Add latent $I = I_{\{D=F\}} = I_{\{\text{first choice correct}\}}$
- Gut feeling: F, H no information about I.
 "He will not tell me whether I am correct".
 P(I|F, H) = P(I).
 Will use Bayes to see that.

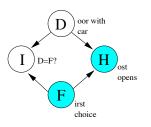
Winning with Bayes (I)



- Intuition "*H* does not tell anything" correct in principle. But about what?
- Add latent $I = I_{\{D=F\}} = I_{\{\text{first choice correct}\}}$
- Gut feeling: F, H no information about I. "He will not tell me whether I am correct". P(I|F, H) = P(I). Will use Bayes to see that.

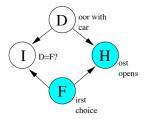
• OK, but P(Switch wins) = P(I = 0 | F, H) = P(I = 0) = 2/3!

Winning with Bayes (I)



- Intuition "*H* does not tell anything" correct in principle. But about what?
- Add latent $I = I_{\{D=F\}} = I_{\{\text{first choice correct}\}}$
- Gut feeling: F, H no information about I.
 "He will not tell me whether I am correct".
 P(I|F, H) = P(I).
 Will use Bayes to see that.
- OK, but P(Switch wins) = P(I = 0|F, H) = P(I = 0) = 2/3!
- Bayes makes you switch and double your chance of winning!

Winning with Bayes (II)



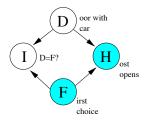
• To show: P(I|H, F) = P(I).

• P(I|F) = P(I), because D, F independent.

э

• • • • • • • • • • • • •

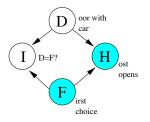
Winning with Bayes (II)



- To show: P(I|H, F) = P(I).
- P(I|F) = P(I), because D, F independent.
- $P(I|H, F) = P(I|F) \Leftrightarrow I \perp H|F \Leftrightarrow H \perp I|F$ $\Leftrightarrow P(H|I, F) = P(H|F)$ (independence is symmetric)

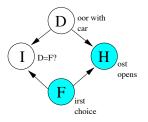
< 4 →

Winning with Bayes (II)



- To show: P(I|H, F) = P(I).
- P(I|F) = P(I), because D, F independent.
- $P(I|H, F) = P(I|F) \Leftrightarrow I \perp H|F \Leftrightarrow H \perp I|F$ $\Leftrightarrow P(H|I, F) = P(H|F)$ (independence is symmetric)
- $P(H|F, I = 1) = (1/2)I_{\{H \neq F\}}$ If F = D, host picks random goat

Winning with Bayes (II)



- To show: P(I|H, F) = P(I).
- P(I|F) = P(I), because D, F independent.
- $P(I|H, F) = P(I|F) \Leftrightarrow I \perp H|F \Leftrightarrow H \perp I|F$ $\Leftrightarrow P(H|I, F) = P(H|F)$ (independence is symmetric)

•
$$P(H|F, I = 1) = (1/2)I_{\{H \neq F\}}$$

If $F = D$, host picks random goat

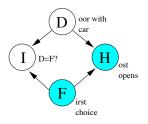
•
$$P(H|F, I = 0) = (1/2)I_{\{H \neq F\}}$$

D, F independent, and $H \neq D, F$

< 4 →

→ ∃ →

Winning with Bayes (II)



- To show: P(I|H, F) = P(I).
- P(I|F) = P(I), because D, F independent.
- $P(I|H, F) = P(I|F) \Leftrightarrow I \perp H|F \Leftrightarrow H \perp I|F$ $\Leftrightarrow P(H|I, F) = P(H|F)$ (independence is symmetric)

•
$$P(H|F, I = 1) = (1/2)I_{\{H \neq F\}}$$

If $F = D$, host picks random goat

•
$$P(H|F, I = 0) = (1/2)I_{\{H \neq F\}}$$

 D, F independent, and $H \neq D, F$

Working with Graphical Models

- Intermediate between lots of headscratching and doing all sums
- Powerful division of inference in manageable, local steps

(EPFL)

Graphical Models

Why Graphical Models?

- Easy way of communicating ideas about dependencies, models
- Precise semantics: Conditional independence constraints on distributions. Efficient algorithms for testing these
- Lead to large savings in computations (belief propagation)

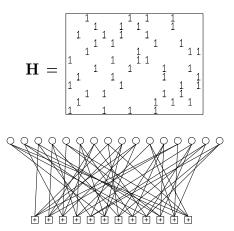
Graphical Models in Practice

Dependency structures, and efficient ways to propagate information or constraints, are fundamental.

Graphical Models

Coding / Information Theory

- LDPC codes and BP decoding revolutionized this field (resurrection of Gallager codes)
- Used from deep space communication (Mars rovers) over satellite transmission to CD players / hard drives



Courtesy MacKay: Information Theory . . . (2003)

Graphical Models in Practice

Dependency structures, and efficient ways to propagate information or constraints, are fundamental.

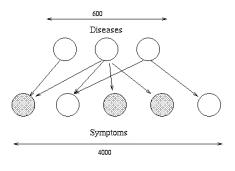
Expert systems done right

- QMR-DT: Invert causal network for helping medical diagnoses
- Hugin: Advanced decision support (Lauritzen)

http://www.hugin.com/

 Promedas: Medical diagnostic advisory system (SNN Nimegen)

http://www.promedas.nl/



< ∃ >

Graphical Models in Practice

Dependency structures, and efficient ways to propagate information or constraints, are fundamental.

Computer Vision: Markov Random Fields

- Denoising, super-resolution, restoration (early work by Besag)
- Depth / reconstruction from stereo, matching, correspondences
- Segmentation, matting, blending, stitching, impainting,

Courtesy MSR

. . .

Conditional Independence Semantics

Graphical model formally equivalent to long (finite) list of conditional independence constraints:
 *x*_{A1} ⊥ *x*_{B1} | *x*_{C1}, *x*_{A2} ⊥ *x*_{B2} | *x*_{C2}, ... Which do you prefer?

Conditional Independence Semantics

 Graphical model formally equivalent to long (finite) list of conditional independence constraints:

 $\boldsymbol{x}_{A_1} \perp \boldsymbol{x}_{B_1} \mid \boldsymbol{x}_{C_1}, \, \boldsymbol{x}_{A_2} \perp \boldsymbol{x}_{B_2} \mid \boldsymbol{x}_{C_2}, \dots$ Which do you prefer?

 Graphs not just simpler for us: Linear-time algorithm to test such constraints (Bayes ball)

Conditional Independence Semantics

• Graphical model formally equivalent to long (finite) list of conditional independence constraints:

 $\boldsymbol{x}_{A_1} \perp \boldsymbol{x}_{B_1} \mid \boldsymbol{x}_{C_1}, \, \boldsymbol{x}_{A_2} \perp \boldsymbol{x}_{B_2} \mid \boldsymbol{x}_{C_2}, \dots$ Which do you prefer?

- Graphs not just simpler for us: Linear-time algorithm to test such constraints (Bayes ball)
- Distribution consistent with graph iff all CI constraints are met. $P(x_1)P(x_2) \dots P(x_n)$: Consistent with all graphs

Conditional Independence Semantics

• Graphical model formally equivalent to long (finite) list of conditional independence constraints:

 $\boldsymbol{x}_{A_1} \perp \boldsymbol{x}_{B_1} \mid \boldsymbol{x}_{C_1}, \, \boldsymbol{x}_{A_2} \perp \boldsymbol{x}_{B_2} \mid \boldsymbol{x}_{C_2}, \, \dots$ Which do you prefer?

- Graphs not just simpler for us: Linear-time algorithm to test such constraints (Bayes ball)
- Distribution consistent with graph iff all CI constraints are met. $P(x_1)P(x_2) \dots P(x_n)$: Consistent with all graphs
- How do I see whether $\mathbf{x}_A \perp \mathbf{x}_B | \mathbf{x}_C$ from the graph? Graph separation: If paths $A \leftrightarrow B$ blocked by C

Conditional Independence Semantics

• Graphical model formally equivalent to long (finite) list of conditional independence constraints:

 $\boldsymbol{x}_{A_1} \perp \boldsymbol{x}_{B_1} \mid \boldsymbol{x}_{C_1}, \, \boldsymbol{x}_{A_2} \perp \boldsymbol{x}_{B_2} \mid \boldsymbol{x}_{C_2}, \dots$ Which do you prefer?

- Graphs not just simpler for us: Linear-time algorithm to test such constraints (Bayes ball)
- Distribution consistent with graph iff all CI constraints are met. $P(x_1)P(x_2) \dots P(x_n)$: Consistent with all graphs
- How do I see whether $\mathbf{x}_A \perp \mathbf{x}_B | \mathbf{x}_C$ from the graph? Graph separation: If paths $A \leftrightarrow B$ blocked by C
- For Bayesian networks (directed graphical models): d-separation.
 ⇒ You'll find out in the exercises!

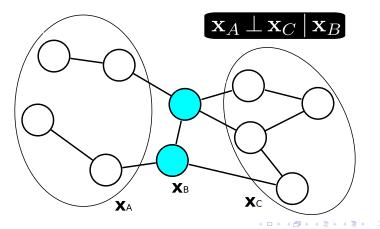
< /₽ > < ∃ > <

Undirected Graphical Models (Markov Random Fields)

 Bayesian Networks: Describe CIs with directed graphs (DAGs) Markov Random Fields: Describe CIs with undirected graphs

Undirected Graphical Models (Markov Random Fields)

- Bayesian Networks: Describe CIs with directed graphs (DAGs) Markov Random Fields: Describe CIs with undirected graphs
- CI semantics of undirected models: Really just graph separation



- Why two frameworks?
 - Each can capture setups the other cannot
 - More important: In practice, some problems are much easier to parameterize (therefore: to learn) as MRFs, others much easier as Bayes nets

Undirected Graphical Models (II)

- Why two frameworks?
 - Each can capture setups the other cannot
 - More important: In practice, some problems are much easier to parameterize (therefore: to learn) as MRFs, others much easier as Bayes nets
- How do distributions *P* for MRF graph *G* look like? Hammersley / Clifford:
 - Maximal cliques (completely connected parts) C_j of \mathcal{G}
 - $P(\mathbf{x})$ consistent with MRF $G \Leftrightarrow$

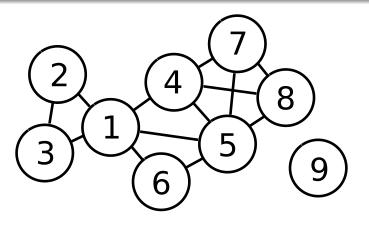
$$P(\mathbf{x}) = Z^{-1} \prod_{j} \Phi_j(\mathbf{x}_{C_j}), \quad Z := \sum_{\mathbf{x}} \prod_{j} \Phi_j(\mathbf{x}_{C_j})$$

with potentials $\Phi_j(\boldsymbol{x}_{C_i}) \ge 0$. *Z*: Partition function.

Potentials need not normalize to 1

Graphical Models

Undirected Graphical Models (III)



$P(\mathbf{x}) = Z^{-1} \phi_1(\mathbf{x}_{123}) \phi_2(\mathbf{x}_{145}) \phi_3(\mathbf{x}_{156})$ $\phi_4(\mathbf{x}_{4578}) \phi_5(x_9)$

30/9/2011 16 / 30

Directed vs. Undirected

• Sampling $\boldsymbol{x} \sim P(\boldsymbol{x})$:

Always simple from Bayes net. Can be very hard for an MRF

Directed vs. Undirected

• Sampling $\boldsymbol{x} \sim \boldsymbol{P}(\boldsymbol{x})$:

Always simple from Bayes net. Can be very hard for an MRF

• Implicit, symmetrical knowledge? Little idea about causal links (pixels of image, correspondences)? MRFs more useful then

Directed vs. Undirected

• Sampling $\boldsymbol{x} \sim P(\boldsymbol{x})$:

Always simple from Bayes net. Can be very hard for an MRF

- Implicit, symmetrical knowledge? Little idea about causal links (pixels of image, correspondences)? MRFs more useful then
- Bottomline: Usually, one or the other is much more suitable. Better know well about both!

Towards Efficient Marginalization

• With sufficient Markovian CI constraints (directed or undirected):

$$P(x_1,\ldots,x_n)\propto\prod_j\Phi_j(\boldsymbol{x}_{N_j}),\quad |N_j|\ll n$$

Can store that. But what about computation?

Towards Efficient Marginalization

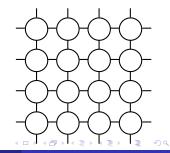
With sufficient Markovian CI constraints (directed or undirected):

$$P(x_1,\ldots,x_n)\propto\prod_j\Phi_j(\boldsymbol{x}_{N_j}),\quad |N_j|\ll n$$

Can store that. But what about computation?

 Short answer: It depends on global graph structure properties, beyond local factorization

Storage: Linear in *n* Computation: Exponential in $n^{1/2}$ [P \neq NP]



$$1 - 2 - 3 - 4 - 5 - 6 - 7$$

Chain:

$$P(x_1,...,x_7) = \Phi_1(x_1,x_2)\Phi_2(x_2,x_3)\ldots\Phi_6(x_6,x_7)$$

$$1 - 2 - 3 - 4 - 5 - 6 - 7$$

Chain:

$$P(x_1,...,x_7) = \Phi_1(x_1,x_2)\Phi_2(x_2,x_3)\ldots\Phi_6(x_6,x_7)$$

$$\sum_{x_4} P(x_1,\ldots,x_4,\ldots,x_7)$$

$$1 - 2 - 3 - 4 - 5 - 6 - 7$$

Chain:

$$P(x_1,...,x_7) = \Phi_1(x_1,x_2)\Phi_2(x_2,x_3)...\Phi_6(x_6,x_7)$$

$$\sum_{x_4} P(x_1, \dots, x_4, \dots, x_7)$$

= $\Phi_1(x_1, x_2) \Phi_2(x_2, x_3) \left(\sum_{x_4} \Phi_3(x_3, x_4) \Phi_4(x_4, x_5) \right) \Phi_5(x_5, x_6) \Phi_6(x_6, x_7)$

Chain:

$$P(x_1,...,x_7) = \Phi_1(x_1,x_2)\Phi_2(x_2,x_3)\ldots\Phi_6(x_6,x_7)$$

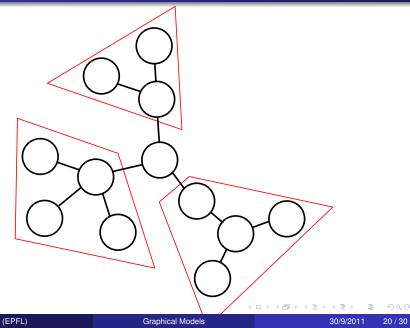
$$\sum_{x_4} P(x_1, \dots, x_4, \dots, x_7)$$

= $\Phi_1(x_1, x_2) \Phi_2(x_2, x_3) \left(\sum_{x_4} \Phi_3(x_3, x_4) \Phi_4(x_4, x_5) \right) \Phi_5(x_5, x_6) \Phi_6(x_6, x_7)$
= $\Phi_1(x_1, x_2) \Phi_2(x_2, x_3) M_{35}(x_3, x_5) \Phi_5(x_5, x_6) \Phi_6(x_6, x_7)$

(EPFL)

イロト イヨト イヨト

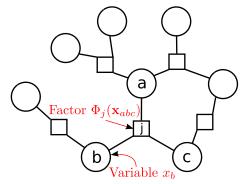
Tree Graphs



Factor Graphs

Factor graphs: Yet another type of graphical model

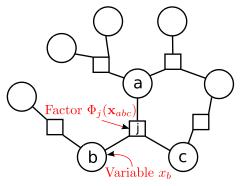
- Bipartite graph: variable / factor nodes
- No probability semantics
- Just for deriving Markovian propagation algorithms
- Factor graph = tree
 ⇒ Fast computation

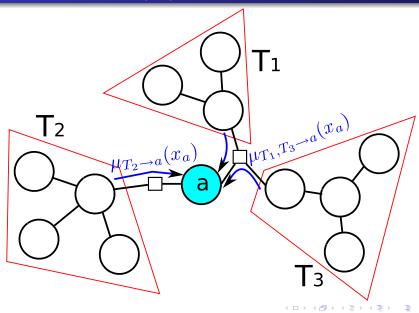


Factor Graphs

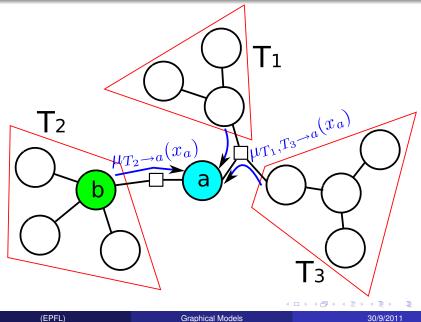
Factor graphs: Yet another type of graphical model

- Bipartite graph: variable / factor nodes
- No probability semantics
- Just for deriving Markovian propagation algorithms
- Factor graph = tree
 ⇒ Fast computation





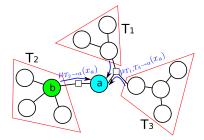
What is a Message?



23/30

What is a Message?

- Formally: Directed potential over one variable
- Intuition: Message T₂ → a: What T₂ thinks x_a should be
- Naive "definition":
 - Product: All T_2 , and edge $\rightarrow a$
 - Sum: All except x_a
 - \Rightarrow Real definition recursive (\mathcal{G} tree!)

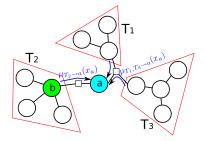


What is a Message?

- Formally: Directed potential over one variable
- Intuition: Message T₂ → a: What T₂ thinks x_a should be
- Naive "definition":
 - Product: All T_2 , and edge $\rightarrow a$
 - Sum: All except x_a
 - \Rightarrow Real definition recursive (\mathcal{G} tree!)

Subtle points:

 Messages: Not conditional / marginal distributions of *P*. Message μ_{T2→a}(x_a) has seen T₂ only

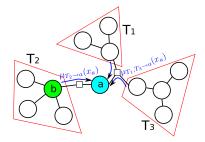


What is a Message?

- Formally: Directed potential over one variable
- Intuition: Message T₂ → a: What T₂ thinks x_a should be
- Naive "definition":
 - Product: All T_2 , and edge $\rightarrow a$
 - Sum: All except x_a
 - \Rightarrow Real definition recursive (\mathcal{G} tree!)

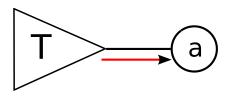
Subtle points:

- Messages: Not conditional / marginal distributions of *P*. Message μ_{T2→a}(x_a) has seen T₂ only
- Strictly speaking: Two types of messages: → □, □ → ○
 ⇒ Understand idea, behind formalities



Message Passing: The Recipe

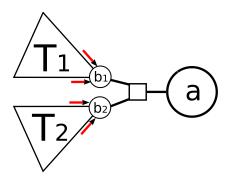
Message $\mu_{T \rightarrow a}(x_a)$ to a



Message Passing: The Recipe

Message $\mu_{T \rightarrow a}(x_a)$ to a

• Expand factor: (T_1, b_1) , (T_2, b_2)

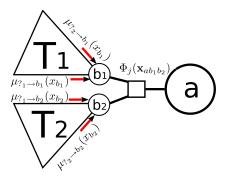


(EPFL)

Message Passing: The Recipe

Message $\mu_{T \rightarrow a}(x_a)$ to a

- Expand factor: (T_1, b_1) , (T_2, b_2)
- Product: Gather potentials
 - $\Phi_j(x_a, x_{b_1}, x_{b_2})$
 - All $\mu_{? \rightarrow b_1}(x_{b_1})$, except $b_1 \leftarrow \Phi_j$
 - $\mu_{?\rightarrow b_2}(x_{b_2})$ dito

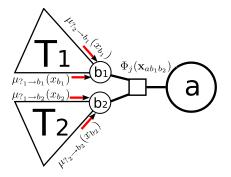


< ∃ >

Message Passing: The Recipe

Message $\mu_{T \rightarrow a}(x_a)$ to a

- Expand factor: (T_1, b_1) , (T_2, b_2)
- Product: Gather potentials
 - $\Phi_j(x_a, x_{b_1}, x_{b_2})$ • All $\mu_{? \to b_1}(x_{b_1})$, except $b_1 \leftarrow \Phi_j$
 - $\mu_{?\rightarrow b_2}(x_{b_2})$ dito
- Sum: Over x_{b_1} , x_{b_2}



$$\mu_{\mathcal{T}\to a}(x_a) \propto \sum_{x_{b_1}, x_{b_2}} \Phi_j(\boldsymbol{x}_{ab_1b_2}) \left(\prod_{\tilde{\mathcal{T}}: \mathcal{T}_1 \setminus b_1} \mu_{\tilde{\mathcal{T}}\to b_1}(x_{b_1})\right) \left(\prod_{\tilde{\mathcal{T}}: \mathcal{T}_2 \setminus b_2} \mu_{\tilde{\mathcal{T}}\to b_2}(x_{b_2})\right)$$

30/9/2011 25 / 30

• Messages are partial information, given part of graph

- Messages are partial information, given part of graph
- Message passing is information propagation
 - Product: Predict
 - Sum: Marginalize (cover your tracks)

Directed like filtering

 \Rightarrow We'll see cases where \prod is not \prod , and \sum is not \sum

- Messages are partial information, given part of graph
- Message passing is information propagation
 - Product: Predict
 - Sum: Marginalize (cover your tracks)

Directed like filtering

 \Rightarrow We'll see cases where \prod is not $\prod,$ and \sum is not \sum

 Marginal distributions (our goal!) are obtained by combining messages ↔ combining information from all parts

- Messages are partial information, given part of graph
- Message passing is information propagation
 - Product: Predict
 - Sum: Marginalize (cover your tracks)
 - **Directed** like filtering
 - \Rightarrow We'll see cases where \prod is not $\prod,$ and \sum is not \sum
- Marginal distributions (our goal!) are obtained by combining messages ↔ combining information from all parts
- MP works on trees, because information cannot go around in cycles

Belief Propagation: More than Node Elimination

• Marginalization by message passing:

$$P(x_a) = \sum_{\boldsymbol{x} \setminus x_a} P(\boldsymbol{x}) \propto \Phi_a(x_a) \prod_{j \in \mathcal{N}_a} \mu_{T_j \to a}(x_a)$$

 \mathcal{N}_a : Factor nodes neighbouring $a \leftrightarrow$ factors $\Phi_j(x_a, ...) \Phi_a$: Can be $\equiv 1$

Belief Propagation: More than Node Elimination

• Marginalization by message passing:

$$P(x_a) = \sum_{\boldsymbol{x} \setminus x_a} P(\boldsymbol{x}) \propto \Phi_a(x_a) \prod_{j \in \mathcal{N}_a} \mu_{T_j \to a}(x_a)$$

 \mathcal{N}_a : Factor nodes neighbouring $a \leftrightarrow$ factors $\Phi_j(x_a, ...) \Phi_a$: Can be $\equiv 1$

- All marginals P(x₁), P(x₂), ...? Do this *n* times. Right?
 ⇒ NO! Do this twice only!
 - \Rightarrow If you understand that, you've understood belief propagation

Belief Propagation: More than Node Elimination

• Marginalization by message passing:

$$P(x_a) = \sum_{\boldsymbol{x} \setminus x_a} P(\boldsymbol{x}) \propto \Phi_a(x_a) \prod_{j \in \mathcal{N}_a} \mu_{T_j \to a}(x_a)$$

 \mathcal{N}_a : Factor nodes neighbouring $a \leftrightarrow$ factors $\Phi_j(x_a, \dots)$

- Φ_a : Can be $\equiv 1$
- All marginals $P(x_1), P(x_2), \ldots$? Do this *n* times. Right? \Rightarrow NO! Do this twice only!
 - \Rightarrow If you understand that, you've understood belief propagation

Belief Propagation on Trees

- Message uniquely defined, independent of use, order of computation
- Message can be computed once all inputs received. Once computed, it does not change anymore
- $\bullet\,$ Compute all messages (2 per edge) \Rightarrow All marginals, O(1) each

Belief Propagation (Sum-Product) on Trees

- Designate node (any will do!) as root
- 2 Inward pass: Compute messages leaves \rightarrow root
 - 3 Outward pass: Compute messages root \rightarrow leaves

Belief Propagation (Sum-Product) on Trees

- Designate node (any will do!) as root
- 2 Inward pass: Compute messages leaves \rightarrow root
- **③** Outward pass: Compute messages root \rightarrow leaves

Messages can be normalized at will:

$$\mu_{\mathcal{T}\to a}(\mathbf{x}_a) = \sum_{\mathbf{x}_{C_j\setminus a}} \Phi_j(\mathbf{x}_{C_j}) \prod \mathbf{C} \mu_{\tilde{\mathcal{T}}\to b_1}(\mathbf{x}_{b_1}) \dots$$

Belief Propagation (Sum-Product) on Trees

- Designate node (any will do!) as root
- 2 Inward pass: Compute messages leaves \rightarrow root
- **③** Outward pass: Compute messages root \rightarrow leaves

Messages can be normalized at will:

$$\mu_{T \to a}(x_a) = C \sum_{\boldsymbol{x}_{C_j \setminus a}} \Phi_j(\boldsymbol{x}_{C_j}) \prod \mu_{\tilde{T} \to b_1}(x_{b_1}) \dots$$

Belief Propagation (Sum-Product) on Trees

- Designate node (any will do!) as root
- 2 Inward pass: Compute messages leaves \rightarrow root
- 3 Outward pass: Compute messages root \rightarrow leaves

Avoiding underflow / overflow (yes, it does matter):

- Renormalize each message to sum to 1
- Better: Work in log domain (log-messages, log-potentials):

$$\begin{array}{l} \prod \rightarrow + \\ \sum \rightarrow \text{ logsumexp} \quad [\text{careful with zeros!}] \\ \text{logsumexp}(\boldsymbol{v}) := \log \sum_{i=1}^{k} e^{v_i} = \underbrace{M + \log \sum_{i=1}^{k} e^{v_i - M}}_{\text{numerically stable}}, \quad M = \max_{i} v_i \end{array}$$

Searching for the Mode: Max-Product

Decoding:

$$m{x}_* \in \operatorname*{argmax}_{m{x}} P(m{x})$$

max, \prod : Same decomposition as \sum, \prod . Better: max, \sum in log domain

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Searching for the Mode: Max-Product

Decoding:

$$m{x}_* \in \operatorname*{argmax}_{m{x}} P(m{x})$$

max, \prod : Same decomposition as \sum, \prod . Better: max, \sum in log domain

• Max-messages:

$$\mu_{T \to a}(x_a) = \max_{\mathbf{x}_{C_j \setminus a}} \left(\log \Phi_j(\mathbf{x}_{C_j}) + \sum_{b \in C_j \setminus a} \mu_{T_b \to b}(x_b) \right)$$

Searching for the Mode: Max-Product

Decoding:

$$m{x}_* \in \operatorname*{argmax}_{m{x}} P(m{x})$$

max, \prod : Same decomposition as \sum, \prod . Better: max, \sum in log domain

• Max-messages:

$$\mu_{T \to a}(x_a) = \max_{\mathbf{x}_{C_j \setminus a}} \left(\log \Phi_j(\mathbf{x}_{C_j}) + \sum_{b \in C_j \setminus a} \mu_{T_b \to b}(x_b) \right)$$

Back-pointer tables:

$$\delta_{T \to a}(x_a) \in \operatorname*{argmax}_{\boldsymbol{x}_{C_j \setminus a}} \left(\log \Phi_j(\boldsymbol{x}_{C_j}) + \sum_{b \in C_j \setminus a} \mu_{T_b \to b}(x_b) \right)$$

→ ∃ →

Wrap-Up

- Belief propagation (sum-product) on trees: All marginals in linear time, by local information propagation
- Max-product, max-sum, logsumexp-sum, ...: What matters is the graph!

A D M A A A M M

Wrap-Up

- Belief propagation (sum-product) on trees:
 All marginals in linear time, by local information propagation
- Max-product, max-sum, logsumexp-sum, ...: What matters is the graph!
- What about general graphs?
 - Decomposable graphs. Treewidth of a graph
 - Junction tree algorithm

Interested?

• PMR Edinburgh slides:

http://www.inf.ed.ac.uk/teaching/courses/pmr/slides/jta-2x2.pdf

 Lauritzen, S; Spiegelhalter, D. Local Computations with Probabilities on Graphical Structures and their Application to Expert Systems. JRSS-B, 50: 157-224 (1988)

Wrap-Up

- Belief propagation (sum-product) on trees:
 All marginals in linear time, by local information propagation
- Max-product, max-sum, logsumexp-sum, ...: What matters is the graph!
- What about general graphs?
 - Decomposable graphs. Treewidth of a graph
 - Junction tree algorithm

Interested?

• PMR Edinburgh slides:

http://www.inf.ed.ac.uk/teaching/courses/pmr/slides/jta-2x2.pdf

- Lauritzen, S; Spiegelhalter, D. Local Computations with Probabilities on Graphical Structures and their Application to Expert Systems. JRSS-B, 50: 157-224 (1988)
- Beware (not surprising): Inference on general graphs is NP hard. In general, approximations are a must