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Graphical Models

Literature

Excellent book about graphical models and belief propagation, written
by one of the pioneers in these topics:

Pearl, J.
Probabilistic Reasoning in Intelligent Systems (1990)
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Graphical Models

The Need to Factorize

Variables x1, x2, . . . , xn

P(x1) =
X

x2

· · ·
X

xn

P(x1, x2, . . . , xn)

Marginalization: Exponential time
Storage: Exponential space ) Need factorization

Independence?
But probabilistic modelling is about dependencies!

Conditional independence
Dependencies may have simple structure
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Graphical Models

Towards Bayesian Networks
Tracking a fly

Path pretty random

Positions not independent
But conditionally independent
(Markovian)
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Graphical Models

Towards Bayesian Networks
Tracking a fly

Path pretty random
Positions not independent
But conditionally independent
(Markovian)

Remember

P(x1, . . . , xn) =P(x1)P(x2|x1) . . .

P(xn|xn�1, . . . , x1) ?

Here: P(xn|xn�1, . . . , x1) = P(xn|xn�1)) Linear storage
Causal factorization) Bayesian networks
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Graphical Models

Bayesian Networks (Directed Graphical Models)
Causal factorization:

P(x1, . . . , xn) =
nY

i=1

P(xi |x⇡i )

Bayesian network
(aka directed graphical model,
aka causal network):

Graphical representation of
ancestry [DAG]
P(xi |x⇡i ): Conditional
probability table (CPT)

Conditional Independence
A?B | C , P(A,B | C) = P(A | C)P(B | C) , P(A | C,B) = P(A | C)
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Graphical Models

Did It Rain Tonight?
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Graphical Models

Monty Hall Problem

Let’s make a deal!
Door with car (hidden)
First choice of yours (remains closed)
Host opens door with goat, H 6= F ,D
Do you switch?

“Intuition”: Fifty-fifty.
F ,H give no information. He would be stupid, wouldn’t he?
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Graphical Models

Winning with Bayes (I)

F

D

HI

oor with
car

irst
choice

ost
opens

D=F?

Intuition “H does not tell anything” correct in
principle. But about what?
Add latent I = I{D=F} = I{first choice correct}

Gut feeling: F ,H no information about I.
“He will not tell me whether I am correct”.
P(I|F ,H) = P(I).
Will use Bayes to see that.

OK, but P(Switch wins) = P(I = 0|F ,H) = P(I = 0) = 2/3!

Bayes makes you switch and
double your chance of
winning!
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Graphical Models

Winning with Bayes (II)

F

D

HI

oor with
car

irst
choice

ost
opens

D=F?

To show: P(I|H,F ) = P(I).
P(I|F ) = P(I),
because D,F independent.

P(I|H,F ) = P(I|F ), I?H|F , H?I|F
, P(H|I,F ) = P(H|F )
(independence is symmetric)

P(H|F , I = 1) = (1/2)I{H 6=F}
If F = D, host picks random goat

P(H|F , I = 0) = (1/2)I{H 6=F}
D,F independent, and H 6= D,F

Working with Graphical Models
Intermediate between lots of headscratching and doing all sums
Powerful division of inference in manageable, local steps
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Graphical Models

Why Graphical Models?

1 Easy way of communicating ideas about dependencies, models
2 Precise semantics: Conditional independence constraints on

distributions. Efficient algorithms for testing these
3 Lead to large savings in computations (belief propagation)
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Graphical Models

Graphical Models in Practice
Dependency structures, and efficient ways to propagate information or
constraints, are fundamental.

Coding / Information Theory
LDPC codes and BP decoding
revolutionized this field
(resurrection of Gallager
codes)
Used from deep space
communication (Mars rovers)
over satellite transmission to
CD players / hard drives

Courtesy MacKay: Information Theory . . . (2003)
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Graphical Models

Graphical Models in Practice
Dependency structures, and efficient ways to propagate information or
constraints, are fundamental.

Expert systems done right
QMR-DT: Invert causal
network for helping medical
diagnoses
Hugin: Advanced decision
support (Lauritzen)

http://www.hugin.com/

Promedas: Medical diagnostic
advisory system
(SNN Nimegen)

http://www.promedas.nl/
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Graphical Models

Graphical Models in Practice
Dependency structures, and efficient ways to propagate information or
constraints, are fundamental.

Computer Vision:
Markov Random Fields

Denoising, super-resolution,
restoration (early work by
Besag)
Depth / reconstruction from
stereo, matching,
correspondences
Segmentation, matting,
blending, stitching, impainting,
. . .

Courtesy MSR
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Graphical Models

Conditional Independence Semantics

Graphical model formally equivalent to long (finite) list of
conditional independence constraints:
xA1?xB1 | xC1 , xA2?xB2 | xC2 , . . . Which do you prefer?

Graphs not just simpler for us:
Linear-time algorithm to test such constraints (Bayes ball)
Distribution consistent with graph iff all CI constraints are met.
P(x1)P(x2) . . .P(xn): Consistent with all graphs
How do I see whether xA?xB | xC from the graph?
Graph separation: If paths A $ B blocked by C
For Bayesian networks (directed graphical models): d-separation.
) You’ll find out in the exercises!
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Graphical Models

Undirected Graphical Models (Markov Random Fields)

Bayesian Networks: Describe CIs with directed graphs (DAGs)
Markov Random Fields: Describe CIs with undirected graphs

CI semantics of undirected models: Really just graph separation
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Graphical Models

Undirected Graphical Models (II)

Why two frameworks?
Each can capture setups the other cannot
More important: In practice, some problems are much easier to
parameterize (therefore: to learn) as MRFs, others much easier as
Bayes nets

How do distributions P for MRF graph G look like?
Hammersley / Clifford:

Maximal cliques (completely connected parts) Cj of G
P(x ) consistent with MRF G,

P(x ) = Z�1
Y

j

�j(xCj ), Z :=
X

x

Y

j

�j(xCj )

with potentials �j(xCj ) � 0. Z : Partition function.
Potentials need not normalize to 1
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Graphical Models

Undirected Graphical Models (III)
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Graphical Models

Directed vs. Undirected

Sampling x ⇠ P(x ):
Always simple from Bayes net. Can be very hard for an MRF

Implicit, symmetrical knowledge? Little idea about causal links
(pixels of image, correspondences)? MRFs more useful then
Bottomline: Usually, one or the other is much more suitable.
Better know well about both!
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Belief Propagation

Towards Efficient Marginalization

With sufficient Markovian CI constraints (directed or undirected):

P(x1, . . . , xn) /
Y

j

�j(xNj ), |Nj |⌧ n

Can store that. But what about computation?

Short answer: It depends on global graph structure properties,
beyond local factorization
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With sufficient Markovian CI constraints (directed or undirected):

P(x1, . . . , xn) /
Y

j

�j(xNj ), |Nj |⌧ n

Can store that. But what about computation?
Short answer: It depends on global graph structure properties,
beyond local factorization

Storage: Linear in n
Computation: Exponential in n1/2 [P6=NP]
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Belief Propagation

Node Elimination

Chain:
P(x1, . . . , x7) = �1(x1, x2)�2(x2, x3) . . .�6(x6, x7)
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Chain:
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X

x4

P(x1, . . . , x4, . . . , x7)
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Belief Propagation

Tree Graphs
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Belief Propagation

Factor Graphs

Factor graphs: Yet another type of graphical model

Bipartite graph:
variable / factor nodes
No probability
semantics
Just for deriving
Markovian propagation
algorithms
Factor graph = tree
) Fast computation
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Belief Propagation

Factor Graphs

Factor graphs: Yet another type of graphical model

Bipartite graph:
variable / factor nodes
No probability
semantics
Just for deriving
Markovian propagation
algorithms
Factor graph = tree
) Fast computation

Undirected GM! Factor graph: Immediate
Directed GM ! Factor graph: Easy exercise
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Belief Propagation

Towards Belief Propagation
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Belief Propagation

What is a Message?
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Belief Propagation

What is a Message?

Formally: Directed potential over one
variable
Intuition: Message T2 ! a:
What T2 thinks xa should be
Naive “definition”:

Product: All T2, and edge! a
Sum: All except xa

) Real definition recursive (G tree!)
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Belief Propagation

Message Passing: The Recipe
Message µT!a(xa) to a

1 Expand factor: (T1, b1),
(T2, b2)

2 Product: Gather potentials

�j(xa, xb1 , xb2)
All µ?!b1(xb1), except
b1  �j
µ?!b2(xb2) dito

3 Sum: Over xb1 , xb2
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Belief Propagation

Message Passing: The Recipe
Message µT!a(xa) to a

1 Expand factor: (T1, b1),
(T2, b2)

2 Product: Gather potentials
�j(xa, xb1 , xb2)
All µ?!b1(xb1), except
b1  �j
µ?!b2(xb2) dito

3 Sum: Over xb1 , xb2

µT!a(xa) /
X

xb1 ,xb2

�j(xab1b2)

0

@
Y

T̃ :T1\b1

µT̃!b1
(xb1)

1

A

0

@
Y

T̃ :T2\b2

µT̃!b2
(xb2)

1

A
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Belief Propagation

Message Passing: The Idea

I can never remember these message passing equations.
What I remember:

Messages are partial information, given part of graph

Message passing is information propagation

Product: Predict
Sum: Marginalize (cover your tracks)

Directed like filtering
)We’ll see cases where

Q
is not

Q
, and

P
is not

P

Marginal distributions (our goal!) are obtained by combining
messages$ combining information from all parts
MP works on trees, because information cannot go around in
cycles
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Belief Propagation

Belief Propagation: More than Node Elimination

Marginalization by message passing:

P(xa) =
X

x\xa

P(x ) / �a(xa)
Y

j2Na

µTj!a(xa)

Na : Factor nodes neighbouring a$ factors �j(xa, . . . )
�a: Can be ⌘ 1

All marginals P(x1), P(x2), . . . ? Do this n times. Right?
) NO! Do this twice only!
) If you understand that, you’ve understood belief propagation

Belief Propagation on Trees

Message uniquely defined, independent of use, order of
computation
Message can be computed once all inputs received. Once
computed, it does not change anymore
Compute all messages (2 per edge)) All marginals, O(1) each
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Belief Propagation

Implementation of Belief Propagation

Belief Propagation (Sum-Product) on Trees
1 Designate node (any will do!) as root
2 Inward pass: Compute messages leaves! root
3 Outward pass: Compute messages root! leaves
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Belief Propagation

Implementation of Belief Propagation

Belief Propagation (Sum-Product) on Trees
1 Designate node (any will do!) as root
2 Inward pass: Compute messages leaves! root
3 Outward pass: Compute messages root! leaves

Avoiding underflow / overflow (yes, it does matter):
Renormalize each message to sum to 1
Better: Work in log domain (log-messages, log-potentials):
Q
! +P
! logsumexp [careful with zeros!]

logsumexp(v ) := log
Xk

i=1
evi = M + log

Xk

i=1
evi�M

| {z }
numerically stable

, M = max
i

vi
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Belief Propagation

Searching for the Mode: Max-Product
Decoding:

x⇤ 2 argmax
x

P(x )

max,
Q

: Same decomposition as
P

,
Q

.
Better: max,

P
in log domain

Max-messages:

µT!a(xa) = max
xCj\a

✓
log�j(xCj ) +

X
b2Cj\a

µTb!b(xb)

◆

Back-pointer tables:

�T!a(xa) 2 argmax
xCj\a

✓
log�j(xCj ) +

X
b2Cj\a

µTb!b(xb)

◆
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Belief Propagation

Wrap-Up

Belief propagation (sum-product) on trees:
All marginals in linear time, by local information propagation
Max-product, max-sum, logsumexp-sum, . . . :
What matters is the graph!

What about general graphs?

Decomposable graphs. Treewidth of a graph
Junction tree algorithm

Interested?

PMR Edinburgh slides:
http://www.inf.ed.ac.uk/teaching/courses/pmr/slides/jta-2x2.pdf

Lauritzen, S; Spiegelhalter, D. Local Computations with
Probabilities on Graphical Structures and their Application to Expert
Systems. JRSS-B, 50: 157-224 (1988)

Beware (not surprising): Inference on general graphs is NP hard.
In general, approximations are a must
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