Probabilistic Graphical Models

Lecture 6: Learning and Inference. EM Algorithm

Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne

17/10/2011

< <p>A < </p>

- 2 Bounding with Convexity
- Expectation Maximization
- 4 Learning Markov Random Fields. Log-Linear Models

$$P(\mathbf{y}, \mathbf{x}, \theta) = P(\mathbf{y}|\mathbf{x}, \theta)P(\mathbf{x}|\theta)P(\theta)$$

- y Observed variable
- x Latent variable (nuisance)
- θ Parameters (latent query, "higher up")

• Learning: What is a (single) good value for θ ? [argmax...] For which θ does model fit data $D = \{y_1, \dots, y_n\}$? \Rightarrow Estimation

$$P(\mathbf{y}, \mathbf{x}, \theta) = P(\mathbf{y}|\mathbf{x}, \theta)P(\mathbf{x}|\theta)P(\theta)$$

- y Observed variable
- x Latent variable (nuisance)
- θ Parameters (latent query, "higher up")

- Learning: What is a (single) good value for θ ? [argmax...] For which θ does model fit data $D = \{y_1, \dots, y_n\}$? \Rightarrow Estimation
 - Maximum likelihood (ML) estimation: $\hat{\theta} = \arg\max \log P(D|\theta)$
 - Maximum a posteriori (MAP) estimation:
 - $\hat{m{ heta}} = rgmax\log P(m{ heta}|D) = rgmax(\log P(D|m{ heta}) + \log P(m{ heta}))$

$$P(\mathbf{y}, \mathbf{x}, \theta) = P(\mathbf{y}|\mathbf{x}, \theta)P(\mathbf{x}|\theta)P(\theta)$$

- y Observed variable
- x Latent variable (nuisance)
- θ Parameters (latent query, "higher up")
 - Learning: What is a (single) good value for θ ? [argmax...] For which θ does model fit data $D = \{y_1, \dots, y_n\}$? \Rightarrow Estimation
 - Maximum likelihood (ML) estimation: $\hat{\theta} = \arg\max \log P(D|\theta)$
 - Maximum a posteriori (MAP) estimation:

 $\hat{m{ heta}} = rgmax\log P(m{ heta}|D) = rgmax(\log P(D|m{ heta}) + \log P(m{ heta}))$

- Inference: What is posterior $P(\theta|D)$?
 - Range / shape of "good values" mass
 - Uncertainty in estimates

Terms like "MAP inference": Just wrong

[[...]

$$P(\mathbf{y}, \mathbf{x}, \theta) = P(\mathbf{y}|\mathbf{x}, \theta)P(\mathbf{x}|\theta)P(\theta)$$

- y Observed variable
- x Latent variable (nuisance)
- θ Parameters (latent query, "higher up")
 - Learning: What is a (single) good value for θ ? [argmax...] For which θ does model fit data $D = \{y_1, \dots, y_n\}$? \Rightarrow Estimation
 - Maximum likelihood (ML) estimation: $\hat{\theta} = \arg\max \log P(D|\theta)$
 - Maximum a posteriori (MAP) estimation:

 $\hat{m{ heta}} = rgmax\log P(m{ heta}|D) = rgmax(\log P(D|m{ heta}) + \log P(m{ heta}))$

- Inference: What is posterior $P(\theta|D)$?
 - Range / shape of "good values" mass
 - Uncertainty in estimates

Terms like "MAP inference": Just wrong

• Still: We'll need inference $[P(\mathbf{x}|\mathbf{y}, \theta)]$ for learning

[[...]

Why Learning can be Hard

• Data from $N(\mathbf{y}|\boldsymbol{\mu}, \sigma^2 \mathbf{I})$. Learn mean $\boldsymbol{\mu} \Rightarrow$ That's not hard. Why?

< 🗇 🕨 < 🖃 🕨

Why Learning can be Hard

- Data from $N(\mathbf{y}|\boldsymbol{\mu}, \sigma^2 \mathbf{I})$. Learn mean $\boldsymbol{\mu} \Rightarrow$ That's not hard. Why?
 - Model directed graph. CPTs: Nice form (Gaussian)
 - No latent variables except parameters
 - \Rightarrow No inference required
- Learning gets hard if you need inference: Nice-form distributions become nasty through marginalization
 - Latent nuisance variables
 - Undirected models (MRFs)

Why Learning can be Hard

- Data from $N(\mathbf{y}|\boldsymbol{\mu}, \sigma^2 \mathbf{I})$. Learn mean $\boldsymbol{\mu} \Rightarrow$ That's not hard. Why?
 - Model directed graph. CPTs: Nice form (Gaussian)
 - No latent variables except parameters
 - \Rightarrow No inference required
- Learning gets hard if you need inference: Nice-form distributions become nasty through marginalization
 - Latent nuisance variables
 - Undirected models (MRFs)
- Marginalization creates log partition functions

Bayes net, latent variables $\underbrace{\log P(\boldsymbol{y}|\boldsymbol{\theta})}_{\text{coupled}} = \log \int \underbrace{P(\boldsymbol{y}, \boldsymbol{x}|\boldsymbol{\theta})}_{\text{decoupled}} d\boldsymbol{x} \quad \text{Markov random field} \quad \log Z = \log \sum_{\boldsymbol{x}} \prod_{j} \Phi_{j}(\boldsymbol{x}_{C_{j}})$

 \Rightarrow Optimization of log partition functions needs inference

(EPFL)

Convex Functions. Jensen's Inequality

- Convex set C: $\boldsymbol{x}_1, \boldsymbol{x}_2 \in C, \ \lambda \in [0, 1]$ $\Rightarrow \lambda \boldsymbol{x}_1 + (1 - \lambda) \boldsymbol{x}_2 \in C$
- Convex function $f : C \to \mathbb{R}$: $f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2)$ $\leq \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2)$
- Same concept: *f* convex ⇔
 epi(*f*) := {(*x*, *y*) | *f*(*x*) ≤ *y*} convex

Dig for yourself about convexity:

Boyd, Vandenberghe: Convex Optimization (2004)

[http://www.stanford.edu/~boyd/cvxbook/]

Convex Functions. Jensen's Inequality

- Convex set C:
- Convex function $f : C \to \mathbb{R}$: $f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2)$ $\leq \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2)$
- Same concept: f convex \Leftrightarrow $epi(f) := \{(\mathbf{x}, \mathbf{y}) | f(\mathbf{x}) \le \mathbf{y}\}$ convex

• Equivalent: For each $\boldsymbol{x}_0 \in \mathcal{C}$, there exists \boldsymbol{u} s.t.

$$(\mathbf{x}) \geq \mathbf{u}^{T}(\mathbf{x} - \mathbf{x}_{0}) + f(\mathbf{x}_{0}) \text{ for all } \mathbf{x} \in C$$

F₃h

Convex Functions. Jensen's Inequality

- Convex set C:
- Convex function $f : C \to \mathbb{R}$: $f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2)$ $\leq \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2)$
- Same concept: f convex \Leftrightarrow $epi(f) := \{(\mathbf{x}, \mathbf{y}) | f(\mathbf{x}) \le \mathbf{y}\}$ convex

• Equivalent: For each $\boldsymbol{x}_0 \in \mathcal{C}$, there exists \boldsymbol{u} s.t.

$$f(\boldsymbol{x}) \geq \boldsymbol{u}^{T}(\boldsymbol{x} - \boldsymbol{x}_{0}) + f(\boldsymbol{x}_{0}) \quad \text{for all } \boldsymbol{x} \in \mathcal{C}$$

• Jensen's inequality: $f : C \to \mathbb{R}$ convex, P distribution over C

$$E_{P}[f(\boldsymbol{x})] \geq f(E_{P}[\boldsymbol{x}])$$

Bounding Log Partition Functions

Recall the problem:

$$\max_{\boldsymbol{\theta}} \log \int \Phi(\boldsymbol{x}|\boldsymbol{\theta}) \, d\boldsymbol{x}, \quad \Phi(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_j \Phi_j(\boldsymbol{x}_{C_j}|\boldsymbol{\theta})$$

 t → -log(t) convex function: For positive f: log E_Q[f(x)] ≥ E_Q[log f(x)] (by Jensen)

Bounding Log Partition Functions

Recall the problem:

$$\max_{\boldsymbol{\theta}} \log \int \Phi(\boldsymbol{x}|\boldsymbol{\theta}) \, d\boldsymbol{x}, \quad \Phi(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{j} \Phi_{j}(\boldsymbol{x}_{C_{j}}|\boldsymbol{\theta})$$

- t → -log(t) convex function: For positive f: log E_Q[f(x)] ≥ E_Q[log f(x)] (by Jensen)
- Variational mean field inequality

$$\log \int \Phi(\boldsymbol{x}) \, d\boldsymbol{x} \geq \sup_{Q} \operatorname{E}_{Q} \left[\log \frac{\Phi(\boldsymbol{x})}{Q(\boldsymbol{x})} \right]$$

F4

Bounding Log Partition Functions

Recall the problem:

$$\max_{\boldsymbol{\theta}} \log \int \Phi(\boldsymbol{x}|\boldsymbol{\theta}) \, d\boldsymbol{x}, \quad \Phi(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_j \Phi_j(\boldsymbol{x}_{C_j}|\boldsymbol{\theta})$$

- t → -log(t) convex function: For positive f: log E_Q[f(x)] ≥ E_Q[log f(x)] (by Jensen)
- Variational mean field inequality

$$\log \int \Phi(\boldsymbol{x}) \, d\boldsymbol{x} \geq \sup_{Q} \operatorname{E}_{Q} \left[\log \frac{\Phi(\boldsymbol{x})}{Q(\boldsymbol{x})} \right]$$

Pushing the log inside

 $\log \int \prod_{j \dots} Hard, \text{ no decoupling}$ $\int \log \prod_{j \dots} \int \sum_{j \dots} \log \dots Decoupling : Can be much easier$

Towards Expectation Maximization

$$\log \int \Phi(\boldsymbol{x}) \, d\boldsymbol{x} \geq \sup_{Q} \operatorname{E}_{Q} \left[\log \frac{\Phi(\boldsymbol{x})}{Q(\boldsymbol{x})} \right]$$

Here is a very simple question: What is the best $Q(\mathbf{x})$ I could choose?

Towards Expectation Maximization

$$\log \int \Phi(\boldsymbol{x}) \, d\boldsymbol{x} = \sup_{Q} \operatorname{E}_{Q} \left[\log \frac{\Phi(\boldsymbol{x})}{Q(\boldsymbol{x})} \right]$$

Here is a very simple question: What is the best $Q(\mathbf{x})$ I could choose? $Q(\mathbf{x}) = \Phi(\mathbf{x})/Z$: The posterior in this situation

Expectation Maximization (Full Generality)

Goal: Maximize $\log \int \Phi(\boldsymbol{x}|\boldsymbol{\theta}) d\boldsymbol{x}$. Iterate:

- Expectation (E step): Tightest lower bound $Q(\mathbf{x}) \leftarrow \Phi(\mathbf{x}|\theta)/Z(\theta)$
- Maximization (M step): Maximize lower bound
 - $\boldsymbol{\theta} \leftarrow \operatorname{argmax} \operatorname{E}_{\boldsymbol{Q}}[\log \Phi(\boldsymbol{x}|\boldsymbol{\theta})] \quad \text{for fixed } \boldsymbol{Q}$

EM Algorithm for Gaussian Mixtures

Gaussian mixture model: $P(\mathbf{y}|x) = N(\mu_x, \mathbf{I}), P(x = k) = 1/K$

Observed data: $\boldsymbol{y}_1, \dots, \boldsymbol{y}_n \in \mathbb{R}^d$ Latent indicators: $x_1, \dots, x_n \in \{1, \dots, K\}$

How to find cluster centers μ_k ?

EM Algorithm for Gaussian Mixtures

Gaussian mixture model: $P(\mathbf{y}|x) = N(\mu_x, \mathbf{I}), P(x = k) = 1/K$

Observed data: $\boldsymbol{y}_1, \dots, \boldsymbol{y}_n \in \mathbb{R}^d$ Latent indicators: $x_1, \dots, x_n \in \{1, \dots, K\}$

How to find cluster centers μ_k ?

Translation

 $\begin{array}{ll} \text{general} & \rightarrow \text{particular} \\ \Phi(\boldsymbol{x}) & \rightarrow \prod_{i} P(\boldsymbol{y}_{i}|x_{i})P(x_{i}) \text{ [joint likelihood]} \\ \theta & \rightarrow \mu_{1}, \dots, \mu_{K} \text{ [cluster centers]} \\ Q(\boldsymbol{x}) & \rightarrow Q(\boldsymbol{x}) = \prod_{i} Q(x_{i}) \\ Z(\theta) & \rightarrow Z = \prod_{i} Z_{i}, Z_{i} = \sum_{x_{i}} P(\boldsymbol{y}_{i}|x_{i})P(x_{i}) \end{array}$

Note: Decoupling

$$\log \Phi(\boldsymbol{x}) = \sum_{i} \log[P(\boldsymbol{y}_{i}|x_{i})P(x_{i})], \quad \log Z = \sum_{i} \log Z_{i}$$

EM Algorithm for Gaussian Mixtures

Gaussian mixture model: $P(\mathbf{y}|x) = N(\mu_x, \mathbf{I}), P(x = k) = 1/K$

Observed data: $\boldsymbol{y}_1, \dots, \boldsymbol{y}_n \in \mathbb{R}^d$ Latent indicators: $x_1, \dots, x_n \in \{1, \dots, K\}$

How to find cluster centers μ_k ?

Iterate:

Expectation: Posterior distribution for each datapoint

$$Q(x_i = k) \leftarrow P(x_i = k | \mathbf{y}_i)$$

Maximization: Posterior average of all datapoints

$$\boldsymbol{\mu}_k \leftarrow n_k^{-1} \sum_i Q(x_i = k) \boldsymbol{y}_i = \operatorname{argmax} \sum_i Q(x_i = k) \log P(\boldsymbol{y}_i | x_i = k),$$

 $n_k = \sum_i Q(x_i = k)$. Posterior weighted maximum likelihood

EM Algorithm for Bayesian Networks

$$m{P}(m{x}) = \prod_j m{P}(x_j | m{x}_{\pi_j}, m{ heta}_j), \quad \pi_j : ext{parents of node } j, \quad j = 1, \dots, J$$

Parameters θ_j : CPT for $x_j | \mathbf{x}_{\pi_j}$. Data: $D = \{\mathbf{x}^{(i)} = (x_j^{(i)})\}, i = 1, ..., n$. In each $\mathbf{x}^{(i)}$: Coefficients can be missing

 All *x*⁽ⁱ⁾ complete: Match CPTs to empirical averages (counts) ⇒ No EM needed

EM Algorithm for Bayesian Networks

$$m{P}(m{x}) = \prod_j m{P}(x_j | m{x}_{\pi_j}, m{ heta}_j), \quad \pi_j : ext{parents of node } j, \quad j = 1, \dots, J$$

Parameters θ_j : CPT for $x_j | \mathbf{x}_{\pi_j}$. Data: $D = \{\mathbf{x}^{(i)} = (x_j^{(i)})\}, i = 1, ..., n$. In each $\mathbf{x}^{(i)}$: Coefficients can be missing

- All *x*⁽ⁱ⁾ complete: Match CPTs to empirical averages (counts) ⇒ No EM needed
- Partially observed $\mathbf{x}^{(i)}$: Your exercise sheet!

Log Partition Function: A Closer Look

Log partition function of
$$P(\mathbf{x}) = \Phi(\mathbf{x})/Z$$
:

$$\log Z = \log \sum_{\boldsymbol{x}} e^{\sum_{j} \Psi_{j}(\boldsymbol{x}_{C_{j}})}, \quad \Psi(\boldsymbol{x}) = \sum_{j} \Psi_{j}(\boldsymbol{x}_{C_{j}}) = \log \Phi(\boldsymbol{x})$$

Note: Can have $\sum_{\boldsymbol{x}} \rightarrow \int \dots d\boldsymbol{x}$

• • • • • • • • • • • •

F7

Log Partition Function: A Closer Look

Log partition function of $P(\mathbf{x}) = \Phi(\mathbf{x})/Z$:

$$\log Z = \log \sum_{\boldsymbol{x}} e^{\sum_{j} \Psi_j(\boldsymbol{x}_{C_j})}, \quad \Psi(\boldsymbol{x}) = \sum_{j} \Psi_j(\boldsymbol{x}_{C_j}) = \log \Phi(\boldsymbol{x})$$

Note: Can have $\sum_{\boldsymbol{x}} \rightarrow \int \dots d\boldsymbol{x}$

Moment-generating:

$$abla_{m{ heta}} \log Z = \mathrm{E}_{P}[
abla_{m{ heta}} \Psi(m{x})] = \sum_{j} \mathrm{E}_{P}[
abla_{m{ heta}} \Psi_{j}(m{x}_{C_{j}})]$$

F7a

Log Partition Function: A Closer Look

Log partition function of $P(\mathbf{x}) = \Phi(\mathbf{x})/Z$:

$$\log Z = \log \sum_{\boldsymbol{x}} e^{\sum_{j} \Psi_{j}(\boldsymbol{x}_{C_{j}})}, \quad \Psi(\boldsymbol{x}) = \sum_{j} \Psi_{j}(\boldsymbol{x}_{C_{j}}) = \log \Phi(\boldsymbol{x})$$

Note: Can have $\sum_{\mathbf{x}} \rightarrow \int \dots d\mathbf{x}$

Moment-generating:

$$abla_{\boldsymbol{ heta}} \log Z = \operatorname{E}_{\boldsymbol{P}}[\nabla_{\boldsymbol{ heta}} \Psi(\boldsymbol{x})] = \sum_{j} \operatorname{E}_{\boldsymbol{P}}[\nabla_{\boldsymbol{ heta}} \Psi_{j}(\boldsymbol{x}_{C_{j}})]$$

2 Convex: $(v_x) \mapsto \log \sum_x e^{v_x}$

F7h

Log Partition Function: A Closer Look

Log partition function of $P(\mathbf{x}) = \Phi(\mathbf{x})/Z$:

$$\log Z = \log \sum_{\boldsymbol{x}} e^{\sum_{j} \Psi_{j}(\boldsymbol{x}_{C_{j}})}, \quad \Psi(\boldsymbol{x}) = \sum_{j} \Psi_{j}(\boldsymbol{x}_{C_{j}}) = \log \Phi(\boldsymbol{x})$$

Note: Can have $\sum_{\boldsymbol{x}} \rightarrow \int \dots d\boldsymbol{x}$

$$abla_{\boldsymbol{ heta}} \log Z = \operatorname{E}_{\boldsymbol{P}}[\nabla_{\boldsymbol{ heta}} \Psi(\boldsymbol{x})] = \sum_{j} \operatorname{E}_{\boldsymbol{P}}[\nabla_{\boldsymbol{ heta}} \Psi_{j}(\boldsymbol{x}_{C_{j}})]$$

2 Convex: $(v_x) \mapsto \log \sum_x e^{v_x}$

Consequence of (1):

- Computing ∇_θ log Z: Exactly same as E step (posterior moments over clique marginals)
- Can use any gradient-based optimizer instead of EM

F7c

Learning Markov Random Fields

$$P(\boldsymbol{x}) = Z^{-1} e^{\Psi(\boldsymbol{x})}, \quad \Psi(\boldsymbol{x}) = \sum_{j} \Psi_{j}(\boldsymbol{x}_{C_{j}})$$

Note: All \pmb{x} observed here $\rightarrow \tilde{\pmb{x}}$

• Maximum likelihood:

$$\max_{\theta} \log P(\tilde{\boldsymbol{x}}) = \max_{\theta} (\Psi(\tilde{\boldsymbol{x}}) - \log Z)$$

Minus log Z: EM won't do

Learning Markov Random Fields

$$P(\boldsymbol{x}) = Z^{-1} e^{\Psi(\boldsymbol{x})}, \quad \Psi(\boldsymbol{x}) = \sum_{j} \Psi_{j}(\boldsymbol{x}_{C_{j}})$$

Note: All \pmb{x} observed here $\rightarrow \tilde{\pmb{x}}$

• Maximum likelihood:

۲

$$\max_{\theta} \log P(\tilde{\boldsymbol{x}}) = \max_{\theta} (\Psi(\tilde{\boldsymbol{x}}) - \log Z)$$

Minus log Z: EM won't do

Gradient-based optimization:

$$\nabla_{\boldsymbol{\theta}} \log \boldsymbol{P}(\tilde{\boldsymbol{x}}) = \sum_{j} \left(\nabla_{\boldsymbol{\theta}} \Psi_{j}(\tilde{\boldsymbol{x}}_{C_{j}}) - \mathrm{E}_{\boldsymbol{P}}[\nabla_{\boldsymbol{\theta}} \Psi_{j}(\boldsymbol{x}_{C_{j}})] \right)$$

F8

Learning Markov Random Fields

$$P(\boldsymbol{x}) = Z^{-1} e^{\Psi(\boldsymbol{x})}, \quad \Psi(\boldsymbol{x}) = \sum_{j} \Psi_{j}(\boldsymbol{x}_{C_{j}})$$

Note: All **x** observed here $\rightarrow \tilde{\mathbf{x}}$

Maximum likelihood:

$$\max_{\theta} \log P(\tilde{\boldsymbol{x}}) = \max_{\theta} (\Psi(\tilde{\boldsymbol{x}}) - \log Z)$$

Minus log Z: EM won't do

Gradient-based optimization:

$$abla_{m{ heta}} \log {m{P}}(ilde{m{x}}) = \sum_{j} \left(
abla_{m{ heta}} \Psi_j(ilde{m{x}}_{C_j}) - {
m E}_{m{P}}[
abla_{m{ heta}} \Psi_j(m{x}_{C_j})]
ight)$$

• Log-linear models: Surprisingly often, $\Psi_i(\boldsymbol{x}_{C_i}) = \boldsymbol{\theta}^T \boldsymbol{f}_i(\boldsymbol{x}_{C_i})$

- $\nabla_{\theta} \log P(\tilde{\mathbf{x}}) = \sum_{j} (\mathbf{f}_{j}(\tilde{\mathbf{x}}_{C_{j}}) E_{P}[\mathbf{f}_{j}(\mathbf{x}_{C_{j}})])$ Convex optimization problem

F8a

Learning Markov Random Fields. Log-Linear Models Iterative Proportional Fitting

Log-linear Markov random field, separable parameters:

$$P(\mathbf{x}) = Z^{-1} e^{\sum_j \theta_j^T \mathbf{f}_j(\mathbf{x}_{C_j})}, \quad \boldsymbol{\theta} = (\theta_1, \theta_2, \dots)$$

• Assume: For each *j*, $Q(\mathbf{x}_{C_j})$: Can easily find $\Delta \theta_j$ s.t. $E_{Q_{\Delta}}[\mathbf{f}_j(\mathbf{x}_{C_j})] = \mathbf{f}_j(\tilde{\mathbf{x}}_{C_j})$, where $Q_{\Delta}(\mathbf{x}_{C_j}) \propto Q(\mathbf{x}_{C_j})e^{(\Delta \theta_j)^T \mathbf{f}_j(\mathbf{x}_{C_j})}$

Learning Markov Random Fields. Log-Linear Models Iterative Proportional Fitting

Log-linear Markov random field, separable parameters:

$$P(\mathbf{x}) = Z^{-1} e^{\sum_j \theta_j^T \mathbf{f}_j(\mathbf{x}_{C_j})}, \quad \theta = (\theta_1, \theta_2, \dots)$$

- Assume: For each *j*, $Q(\mathbf{x}_{C_j})$: Can easily find $\Delta \theta_j$ s.t. $E_{Q_{\Delta}}[\mathbf{f}_j(\mathbf{x}_{C_j})] = \mathbf{f}_j(\tilde{\mathbf{x}}_{C_j})$, where $Q_{\Delta}(\mathbf{x}_{C_j}) \propto Q(\mathbf{x}_{C_j})e^{(\Delta \theta_j)^T \mathbf{f}_j(\mathbf{x}_{C_j})}$
- Iterative proportional fitting (IPF): Iterate
 - Pick some potential *j*. Determine marginal $P(\mathbf{x}_{C_i})$ (inference)
 - Find $\Delta \theta_j$: $E_{P_{\Delta}}[f_j(\boldsymbol{x}_{C_j})] = f_j(\tilde{\boldsymbol{x}}_{C_j})$
 - Update $\theta_j \leftarrow \theta_j + (\Delta \theta_j)$ [Afterwards: $E_P[\mathbf{f}_j(\mathbf{x}_{C_j})] = \mathbf{f}_j(\tilde{\mathbf{x}}_{C_j})$]

Learning Markov Random Fields. Log-Linear Models Iterative Proportional Fitting

Log-linear Markov random field, separable parameters:

$$P(\mathbf{x}) = Z^{-1} e^{\sum_{j} \theta_{j}^{T} \mathbf{f}_{j}(\mathbf{x}_{c_{j}})}, \quad \theta = (\theta_{1}, \theta_{2}, \dots)$$

• Assume: For each *j*, $Q(\mathbf{x}_{C_j})$: Can easily find $\Delta \theta_j$ s.t.

 $\mathrm{E}_{\mathcal{Q}_{\Delta}}[\boldsymbol{f}_{j}(\boldsymbol{x}_{C_{j}})] = \boldsymbol{f}_{j}(\tilde{\boldsymbol{x}}_{C_{j}}), \, \text{where} \, \, \boldsymbol{Q}_{\Delta}(\boldsymbol{x}_{C_{j}}) \propto \boldsymbol{Q}(\boldsymbol{x}_{C_{j}}) \boldsymbol{e}^{(\Delta \theta_{j})^{\top} \boldsymbol{f}_{j}(\boldsymbol{x}_{C_{j}})}$

- Iterative proportional fitting (IPF): Iterate
 - Pick some potential *j*. Determine marginal $P(\mathbf{x}_{C_i})$ (inference)

• Find
$$\Delta \theta_j$$
: $E_{P_\Delta}[\mathbf{f}_j(\mathbf{x}_{C_j})] = \mathbf{f}_j(\tilde{\mathbf{x}}_{C_j})$

- Update $\theta_j \leftarrow \theta_j + (\Delta \theta_j)$ [Afterwards: $E_P[\mathbf{f}_j(\mathbf{x}_{C_j})] = \mathbf{f}_j(\tilde{\mathbf{x}}_{C_j})$]
- Coordinate ascent: Simple, other algorithms can be faster
- Requires inference with changing potentials (e.g., belief propagation)
- Problem with general MRFs: Inference hard [not always: CRFs, next lecture]

F9

Learning Markov Random Fields. Log-Linear Models Examples for Log-Linear Models

 $\Psi_j(\mathbf{x}_{C_j}) = \theta^T \mathbf{f}_j(\mathbf{x}_{C_j})$: Seems special ... No, it's not: Very common! • Discrete model, multinomial CPTs.

F10

Examples for Log-Linear Models

 $\Psi_j(\mathbf{x}_{C_j}) = \theta^T \mathbf{f}_j(\mathbf{x}_{C_j})$: Seems special ... No, it's not: Very common! • Discrete model, multinomial CPTs. $\pi_k = P(x = k)$

$$\theta_k = \log(\pi_k/\pi_K), \quad \mathbf{f}(x) = (I_{\{x=k\}}), \quad k = 1, \dots, K-1,$$

$$\Rightarrow P(x) = Z^{-1} e^{\mathbf{\theta}^T \mathbf{f}(x)}, \quad Z = 1/\pi_K$$

Directed Bayesian networks are not log-linear models, but

- Feature based models:
 - f_j indicators for presence / strength of certain features

Examples for Log-Linear Models

 $\Psi_j(\mathbf{x}_{C_j}) = \theta^T \mathbf{f}_j(\mathbf{x}_{C_j})$: Seems special ... No, it's not: Very common! • Discrete model, multinomial CPTs. $\pi_k = P(x = k)$

$$\theta_k = \log(\pi_k/\pi_K), \quad \mathbf{f}(x) = (\mathbf{I}_{\{x=k\}}), \quad k = 1, \dots, K-1,$$

$$\Rightarrow \mathbf{P}(x) = \mathbf{Z}^{-1} \mathbf{e}^{\mathbf{\theta}^T \mathbf{f}(x)}, \quad \mathbf{Z} = 1/\pi_K$$

Directed Bayesian networks are not log-linear models, but

• Feature based models:

f; indicators for presence / strength of certain features

 Gaussian Markov random field Note: Positive definiteness comes for free (log Z < ∞), does not destroy convexity

Further Points

• Learning MRF with latent variables:

- $\bullet~$ Use EM for latent variables (marginal \rightarrow joint likelihood)
- Use ∇-based optimization / IPF for M step (convex optimization) [No need to maximize, just descent]

Further Points

• Learning MRF with latent variables:

- Use EM for latent variables (marginal \rightarrow joint likelihood)
- Use ∇-based optimization / IPF for M step (convex optimization) [No need to maximize, just descent]
- Learning with inner maximization ("Viterbi learning")
 - Sometimes: MAP (argmax) easier than inference (\int)
 - Learning with maximization can work well (K-Means, ...)
 - In most cases: No equivalent guarantees to learning with inference

[Exceptions: Some work by Taskar, Altun, . . .]

Wrap-Up

- Learning requires (marginal) inference in most cases
 ⇒ Even frequentists need Bayesian inference
- Inequalities from convexity: Underlying very many ideas / methods
- Expectation Maximization: General-purpose algorithm for marginal likelihood maximization
- Log-linear Markov random fields: Learning is convex optimization