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Learning and Inference

Learning is Estimation

P(y ,x ,θ) = P(y |x ,θ)P(x |θ)P(θ)

y Observed variable
x Latent variable (nuisance)
θ Parameters (latent query, “higher up”)

Learning: What is a (single) good value for θ? [argmax . . . ]
For which θ does model fit data D = {y1, . . . ,yn}? ⇒ Estimation

Maximum likelihood (ML) estimation: θ̂ = argmax log P(D|θ)
Maximum a posteriori (MAP) estimation:
θ̂ = argmax log P(θ|D) = argmax(log P(D|θ) + log P(θ))

Inference: What is posterior P(θ|D)? [
∫
. . . ]

Range / shape of “good values” mass
Uncertainty in estimates

Terms like “MAP inference”: Just wrong
Still: We’ll need inference [P(x |y ,θ)] for learning
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Learning and Inference

Why Learning can be Hard

Data from N(y |µ, σ2I). Learn mean µ ⇒ That’s not hard. Why?

Model directed graph. CPTs: Nice form (Gaussian)
No latent variables except parameters

Learning gets hard if you need inference: Nice-form distributions
become nasty through marginalization

Latent nuisance variables
Undirected models (MRFs)

Marginalization creates log partition functions

Bayes net, latent variables Markov random field
log P(y |θ)︸ ︷︷ ︸

coupled

= log
∫

P(y ,x |θ)︸ ︷︷ ︸
decoupled

dx log Z = log
∑

x
∏

j Φj(xCj )

⇒ Optimization of log partition functions needs inference
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Bounding with Convexity

Convex Functions. Jensen’s Inequality

Convex set C: F3

x1,x2 ∈ C, λ ∈ [0,1]
⇒ λx1 + (1− λ)x2 ∈ C
Convex function f : C → R:
f (λx1 + (1− λ)x2)
≤ λf (x1) + (1− λ)f (x2)

Same concept: f convex⇔
epi(f ) := {(x , y) | f (x ) ≤ y} convex −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
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Dig for yourself about convexity:
Boyd, Vandenberghe: Convex Optimization (2004)

[http://www.stanford.edu/∼boyd/cvxbook/]
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Equivalent: For each x0 ∈ C, there exists u s.t. F3b

f (x ) ≥ uT (x − x0) + f (x0) for all x ∈ C

Jensen’s inequality: f : C → R convex, P distribution over C F3c

EP [f (x )] ≥ f (EP [x ])
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Bounding with Convexity

Bounding Log Partition Functions

Recall the problem:

max
θ

log
∫

Φ(x |θ) dx , Φ(x |θ) =
∏

j

Φj(xCj |θ)

t 7→ − log(t) convex function: For positive f :
log EQ[f (x )] ≥ EQ[log f (x )] (by Jensen)

Variational mean field inequality

log
∫

Φ(x ) dx ≥ supQ EQ

[
log

Φ(x )

Q(x )

]
Pushing the log inside

log
∫ ∏

j . . . Hard, no decoupling∫
log
∏

j · · · =
∫ ∑

j log . . . Decoupling : Can be much easier
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Expectation Maximization

Towards Expectation Maximization

log
∫

Φ(x ) dx ≥ supQ EQ

[
log

Φ(x )

Q(x )

]
Here is a very simple question: What is the best Q(x ) I could choose?
F5
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Expectation Maximization

Towards Expectation Maximization

log
∫

Φ(x ) dx = supQ EQ

[
log

Φ(x )

Q(x )

]
Here is a very simple question: What is the best Q(x ) I could choose?
Q(x ) = Φ(x )/Z : The posterior in this situation

Expectation Maximization (Full Generality) F5a

Goal: Maximize log
∫

Φ(x |θ) dx . Iterate:
Expectation (E step): Tightest lower bound
Q(x )← Φ(x |θ)/Z (θ)

Maximization (M step): Maximize lower bound
θ ← argmax EQ[log Φ(x |θ)] for fixed Q
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Expectation Maximization

EM Algorithm for Gaussian Mixtures
Gaussian mixture model: P(y |x) = N(µx , I), P(x = k) = 1/K

Observed data: y1, . . . ,yn ∈ Rd

Latent indicators: x1, . . . , xn ∈ {1, . . . ,K}

How to find cluster centers µk?
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Gaussian mixture model: P(y |x) = N(µx , I), P(x = k) = 1/K

Observed data: y1, . . . ,yn ∈ Rd

Latent indicators: x1, . . . , xn ∈ {1, . . . ,K}

How to find cluster centers µk?

Translation

general → particular
Φ(x ) →

∏
i P(y i |xi)P(xi) [joint likelihood]

θ → µ1, . . . ,µK [cluster centers]
Q(x ) → Q(x ) =

∏
i Q(xi)

Z (θ) → Z =
∏

i Zi , Zi =
∑

xi
P(y i |xi)P(xi)

Note: Decoupling

log Φ(x ) =
∑

i
log[P(y i |xi)P(xi)], log Z =

∑
i
log Zi
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Expectation Maximization

EM Algorithm for Gaussian Mixtures
Gaussian mixture model: P(y |x) = N(µx , I), P(x = k) = 1/K

Observed data: y1, . . . ,yn ∈ Rd

Latent indicators: x1, . . . , xn ∈ {1, . . . ,K}

How to find cluster centers µk?

Iterate:
1 Expectation: Posterior distribution for each datapoint

Q(xi = k)← P(xi = k |y i)

2 Maximization: Posterior average of all datapoints

µk ← n−1
k

∑
i
Q(xi = k)y i = argmax

∑
i
Q(xi = k) log P(y i |xi = k),

nk =
∑

i Q(xi = k). Posterior weighted maximum likelihood
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Expectation Maximization

EM Algorithm for Bayesian Networks

P(x ) =
∏

j
P(xj |xπj ,θj), πj : parents of node j , j = 1, . . . , J

Parameters θj : CPT for xj |xπj . Data: D = {x (i) = (x (i)
j )}, i = 1, . . . ,n.

In each x (i): Coefficients can be missing
All x (i) complete: Match CPTs to empirical averages (counts)
⇒ No EM needed

Partially observed x (i): Your exercise sheet!
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Learning Markov Random Fields. Log-Linear Models

Log Partition Function: A Closer Look
Log partition function of P(x ) = Φ(x )/Z : F7

log Z = log
∑

x
e
∑

j Ψj (xCj
)
, Ψ(x ) =

∑
j
Ψj(xCj ) = log Φ(x )

Note: Can have
∑

x →
∫
. . . dx

1 Moment-generating:

∇θ log Z = EP [∇θΨ(x )] =
∑

j
EP [∇θΨj(xCj )]

2 Convex: (vx ) 7→ log
∑

x evx
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Log Partition Function: A Closer Look
Log partition function of P(x ) = Φ(x )/Z :

log Z = log
∑

x
e
∑

j Ψj (xCj
)
, Ψ(x ) =

∑
j
Ψj(xCj ) = log Φ(x )

Note: Can have
∑

x →
∫
. . . dx

1 Moment-generating:

∇θ log Z = EP [∇θΨ(x )] =
∑

j
EP [∇θΨj(xCj )]

2 Convex: (vx ) 7→ log
∑

x evx

Consequence of (1):
Computing ∇θ log Z : Exactly same as E step
(posterior moments over clique marginals)
Can use any gradient-based optimizer instead of EM F7c
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Learning Markov Random Fields. Log-Linear Models

Learning Markov Random Fields

P(x ) = Z−1eΨ(x ), Ψ(x ) =
∑

j
Ψj(xCj )

Note: All x observed here→ x̃
Maximum likelihood:

maxθ log P(x̃ ) = maxθ (Ψ(x̃ )− log Z )

Minus log Z : EM won’t do

Gradient-based optimization:

∇θ log P(x̃ ) =
∑

j

(
∇θΨj(x̃ Cj )− EP [∇θΨj(xCj )]

)
Log-linear models: Surprisingly often, Ψj(xCj ) = θT f j(xCj )

∇θ log P(x̃ ) =
∑

j (f j (x̃ Cj
)− EP [f j (xCj )])

Convex optimization problem
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Learning Markov Random Fields. Log-Linear Models

Iterative Proportional Fitting

Log-linear Markov random field, separable parameters:

P(x ) = Z−1e
∑

j θ
T
j f j (xCj

)
, θ = (θ1,θ2, . . . )

Assume: For each j , Q(xCj ): Can easily find ∆θj s.t.

EQ∆
[f j(xCj )] = f j(x̃ Cj ), where Q∆(xCj ) ∝ Q(xCj )e

(∆θj )
T f j (xCj

)

Iterative proportional fitting (IPF): Iterate

Pick some potential j . Determine marginal P(xCj ) (inference)
Find ∆θj : EP∆

[f j (xCj )] = f j (x̃ Cj
)

Update θj ← θj + (∆θj ) [Afterwards: EP [f j (xCj )] = f j (x̃ Cj
)]

Coordinate ascent: Simple, other algorithms can be faster
Requires inference with changing potentials
(e.g., belief propagation)
Problem with general MRFs: Inference hard
[not always: CRFs, next lecture]

(EPFL) Graphical Models 17/10/2011 12 / 15



Learning Markov Random Fields. Log-Linear Models

Iterative Proportional Fitting

Log-linear Markov random field, separable parameters:

P(x ) = Z−1e
∑

j θ
T
j f j (xCj

)
, θ = (θ1,θ2, . . . )

Assume: For each j , Q(xCj ): Can easily find ∆θj s.t.

EQ∆
[f j(xCj )] = f j(x̃ Cj ), where Q∆(xCj ) ∝ Q(xCj )e

(∆θj )
T f j (xCj

)

Iterative proportional fitting (IPF): Iterate
Pick some potential j . Determine marginal P(xCj ) (inference)
Find ∆θj : EP∆

[f j (xCj )] = f j (x̃ Cj
)

Update θj ← θj + (∆θj ) [Afterwards: EP [f j (xCj )] = f j (x̃ Cj
)]

Coordinate ascent: Simple, other algorithms can be faster
Requires inference with changing potentials
(e.g., belief propagation)
Problem with general MRFs: Inference hard
[not always: CRFs, next lecture]

(EPFL) Graphical Models 17/10/2011 12 / 15



Learning Markov Random Fields. Log-Linear Models

Iterative Proportional Fitting

Log-linear Markov random field, separable parameters:

P(x ) = Z−1e
∑

j θ
T
j f j (xCj

)
, θ = (θ1,θ2, . . . )

Assume: For each j , Q(xCj ): Can easily find ∆θj s.t.

EQ∆
[f j(xCj )] = f j(x̃ Cj ), where Q∆(xCj ) ∝ Q(xCj )e

(∆θj )
T f j (xCj

)

Iterative proportional fitting (IPF): Iterate
Pick some potential j . Determine marginal P(xCj ) (inference)
Find ∆θj : EP∆

[f j (xCj )] = f j (x̃ Cj
)

Update θj ← θj + (∆θj ) [Afterwards: EP [f j (xCj )] = f j (x̃ Cj
)]

Coordinate ascent: Simple, other algorithms can be faster
Requires inference with changing potentials
(e.g., belief propagation)
Problem with general MRFs: Inference hard
[not always: CRFs, next lecture] F9

(EPFL) Graphical Models 17/10/2011 12 / 15



Learning Markov Random Fields. Log-Linear Models

Examples for Log-Linear Models

Ψj(xCj ) = θT f j(xCj ): Seems special . . . No, it’s not: Very common!
Discrete model, multinomial CPTs. F10

Feature based models:
f j indicators for presence / strength of certain features
Gaussian Markov random field
Note: Positive definiteness comes for free (log Z <∞), does not
destroy convexity
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Ψj(xCj ) = θT f j(xCj ): Seems special . . . No, it’s not: Very common!
Discrete model, multinomial CPTs. πk = P(x = k)

θk = log(πk/πK ), f (x) = (I{x=k}), k = 1, . . . ,K − 1,

⇒ P(x) = Z−1eθT f (x), Z = 1/πK

Directed Bayesian networks are not log-linear models, but
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Gaussian Markov random field
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Learning Markov Random Fields. Log-Linear Models

Further Points

Learning MRF with latent variables:
Use EM for latent variables (marginal→ joint likelihood)
Use ∇-based optimization / IPF for M step (convex optimization)
[No need to maximize, just descent]

Learning with inner maximization (“Viterbi learning”)

Sometimes: MAP (argmax) easier than inference (
∫

)
Learning with maximization can work well (K-Means, . . . )
In most cases: No equivalent guarantees to learning with inference

[Exceptions: Some work by Taskar, Altun, . . . ]
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Learning Markov Random Fields. Log-Linear Models

Wrap-Up

Learning requires (marginal) inference in most cases
⇒ Even frequentists need Bayesian inference
Inequalities from convexity: Underlying very many ideas / methods
Expectation Maximization: General-purpose algorithm for
marginal likelihood maximization
Log-linear Markov random fields: Learning is convex optimization
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