| EE-614: THEORY & METHODS OF LINEAR INVERSE PROBLEMS | | | | |---|---|---|--| | WEEK | MONDAY
(Recitation) | WEDNESDAY
(Lecture) | FRIDAY
(Lecture) | | Week 01
Sep 17 - 21 | | Motivation and Logistics | <i>Introduction</i> to vector and matrix norms, metrics and operator norms | | Week 02
Sep 24 - 28 | CVX introduction | Sparsity and compressibility , best k -term approximation, weak l_p atomic representations | Tractability and sample complexity of sparse recovery, minimal number of samples, NP-hardness of the problem | | Week 03
Oct 01 - 05 | Introduction to convex analysis | Low-dimensional models , a convex criteria for recovery, geometric insights | Convex algorithms for LDMs, convex projectors, majorization-minimization | | Week 04
Oct 08 - 12 | Convex problems | Convex algorithms for LDMs contd., convex projectors, majorization-minimization | Algorithm efficiency, convergence rates, acceleration techniques, a map of algorithms | | Week 05
Oct 15 - 19 | Matrix functions | Algorithm efficiency contd., Augmented Lagrangian methods (ALM) and inexact ALM | Special linear maps-I, l ₂ -norm restricted isometry property (RIP-2), Johnson-Lindenstrauss embeddings, proof of RIP-2 | | Week 06
Oct 22 - 26 | Tools from Probability
Theory | Special linear maps-II , l_1 -norm restricted isometry property (RIP-1), random matrix theory, summary of special matrices | Analysis of a convex sparse algorithm, RIP2-
analysis of BP, Risk analysis of Lasso | | Week 07
Oct 29 – Nov 02 | Submodularity, matroids, approx. submodularity analysis of OMP | LDMs from a discrete perspective, non-
convex projectors, majorization-minimization | Greedy algorithms, MP and OMP, basic acceleration techniques | | Week 08
Nov 05 - 09 | Submodular polyhedra,
Lovacz extension | Beyond sparsity-I , basic discrete models (TU), reduction in samples for RIP | Beyond sparsity-II , group based models, maxcover, knapsack | | Week 09
Nov 12 - 16 | O(n) algorithms for simplex or l ₁ , alternating proximal method | Beyond sparsity-III , regularization via submodular norms, min norm point algorithm | Beyond sparsity-IV , sparse and simplex constraints or Quantum tomography, sparse and norm constraints | | Week 10
Nov 19 - 23 | Count min/median sketch algorithms | Algorithms for huge dimensions-I & II, stochastic methods & sparse matrices respectively | Algorithms for huge dimensions-III, greedy algorithms (OMP), Lazy evaluation method, map reduce distributed procedures (Hadoop) | | Week 11
Nov 26 – 30 | Non-convex problems | Other non-convex algorithms-I , reweighted l_1/l_2 algorithms, l_p -minimization (0< p <1) | Other non-convex algorithms-II, minimax GAME algorithm | | Week 12
Dec 03 - 07 | Finite rate of innovation | Sparsity in a continuous domain-I , impact of gridding | Sparsity in a continuous domain-II, super resolution | | Week 13 & 14
Dec 10 - 21 | Project presentations | | |